This separates cloth stiffness and damping forces into tension, compression, and shearing components, allowing more control over the cloth behaviour. This also adds a bending model selector (although the new bending model itself is not implemented in this commit). This is because some of the features implemented here only make sense within the new bending model, while the old model is kept for compatibility. This commit makes non-breaking changes, and thus maintains full compatibility with existing simulations. Reviewed By: brecht Differential Revision: http://developer.blender.org/D3655
4446 lines
126 KiB
C
4446 lines
126 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2007 by Janne Karhu.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): Raul Fernandez Hernandez (Farsthary), Stephen Swhitehorn.
|
|
*
|
|
* Adaptive time step
|
|
* Classical SPH
|
|
* Copyright 2011-2012 AutoCRC
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/blenkernel/intern/particle_system.c
|
|
* \ingroup bke
|
|
*/
|
|
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "DNA_anim_types.h"
|
|
#include "DNA_boid_types.h"
|
|
#include "DNA_particle_types.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_modifier_types.h"
|
|
#include "DNA_object_force_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_curve_types.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_texture_types.h"
|
|
#include "DNA_listBase.h"
|
|
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_edgehash.h"
|
|
#include "BLI_rand.h"
|
|
#include "BLI_jitter_2d.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_kdtree.h"
|
|
#include "BLI_kdopbvh.h"
|
|
#include "BLI_sort.h"
|
|
#include "BLI_task.h"
|
|
#include "BLI_threads.h"
|
|
#include "BLI_linklist.h"
|
|
|
|
#include "BKE_animsys.h"
|
|
#include "BKE_boids.h"
|
|
#include "BKE_collision.h"
|
|
#include "BKE_colortools.h"
|
|
#include "BKE_effect.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_library.h"
|
|
#include "BKE_library_query.h"
|
|
#include "BKE_main.h"
|
|
#include "BKE_particle.h"
|
|
|
|
#include "BKE_collection.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_material.h"
|
|
#include "BKE_cloth.h"
|
|
#include "BKE_lattice.h"
|
|
#include "BKE_pointcache.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_modifier.h"
|
|
#include "BKE_scene.h"
|
|
#include "BKE_bvhutils.h"
|
|
|
|
#include "DEG_depsgraph.h"
|
|
#include "DEG_depsgraph_physics.h"
|
|
#include "DEG_depsgraph_query.h"
|
|
|
|
#include "PIL_time.h"
|
|
|
|
#include "RE_shader_ext.h"
|
|
|
|
/* fluid sim particle import */
|
|
#ifdef WITH_MOD_FLUID
|
|
#include "DNA_object_fluidsim_types.h"
|
|
#include "LBM_fluidsim.h"
|
|
#include <zlib.h>
|
|
#include <string.h>
|
|
|
|
#endif // WITH_MOD_FLUID
|
|
|
|
static ThreadRWMutex psys_bvhtree_rwlock = BLI_RWLOCK_INITIALIZER;
|
|
|
|
/************************************************/
|
|
/* Reacting to system events */
|
|
/************************************************/
|
|
|
|
static int particles_are_dynamic(ParticleSystem *psys)
|
|
{
|
|
if (psys->pointcache->flag & PTCACHE_BAKED)
|
|
return 0;
|
|
|
|
if (psys->part->type == PART_HAIR)
|
|
return psys->flag & PSYS_HAIR_DYNAMICS;
|
|
else
|
|
return ELEM(psys->part->phystype, PART_PHYS_NEWTON, PART_PHYS_BOIDS, PART_PHYS_FLUID);
|
|
}
|
|
|
|
float psys_get_current_display_percentage(ParticleSystem *psys, const bool use_render_params)
|
|
{
|
|
ParticleSettings *part=psys->part;
|
|
|
|
if ((use_render_params && !particles_are_dynamic(psys)) || /* non-dynamic particles can be rendered fully */
|
|
(part->child_nbr && part->childtype) || /* display percentage applies to children */
|
|
(psys->pointcache->flag & PTCACHE_BAKING)) /* baking is always done with full amount */
|
|
{
|
|
return 1.0f;
|
|
}
|
|
|
|
return psys->part->disp/100.0f;
|
|
}
|
|
|
|
static int tot_particles(ParticleSystem *psys, PTCacheID *pid)
|
|
{
|
|
if (pid && psys->pointcache->flag & PTCACHE_EXTERNAL)
|
|
return pid->cache->totpoint;
|
|
else if (psys->part->distr == PART_DISTR_GRID && psys->part->from != PART_FROM_VERT)
|
|
return psys->part->grid_res * psys->part->grid_res * psys->part->grid_res - psys->totunexist;
|
|
else
|
|
return psys->part->totpart - psys->totunexist;
|
|
}
|
|
|
|
void psys_reset(ParticleSystem *psys, int mode)
|
|
{
|
|
PARTICLE_P;
|
|
|
|
if (ELEM(mode, PSYS_RESET_ALL, PSYS_RESET_DEPSGRAPH)) {
|
|
if (mode == PSYS_RESET_ALL || !(psys->flag & PSYS_EDITED)) {
|
|
/* don't free if not absolutely necessary */
|
|
if (psys->totpart != tot_particles(psys, NULL)) {
|
|
psys_free_particles(psys);
|
|
psys->totpart= 0;
|
|
}
|
|
|
|
psys->totkeyed= 0;
|
|
psys->flag &= ~(PSYS_HAIR_DONE|PSYS_KEYED);
|
|
|
|
if (psys->edit && psys->free_edit) {
|
|
psys->free_edit(psys->edit);
|
|
psys->edit = NULL;
|
|
psys->free_edit = NULL;
|
|
}
|
|
}
|
|
}
|
|
else if (mode == PSYS_RESET_CACHE_MISS) {
|
|
/* set all particles to be skipped */
|
|
LOOP_PARTICLES {
|
|
pa->flag |= PARS_NO_DISP;
|
|
}
|
|
}
|
|
|
|
/* reset children */
|
|
if (psys->child) {
|
|
MEM_freeN(psys->child);
|
|
psys->child= NULL;
|
|
}
|
|
|
|
psys->totchild= 0;
|
|
|
|
/* reset path cache */
|
|
psys_free_path_cache(psys, psys->edit);
|
|
|
|
/* reset point cache */
|
|
BKE_ptcache_invalidate(psys->pointcache);
|
|
|
|
if (psys->fluid_springs) {
|
|
MEM_freeN(psys->fluid_springs);
|
|
psys->fluid_springs = NULL;
|
|
}
|
|
|
|
psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
|
|
}
|
|
|
|
static void realloc_particles(ParticleSimulationData *sim, int new_totpart)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
ParticleData *newpars = NULL;
|
|
BoidParticle *newboids = NULL;
|
|
PARTICLE_P;
|
|
int totpart, totsaved = 0;
|
|
|
|
if (new_totpart<0) {
|
|
if ((part->distr == PART_DISTR_GRID) && (part->from != PART_FROM_VERT)) {
|
|
totpart= part->grid_res;
|
|
totpart*=totpart*totpart;
|
|
}
|
|
else
|
|
totpart=part->totpart;
|
|
}
|
|
else
|
|
totpart=new_totpart;
|
|
|
|
if (totpart != psys->totpart) {
|
|
if (psys->edit && psys->free_edit) {
|
|
psys->free_edit(psys->edit);
|
|
psys->edit = NULL;
|
|
psys->free_edit = NULL;
|
|
}
|
|
|
|
if (totpart) {
|
|
newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles");
|
|
if (newpars == NULL)
|
|
return;
|
|
|
|
if (psys->part->phystype == PART_PHYS_BOIDS) {
|
|
newboids= MEM_callocN(totpart*sizeof(BoidParticle), "boid particles");
|
|
|
|
if (newboids == NULL) {
|
|
/* allocation error! */
|
|
if (newpars)
|
|
MEM_freeN(newpars);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (psys->particles) {
|
|
totsaved=MIN2(psys->totpart,totpart);
|
|
/*save old pars*/
|
|
if (totsaved) {
|
|
memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData));
|
|
|
|
if (psys->particles->boid)
|
|
memcpy(newboids, psys->particles->boid, totsaved*sizeof(BoidParticle));
|
|
}
|
|
|
|
if (psys->particles->keys)
|
|
MEM_freeN(psys->particles->keys);
|
|
|
|
if (psys->particles->boid)
|
|
MEM_freeN(psys->particles->boid);
|
|
|
|
for (p=0, pa=newpars; p<totsaved; p++, pa++) {
|
|
if (pa->keys) {
|
|
pa->keys= NULL;
|
|
pa->totkey= 0;
|
|
}
|
|
}
|
|
|
|
for (p=totsaved, pa=psys->particles+totsaved; p<psys->totpart; p++, pa++)
|
|
if (pa->hair) MEM_freeN(pa->hair);
|
|
|
|
MEM_freeN(psys->particles);
|
|
psys_free_pdd(psys);
|
|
}
|
|
|
|
psys->particles=newpars;
|
|
psys->totpart=totpart;
|
|
|
|
if (newboids) {
|
|
LOOP_PARTICLES {
|
|
pa->boid = newboids++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (psys->child) {
|
|
MEM_freeN(psys->child);
|
|
psys->child=NULL;
|
|
psys->totchild=0;
|
|
}
|
|
}
|
|
|
|
int psys_get_child_number(Scene *scene, ParticleSystem *psys, const bool use_render_params)
|
|
{
|
|
int nbr;
|
|
|
|
if (!psys->part->childtype)
|
|
return 0;
|
|
|
|
if (use_render_params)
|
|
nbr= psys->part->ren_child_nbr;
|
|
else
|
|
nbr= psys->part->child_nbr;
|
|
|
|
return get_render_child_particle_number(&scene->r, nbr, use_render_params);
|
|
}
|
|
|
|
int psys_get_tot_child(Scene *scene, ParticleSystem *psys, const bool use_render_params)
|
|
{
|
|
return psys->totpart*psys_get_child_number(scene, psys, use_render_params);
|
|
}
|
|
|
|
/************************************************/
|
|
/* Distribution */
|
|
/************************************************/
|
|
|
|
void psys_calc_dmcache(Object *ob, Mesh *mesh_final, Mesh *mesh_original, ParticleSystem *psys)
|
|
{
|
|
/* use for building derived mesh mapping info:
|
|
*
|
|
* node: the allocated links - total derived mesh element count
|
|
* nodearray: the array of nodes aligned with the base mesh's elements, so
|
|
* each original elements can reference its derived elements
|
|
*/
|
|
Mesh *me= (Mesh*)ob->data;
|
|
bool use_modifier_stack= psys->part->use_modifier_stack;
|
|
PARTICLE_P;
|
|
|
|
/* CACHE LOCATIONS */
|
|
if (!mesh_final->runtime.deformed_only) {
|
|
/* Will use later to speed up subsurf/evaluated mesh. */
|
|
LinkNode *node, *nodedmelem, **nodearray;
|
|
int totdmelem, totelem, i, *origindex, *origindex_poly = NULL;
|
|
|
|
if (psys->part->from == PART_FROM_VERT) {
|
|
totdmelem = mesh_final->totvert;
|
|
|
|
if (use_modifier_stack) {
|
|
totelem= totdmelem;
|
|
origindex= NULL;
|
|
}
|
|
else {
|
|
totelem= me->totvert;
|
|
origindex = CustomData_get_layer(&mesh_final->vdata, CD_ORIGINDEX);
|
|
}
|
|
}
|
|
else { /* FROM_FACE/FROM_VOLUME */
|
|
totdmelem= mesh_final->totface;
|
|
|
|
if (use_modifier_stack) {
|
|
totelem= totdmelem;
|
|
origindex= NULL;
|
|
origindex_poly= NULL;
|
|
}
|
|
else {
|
|
totelem = mesh_original->totface;
|
|
origindex = CustomData_get_layer(&mesh_final->fdata, CD_ORIGINDEX);
|
|
|
|
/* for face lookups we need the poly origindex too */
|
|
origindex_poly = CustomData_get_layer(&mesh_final->pdata, CD_ORIGINDEX);
|
|
if (origindex_poly == NULL) {
|
|
origindex= NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
nodedmelem= MEM_callocN(sizeof(LinkNode)*totdmelem, "psys node elems");
|
|
nodearray= MEM_callocN(sizeof(LinkNode *)*totelem, "psys node array");
|
|
|
|
for (i=0, node=nodedmelem; i<totdmelem; i++, node++) {
|
|
int origindex_final;
|
|
node->link = SET_INT_IN_POINTER(i);
|
|
|
|
/* may be vertex or face origindex */
|
|
if (use_modifier_stack) {
|
|
origindex_final = i;
|
|
}
|
|
else {
|
|
origindex_final = origindex ? origindex[i] : ORIGINDEX_NONE;
|
|
|
|
/* if we have a poly source, do an index lookup */
|
|
if (origindex_poly && origindex_final != ORIGINDEX_NONE) {
|
|
origindex_final = origindex_poly[origindex_final];
|
|
}
|
|
}
|
|
|
|
if (origindex_final != ORIGINDEX_NONE && origindex_final < totelem) {
|
|
if (nodearray[origindex_final]) {
|
|
/* prepend */
|
|
node->next = nodearray[origindex_final];
|
|
nodearray[origindex_final] = node;
|
|
}
|
|
else {
|
|
nodearray[origindex_final] = node;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* cache the verts/faces! */
|
|
LOOP_PARTICLES {
|
|
if (pa->num < 0) {
|
|
pa->num_dmcache = DMCACHE_NOTFOUND;
|
|
continue;
|
|
}
|
|
|
|
if (use_modifier_stack) {
|
|
if (pa->num < totelem)
|
|
pa->num_dmcache = DMCACHE_ISCHILD;
|
|
else
|
|
pa->num_dmcache = DMCACHE_NOTFOUND;
|
|
}
|
|
else {
|
|
if (psys->part->from == PART_FROM_VERT) {
|
|
if (pa->num < totelem && nodearray[pa->num])
|
|
pa->num_dmcache= GET_INT_FROM_POINTER(nodearray[pa->num]->link);
|
|
else
|
|
pa->num_dmcache = DMCACHE_NOTFOUND;
|
|
}
|
|
else { /* FROM_FACE/FROM_VOLUME */
|
|
pa->num_dmcache = psys_particle_dm_face_lookup(mesh_final, mesh_original, pa->num, pa->fuv, nodearray);
|
|
}
|
|
}
|
|
}
|
|
|
|
MEM_freeN(nodearray);
|
|
MEM_freeN(nodedmelem);
|
|
}
|
|
else {
|
|
/* TODO PARTICLE, make the following line unnecessary, each function
|
|
* should know to use the num or num_dmcache, set the num_dmcache to
|
|
* an invalid value, just in case */
|
|
|
|
LOOP_PARTICLES {
|
|
pa->num_dmcache = DMCACHE_NOTFOUND;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* threaded child particle distribution and path caching */
|
|
void psys_thread_context_init(ParticleThreadContext *ctx, ParticleSimulationData *sim)
|
|
{
|
|
memset(ctx, 0, sizeof(ParticleThreadContext));
|
|
ctx->sim = *sim;
|
|
ctx->mesh = ctx->sim.psmd->mesh_final;
|
|
ctx->ma = give_current_material(sim->ob, sim->psys->part->omat);
|
|
}
|
|
|
|
#define MAX_PARTICLES_PER_TASK 256 /* XXX arbitrary - maybe use at least number of points instead for better balancing? */
|
|
|
|
BLI_INLINE int ceil_ii(int a, int b)
|
|
{
|
|
return (a + b - 1) / b;
|
|
}
|
|
|
|
void psys_tasks_create(ParticleThreadContext *ctx, int startpart, int endpart, ParticleTask **r_tasks, int *r_numtasks)
|
|
{
|
|
ParticleTask *tasks;
|
|
int numtasks = ceil_ii((endpart - startpart), MAX_PARTICLES_PER_TASK);
|
|
float particles_per_task = (float)(endpart - startpart) / (float)numtasks, p, pnext;
|
|
int i;
|
|
|
|
tasks = MEM_callocN(sizeof(ParticleTask) * numtasks, "ParticleThread");
|
|
*r_numtasks = numtasks;
|
|
*r_tasks = tasks;
|
|
|
|
p = (float)startpart;
|
|
for (i = 0; i < numtasks; i++, p = pnext) {
|
|
pnext = p + particles_per_task;
|
|
|
|
tasks[i].ctx = ctx;
|
|
tasks[i].begin = (int)p;
|
|
tasks[i].end = min_ii((int)pnext, endpart);
|
|
}
|
|
}
|
|
|
|
void psys_tasks_free(ParticleTask *tasks, int numtasks)
|
|
{
|
|
int i;
|
|
|
|
/* threads */
|
|
for (i = 0; i < numtasks; ++i) {
|
|
if (tasks[i].rng)
|
|
BLI_rng_free(tasks[i].rng);
|
|
if (tasks[i].rng_path)
|
|
BLI_rng_free(tasks[i].rng_path);
|
|
}
|
|
|
|
MEM_freeN(tasks);
|
|
}
|
|
|
|
void psys_thread_context_free(ParticleThreadContext *ctx)
|
|
{
|
|
/* path caching */
|
|
if (ctx->vg_length)
|
|
MEM_freeN(ctx->vg_length);
|
|
if (ctx->vg_clump)
|
|
MEM_freeN(ctx->vg_clump);
|
|
if (ctx->vg_kink)
|
|
MEM_freeN(ctx->vg_kink);
|
|
if (ctx->vg_rough1)
|
|
MEM_freeN(ctx->vg_rough1);
|
|
if (ctx->vg_rough2)
|
|
MEM_freeN(ctx->vg_rough2);
|
|
if (ctx->vg_roughe)
|
|
MEM_freeN(ctx->vg_roughe);
|
|
if (ctx->vg_twist)
|
|
MEM_freeN(ctx->vg_twist);
|
|
|
|
if (ctx->sim.psys->lattice_deform_data) {
|
|
end_latt_deform(ctx->sim.psys->lattice_deform_data);
|
|
ctx->sim.psys->lattice_deform_data = NULL;
|
|
}
|
|
|
|
/* distribution */
|
|
if (ctx->jit) MEM_freeN(ctx->jit);
|
|
if (ctx->jitoff) MEM_freeN(ctx->jitoff);
|
|
if (ctx->weight) MEM_freeN(ctx->weight);
|
|
if (ctx->index) MEM_freeN(ctx->index);
|
|
if (ctx->seams) MEM_freeN(ctx->seams);
|
|
//if (ctx->vertpart) MEM_freeN(ctx->vertpart);
|
|
BLI_kdtree_free(ctx->tree);
|
|
|
|
if (ctx->clumpcurve != NULL) {
|
|
curvemapping_free(ctx->clumpcurve);
|
|
}
|
|
if (ctx->roughcurve != NULL) {
|
|
curvemapping_free(ctx->roughcurve);
|
|
}
|
|
if (ctx->twistcurve != NULL) {
|
|
curvemapping_free(ctx->twistcurve);
|
|
}
|
|
}
|
|
|
|
static void initialize_particle_texture(ParticleSimulationData *sim, ParticleData *pa, int p)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
ParticleTexture ptex;
|
|
|
|
psys_get_texture(sim, pa, &ptex, PAMAP_INIT, 0.f);
|
|
|
|
switch (part->type) {
|
|
case PART_EMITTER:
|
|
if (ptex.exist < psys_frand(psys, p + 125)) {
|
|
pa->flag |= PARS_UNEXIST;
|
|
}
|
|
pa->time = part->sta + (part->end - part->sta)*ptex.time;
|
|
break;
|
|
case PART_HAIR:
|
|
if (ptex.exist < psys_frand(psys, p + 125)) {
|
|
pa->flag |= PARS_UNEXIST;
|
|
}
|
|
pa->time = 0.f;
|
|
break;
|
|
case PART_FLUID:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* set particle parameters that don't change during particle's life */
|
|
void initialize_particle(ParticleSimulationData *sim, ParticleData *pa)
|
|
{
|
|
ParticleSettings *part = sim->psys->part;
|
|
float birth_time = (float)(pa - sim->psys->particles) / (float)sim->psys->totpart;
|
|
|
|
pa->flag &= ~PARS_UNEXIST;
|
|
pa->time = part->sta + (part->end - part->sta) * birth_time;
|
|
|
|
pa->hair_index = 0;
|
|
/* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
|
|
/* usage other than straight after distribute has to handle this index by itself - jahka*/
|
|
//pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we don't have a derived mesh face */
|
|
}
|
|
|
|
static void initialize_all_particles(ParticleSimulationData *sim)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
/* Grid distributionsets UNEXIST flag, need to take care of
|
|
* it here because later this flag is being reset.
|
|
*
|
|
* We can't do it for any distribution, because it'll then
|
|
* conflict with texture influence, which does not free
|
|
* unexisting particles and only sets flag.
|
|
*
|
|
* It's not so bad, because only grid distribution sets
|
|
* UNEXIST flag.
|
|
*/
|
|
const bool emit_from_volume_grid = (part->distr == PART_DISTR_GRID) &&
|
|
(!ELEM(part->from, PART_FROM_VERT, PART_FROM_CHILD));
|
|
PARTICLE_P;
|
|
LOOP_PARTICLES {
|
|
if (!(emit_from_volume_grid && (pa->flag & PARS_UNEXIST) != 0)) {
|
|
initialize_particle(sim, pa);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void free_unexisting_particles(ParticleSimulationData *sim)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
PARTICLE_P;
|
|
|
|
psys->totunexist = 0;
|
|
|
|
LOOP_PARTICLES {
|
|
if (pa->flag & PARS_UNEXIST) {
|
|
psys->totunexist++;
|
|
}
|
|
}
|
|
|
|
if (psys->totpart && psys->totunexist == psys->totpart) {
|
|
if (psys->particles->boid)
|
|
MEM_freeN(psys->particles->boid);
|
|
|
|
MEM_freeN(psys->particles);
|
|
psys->particles = NULL;
|
|
psys->totpart = psys->totunexist = 0;
|
|
}
|
|
|
|
if (psys->totunexist) {
|
|
int newtotpart = psys->totpart - psys->totunexist;
|
|
ParticleData *npa, *newpars;
|
|
|
|
npa = newpars = MEM_callocN(newtotpart * sizeof(ParticleData), "particles");
|
|
|
|
for (p=0, pa=psys->particles; p<newtotpart; p++, pa++, npa++) {
|
|
while (pa->flag & PARS_UNEXIST)
|
|
pa++;
|
|
|
|
memcpy(npa, pa, sizeof(ParticleData));
|
|
}
|
|
|
|
if (psys->particles->boid)
|
|
MEM_freeN(psys->particles->boid);
|
|
MEM_freeN(psys->particles);
|
|
psys->particles = newpars;
|
|
psys->totpart -= psys->totunexist;
|
|
|
|
if (psys->particles->boid) {
|
|
BoidParticle *newboids = MEM_callocN(psys->totpart * sizeof(BoidParticle), "boid particles");
|
|
|
|
LOOP_PARTICLES {
|
|
pa->boid = newboids++;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static void get_angular_velocity_vector(short avemode, ParticleKey *state, float vec[3])
|
|
{
|
|
switch (avemode) {
|
|
case PART_AVE_VELOCITY:
|
|
copy_v3_v3(vec, state->vel);
|
|
break;
|
|
case PART_AVE_HORIZONTAL:
|
|
{
|
|
float zvec[3];
|
|
zvec[0] = zvec[1] = 0;
|
|
zvec[2] = 1.f;
|
|
cross_v3_v3v3(vec, state->vel, zvec);
|
|
break;
|
|
}
|
|
case PART_AVE_VERTICAL:
|
|
{
|
|
float zvec[3], temp[3];
|
|
zvec[0] = zvec[1] = 0;
|
|
zvec[2] = 1.f;
|
|
cross_v3_v3v3(temp, state->vel, zvec);
|
|
cross_v3_v3v3(vec, temp, state->vel);
|
|
break;
|
|
}
|
|
case PART_AVE_GLOBAL_X:
|
|
vec[0] = 1.f;
|
|
vec[1] = vec[2] = 0;
|
|
break;
|
|
case PART_AVE_GLOBAL_Y:
|
|
vec[1] = 1.f;
|
|
vec[0] = vec[2] = 0;
|
|
break;
|
|
case PART_AVE_GLOBAL_Z:
|
|
vec[2] = 1.f;
|
|
vec[0] = vec[1] = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void psys_get_birth_coords(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, float dtime, float cfra)
|
|
{
|
|
Object *ob = sim->ob;
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
ParticleTexture ptex;
|
|
float fac, phasefac, nor[3] = {0,0,0},loc[3],vel[3] = {0.0,0.0,0.0},rot[4],q2[4];
|
|
float r_vel[3],r_ave[3],r_rot[4],vec[3],p_vel[3] = {0.0,0.0,0.0};
|
|
float x_vec[3] = {1.0,0.0,0.0}, utan[3] = {0.0,1.0,0.0}, vtan[3] = {0.0,0.0,1.0}, rot_vec[3] = {0.0,0.0,0.0};
|
|
float q_phase[4];
|
|
|
|
const bool use_boids = ((part->phystype == PART_PHYS_BOIDS) &&
|
|
(pa->boid != NULL));
|
|
const bool use_tangents = ((use_boids == false) &&
|
|
((part->tanfac != 0.0f) || (part->rotmode == PART_ROT_NOR_TAN)));
|
|
|
|
int p = pa - psys->particles;
|
|
|
|
/* get birth location from object */
|
|
if (use_tangents)
|
|
psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0);
|
|
else
|
|
psys_particle_on_emitter(sim->psmd, part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,0,0,0);
|
|
|
|
/* get possible textural influence */
|
|
psys_get_texture(sim, pa, &ptex, PAMAP_IVEL, cfra);
|
|
|
|
/* particles live in global space so */
|
|
/* let's convert: */
|
|
/* -location */
|
|
mul_m4_v3(ob->obmat, loc);
|
|
|
|
/* -normal */
|
|
mul_mat3_m4_v3(ob->obmat, nor);
|
|
normalize_v3(nor);
|
|
|
|
/* -tangent */
|
|
if (use_tangents) {
|
|
//float phase=vg_rot?2.0f*(psys_particle_value_from_verts(sim->psmd->dm,part->from,pa,vg_rot)-0.5f):0.0f;
|
|
float phase=0.0f;
|
|
mul_v3_fl(vtan,-cosf((float)M_PI*(part->tanphase+phase)));
|
|
fac= -sinf((float)M_PI*(part->tanphase+phase));
|
|
madd_v3_v3fl(vtan, utan, fac);
|
|
|
|
mul_mat3_m4_v3(ob->obmat,vtan);
|
|
|
|
copy_v3_v3(utan, nor);
|
|
mul_v3_fl(utan,dot_v3v3(vtan,nor));
|
|
sub_v3_v3(vtan, utan);
|
|
|
|
normalize_v3(vtan);
|
|
}
|
|
|
|
|
|
/* -velocity (boids need this even if there's no random velocity) */
|
|
if (part->randfac != 0.0f || (part->phystype==PART_PHYS_BOIDS && pa->boid)) {
|
|
r_vel[0] = 2.0f * (psys_frand(psys, p + 10) - 0.5f);
|
|
r_vel[1] = 2.0f * (psys_frand(psys, p + 11) - 0.5f);
|
|
r_vel[2] = 2.0f * (psys_frand(psys, p + 12) - 0.5f);
|
|
|
|
mul_mat3_m4_v3(ob->obmat, r_vel);
|
|
normalize_v3(r_vel);
|
|
}
|
|
|
|
/* -angular velocity */
|
|
if (part->avemode==PART_AVE_RAND) {
|
|
r_ave[0] = 2.0f * (psys_frand(psys, p + 13) - 0.5f);
|
|
r_ave[1] = 2.0f * (psys_frand(psys, p + 14) - 0.5f);
|
|
r_ave[2] = 2.0f * (psys_frand(psys, p + 15) - 0.5f);
|
|
|
|
mul_mat3_m4_v3(ob->obmat,r_ave);
|
|
normalize_v3(r_ave);
|
|
}
|
|
|
|
/* -rotation */
|
|
if (part->randrotfac != 0.0f) {
|
|
r_rot[0] = 2.0f * (psys_frand(psys, p + 16) - 0.5f);
|
|
r_rot[1] = 2.0f * (psys_frand(psys, p + 17) - 0.5f);
|
|
r_rot[2] = 2.0f * (psys_frand(psys, p + 18) - 0.5f);
|
|
r_rot[3] = 2.0f * (psys_frand(psys, p + 19) - 0.5f);
|
|
normalize_qt(r_rot);
|
|
|
|
mat4_to_quat(rot,ob->obmat);
|
|
mul_qt_qtqt(r_rot,r_rot,rot);
|
|
}
|
|
|
|
if (use_boids) {
|
|
float dvec[3], q[4], mat[3][3];
|
|
|
|
copy_v3_v3(state->co,loc);
|
|
|
|
/* boids don't get any initial velocity */
|
|
zero_v3(state->vel);
|
|
|
|
/* boids store direction in ave */
|
|
if (fabsf(nor[2])==1.0f) {
|
|
sub_v3_v3v3(state->ave, loc, ob->obmat[3]);
|
|
normalize_v3(state->ave);
|
|
}
|
|
else {
|
|
copy_v3_v3(state->ave, nor);
|
|
}
|
|
|
|
/* calculate rotation matrix */
|
|
project_v3_v3v3(dvec, r_vel, state->ave);
|
|
sub_v3_v3v3(mat[0], state->ave, dvec);
|
|
normalize_v3(mat[0]);
|
|
negate_v3_v3(mat[2], r_vel);
|
|
normalize_v3(mat[2]);
|
|
cross_v3_v3v3(mat[1], mat[2], mat[0]);
|
|
|
|
/* apply rotation */
|
|
mat3_to_quat_is_ok( q,mat);
|
|
copy_qt_qt(state->rot, q);
|
|
}
|
|
else {
|
|
/* conversion done so now we apply new: */
|
|
/* -velocity from: */
|
|
|
|
/* *reactions */
|
|
if (dtime > 0.f) {
|
|
sub_v3_v3v3(vel, pa->state.vel, pa->prev_state.vel);
|
|
}
|
|
|
|
/* *emitter velocity */
|
|
if (dtime != 0.f && part->obfac != 0.f) {
|
|
sub_v3_v3v3(vel, loc, state->co);
|
|
mul_v3_fl(vel, part->obfac/dtime);
|
|
}
|
|
|
|
/* *emitter normal */
|
|
if (part->normfac != 0.f)
|
|
madd_v3_v3fl(vel, nor, part->normfac);
|
|
|
|
/* *emitter tangent */
|
|
if (sim->psmd && part->tanfac != 0.f)
|
|
madd_v3_v3fl(vel, vtan, part->tanfac);
|
|
|
|
/* *emitter object orientation */
|
|
if (part->ob_vel[0] != 0.f) {
|
|
normalize_v3_v3(vec, ob->obmat[0]);
|
|
madd_v3_v3fl(vel, vec, part->ob_vel[0]);
|
|
}
|
|
if (part->ob_vel[1] != 0.f) {
|
|
normalize_v3_v3(vec, ob->obmat[1]);
|
|
madd_v3_v3fl(vel, vec, part->ob_vel[1]);
|
|
}
|
|
if (part->ob_vel[2] != 0.f) {
|
|
normalize_v3_v3(vec, ob->obmat[2]);
|
|
madd_v3_v3fl(vel, vec, part->ob_vel[2]);
|
|
}
|
|
|
|
/* *texture */
|
|
/* TODO */
|
|
|
|
/* *random */
|
|
if (part->randfac != 0.f)
|
|
madd_v3_v3fl(vel, r_vel, part->randfac);
|
|
|
|
/* *particle */
|
|
if (part->partfac != 0.f)
|
|
madd_v3_v3fl(vel, p_vel, part->partfac);
|
|
|
|
mul_v3_v3fl(state->vel, vel, ptex.ivel);
|
|
|
|
/* -location from emitter */
|
|
copy_v3_v3(state->co,loc);
|
|
|
|
/* -rotation */
|
|
unit_qt(state->rot);
|
|
|
|
if (part->rotmode) {
|
|
bool use_global_space;
|
|
|
|
/* create vector into which rotation is aligned */
|
|
switch (part->rotmode) {
|
|
case PART_ROT_NOR:
|
|
case PART_ROT_NOR_TAN:
|
|
copy_v3_v3(rot_vec, nor);
|
|
use_global_space = false;
|
|
break;
|
|
case PART_ROT_VEL:
|
|
copy_v3_v3(rot_vec, vel);
|
|
use_global_space = true;
|
|
break;
|
|
case PART_ROT_GLOB_X:
|
|
case PART_ROT_GLOB_Y:
|
|
case PART_ROT_GLOB_Z:
|
|
rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f;
|
|
use_global_space = true;
|
|
break;
|
|
case PART_ROT_OB_X:
|
|
case PART_ROT_OB_Y:
|
|
case PART_ROT_OB_Z:
|
|
copy_v3_v3(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]);
|
|
use_global_space = false;
|
|
break;
|
|
default:
|
|
use_global_space = true;
|
|
break;
|
|
}
|
|
|
|
/* create rotation quat */
|
|
|
|
|
|
if (use_global_space) {
|
|
negate_v3(rot_vec);
|
|
vec_to_quat(q2, rot_vec, OB_POSX, OB_POSZ);
|
|
|
|
/* randomize rotation quat */
|
|
if (part->randrotfac != 0.0f) {
|
|
interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
|
|
}
|
|
else {
|
|
copy_qt_qt(rot, q2);
|
|
}
|
|
}
|
|
else {
|
|
/* calculate rotation in local-space */
|
|
float q_obmat[4];
|
|
float q_imat[4];
|
|
|
|
mat4_to_quat(q_obmat, ob->obmat);
|
|
invert_qt_qt_normalized(q_imat, q_obmat);
|
|
|
|
|
|
if (part->rotmode != PART_ROT_NOR_TAN) {
|
|
float rot_vec_local[3];
|
|
|
|
/* rot_vec */
|
|
negate_v3(rot_vec);
|
|
copy_v3_v3(rot_vec_local, rot_vec);
|
|
mul_qt_v3(q_imat, rot_vec_local);
|
|
normalize_v3(rot_vec_local);
|
|
|
|
vec_to_quat(q2, rot_vec_local, OB_POSX, OB_POSZ);
|
|
}
|
|
else {
|
|
/* (part->rotmode == PART_ROT_NOR_TAN) */
|
|
float tmat[3][3];
|
|
|
|
/* note: utan_local is not taken from 'utan', we calculate from rot_vec/vtan */
|
|
/* note: it looks like rotation phase may be applied twice (once with vtan, again below)
|
|
* however this isn't the case - campbell */
|
|
float *rot_vec_local = tmat[0];
|
|
float *vtan_local = tmat[1];
|
|
float *utan_local = tmat[2];
|
|
|
|
/* use tangents */
|
|
BLI_assert(use_tangents == true);
|
|
|
|
/* rot_vec */
|
|
copy_v3_v3(rot_vec_local, rot_vec);
|
|
mul_qt_v3(q_imat, rot_vec_local);
|
|
|
|
/* vtan_local */
|
|
copy_v3_v3(vtan_local, vtan); /* flips, cant use */
|
|
mul_qt_v3(q_imat, vtan_local);
|
|
|
|
/* ensure orthogonal matrix (rot_vec aligned) */
|
|
cross_v3_v3v3(utan_local, vtan_local, rot_vec_local);
|
|
cross_v3_v3v3(vtan_local, utan_local, rot_vec_local);
|
|
|
|
/* note: no need to normalize */
|
|
mat3_to_quat(q2, tmat);
|
|
}
|
|
|
|
/* randomize rotation quat */
|
|
if (part->randrotfac != 0.0f) {
|
|
mul_qt_qtqt(r_rot, r_rot, q_imat);
|
|
interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
|
|
}
|
|
else {
|
|
copy_qt_qt(rot, q2);
|
|
}
|
|
|
|
mul_qt_qtqt(rot, q_obmat, rot);
|
|
}
|
|
|
|
/* rotation phase */
|
|
phasefac = part->phasefac;
|
|
if (part->randphasefac != 0.0f)
|
|
phasefac += part->randphasefac * psys_frand(psys, p + 20);
|
|
axis_angle_to_quat( q_phase,x_vec, phasefac*(float)M_PI);
|
|
|
|
/* combine base rotation & phase */
|
|
mul_qt_qtqt(state->rot, rot, q_phase);
|
|
}
|
|
|
|
/* -angular velocity */
|
|
|
|
zero_v3(state->ave);
|
|
|
|
if (part->avemode) {
|
|
if (part->avemode == PART_AVE_RAND)
|
|
copy_v3_v3(state->ave, r_ave);
|
|
else
|
|
get_angular_velocity_vector(part->avemode, state, state->ave);
|
|
|
|
normalize_v3(state->ave);
|
|
mul_v3_fl(state->ave, part->avefac);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* recursively evaluate emitter parent anim at cfra */
|
|
static void evaluate_emitter_anim(struct Depsgraph *depsgraph, Scene *scene, Object *ob, float cfra)
|
|
{
|
|
if (ob->parent)
|
|
evaluate_emitter_anim(depsgraph, scene, ob->parent, cfra);
|
|
|
|
/* we have to force RECALC_ANIM here since where_is_objec_time only does drivers */
|
|
BKE_animsys_evaluate_animdata(depsgraph, scene, &ob->id, ob->adt, cfra, ADT_RECALC_ANIM);
|
|
BKE_object_where_is_calc_time(depsgraph, scene, ob, cfra);
|
|
}
|
|
|
|
/* sets particle to the emitter surface with initial velocity & rotation */
|
|
void reset_particle(ParticleSimulationData *sim, ParticleData *pa, float dtime, float cfra)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part;
|
|
ParticleTexture ptex;
|
|
int p = pa - psys->particles;
|
|
part=psys->part;
|
|
|
|
/* get precise emitter matrix if particle is born */
|
|
if (part->type != PART_HAIR && dtime > 0.f && pa->time < cfra && pa->time >= sim->psys->cfra) {
|
|
evaluate_emitter_anim(sim->depsgraph, sim->scene, sim->ob, pa->time);
|
|
|
|
psys->flag |= PSYS_OB_ANIM_RESTORE;
|
|
}
|
|
|
|
psys_get_birth_coords(sim, pa, &pa->state, dtime, cfra);
|
|
|
|
/* Initialize particle settings which depends on texture.
|
|
*
|
|
* We could only do it now because we'll need to know coordinate
|
|
* before sampling the texture.
|
|
*/
|
|
initialize_particle_texture(sim, pa, p);
|
|
|
|
if (part->phystype==PART_PHYS_BOIDS && pa->boid) {
|
|
BoidParticle *bpa = pa->boid;
|
|
|
|
/* and gravity in r_ve */
|
|
bpa->gravity[0] = bpa->gravity[1] = 0.0f;
|
|
bpa->gravity[2] = -1.0f;
|
|
if ((sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) &&
|
|
(sim->scene->physics_settings.gravity[2] != 0.0f))
|
|
{
|
|
bpa->gravity[2] = sim->scene->physics_settings.gravity[2];
|
|
}
|
|
|
|
bpa->data.health = part->boids->health;
|
|
bpa->data.mode = eBoidMode_InAir;
|
|
bpa->data.state_id = ((BoidState*)part->boids->states.first)->id;
|
|
bpa->data.acc[0]=bpa->data.acc[1]=bpa->data.acc[2]=0.0f;
|
|
}
|
|
|
|
if (part->type == PART_HAIR) {
|
|
pa->lifetime = 100.0f;
|
|
}
|
|
else {
|
|
/* initialize the lifetime, in case the texture coordinates
|
|
* are from Particles/Strands, which would cause undefined values
|
|
*/
|
|
pa->lifetime = part->lifetime * (1.0f - part->randlife * psys_frand(psys, p + 21));
|
|
pa->dietime = pa->time + pa->lifetime;
|
|
|
|
/* get possible textural influence */
|
|
psys_get_texture(sim, pa, &ptex, PAMAP_LIFE, cfra);
|
|
|
|
pa->lifetime = part->lifetime * ptex.life;
|
|
|
|
if (part->randlife != 0.0f)
|
|
pa->lifetime *= 1.0f - part->randlife * psys_frand(psys, p + 21);
|
|
}
|
|
|
|
pa->dietime = pa->time + pa->lifetime;
|
|
|
|
if ((sim->psys->pointcache) &&
|
|
(sim->psys->pointcache->flag & PTCACHE_BAKED) &&
|
|
(sim->psys->pointcache->mem_cache.first))
|
|
{
|
|
float dietime = psys_get_dietime_from_cache(sim->psys->pointcache, p);
|
|
pa->dietime = MIN2(pa->dietime, dietime);
|
|
}
|
|
|
|
if (pa->time > cfra)
|
|
pa->alive = PARS_UNBORN;
|
|
else if (pa->dietime <= cfra)
|
|
pa->alive = PARS_DEAD;
|
|
else
|
|
pa->alive = PARS_ALIVE;
|
|
|
|
pa->state.time = cfra;
|
|
}
|
|
static void reset_all_particles(ParticleSimulationData *sim, float dtime, float cfra, int from)
|
|
{
|
|
ParticleData *pa;
|
|
int p, totpart=sim->psys->totpart;
|
|
|
|
for (p=from, pa=sim->psys->particles+from; p<totpart; p++, pa++)
|
|
reset_particle(sim, pa, dtime, cfra);
|
|
}
|
|
/************************************************/
|
|
/* Particle targets */
|
|
/************************************************/
|
|
ParticleSystem *psys_get_target_system(Object *ob, ParticleTarget *pt)
|
|
{
|
|
ParticleSystem *psys = NULL;
|
|
|
|
if (pt->ob == NULL || pt->ob == ob)
|
|
psys = BLI_findlink(&ob->particlesystem, pt->psys-1);
|
|
else
|
|
psys = BLI_findlink(&pt->ob->particlesystem, pt->psys-1);
|
|
|
|
if (psys)
|
|
pt->flag |= PTARGET_VALID;
|
|
else
|
|
pt->flag &= ~PTARGET_VALID;
|
|
|
|
return psys;
|
|
}
|
|
/************************************************/
|
|
/* Keyed particles */
|
|
/************************************************/
|
|
/* Counts valid keyed targets */
|
|
void psys_count_keyed_targets(ParticleSimulationData *sim)
|
|
{
|
|
ParticleSystem *psys = sim->psys, *kpsys;
|
|
ParticleTarget *pt = psys->targets.first;
|
|
int keys_valid = 1;
|
|
psys->totkeyed = 0;
|
|
|
|
for (; pt; pt=pt->next) {
|
|
kpsys = psys_get_target_system(sim->ob, pt);
|
|
|
|
if (kpsys && kpsys->totpart) {
|
|
psys->totkeyed += keys_valid;
|
|
if (psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f)
|
|
psys->totkeyed += 1;
|
|
}
|
|
else {
|
|
keys_valid = 0;
|
|
}
|
|
}
|
|
|
|
psys->totkeyed *= psys->flag & PSYS_KEYED_TIMING ? 1 : psys->part->keyed_loops;
|
|
}
|
|
|
|
static void set_keyed_keys(ParticleSimulationData *sim)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSimulationData ksim= {0};
|
|
ParticleTarget *pt;
|
|
PARTICLE_P;
|
|
ParticleKey *key;
|
|
int totpart = psys->totpart, k, totkeys = psys->totkeyed;
|
|
int keyed_flag = 0;
|
|
|
|
ksim.depsgraph = sim->depsgraph;
|
|
ksim.scene = sim->scene;
|
|
|
|
/* no proper targets so let's clear and bail out */
|
|
if (psys->totkeyed==0) {
|
|
free_keyed_keys(psys);
|
|
psys->flag &= ~PSYS_KEYED;
|
|
return;
|
|
}
|
|
|
|
if (totpart && psys->particles->totkey != totkeys) {
|
|
free_keyed_keys(psys);
|
|
|
|
key = MEM_callocN(totpart*totkeys*sizeof(ParticleKey), "Keyed keys");
|
|
|
|
LOOP_PARTICLES {
|
|
pa->keys = key;
|
|
pa->totkey = totkeys;
|
|
key += totkeys;
|
|
}
|
|
}
|
|
|
|
psys->flag &= ~PSYS_KEYED;
|
|
|
|
|
|
pt = psys->targets.first;
|
|
for (k=0; k<totkeys; k++) {
|
|
ksim.ob = pt->ob ? pt->ob : sim->ob;
|
|
ksim.psys = BLI_findlink(&ksim.ob->particlesystem, pt->psys - 1);
|
|
keyed_flag = (ksim.psys->flag & PSYS_KEYED);
|
|
ksim.psys->flag &= ~PSYS_KEYED;
|
|
|
|
LOOP_PARTICLES {
|
|
key = pa->keys + k;
|
|
key->time = -1.0; /* use current time */
|
|
|
|
psys_get_particle_state(&ksim, p%ksim.psys->totpart, key, 1);
|
|
|
|
if (psys->flag & PSYS_KEYED_TIMING) {
|
|
key->time = pa->time + pt->time;
|
|
if (pt->duration != 0.0f && k+1 < totkeys) {
|
|
copy_particle_key(key+1, key, 1);
|
|
(key+1)->time = pa->time + pt->time + pt->duration;
|
|
}
|
|
}
|
|
else if (totkeys > 1)
|
|
key->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
|
|
else
|
|
key->time = pa->time;
|
|
}
|
|
|
|
if (psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f)
|
|
k++;
|
|
|
|
ksim.psys->flag |= keyed_flag;
|
|
|
|
pt = (pt->next && pt->next->flag & PTARGET_VALID) ? pt->next : psys->targets.first;
|
|
}
|
|
|
|
psys->flag |= PSYS_KEYED;
|
|
}
|
|
|
|
/************************************************/
|
|
/* Point Cache */
|
|
/************************************************/
|
|
void psys_make_temp_pointcache(Object *ob, ParticleSystem *psys)
|
|
{
|
|
PointCache *cache = psys->pointcache;
|
|
|
|
if (cache->flag & PTCACHE_DISK_CACHE && BLI_listbase_is_empty(&cache->mem_cache)) {
|
|
PTCacheID pid;
|
|
BKE_ptcache_id_from_particles(&pid, ob, psys);
|
|
cache->flag &= ~PTCACHE_DISK_CACHE;
|
|
BKE_ptcache_disk_to_mem(&pid);
|
|
cache->flag |= PTCACHE_DISK_CACHE;
|
|
}
|
|
}
|
|
static void psys_clear_temp_pointcache(ParticleSystem *psys)
|
|
{
|
|
if (psys->pointcache->flag & PTCACHE_DISK_CACHE)
|
|
BKE_ptcache_free_mem(&psys->pointcache->mem_cache);
|
|
}
|
|
void psys_get_pointcache_start_end(Scene *scene, ParticleSystem *psys, int *sfra, int *efra)
|
|
{
|
|
ParticleSettings *part = psys->part;
|
|
|
|
*sfra = max_ii(1, (int)part->sta);
|
|
*efra = min_ii((int)(part->end + part->lifetime + 1.0f), max_ii(scene->r.pefra, scene->r.efra));
|
|
}
|
|
|
|
/************************************************/
|
|
/* Effectors */
|
|
/************************************************/
|
|
static void psys_update_particle_bvhtree(ParticleSystem *psys, float cfra)
|
|
{
|
|
if (psys) {
|
|
PARTICLE_P;
|
|
int totpart = 0;
|
|
bool need_rebuild;
|
|
|
|
BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_READ);
|
|
need_rebuild = !psys->bvhtree || psys->bvhtree_frame != cfra;
|
|
BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
|
|
|
|
if (need_rebuild) {
|
|
LOOP_SHOWN_PARTICLES {
|
|
totpart++;
|
|
}
|
|
|
|
BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_WRITE);
|
|
|
|
BLI_bvhtree_free(psys->bvhtree);
|
|
psys->bvhtree = BLI_bvhtree_new(totpart, 0.0, 4, 6);
|
|
|
|
LOOP_SHOWN_PARTICLES {
|
|
if (pa->alive == PARS_ALIVE) {
|
|
if (pa->state.time == cfra)
|
|
BLI_bvhtree_insert(psys->bvhtree, p, pa->prev_state.co, 1);
|
|
else
|
|
BLI_bvhtree_insert(psys->bvhtree, p, pa->state.co, 1);
|
|
}
|
|
}
|
|
BLI_bvhtree_balance(psys->bvhtree);
|
|
|
|
psys->bvhtree_frame = cfra;
|
|
|
|
BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
|
|
}
|
|
}
|
|
}
|
|
void psys_update_particle_tree(ParticleSystem *psys, float cfra)
|
|
{
|
|
if (psys) {
|
|
PARTICLE_P;
|
|
int totpart = 0;
|
|
|
|
if (!psys->tree || psys->tree_frame != cfra) {
|
|
LOOP_SHOWN_PARTICLES {
|
|
totpart++;
|
|
}
|
|
|
|
BLI_kdtree_free(psys->tree);
|
|
psys->tree = BLI_kdtree_new(psys->totpart);
|
|
|
|
LOOP_SHOWN_PARTICLES {
|
|
if (pa->alive == PARS_ALIVE) {
|
|
if (pa->state.time == cfra)
|
|
BLI_kdtree_insert(psys->tree, p, pa->prev_state.co);
|
|
else
|
|
BLI_kdtree_insert(psys->tree, p, pa->state.co);
|
|
}
|
|
}
|
|
BLI_kdtree_balance(psys->tree);
|
|
|
|
psys->tree_frame = cfra;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void psys_update_effectors(ParticleSimulationData *sim)
|
|
{
|
|
BKE_effectors_free(sim->psys->effectors);
|
|
sim->psys->effectors = BKE_effectors_create(sim->depsgraph,
|
|
sim->ob, sim->psys,
|
|
sim->psys->part->effector_weights);
|
|
precalc_guides(sim, sim->psys->effectors);
|
|
}
|
|
|
|
static void integrate_particle(ParticleSettings *part, ParticleData *pa, float dtime, float *external_acceleration,
|
|
void (*force_func)(void *forcedata, ParticleKey *state, float *force, float *impulse),
|
|
void *forcedata)
|
|
{
|
|
#define ZERO_F43 {{0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}}
|
|
|
|
ParticleKey states[5];
|
|
float force[3], acceleration[3], impulse[3], dx[4][3] = ZERO_F43, dv[4][3] = ZERO_F43, oldpos[3];
|
|
float pa_mass= (part->flag & PART_SIZEMASS ? part->mass * pa->size : part->mass);
|
|
int i, steps=1;
|
|
int integrator = part->integrator;
|
|
|
|
#undef ZERO_F43
|
|
|
|
copy_v3_v3(oldpos, pa->state.co);
|
|
|
|
/* Verlet integration behaves strangely with moving emitters, so do first step with euler. */
|
|
if (pa->prev_state.time < 0.f && integrator == PART_INT_VERLET)
|
|
integrator = PART_INT_EULER;
|
|
|
|
switch (integrator) {
|
|
case PART_INT_EULER:
|
|
steps=1;
|
|
break;
|
|
case PART_INT_MIDPOINT:
|
|
steps=2;
|
|
break;
|
|
case PART_INT_RK4:
|
|
steps=4;
|
|
break;
|
|
case PART_INT_VERLET:
|
|
steps=1;
|
|
break;
|
|
}
|
|
|
|
for (i=0; i<steps; i++) {
|
|
copy_particle_key(states + i, &pa->state, 1);
|
|
}
|
|
|
|
states->time = 0.f;
|
|
|
|
for (i=0; i<steps; i++) {
|
|
zero_v3(force);
|
|
zero_v3(impulse);
|
|
|
|
force_func(forcedata, states+i, force, impulse);
|
|
|
|
/* force to acceleration*/
|
|
mul_v3_v3fl(acceleration, force, 1.0f/pa_mass);
|
|
|
|
if (external_acceleration)
|
|
add_v3_v3(acceleration, external_acceleration);
|
|
|
|
/* calculate next state */
|
|
add_v3_v3(states[i].vel, impulse);
|
|
|
|
switch (integrator) {
|
|
case PART_INT_EULER:
|
|
madd_v3_v3v3fl(pa->state.co, states->co, states->vel, dtime);
|
|
madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
|
|
break;
|
|
case PART_INT_MIDPOINT:
|
|
if (i==0) {
|
|
madd_v3_v3v3fl(states[1].co, states->co, states->vel, dtime*0.5f);
|
|
madd_v3_v3v3fl(states[1].vel, states->vel, acceleration, dtime*0.5f);
|
|
states[1].time = dtime*0.5f;
|
|
/*fra=sim->psys->cfra+0.5f*dfra;*/
|
|
}
|
|
else {
|
|
madd_v3_v3v3fl(pa->state.co, states->co, states[1].vel, dtime);
|
|
madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
|
|
}
|
|
break;
|
|
case PART_INT_RK4:
|
|
switch (i) {
|
|
case 0:
|
|
copy_v3_v3(dx[0], states->vel);
|
|
mul_v3_fl(dx[0], dtime);
|
|
copy_v3_v3(dv[0], acceleration);
|
|
mul_v3_fl(dv[0], dtime);
|
|
|
|
madd_v3_v3v3fl(states[1].co, states->co, dx[0], 0.5f);
|
|
madd_v3_v3v3fl(states[1].vel, states->vel, dv[0], 0.5f);
|
|
states[1].time = dtime*0.5f;
|
|
/*fra=sim->psys->cfra+0.5f*dfra;*/
|
|
break;
|
|
case 1:
|
|
madd_v3_v3v3fl(dx[1], states->vel, dv[0], 0.5f);
|
|
mul_v3_fl(dx[1], dtime);
|
|
copy_v3_v3(dv[1], acceleration);
|
|
mul_v3_fl(dv[1], dtime);
|
|
|
|
madd_v3_v3v3fl(states[2].co, states->co, dx[1], 0.5f);
|
|
madd_v3_v3v3fl(states[2].vel, states->vel, dv[1], 0.5f);
|
|
states[2].time = dtime*0.5f;
|
|
break;
|
|
case 2:
|
|
madd_v3_v3v3fl(dx[2], states->vel, dv[1], 0.5f);
|
|
mul_v3_fl(dx[2], dtime);
|
|
copy_v3_v3(dv[2], acceleration);
|
|
mul_v3_fl(dv[2], dtime);
|
|
|
|
add_v3_v3v3(states[3].co, states->co, dx[2]);
|
|
add_v3_v3v3(states[3].vel, states->vel, dv[2]);
|
|
states[3].time = dtime;
|
|
/*fra=cfra;*/
|
|
break;
|
|
case 3:
|
|
add_v3_v3v3(dx[3], states->vel, dv[2]);
|
|
mul_v3_fl(dx[3], dtime);
|
|
copy_v3_v3(dv[3], acceleration);
|
|
mul_v3_fl(dv[3], dtime);
|
|
|
|
madd_v3_v3v3fl(pa->state.co, states->co, dx[0], 1.0f/6.0f);
|
|
madd_v3_v3fl(pa->state.co, dx[1], 1.0f/3.0f);
|
|
madd_v3_v3fl(pa->state.co, dx[2], 1.0f/3.0f);
|
|
madd_v3_v3fl(pa->state.co, dx[3], 1.0f/6.0f);
|
|
|
|
madd_v3_v3v3fl(pa->state.vel, states->vel, dv[0], 1.0f/6.0f);
|
|
madd_v3_v3fl(pa->state.vel, dv[1], 1.0f/3.0f);
|
|
madd_v3_v3fl(pa->state.vel, dv[2], 1.0f/3.0f);
|
|
madd_v3_v3fl(pa->state.vel, dv[3], 1.0f/6.0f);
|
|
}
|
|
break;
|
|
case PART_INT_VERLET: /* Verlet integration */
|
|
madd_v3_v3v3fl(pa->state.vel, pa->prev_state.vel, acceleration, dtime);
|
|
madd_v3_v3v3fl(pa->state.co, pa->prev_state.co, pa->state.vel, dtime);
|
|
|
|
sub_v3_v3v3(pa->state.vel, pa->state.co, oldpos);
|
|
mul_v3_fl(pa->state.vel, 1.0f/dtime);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*********************************************************************************************************
|
|
* SPH fluid physics
|
|
*
|
|
* In theory, there could be unlimited implementation of SPH simulators
|
|
*
|
|
* This code uses in some parts adapted algorithms from the pseudo code as outlined in the Research paper:
|
|
*
|
|
* Titled: Particle-based Viscoelastic Fluid Simulation.
|
|
* Authors: Simon Clavet, Philippe Beaudoin and Pierre Poulin
|
|
* Website: http://www.iro.umontreal.ca/labs/infographie/papers/Clavet-2005-PVFS/
|
|
*
|
|
* Presented at Siggraph, (2005)
|
|
*
|
|
* ********************************************************************************************************/
|
|
#define PSYS_FLUID_SPRINGS_INITIAL_SIZE 256
|
|
static ParticleSpring *sph_spring_add(ParticleSystem *psys, ParticleSpring *spring)
|
|
{
|
|
/* Are more refs required? */
|
|
if (psys->alloc_fluidsprings == 0 || psys->fluid_springs == NULL) {
|
|
psys->alloc_fluidsprings = PSYS_FLUID_SPRINGS_INITIAL_SIZE;
|
|
psys->fluid_springs = (ParticleSpring*)MEM_callocN(psys->alloc_fluidsprings * sizeof(ParticleSpring), "Particle Fluid Springs");
|
|
}
|
|
else if (psys->tot_fluidsprings == psys->alloc_fluidsprings) {
|
|
/* Double the number of refs allocated */
|
|
psys->alloc_fluidsprings *= 2;
|
|
psys->fluid_springs = (ParticleSpring*)MEM_reallocN(psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
|
|
}
|
|
|
|
memcpy(psys->fluid_springs + psys->tot_fluidsprings, spring, sizeof(ParticleSpring));
|
|
psys->tot_fluidsprings++;
|
|
|
|
return psys->fluid_springs + psys->tot_fluidsprings - 1;
|
|
}
|
|
static void sph_spring_delete(ParticleSystem *psys, int j)
|
|
{
|
|
if (j != psys->tot_fluidsprings - 1)
|
|
psys->fluid_springs[j] = psys->fluid_springs[psys->tot_fluidsprings - 1];
|
|
|
|
psys->tot_fluidsprings--;
|
|
|
|
if (psys->tot_fluidsprings < psys->alloc_fluidsprings/2 && psys->alloc_fluidsprings > PSYS_FLUID_SPRINGS_INITIAL_SIZE) {
|
|
psys->alloc_fluidsprings /= 2;
|
|
psys->fluid_springs = (ParticleSpring*)MEM_reallocN(psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
|
|
}
|
|
}
|
|
static void sph_springs_modify(ParticleSystem *psys, float dtime)
|
|
{
|
|
SPHFluidSettings *fluid = psys->part->fluid;
|
|
ParticleData *pa1, *pa2;
|
|
ParticleSpring *spring = psys->fluid_springs;
|
|
|
|
float h, d, Rij[3], rij, Lij;
|
|
int i;
|
|
|
|
float yield_ratio = fluid->yield_ratio;
|
|
float plasticity = fluid->plasticity_constant;
|
|
/* scale things according to dtime */
|
|
float timefix = 25.f * dtime;
|
|
|
|
if ((fluid->flag & SPH_VISCOELASTIC_SPRINGS)==0 || fluid->spring_k == 0.f)
|
|
return;
|
|
|
|
/* Loop through the springs */
|
|
for (i=0; i<psys->tot_fluidsprings; i++, spring++) {
|
|
pa1 = psys->particles + spring->particle_index[0];
|
|
pa2 = psys->particles + spring->particle_index[1];
|
|
|
|
sub_v3_v3v3(Rij, pa2->prev_state.co, pa1->prev_state.co);
|
|
rij = normalize_v3(Rij);
|
|
|
|
/* adjust rest length */
|
|
Lij = spring->rest_length;
|
|
d = yield_ratio * timefix * Lij;
|
|
|
|
if (rij > Lij + d) // Stretch
|
|
spring->rest_length += plasticity * (rij - Lij - d) * timefix;
|
|
else if (rij < Lij - d) // Compress
|
|
spring->rest_length -= plasticity * (Lij - d - rij) * timefix;
|
|
|
|
h = 4.f*pa1->size;
|
|
|
|
if (spring->rest_length > h)
|
|
spring->delete_flag = 1;
|
|
}
|
|
|
|
/* Loop through springs backwaqrds - for efficient delete function */
|
|
for (i=psys->tot_fluidsprings-1; i >= 0; i--) {
|
|
if (psys->fluid_springs[i].delete_flag)
|
|
sph_spring_delete(psys, i);
|
|
}
|
|
}
|
|
static EdgeHash *sph_springhash_build(ParticleSystem *psys)
|
|
{
|
|
EdgeHash *springhash = NULL;
|
|
ParticleSpring *spring;
|
|
int i = 0;
|
|
|
|
springhash = BLI_edgehash_new_ex(__func__, psys->tot_fluidsprings);
|
|
|
|
for (i=0, spring=psys->fluid_springs; i<psys->tot_fluidsprings; i++, spring++)
|
|
BLI_edgehash_insert(springhash, spring->particle_index[0], spring->particle_index[1], SET_INT_IN_POINTER(i+1));
|
|
|
|
return springhash;
|
|
}
|
|
|
|
#define SPH_NEIGHBORS 512
|
|
typedef struct SPHNeighbor {
|
|
ParticleSystem *psys;
|
|
int index;
|
|
} SPHNeighbor;
|
|
|
|
typedef struct SPHRangeData {
|
|
SPHNeighbor neighbors[SPH_NEIGHBORS];
|
|
int tot_neighbors;
|
|
|
|
float* data;
|
|
|
|
ParticleSystem *npsys;
|
|
ParticleData *pa;
|
|
|
|
float h;
|
|
float mass;
|
|
float massfac;
|
|
int use_size;
|
|
} SPHRangeData;
|
|
|
|
static void sph_evaluate_func(BVHTree *tree, ParticleSystem **psys, float co[3], SPHRangeData *pfr, float interaction_radius, BVHTree_RangeQuery callback)
|
|
{
|
|
int i;
|
|
|
|
pfr->tot_neighbors = 0;
|
|
|
|
for (i=0; i < 10 && psys[i]; i++) {
|
|
pfr->npsys = psys[i];
|
|
pfr->massfac = psys[i]->part->mass / pfr->mass;
|
|
pfr->use_size = psys[i]->part->flag & PART_SIZEMASS;
|
|
|
|
if (tree) {
|
|
BLI_bvhtree_range_query(tree, co, interaction_radius, callback, pfr);
|
|
break;
|
|
}
|
|
else {
|
|
BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_READ);
|
|
|
|
BLI_bvhtree_range_query(psys[i]->bvhtree, co, interaction_radius, callback, pfr);
|
|
|
|
BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
|
|
}
|
|
}
|
|
}
|
|
static void sph_density_accum_cb(void *userdata, int index, const float co[3], float squared_dist)
|
|
{
|
|
SPHRangeData *pfr = (SPHRangeData *)userdata;
|
|
ParticleData *npa = pfr->npsys->particles + index;
|
|
float q;
|
|
float dist;
|
|
|
|
UNUSED_VARS(co);
|
|
|
|
if (npa == pfr->pa || squared_dist < FLT_EPSILON)
|
|
return;
|
|
|
|
/* Ugh! One particle has too many neighbors! If some aren't taken into
|
|
* account, the forces will be biased by the tree search order. This
|
|
* effectively adds enery to the system, and results in a churning motion.
|
|
* But, we have to stop somewhere, and it's not the end of the world.
|
|
* - jahka and z0r
|
|
*/
|
|
if (pfr->tot_neighbors >= SPH_NEIGHBORS)
|
|
return;
|
|
|
|
pfr->neighbors[pfr->tot_neighbors].index = index;
|
|
pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
|
|
pfr->tot_neighbors++;
|
|
|
|
dist = sqrtf(squared_dist);
|
|
q = (1.f - dist/pfr->h) * pfr->massfac;
|
|
|
|
if (pfr->use_size)
|
|
q *= npa->size;
|
|
|
|
pfr->data[0] += q*q;
|
|
pfr->data[1] += q*q*q;
|
|
}
|
|
|
|
/*
|
|
* Find the Courant number for an SPH particle (used for adaptive time step).
|
|
*/
|
|
static void sph_particle_courant(SPHData *sphdata, SPHRangeData *pfr)
|
|
{
|
|
ParticleData *pa, *npa;
|
|
int i;
|
|
float flow[3], offset[3], dist;
|
|
|
|
zero_v3(flow);
|
|
|
|
dist = 0.0f;
|
|
if (pfr->tot_neighbors > 0) {
|
|
pa = pfr->pa;
|
|
for (i=0; i < pfr->tot_neighbors; i++) {
|
|
npa = pfr->neighbors[i].psys->particles + pfr->neighbors[i].index;
|
|
sub_v3_v3v3(offset, pa->prev_state.co, npa->prev_state.co);
|
|
dist += len_v3(offset);
|
|
add_v3_v3(flow, npa->prev_state.vel);
|
|
}
|
|
dist += sphdata->psys[0]->part->fluid->radius; // TODO: remove this? - z0r
|
|
sphdata->element_size = dist / pfr->tot_neighbors;
|
|
mul_v3_v3fl(sphdata->flow, flow, 1.0f / pfr->tot_neighbors);
|
|
}
|
|
else {
|
|
sphdata->element_size = FLT_MAX;
|
|
copy_v3_v3(sphdata->flow, flow);
|
|
}
|
|
}
|
|
static void sph_force_cb(void *sphdata_v, ParticleKey *state, float *force, float *UNUSED(impulse))
|
|
{
|
|
SPHData *sphdata = (SPHData *)sphdata_v;
|
|
ParticleSystem **psys = sphdata->psys;
|
|
ParticleData *pa = sphdata->pa;
|
|
SPHFluidSettings *fluid = psys[0]->part->fluid;
|
|
ParticleSpring *spring = NULL;
|
|
SPHRangeData pfr;
|
|
SPHNeighbor *pfn;
|
|
float *gravity = sphdata->gravity;
|
|
EdgeHash *springhash = sphdata->eh;
|
|
|
|
float q, u, rij, dv[3];
|
|
float pressure, near_pressure;
|
|
|
|
float visc = fluid->viscosity_omega;
|
|
float stiff_visc = fluid->viscosity_beta * (fluid->flag & SPH_FAC_VISCOSITY ? fluid->viscosity_omega : 1.f);
|
|
|
|
float inv_mass = 1.0f / sphdata->mass;
|
|
float spring_constant = fluid->spring_k;
|
|
|
|
/* 4.0 seems to be a pretty good value */
|
|
float interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * pa->size : 1.0f);
|
|
float h = interaction_radius * sphdata->hfac;
|
|
float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.f); /* 4.77 is an experimentally determined density factor */
|
|
float rest_length = fluid->rest_length * (fluid->flag & SPH_FAC_REST_LENGTH ? 2.588f * pa->size : 1.f);
|
|
|
|
float stiffness = fluid->stiffness_k;
|
|
float stiffness_near_fac = fluid->stiffness_knear * (fluid->flag & SPH_FAC_REPULSION ? fluid->stiffness_k : 1.f);
|
|
|
|
ParticleData *npa;
|
|
float vec[3];
|
|
float vel[3];
|
|
float co[3];
|
|
float data[2];
|
|
float density, near_density;
|
|
|
|
int i, spring_index, index = pa - psys[0]->particles;
|
|
|
|
data[0] = data[1] = 0;
|
|
pfr.data = data;
|
|
pfr.h = h;
|
|
pfr.pa = pa;
|
|
pfr.mass = sphdata->mass;
|
|
|
|
sph_evaluate_func( NULL, psys, state->co, &pfr, interaction_radius, sph_density_accum_cb);
|
|
|
|
density = data[0];
|
|
near_density = data[1];
|
|
|
|
pressure = stiffness * (density - rest_density);
|
|
near_pressure = stiffness_near_fac * near_density;
|
|
|
|
pfn = pfr.neighbors;
|
|
for (i=0; i<pfr.tot_neighbors; i++, pfn++) {
|
|
npa = pfn->psys->particles + pfn->index;
|
|
|
|
madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
|
|
|
|
sub_v3_v3v3(vec, co, state->co);
|
|
rij = normalize_v3(vec);
|
|
|
|
q = (1.f - rij/h) * pfn->psys->part->mass * inv_mass;
|
|
|
|
if (pfn->psys->part->flag & PART_SIZEMASS)
|
|
q *= npa->size;
|
|
|
|
copy_v3_v3(vel, npa->prev_state.vel);
|
|
|
|
/* Double Density Relaxation */
|
|
madd_v3_v3fl(force, vec, -(pressure + near_pressure*q)*q);
|
|
|
|
/* Viscosity */
|
|
if (visc > 0.f || stiff_visc > 0.f) {
|
|
sub_v3_v3v3(dv, vel, state->vel);
|
|
u = dot_v3v3(vec, dv);
|
|
|
|
if (u < 0.f && visc > 0.f)
|
|
madd_v3_v3fl(force, vec, 0.5f * q * visc * u );
|
|
|
|
if (u > 0.f && stiff_visc > 0.f)
|
|
madd_v3_v3fl(force, vec, 0.5f * q * stiff_visc * u );
|
|
}
|
|
|
|
if (spring_constant > 0.f) {
|
|
/* Viscoelastic spring force */
|
|
if (pfn->psys == psys[0] && fluid->flag & SPH_VISCOELASTIC_SPRINGS && springhash) {
|
|
/* BLI_edgehash_lookup appears to be thread-safe. - z0r */
|
|
spring_index = GET_INT_FROM_POINTER(BLI_edgehash_lookup(springhash, index, pfn->index));
|
|
|
|
if (spring_index) {
|
|
spring = psys[0]->fluid_springs + spring_index - 1;
|
|
|
|
madd_v3_v3fl(force, vec, -10.f * spring_constant * (1.f - rij/h) * (spring->rest_length - rij));
|
|
}
|
|
else if (fluid->spring_frames == 0 || (pa->prev_state.time-pa->time) <= fluid->spring_frames) {
|
|
ParticleSpring temp_spring;
|
|
temp_spring.particle_index[0] = index;
|
|
temp_spring.particle_index[1] = pfn->index;
|
|
temp_spring.rest_length = (fluid->flag & SPH_CURRENT_REST_LENGTH) ? rij : rest_length;
|
|
temp_spring.delete_flag = 0;
|
|
|
|
/* sph_spring_add is not thread-safe. - z0r */
|
|
sph_spring_add(psys[0], &temp_spring);
|
|
}
|
|
}
|
|
else {/* PART_SPRING_HOOKES - Hooke's spring force */
|
|
madd_v3_v3fl(force, vec, -10.f * spring_constant * (1.f - rij/h) * (rest_length - rij));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Artificial buoyancy force in negative gravity direction */
|
|
if (fluid->buoyancy > 0.f && gravity)
|
|
madd_v3_v3fl(force, gravity, fluid->buoyancy * (density-rest_density));
|
|
|
|
if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF)
|
|
sph_particle_courant(sphdata, &pfr);
|
|
sphdata->pass++;
|
|
}
|
|
|
|
static void sphclassical_density_accum_cb(void *userdata, int index, const float co[3], float UNUSED(squared_dist))
|
|
{
|
|
SPHRangeData *pfr = (SPHRangeData *)userdata;
|
|
ParticleData *npa = pfr->npsys->particles + index;
|
|
float q;
|
|
float qfac = 21.0f / (256.f * (float)M_PI);
|
|
float rij, rij_h;
|
|
float vec[3];
|
|
|
|
/* Exclude particles that are more than 2h away. Can't use squared_dist here
|
|
* because it is not accurate enough. Use current state, i.e. the output of
|
|
* basic_integrate() - z0r */
|
|
sub_v3_v3v3(vec, npa->state.co, co);
|
|
rij = len_v3(vec);
|
|
rij_h = rij / pfr->h;
|
|
if (rij_h > 2.0f)
|
|
return;
|
|
|
|
/* Smoothing factor. Utilise the Wendland kernel. gnuplot:
|
|
* q1(x) = (2.0 - x)**4 * ( 1.0 + 2.0 * x)
|
|
* plot [0:2] q1(x) */
|
|
q = qfac / pow3f(pfr->h) * pow4f(2.0f - rij_h) * ( 1.0f + 2.0f * rij_h);
|
|
q *= pfr->npsys->part->mass;
|
|
|
|
if (pfr->use_size)
|
|
q *= pfr->pa->size;
|
|
|
|
pfr->data[0] += q;
|
|
pfr->data[1] += q / npa->sphdensity;
|
|
}
|
|
|
|
static void sphclassical_neighbour_accum_cb(void *userdata, int index, const float co[3], float UNUSED(squared_dist))
|
|
{
|
|
SPHRangeData *pfr = (SPHRangeData *)userdata;
|
|
ParticleData *npa = pfr->npsys->particles + index;
|
|
float rij, rij_h;
|
|
float vec[3];
|
|
|
|
if (pfr->tot_neighbors >= SPH_NEIGHBORS)
|
|
return;
|
|
|
|
/* Exclude particles that are more than 2h away. Can't use squared_dist here
|
|
* because it is not accurate enough. Use current state, i.e. the output of
|
|
* basic_integrate() - z0r */
|
|
sub_v3_v3v3(vec, npa->state.co, co);
|
|
rij = len_v3(vec);
|
|
rij_h = rij / pfr->h;
|
|
if (rij_h > 2.0f)
|
|
return;
|
|
|
|
pfr->neighbors[pfr->tot_neighbors].index = index;
|
|
pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
|
|
pfr->tot_neighbors++;
|
|
}
|
|
static void sphclassical_force_cb(void *sphdata_v, ParticleKey *state, float *force, float *UNUSED(impulse))
|
|
{
|
|
SPHData *sphdata = (SPHData *)sphdata_v;
|
|
ParticleSystem **psys = sphdata->psys;
|
|
ParticleData *pa = sphdata->pa;
|
|
SPHFluidSettings *fluid = psys[0]->part->fluid;
|
|
SPHRangeData pfr;
|
|
SPHNeighbor *pfn;
|
|
float *gravity = sphdata->gravity;
|
|
|
|
float dq, u, rij, dv[3];
|
|
float pressure, npressure;
|
|
|
|
float visc = fluid->viscosity_omega;
|
|
|
|
float interaction_radius;
|
|
float h, hinv;
|
|
/* 4.77 is an experimentally determined density factor */
|
|
float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.0f);
|
|
|
|
// Use speed of sound squared
|
|
float stiffness = pow2f(fluid->stiffness_k);
|
|
|
|
ParticleData *npa;
|
|
float vec[3];
|
|
float co[3];
|
|
float pressureTerm;
|
|
|
|
int i;
|
|
|
|
float qfac2 = 42.0f / (256.0f * (float)M_PI);
|
|
float rij_h;
|
|
|
|
/* 4.0 here is to be consistent with previous formulation/interface */
|
|
interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * pa->size : 1.0f);
|
|
h = interaction_radius * sphdata->hfac;
|
|
hinv = 1.0f / h;
|
|
|
|
pfr.h = h;
|
|
pfr.pa = pa;
|
|
|
|
sph_evaluate_func(NULL, psys, state->co, &pfr, interaction_radius, sphclassical_neighbour_accum_cb);
|
|
pressure = stiffness * (pow7f(pa->sphdensity / rest_density) - 1.0f);
|
|
|
|
/* multiply by mass so that we return a force, not accel */
|
|
qfac2 *= sphdata->mass / pow3f(pfr.h);
|
|
|
|
pfn = pfr.neighbors;
|
|
for (i = 0; i < pfr.tot_neighbors; i++, pfn++) {
|
|
npa = pfn->psys->particles + pfn->index;
|
|
if (npa == pa) {
|
|
/* we do not contribute to ourselves */
|
|
continue;
|
|
}
|
|
|
|
/* Find vector to neighbor. Exclude particles that are more than 2h
|
|
* away. Can't use current state here because it may have changed on
|
|
* another thread - so do own mini integration. Unlike basic_integrate,
|
|
* SPH integration depends on neighboring particles. - z0r */
|
|
madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
|
|
sub_v3_v3v3(vec, co, state->co);
|
|
rij = normalize_v3(vec);
|
|
rij_h = rij / pfr.h;
|
|
if (rij_h > 2.0f)
|
|
continue;
|
|
|
|
npressure = stiffness * (pow7f(npa->sphdensity / rest_density) - 1.0f);
|
|
|
|
/* First derivative of smoothing factor. Utilise the Wendland kernel.
|
|
* gnuplot:
|
|
* q2(x) = 2.0 * (2.0 - x)**4 - 4.0 * (2.0 - x)**3 * (1.0 + 2.0 * x)
|
|
* plot [0:2] q2(x)
|
|
* Particles > 2h away are excluded above. */
|
|
dq = qfac2 * (2.0f * pow4f(2.0f - rij_h) - 4.0f * pow3f(2.0f - rij_h) * (1.0f + 2.0f * rij_h) );
|
|
|
|
if (pfn->psys->part->flag & PART_SIZEMASS)
|
|
dq *= npa->size;
|
|
|
|
pressureTerm = pressure / pow2f(pa->sphdensity) + npressure / pow2f(npa->sphdensity);
|
|
|
|
/* Note that 'minus' is removed, because vec = vecBA, not vecAB.
|
|
* This applies to the viscosity calculation below, too. */
|
|
madd_v3_v3fl(force, vec, pressureTerm * dq);
|
|
|
|
/* Viscosity */
|
|
if (visc > 0.0f) {
|
|
sub_v3_v3v3(dv, npa->prev_state.vel, pa->prev_state.vel);
|
|
u = dot_v3v3(vec, dv);
|
|
/* Apply parameters */
|
|
u *= -dq * hinv * visc / (0.5f * npa->sphdensity + 0.5f * pa->sphdensity);
|
|
madd_v3_v3fl(force, vec, u);
|
|
}
|
|
}
|
|
|
|
/* Artificial buoyancy force in negative gravity direction */
|
|
if (fluid->buoyancy > 0.f && gravity)
|
|
madd_v3_v3fl(force, gravity, fluid->buoyancy * (pa->sphdensity - rest_density));
|
|
|
|
if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF)
|
|
sph_particle_courant(sphdata, &pfr);
|
|
sphdata->pass++;
|
|
}
|
|
|
|
static void sphclassical_calc_dens(ParticleData *pa, float UNUSED(dfra), SPHData *sphdata)
|
|
{
|
|
ParticleSystem **psys = sphdata->psys;
|
|
SPHFluidSettings *fluid = psys[0]->part->fluid;
|
|
/* 4.0 seems to be a pretty good value */
|
|
float interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * psys[0]->part->size : 1.0f);
|
|
SPHRangeData pfr;
|
|
float data[2];
|
|
|
|
data[0] = 0;
|
|
data[1] = 0;
|
|
pfr.data = data;
|
|
pfr.h = interaction_radius * sphdata->hfac;
|
|
pfr.pa = pa;
|
|
pfr.mass = sphdata->mass;
|
|
|
|
sph_evaluate_func( NULL, psys, pa->state.co, &pfr, interaction_radius, sphclassical_density_accum_cb);
|
|
pa->sphdensity = min_ff(max_ff(data[0], fluid->rest_density * 0.9f), fluid->rest_density * 1.1f);
|
|
}
|
|
|
|
void psys_sph_init(ParticleSimulationData *sim, SPHData *sphdata)
|
|
{
|
|
ParticleTarget *pt;
|
|
int i;
|
|
|
|
// Add other coupled particle systems.
|
|
sphdata->psys[0] = sim->psys;
|
|
for (i=1, pt=sim->psys->targets.first; i<10; i++, pt=(pt?pt->next:NULL))
|
|
sphdata->psys[i] = pt ? psys_get_target_system(sim->ob, pt) : NULL;
|
|
|
|
if (psys_uses_gravity(sim))
|
|
sphdata->gravity = sim->scene->physics_settings.gravity;
|
|
else
|
|
sphdata->gravity = NULL;
|
|
sphdata->eh = sph_springhash_build(sim->psys);
|
|
|
|
// These per-particle values should be overridden later, but just for
|
|
// completeness we give them default values now.
|
|
sphdata->pa = NULL;
|
|
sphdata->mass = 1.0f;
|
|
|
|
if (sim->psys->part->fluid->solver == SPH_SOLVER_DDR) {
|
|
sphdata->force_cb = sph_force_cb;
|
|
sphdata->density_cb = sph_density_accum_cb;
|
|
sphdata->hfac = 1.0f;
|
|
}
|
|
else {
|
|
/* SPH_SOLVER_CLASSICAL */
|
|
sphdata->force_cb = sphclassical_force_cb;
|
|
sphdata->density_cb = sphclassical_density_accum_cb;
|
|
sphdata->hfac = 0.5f;
|
|
}
|
|
|
|
}
|
|
|
|
void psys_sph_finalise(SPHData *sphdata)
|
|
{
|
|
if (sphdata->eh) {
|
|
BLI_edgehash_free(sphdata->eh, NULL);
|
|
sphdata->eh = NULL;
|
|
}
|
|
}
|
|
/* Sample the density field at a point in space. */
|
|
void psys_sph_density(BVHTree *tree, SPHData *sphdata, float co[3], float vars[2])
|
|
{
|
|
ParticleSystem **psys = sphdata->psys;
|
|
SPHFluidSettings *fluid = psys[0]->part->fluid;
|
|
/* 4.0 seems to be a pretty good value */
|
|
float interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * psys[0]->part->size : 1.0f);
|
|
SPHRangeData pfr;
|
|
float density[2];
|
|
|
|
density[0] = density[1] = 0.0f;
|
|
pfr.data = density;
|
|
pfr.h = interaction_radius * sphdata->hfac;
|
|
pfr.mass = sphdata->mass;
|
|
|
|
sph_evaluate_func(tree, psys, co, &pfr, interaction_radius, sphdata->density_cb);
|
|
|
|
vars[0] = pfr.data[0];
|
|
vars[1] = pfr.data[1];
|
|
}
|
|
|
|
static void sph_integrate(ParticleSimulationData *sim, ParticleData *pa, float dfra, SPHData *sphdata)
|
|
{
|
|
ParticleSettings *part = sim->psys->part;
|
|
// float timestep = psys_get_timestep(sim); // UNUSED
|
|
float pa_mass = part->mass * (part->flag & PART_SIZEMASS ? pa->size : 1.f);
|
|
float dtime = dfra*psys_get_timestep(sim);
|
|
// int steps = 1; // UNUSED
|
|
float effector_acceleration[3];
|
|
|
|
sphdata->pa = pa;
|
|
sphdata->mass = pa_mass;
|
|
sphdata->pass = 0;
|
|
//sphdata.element_size and sphdata.flow are set in the callback.
|
|
|
|
/* restore previous state and treat gravity & effectors as external acceleration*/
|
|
sub_v3_v3v3(effector_acceleration, pa->state.vel, pa->prev_state.vel);
|
|
mul_v3_fl(effector_acceleration, 1.f/dtime);
|
|
|
|
copy_particle_key(&pa->state, &pa->prev_state, 0);
|
|
|
|
integrate_particle(part, pa, dtime, effector_acceleration, sphdata->force_cb, sphdata);
|
|
}
|
|
|
|
/************************************************/
|
|
/* Basic physics */
|
|
/************************************************/
|
|
typedef struct EfData {
|
|
ParticleTexture ptex;
|
|
ParticleSimulationData *sim;
|
|
ParticleData *pa;
|
|
} EfData;
|
|
static void basic_force_cb(void *efdata_v, ParticleKey *state, float *force, float *impulse)
|
|
{
|
|
EfData *efdata = (EfData *)efdata_v;
|
|
ParticleSimulationData *sim = efdata->sim;
|
|
ParticleSettings *part = sim->psys->part;
|
|
ParticleData *pa = efdata->pa;
|
|
EffectedPoint epoint;
|
|
RNG *rng = sim->rng;
|
|
|
|
/* add effectors */
|
|
pd_point_from_particle(efdata->sim, efdata->pa, state, &epoint);
|
|
if (part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR)
|
|
BKE_effectors_apply(sim->psys->effectors, sim->colliders, part->effector_weights, &epoint, force, impulse);
|
|
|
|
mul_v3_fl(force, efdata->ptex.field);
|
|
mul_v3_fl(impulse, efdata->ptex.field);
|
|
|
|
/* calculate air-particle interaction */
|
|
if (part->dragfac != 0.0f)
|
|
madd_v3_v3fl(force, state->vel, -part->dragfac * pa->size * pa->size * len_v3(state->vel));
|
|
|
|
/* brownian force */
|
|
if (part->brownfac != 0.0f) {
|
|
force[0] += (BLI_rng_get_float(rng)-0.5f) * part->brownfac;
|
|
force[1] += (BLI_rng_get_float(rng)-0.5f) * part->brownfac;
|
|
force[2] += (BLI_rng_get_float(rng)-0.5f) * part->brownfac;
|
|
}
|
|
|
|
if (part->flag & PART_ROT_DYN && epoint.ave)
|
|
copy_v3_v3(pa->state.ave, epoint.ave);
|
|
}
|
|
/* gathers all forces that effect particles and calculates a new state for the particle */
|
|
static void basic_integrate(ParticleSimulationData *sim, int p, float dfra, float cfra)
|
|
{
|
|
ParticleSettings *part = sim->psys->part;
|
|
ParticleData *pa = sim->psys->particles + p;
|
|
ParticleKey tkey;
|
|
float dtime=dfra*psys_get_timestep(sim), time;
|
|
float *gravity = NULL, gr[3];
|
|
EfData efdata;
|
|
|
|
psys_get_texture(sim, pa, &efdata.ptex, PAMAP_PHYSICS, cfra);
|
|
|
|
efdata.pa = pa;
|
|
efdata.sim = sim;
|
|
|
|
/* add global acceleration (gravitation) */
|
|
if (psys_uses_gravity(sim) &&
|
|
/* normal gravity is too strong for hair so it's disabled by default */
|
|
(part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR))
|
|
{
|
|
zero_v3(gr);
|
|
madd_v3_v3fl(gr, sim->scene->physics_settings.gravity, part->effector_weights->global_gravity * efdata.ptex.gravity);
|
|
gravity = gr;
|
|
}
|
|
|
|
/* maintain angular velocity */
|
|
copy_v3_v3(pa->state.ave, pa->prev_state.ave);
|
|
|
|
integrate_particle(part, pa, dtime, gravity, basic_force_cb, &efdata);
|
|
|
|
/* damp affects final velocity */
|
|
if (part->dampfac != 0.f)
|
|
mul_v3_fl(pa->state.vel, 1.f - part->dampfac * efdata.ptex.damp * 25.f * dtime);
|
|
|
|
//copy_v3_v3(pa->state.ave, states->ave);
|
|
|
|
/* finally we do guides */
|
|
time=(cfra-pa->time)/pa->lifetime;
|
|
CLAMP(time, 0.0f, 1.0f);
|
|
|
|
copy_v3_v3(tkey.co,pa->state.co);
|
|
copy_v3_v3(tkey.vel,pa->state.vel);
|
|
tkey.time=pa->state.time;
|
|
|
|
if (part->type != PART_HAIR) {
|
|
if (do_guides(sim->depsgraph, sim->psys->part, sim->psys->effectors, &tkey, p, time)) {
|
|
copy_v3_v3(pa->state.co,tkey.co);
|
|
/* guides don't produce valid velocity */
|
|
sub_v3_v3v3(pa->state.vel, tkey.co, pa->prev_state.co);
|
|
mul_v3_fl(pa->state.vel,1.0f/dtime);
|
|
pa->state.time=tkey.time;
|
|
}
|
|
}
|
|
}
|
|
static void basic_rotate(ParticleSettings *part, ParticleData *pa, float dfra, float timestep)
|
|
{
|
|
float rotfac, rot1[4], rot2[4] = {1.0,0.0,0.0,0.0}, dtime=dfra*timestep, extrotfac;
|
|
|
|
if ((part->flag & PART_ROTATIONS) == 0) {
|
|
unit_qt(pa->state.rot);
|
|
return;
|
|
}
|
|
|
|
if (part->flag & PART_ROT_DYN) {
|
|
extrotfac = len_v3(pa->state.ave);
|
|
}
|
|
else {
|
|
extrotfac = 0.0f;
|
|
}
|
|
|
|
if ((part->flag & PART_ROT_DYN) && ELEM(part->avemode, PART_AVE_VELOCITY, PART_AVE_HORIZONTAL, PART_AVE_VERTICAL)) {
|
|
float angle;
|
|
float len1 = len_v3(pa->prev_state.vel);
|
|
float len2 = len_v3(pa->state.vel);
|
|
float vec[3];
|
|
|
|
if (len1 == 0.0f || len2 == 0.0f) {
|
|
zero_v3(pa->state.ave);
|
|
}
|
|
else {
|
|
cross_v3_v3v3(pa->state.ave, pa->prev_state.vel, pa->state.vel);
|
|
normalize_v3(pa->state.ave);
|
|
angle = dot_v3v3(pa->prev_state.vel, pa->state.vel) / (len1 * len2);
|
|
mul_v3_fl(pa->state.ave, saacos(angle) / dtime);
|
|
}
|
|
|
|
get_angular_velocity_vector(part->avemode, &pa->state, vec);
|
|
axis_angle_to_quat(rot2, vec, dtime*part->avefac);
|
|
}
|
|
|
|
rotfac = len_v3(pa->state.ave);
|
|
if (rotfac == 0.0f || (part->flag & PART_ROT_DYN)==0 || extrotfac == 0.0f) {
|
|
unit_qt(rot1);
|
|
}
|
|
else {
|
|
axis_angle_to_quat(rot1,pa->state.ave,rotfac*dtime);
|
|
}
|
|
mul_qt_qtqt(pa->state.rot,rot1,pa->prev_state.rot);
|
|
mul_qt_qtqt(pa->state.rot,rot2,pa->state.rot);
|
|
|
|
/* keep rotation quat in good health */
|
|
normalize_qt(pa->state.rot);
|
|
}
|
|
|
|
/************************************************
|
|
* Collisions
|
|
*
|
|
* The algorithm is roughly:
|
|
* 1. Use a BVH tree to search for faces that a particle may collide with.
|
|
* 2. Use Newton's method to find the exact time at which the collision occurs.
|
|
* https://en.wikipedia.org/wiki/Newton's_method
|
|
*
|
|
************************************************/
|
|
#define COLLISION_MIN_RADIUS 0.001f
|
|
#define COLLISION_MIN_DISTANCE 0.0001f
|
|
#define COLLISION_ZERO 0.00001f
|
|
#define COLLISION_INIT_STEP 0.00008f
|
|
typedef float (*NRDistanceFunc)(float *p, float radius, ParticleCollisionElement *pce, float *nor);
|
|
static float nr_signed_distance_to_plane(float *p, float radius, ParticleCollisionElement *pce, float *nor)
|
|
{
|
|
float p0[3], e1[3], e2[3], d;
|
|
|
|
sub_v3_v3v3(e1, pce->x1, pce->x0);
|
|
sub_v3_v3v3(e2, pce->x2, pce->x0);
|
|
sub_v3_v3v3(p0, p, pce->x0);
|
|
|
|
cross_v3_v3v3(nor, e1, e2);
|
|
normalize_v3(nor);
|
|
|
|
d = dot_v3v3(p0, nor);
|
|
|
|
if (pce->inv_nor == -1) {
|
|
if (d < 0.f)
|
|
pce->inv_nor = 1;
|
|
else
|
|
pce->inv_nor = 0;
|
|
}
|
|
|
|
if (pce->inv_nor == 1) {
|
|
negate_v3(nor);
|
|
d = -d;
|
|
}
|
|
|
|
return d - radius;
|
|
}
|
|
static float nr_distance_to_edge(float *p, float radius, ParticleCollisionElement *pce, float *UNUSED(nor))
|
|
{
|
|
float v0[3], v1[3], v2[3], c[3];
|
|
|
|
sub_v3_v3v3(v0, pce->x1, pce->x0);
|
|
sub_v3_v3v3(v1, p, pce->x0);
|
|
sub_v3_v3v3(v2, p, pce->x1);
|
|
|
|
cross_v3_v3v3(c, v1, v2);
|
|
|
|
return fabsf(len_v3(c)/len_v3(v0)) - radius;
|
|
}
|
|
static float nr_distance_to_vert(float *p, float radius, ParticleCollisionElement *pce, float *UNUSED(nor))
|
|
{
|
|
return len_v3v3(p, pce->x0) - radius;
|
|
}
|
|
static void collision_interpolate_element(ParticleCollisionElement *pce, float t, float fac, ParticleCollision *col)
|
|
{
|
|
/* t is the current time for newton rhapson */
|
|
/* fac is the starting factor for current collision iteration */
|
|
/* the col->fac's are factors for the particle subframe step start and end during collision modifier step */
|
|
float f = fac + t*(1.f-fac);
|
|
float mul = col->fac1 + f * (col->fac2-col->fac1);
|
|
if (pce->tot > 0) {
|
|
madd_v3_v3v3fl(pce->x0, pce->x[0], pce->v[0], mul);
|
|
|
|
if (pce->tot > 1) {
|
|
madd_v3_v3v3fl(pce->x1, pce->x[1], pce->v[1], mul);
|
|
|
|
if (pce->tot > 2)
|
|
madd_v3_v3v3fl(pce->x2, pce->x[2], pce->v[2], mul);
|
|
}
|
|
}
|
|
}
|
|
static void collision_point_velocity(ParticleCollisionElement *pce)
|
|
{
|
|
float v[3];
|
|
|
|
copy_v3_v3(pce->vel, pce->v[0]);
|
|
|
|
if (pce->tot > 1) {
|
|
sub_v3_v3v3(v, pce->v[1], pce->v[0]);
|
|
madd_v3_v3fl(pce->vel, v, pce->uv[0]);
|
|
|
|
if (pce->tot > 2) {
|
|
sub_v3_v3v3(v, pce->v[2], pce->v[0]);
|
|
madd_v3_v3fl(pce->vel, v, pce->uv[1]);
|
|
}
|
|
}
|
|
}
|
|
static float collision_point_distance_with_normal(float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *nor)
|
|
{
|
|
if (fac >= 0.f)
|
|
collision_interpolate_element(pce, 0.f, fac, col);
|
|
|
|
switch (pce->tot) {
|
|
case 1:
|
|
{
|
|
sub_v3_v3v3(nor, p, pce->x0);
|
|
return normalize_v3(nor);
|
|
}
|
|
case 2:
|
|
{
|
|
float u, e[3], vec[3];
|
|
sub_v3_v3v3(e, pce->x1, pce->x0);
|
|
sub_v3_v3v3(vec, p, pce->x0);
|
|
u = dot_v3v3(vec, e) / dot_v3v3(e, e);
|
|
|
|
madd_v3_v3v3fl(nor, vec, e, -u);
|
|
return normalize_v3(nor);
|
|
}
|
|
case 3:
|
|
return nr_signed_distance_to_plane(p, 0.f, pce, nor);
|
|
}
|
|
return 0;
|
|
}
|
|
static void collision_point_on_surface(float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *co)
|
|
{
|
|
collision_interpolate_element(pce, 0.f, fac, col);
|
|
|
|
switch (pce->tot) {
|
|
case 1:
|
|
{
|
|
sub_v3_v3v3(co, p, pce->x0);
|
|
normalize_v3(co);
|
|
madd_v3_v3v3fl(co, pce->x0, co, col->radius);
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
float u, e[3], vec[3], nor[3];
|
|
sub_v3_v3v3(e, pce->x1, pce->x0);
|
|
sub_v3_v3v3(vec, p, pce->x0);
|
|
u = dot_v3v3(vec, e) / dot_v3v3(e, e);
|
|
|
|
madd_v3_v3v3fl(nor, vec, e, -u);
|
|
normalize_v3(nor);
|
|
|
|
madd_v3_v3v3fl(co, pce->x0, e, pce->uv[0]);
|
|
madd_v3_v3fl(co, nor, col->radius);
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
float p0[3], e1[3], e2[3], nor[3];
|
|
|
|
sub_v3_v3v3(e1, pce->x1, pce->x0);
|
|
sub_v3_v3v3(e2, pce->x2, pce->x0);
|
|
sub_v3_v3v3(p0, p, pce->x0);
|
|
|
|
cross_v3_v3v3(nor, e1, e2);
|
|
normalize_v3(nor);
|
|
|
|
if (pce->inv_nor == 1)
|
|
negate_v3(nor);
|
|
|
|
madd_v3_v3v3fl(co, pce->x0, nor, col->radius);
|
|
madd_v3_v3fl(co, e1, pce->uv[0]);
|
|
madd_v3_v3fl(co, e2, pce->uv[1]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* find first root in range [0-1] starting from 0 */
|
|
static float collision_newton_rhapson(ParticleCollision *col, float radius, ParticleCollisionElement *pce, NRDistanceFunc distance_func)
|
|
{
|
|
float t0, t1, dt_init, d0, d1, dd, n[3];
|
|
int iter;
|
|
|
|
pce->inv_nor = -1;
|
|
|
|
if (col->inv_total_time > 0.0f) {
|
|
/* Initial step size should be small, but not too small or floating point
|
|
* precision errors will appear. - z0r */
|
|
dt_init = COLLISION_INIT_STEP * col->inv_total_time;
|
|
}
|
|
else {
|
|
dt_init = 0.001f;
|
|
}
|
|
|
|
/* start from the beginning */
|
|
t0 = 0.f;
|
|
collision_interpolate_element(pce, t0, col->f, col);
|
|
d0 = distance_func(col->co1, radius, pce, n);
|
|
t1 = dt_init;
|
|
d1 = 0.f;
|
|
|
|
for (iter=0; iter<10; iter++) {//, itersum++) {
|
|
/* get current location */
|
|
collision_interpolate_element(pce, t1, col->f, col);
|
|
interp_v3_v3v3(pce->p, col->co1, col->co2, t1);
|
|
|
|
d1 = distance_func(pce->p, radius, pce, n);
|
|
|
|
/* particle already inside face, so report collision */
|
|
if (iter == 0 && d0 < 0.f && d0 > -radius) {
|
|
copy_v3_v3(pce->p, col->co1);
|
|
copy_v3_v3(pce->nor, n);
|
|
pce->inside = 1;
|
|
return 0.f;
|
|
}
|
|
|
|
/* Zero gradient (no movement relative to element). Can't step from
|
|
* here. */
|
|
if (d1 == d0) {
|
|
/* If first iteration, try from other end where the gradient may be
|
|
* greater. Note: code duplicated below. */
|
|
if (iter == 0) {
|
|
t0 = 1.f;
|
|
collision_interpolate_element(pce, t0, col->f, col);
|
|
d0 = distance_func(col->co2, radius, pce, n);
|
|
t1 = 1.0f - dt_init;
|
|
d1 = 0.f;
|
|
continue;
|
|
}
|
|
else
|
|
return -1.f;
|
|
}
|
|
|
|
dd = (t1-t0)/(d1-d0);
|
|
|
|
t0 = t1;
|
|
d0 = d1;
|
|
|
|
t1 -= d1*dd;
|
|
|
|
/* Particle moving away from plane could also mean a strangely rotating
|
|
* face, so check from end. Note: code duplicated above. */
|
|
if (iter == 0 && t1 < 0.f) {
|
|
t0 = 1.f;
|
|
collision_interpolate_element(pce, t0, col->f, col);
|
|
d0 = distance_func(col->co2, radius, pce, n);
|
|
t1 = 1.0f - dt_init;
|
|
d1 = 0.f;
|
|
continue;
|
|
}
|
|
else if (iter == 1 && (t1 < -COLLISION_ZERO || t1 > 1.f))
|
|
return -1.f;
|
|
|
|
if (d1 <= COLLISION_ZERO && d1 >= -COLLISION_ZERO) {
|
|
if (t1 >= -COLLISION_ZERO && t1 <= 1.f) {
|
|
if (distance_func == nr_signed_distance_to_plane)
|
|
copy_v3_v3(pce->nor, n);
|
|
|
|
CLAMP(t1, 0.f, 1.f);
|
|
|
|
return t1;
|
|
}
|
|
else
|
|
return -1.f;
|
|
}
|
|
}
|
|
return -1.0;
|
|
}
|
|
static int collision_sphere_to_tri(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
|
|
{
|
|
ParticleCollisionElement *result = &col->pce;
|
|
float ct, u, v;
|
|
|
|
pce->inv_nor = -1;
|
|
pce->inside = 0;
|
|
|
|
ct = collision_newton_rhapson(col, radius, pce, nr_signed_distance_to_plane);
|
|
|
|
if (ct >= 0.f && ct < *t && (result->inside==0 || pce->inside==1) ) {
|
|
float e1[3], e2[3], p0[3];
|
|
float e1e1, e1e2, e1p0, e2e2, e2p0, inv;
|
|
|
|
sub_v3_v3v3(e1, pce->x1, pce->x0);
|
|
sub_v3_v3v3(e2, pce->x2, pce->x0);
|
|
/* XXX: add radius correction here? */
|
|
sub_v3_v3v3(p0, pce->p, pce->x0);
|
|
|
|
e1e1 = dot_v3v3(e1, e1);
|
|
e1e2 = dot_v3v3(e1, e2);
|
|
e1p0 = dot_v3v3(e1, p0);
|
|
e2e2 = dot_v3v3(e2, e2);
|
|
e2p0 = dot_v3v3(e2, p0);
|
|
|
|
inv = 1.f/(e1e1 * e2e2 - e1e2 * e1e2);
|
|
u = (e2e2 * e1p0 - e1e2 * e2p0) * inv;
|
|
v = (e1e1 * e2p0 - e1e2 * e1p0) * inv;
|
|
|
|
if (u>=0.f && u<=1.f && v>=0.f && u+v<=1.f) {
|
|
*result = *pce;
|
|
|
|
/* normal already calculated in pce */
|
|
|
|
result->uv[0] = u;
|
|
result->uv[1] = v;
|
|
|
|
*t = ct;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
static int collision_sphere_to_edges(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
|
|
{
|
|
ParticleCollisionElement edge[3], *cur = NULL, *hit = NULL;
|
|
ParticleCollisionElement *result = &col->pce;
|
|
|
|
float ct;
|
|
int i;
|
|
|
|
for (i=0; i<3; i++) {
|
|
cur = edge+i;
|
|
cur->x[0] = pce->x[i]; cur->x[1] = pce->x[(i+1)%3];
|
|
cur->v[0] = pce->v[i]; cur->v[1] = pce->v[(i+1)%3];
|
|
cur->tot = 2;
|
|
cur->inside = 0;
|
|
|
|
ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_edge);
|
|
|
|
if (ct >= 0.f && ct < *t) {
|
|
float u, e[3], vec[3];
|
|
|
|
sub_v3_v3v3(e, cur->x1, cur->x0);
|
|
sub_v3_v3v3(vec, cur->p, cur->x0);
|
|
u = dot_v3v3(vec, e) / dot_v3v3(e, e);
|
|
|
|
if (u < 0.f || u > 1.f)
|
|
break;
|
|
|
|
*result = *cur;
|
|
|
|
madd_v3_v3v3fl(result->nor, vec, e, -u);
|
|
normalize_v3(result->nor);
|
|
|
|
result->uv[0] = u;
|
|
|
|
|
|
hit = cur;
|
|
*t = ct;
|
|
}
|
|
|
|
}
|
|
|
|
return hit != NULL;
|
|
}
|
|
static int collision_sphere_to_verts(ParticleCollision *col, float radius, ParticleCollisionElement *pce, float *t)
|
|
{
|
|
ParticleCollisionElement vert[3], *cur = NULL, *hit = NULL;
|
|
ParticleCollisionElement *result = &col->pce;
|
|
|
|
float ct;
|
|
int i;
|
|
|
|
for (i=0; i<3; i++) {
|
|
cur = vert+i;
|
|
cur->x[0] = pce->x[i];
|
|
cur->v[0] = pce->v[i];
|
|
cur->tot = 1;
|
|
cur->inside = 0;
|
|
|
|
ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_vert);
|
|
|
|
if (ct >= 0.f && ct < *t) {
|
|
*result = *cur;
|
|
|
|
sub_v3_v3v3(result->nor, cur->p, cur->x0);
|
|
normalize_v3(result->nor);
|
|
|
|
hit = cur;
|
|
*t = ct;
|
|
}
|
|
|
|
}
|
|
|
|
return hit != NULL;
|
|
}
|
|
/* Callback for BVHTree near test */
|
|
void BKE_psys_collision_neartest_cb(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
|
|
{
|
|
ParticleCollision *col = (ParticleCollision *) userdata;
|
|
ParticleCollisionElement pce;
|
|
const MVertTri *vt = &col->md->tri[index];
|
|
MVert *x = col->md->x;
|
|
MVert *v = col->md->current_v;
|
|
float t = hit->dist/col->original_ray_length;
|
|
int collision = 0;
|
|
|
|
pce.x[0] = x[vt->tri[0]].co;
|
|
pce.x[1] = x[vt->tri[1]].co;
|
|
pce.x[2] = x[vt->tri[2]].co;
|
|
|
|
pce.v[0] = v[vt->tri[0]].co;
|
|
pce.v[1] = v[vt->tri[1]].co;
|
|
pce.v[2] = v[vt->tri[2]].co;
|
|
|
|
pce.tot = 3;
|
|
pce.inside = 0;
|
|
pce.index = index;
|
|
|
|
collision = collision_sphere_to_tri(col, ray->radius, &pce, &t);
|
|
if (col->pce.inside == 0) {
|
|
collision += collision_sphere_to_edges(col, ray->radius, &pce, &t);
|
|
collision += collision_sphere_to_verts(col, ray->radius, &pce, &t);
|
|
}
|
|
|
|
if (collision) {
|
|
hit->dist = col->original_ray_length * t;
|
|
hit->index = index;
|
|
|
|
collision_point_velocity(&col->pce);
|
|
|
|
col->hit = col->current;
|
|
}
|
|
}
|
|
static int collision_detect(ParticleData *pa, ParticleCollision *col, BVHTreeRayHit *hit, ListBase *colliders)
|
|
{
|
|
const int raycast_flag = BVH_RAYCAST_DEFAULT & ~(BVH_RAYCAST_WATERTIGHT);
|
|
ColliderCache *coll;
|
|
float ray_dir[3];
|
|
|
|
if (BLI_listbase_is_empty(colliders))
|
|
return 0;
|
|
|
|
sub_v3_v3v3(ray_dir, col->co2, col->co1);
|
|
hit->index = -1;
|
|
hit->dist = col->original_ray_length = normalize_v3(ray_dir);
|
|
col->pce.inside = 0;
|
|
|
|
/* even if particle is stationary we want to check for moving colliders */
|
|
/* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */
|
|
if (hit->dist == 0.0f)
|
|
hit->dist = col->original_ray_length = 0.000001f;
|
|
|
|
for (coll = colliders->first; coll; coll=coll->next) {
|
|
/* for boids: don't check with current ground object; also skip if permeated */
|
|
bool skip = false;
|
|
|
|
for (int i = 0; i < col->skip_count; i++) {
|
|
if (coll->ob == col->skip[i]) {
|
|
skip = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (skip)
|
|
continue;
|
|
|
|
/* particles should not collide with emitter at birth */
|
|
if (coll->ob == col->emitter && pa->time < col->cfra && pa->time >= col->old_cfra)
|
|
continue;
|
|
|
|
col->current = coll->ob;
|
|
col->md = coll->collmd;
|
|
col->fac1 = (col->old_cfra - coll->collmd->time_x) / (coll->collmd->time_xnew - coll->collmd->time_x);
|
|
col->fac2 = (col->cfra - coll->collmd->time_x) / (coll->collmd->time_xnew - coll->collmd->time_x);
|
|
|
|
if (col->md && col->md->bvhtree) {
|
|
BLI_bvhtree_ray_cast_ex(
|
|
col->md->bvhtree, col->co1, ray_dir, col->radius, hit,
|
|
BKE_psys_collision_neartest_cb, col, raycast_flag);
|
|
}
|
|
}
|
|
|
|
return hit->index >= 0;
|
|
}
|
|
static int collision_response(ParticleSimulationData *sim, ParticleData *pa, ParticleCollision *col, BVHTreeRayHit *hit, int kill, int dynamic_rotation)
|
|
{
|
|
ParticleCollisionElement *pce = &col->pce;
|
|
PartDeflect *pd = col->hit->pd;
|
|
RNG *rng = sim->rng;
|
|
float co[3]; /* point of collision */
|
|
float x = hit->dist/col->original_ray_length; /* location factor of collision between this iteration */
|
|
float f = col->f + x * (1.0f - col->f); /* time factor of collision between timestep */
|
|
float dt1 = (f - col->f) * col->total_time; /* time since previous collision (in seconds) */
|
|
float dt2 = (1.0f - f) * col->total_time; /* time left after collision (in seconds) */
|
|
int through = (BLI_rng_get_float(rng) < pd->pdef_perm) ? 1 : 0; /* did particle pass through the collision surface? */
|
|
|
|
/* calculate exact collision location */
|
|
interp_v3_v3v3(co, col->co1, col->co2, x);
|
|
|
|
/* particle dies in collision */
|
|
if (through == 0 && (kill || pd->flag & PDEFLE_KILL_PART)) {
|
|
pa->alive = PARS_DYING;
|
|
pa->dietime = col->old_cfra + (col->cfra - col->old_cfra) * f;
|
|
|
|
copy_v3_v3(pa->state.co, co);
|
|
interp_v3_v3v3(pa->state.vel, pa->prev_state.vel, pa->state.vel, f);
|
|
interp_qt_qtqt(pa->state.rot, pa->prev_state.rot, pa->state.rot, f);
|
|
interp_v3_v3v3(pa->state.ave, pa->prev_state.ave, pa->state.ave, f);
|
|
|
|
/* particle is dead so we don't need to calculate further */
|
|
return 0;
|
|
}
|
|
/* figure out velocity and other data after collision */
|
|
else {
|
|
float v0[3]; /* velocity directly before collision to be modified into velocity directly after collision */
|
|
float v0_nor[3];/* normal component of v0 */
|
|
float v0_tan[3];/* tangential component of v0 */
|
|
float vc_tan[3];/* tangential component of collision surface velocity */
|
|
float v0_dot, vc_dot;
|
|
float damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_rng_get_float(rng) - 0.5f);
|
|
float frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_rng_get_float(rng) - 0.5f);
|
|
float distance, nor[3], dot;
|
|
|
|
CLAMP(damp,0.0f, 1.0f);
|
|
CLAMP(frict,0.0f, 1.0f);
|
|
|
|
/* get exact velocity right before collision */
|
|
madd_v3_v3v3fl(v0, col->ve1, col->acc, dt1);
|
|
|
|
/* convert collider velocity from 1/framestep to 1/s TODO: here we assume 1 frame step for collision modifier */
|
|
mul_v3_fl(pce->vel, col->inv_timestep);
|
|
|
|
/* calculate tangential particle velocity */
|
|
v0_dot = dot_v3v3(pce->nor, v0);
|
|
madd_v3_v3v3fl(v0_tan, v0, pce->nor, -v0_dot);
|
|
|
|
/* calculate tangential collider velocity */
|
|
vc_dot = dot_v3v3(pce->nor, pce->vel);
|
|
madd_v3_v3v3fl(vc_tan, pce->vel, pce->nor, -vc_dot);
|
|
|
|
/* handle friction effects (tangential and angular velocity) */
|
|
if (frict > 0.0f) {
|
|
/* angular <-> linear velocity */
|
|
if (dynamic_rotation) {
|
|
float vr_tan[3], v1_tan[3], ave[3];
|
|
|
|
/* linear velocity of particle surface */
|
|
cross_v3_v3v3(vr_tan, pce->nor, pa->state.ave);
|
|
mul_v3_fl(vr_tan, pa->size);
|
|
|
|
/* change to coordinates that move with the collision plane */
|
|
sub_v3_v3v3(v1_tan, v0_tan, vc_tan);
|
|
|
|
/* The resulting velocity is a weighted average of particle cm & surface
|
|
* velocity. This weight (related to particle's moment of inertia) could
|
|
* be made a parameter for angular <-> linear conversion.
|
|
*/
|
|
madd_v3_v3fl(v1_tan, vr_tan, -0.4);
|
|
mul_v3_fl(v1_tan, 1.0f/1.4f); /* 1/(1+0.4) */
|
|
|
|
/* rolling friction is around 0.01 of sliding friction (could be made a parameter) */
|
|
mul_v3_fl(v1_tan, 1.0f - 0.01f * frict);
|
|
|
|
/* surface_velocity is opposite to cm velocity */
|
|
negate_v3_v3(vr_tan, v1_tan);
|
|
|
|
/* get back to global coordinates */
|
|
add_v3_v3(v1_tan, vc_tan);
|
|
|
|
/* convert to angular velocity*/
|
|
cross_v3_v3v3(ave, vr_tan, pce->nor);
|
|
mul_v3_fl(ave, 1.0f/MAX2(pa->size, 0.001f));
|
|
|
|
/* only friction will cause change in linear & angular velocity */
|
|
interp_v3_v3v3(pa->state.ave, pa->state.ave, ave, frict);
|
|
interp_v3_v3v3(v0_tan, v0_tan, v1_tan, frict);
|
|
}
|
|
else {
|
|
/* just basic friction (unphysical due to the friction model used in Blender) */
|
|
interp_v3_v3v3(v0_tan, v0_tan, vc_tan, frict);
|
|
}
|
|
}
|
|
|
|
/* stickiness was possibly added before, so cancel that before calculating new normal velocity */
|
|
/* otherwise particles go flying out of the surface because of high reversed sticky velocity */
|
|
if (v0_dot < 0.0f) {
|
|
v0_dot += pd->pdef_stickness;
|
|
if (v0_dot > 0.0f)
|
|
v0_dot = 0.0f;
|
|
}
|
|
|
|
/* damping and flipping of velocity around normal */
|
|
v0_dot *= 1.0f - damp;
|
|
vc_dot *= through ? damp : 1.0f;
|
|
|
|
/* calculate normal particle velocity */
|
|
/* special case for object hitting the particle from behind */
|
|
if (through==0 && ((vc_dot>0.0f && v0_dot>0.0f && vc_dot>v0_dot) || (vc_dot<0.0f && v0_dot<0.0f && vc_dot<v0_dot)))
|
|
mul_v3_v3fl(v0_nor, pce->nor, vc_dot);
|
|
else if (v0_dot > 0.f)
|
|
mul_v3_v3fl(v0_nor, pce->nor, vc_dot + v0_dot);
|
|
else
|
|
mul_v3_v3fl(v0_nor, pce->nor, vc_dot + (through ? 1.0f : -1.0f) * v0_dot);
|
|
|
|
/* combine components together again */
|
|
add_v3_v3v3(v0, v0_nor, v0_tan);
|
|
|
|
if (col->boid) {
|
|
/* keep boids above ground */
|
|
BoidParticle *bpa = pa->boid;
|
|
if (bpa->data.mode == eBoidMode_OnLand || co[2] <= col->boid_z) {
|
|
co[2] = col->boid_z;
|
|
v0[2] = 0.0f;
|
|
}
|
|
}
|
|
|
|
/* re-apply acceleration to final location and velocity */
|
|
madd_v3_v3v3fl(pa->state.co, co, v0, dt2);
|
|
madd_v3_v3fl(pa->state.co, col->acc, 0.5f*dt2*dt2);
|
|
madd_v3_v3v3fl(pa->state.vel, v0, col->acc, dt2);
|
|
|
|
/* make sure particle stays on the right side of the surface */
|
|
if (!through) {
|
|
distance = collision_point_distance_with_normal(co, pce, -1.f, col, nor);
|
|
|
|
if (distance < col->radius + COLLISION_MIN_DISTANCE)
|
|
madd_v3_v3fl(co, nor, col->radius + COLLISION_MIN_DISTANCE - distance);
|
|
|
|
dot = dot_v3v3(nor, v0);
|
|
if (dot < 0.f)
|
|
madd_v3_v3fl(v0, nor, -dot);
|
|
|
|
distance = collision_point_distance_with_normal(pa->state.co, pce, 1.f, col, nor);
|
|
|
|
if (distance < col->radius + COLLISION_MIN_DISTANCE)
|
|
madd_v3_v3fl(pa->state.co, nor, col->radius + COLLISION_MIN_DISTANCE - distance);
|
|
|
|
dot = dot_v3v3(nor, pa->state.vel);
|
|
if (dot < 0.f)
|
|
madd_v3_v3fl(pa->state.vel, nor, -dot);
|
|
}
|
|
|
|
/* add stickiness to surface */
|
|
madd_v3_v3fl(pa->state.vel, pce->nor, -pd->pdef_stickness);
|
|
|
|
/* set coordinates for next iteration */
|
|
copy_v3_v3(col->co1, co);
|
|
copy_v3_v3(col->co2, pa->state.co);
|
|
|
|
copy_v3_v3(col->ve1, v0);
|
|
copy_v3_v3(col->ve2, pa->state.vel);
|
|
|
|
col->f = f;
|
|
}
|
|
|
|
/* if permeability random roll succeeded, disable collider for this sim step */
|
|
if (through) {
|
|
col->skip[col->skip_count++] = col->hit;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
static void collision_fail(ParticleData *pa, ParticleCollision *col)
|
|
{
|
|
/* final chance to prevent total failure, so stick to the surface and hope for the best */
|
|
collision_point_on_surface(col->co1, &col->pce, 1.f, col, pa->state.co);
|
|
|
|
copy_v3_v3(pa->state.vel, col->pce.vel);
|
|
mul_v3_fl(pa->state.vel, col->inv_timestep);
|
|
|
|
|
|
/* printf("max iterations\n"); */
|
|
}
|
|
|
|
/* Particle - Mesh collision detection and response
|
|
* Features:
|
|
* -friction and damping
|
|
* -angular momentum <-> linear momentum
|
|
* -high accuracy by re-applying particle acceleration after collision
|
|
* -handles moving, rotating and deforming meshes
|
|
* -uses Newton-Rhapson iteration to find the collisions
|
|
* -handles spherical particles and (nearly) point like particles
|
|
*/
|
|
static void collision_check(ParticleSimulationData *sim, int p, float dfra, float cfra)
|
|
{
|
|
ParticleSettings *part = sim->psys->part;
|
|
ParticleData *pa = sim->psys->particles + p;
|
|
ParticleCollision col;
|
|
BVHTreeRayHit hit;
|
|
int collision_count=0;
|
|
|
|
float timestep = psys_get_timestep(sim);
|
|
|
|
memset(&col, 0, sizeof(ParticleCollision));
|
|
|
|
col.total_time = timestep * dfra;
|
|
col.inv_total_time = 1.0f/col.total_time;
|
|
col.inv_timestep = 1.0f/timestep;
|
|
|
|
col.cfra = cfra;
|
|
col.old_cfra = sim->psys->cfra;
|
|
|
|
/* get acceleration (from gravity, forcefields etc. to be re-applied in collision response) */
|
|
sub_v3_v3v3(col.acc, pa->state.vel, pa->prev_state.vel);
|
|
mul_v3_fl(col.acc, 1.f/col.total_time);
|
|
|
|
/* set values for first iteration */
|
|
copy_v3_v3(col.co1, pa->prev_state.co);
|
|
copy_v3_v3(col.co2, pa->state.co);
|
|
copy_v3_v3(col.ve1, pa->prev_state.vel);
|
|
copy_v3_v3(col.ve2, pa->state.vel);
|
|
col.f = 0.0f;
|
|
|
|
col.radius = ((part->flag & PART_SIZE_DEFL) || (part->phystype == PART_PHYS_BOIDS)) ? pa->size : COLLISION_MIN_RADIUS;
|
|
|
|
/* override for boids */
|
|
if (part->phystype == PART_PHYS_BOIDS && part->boids->options & BOID_ALLOW_LAND) {
|
|
col.boid = 1;
|
|
col.boid_z = pa->state.co[2];
|
|
col.skip[col.skip_count++] = pa->boid->ground;
|
|
}
|
|
|
|
/* 10 iterations to catch multiple collisions */
|
|
while (collision_count < PARTICLE_COLLISION_MAX_COLLISIONS) {
|
|
if (collision_detect(pa, &col, &hit, sim->colliders)) {
|
|
|
|
collision_count++;
|
|
|
|
if (collision_count == PARTICLE_COLLISION_MAX_COLLISIONS)
|
|
collision_fail(pa, &col);
|
|
else if (collision_response(sim, pa, &col, &hit, part->flag & PART_DIE_ON_COL, part->flag & PART_ROT_DYN)==0)
|
|
return;
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
}
|
|
/************************************************/
|
|
/* Hair */
|
|
/************************************************/
|
|
/* check if path cache or children need updating and do it if needed */
|
|
static void psys_update_path_cache(ParticleSimulationData *sim, float cfra, const bool use_render_params)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
ParticleEditSettings *pset = &sim->scene->toolsettings->particle;
|
|
int distr=0, alloc=0, skip=0;
|
|
|
|
if ((psys->part->childtype && psys->totchild != psys_get_tot_child(sim->scene, psys, use_render_params)) || psys->recalc&PSYS_RECALC_RESET)
|
|
alloc=1;
|
|
|
|
if (alloc || psys->recalc&PSYS_RECALC_CHILD || (psys->vgroup[PSYS_VG_DENSITY] && (sim->ob && sim->ob->mode & OB_MODE_WEIGHT_PAINT)))
|
|
distr=1;
|
|
|
|
if (distr) {
|
|
if (alloc)
|
|
realloc_particles(sim, sim->psys->totpart);
|
|
|
|
if (psys_get_tot_child(sim->scene, psys, use_render_params)) {
|
|
/* don't generate children while computing the hair keys */
|
|
if (!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) {
|
|
distribute_particles(sim, PART_FROM_CHILD);
|
|
|
|
if (part->childtype==PART_CHILD_FACES && part->parents != 0.0f)
|
|
psys_find_parents(sim, use_render_params);
|
|
}
|
|
}
|
|
else
|
|
psys_free_children(psys);
|
|
}
|
|
|
|
if ((part->type==PART_HAIR || psys->flag&PSYS_KEYED || psys->pointcache->flag & PTCACHE_BAKED)==0)
|
|
skip = 1; /* only hair, keyed and baked stuff can have paths */
|
|
else if (part->ren_as != PART_DRAW_PATH && !(part->type==PART_HAIR && ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR)))
|
|
skip = 1; /* particle visualization must be set as path */
|
|
else if (DEG_get_mode(sim->depsgraph) != DAG_EVAL_RENDER) {
|
|
if (part->draw_as != PART_DRAW_REND)
|
|
skip = 1; /* draw visualization */
|
|
else if (psys->pointcache->flag & PTCACHE_BAKING)
|
|
skip = 1; /* no need to cache paths while baking dynamics */
|
|
|
|
else if (psys_in_edit_mode(sim->depsgraph, psys)) {
|
|
if ((pset->flag & PE_DRAW_PART)==0)
|
|
skip = 1;
|
|
else if (part->childtype==0 && (psys->flag & PSYS_HAIR_DYNAMICS && psys->pointcache->flag & PTCACHE_BAKED)==0)
|
|
skip = 1; /* in edit mode paths are needed for child particles and dynamic hair */
|
|
}
|
|
}
|
|
|
|
|
|
/* particle instance modifier with "path" option need cached paths even if particle system doesn't */
|
|
if (skip) {
|
|
FOREACH_SCENE_OBJECT_BEGIN(sim->scene, ob)
|
|
{
|
|
ModifierData *md = modifiers_findByType(ob, eModifierType_ParticleInstance);
|
|
if (md) {
|
|
ParticleInstanceModifierData *pimd = (ParticleInstanceModifierData *)md;
|
|
if (pimd->flag & eParticleInstanceFlag_Path && pimd->ob == sim->ob && pimd->psys == (psys - (ParticleSystem*)sim->ob->particlesystem.first)) {
|
|
skip = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
FOREACH_SCENE_OBJECT_END;
|
|
}
|
|
|
|
if (!skip) {
|
|
psys_cache_paths(sim, cfra, use_render_params);
|
|
|
|
/* for render, child particle paths are computed on the fly */
|
|
if (part->childtype) {
|
|
if (!psys->totchild)
|
|
skip = 1;
|
|
else if (psys->part->type == PART_HAIR && (psys->flag & PSYS_HAIR_DONE)==0)
|
|
skip = 1;
|
|
|
|
if (!skip)
|
|
psys_cache_child_paths(sim, cfra, 0, use_render_params);
|
|
}
|
|
}
|
|
else if (psys->pathcache)
|
|
psys_free_path_cache(psys, NULL);
|
|
}
|
|
|
|
static bool psys_hair_use_simulation(ParticleData *pa, float max_length)
|
|
{
|
|
/* Minimum segment length relative to average length.
|
|
* Hairs with segments below this length will be excluded from the simulation,
|
|
* because otherwise the solver will become unstable.
|
|
* The hair system should always make sure the hair segments have reasonable length ratios,
|
|
* but this can happen in old files when e.g. cutting hair.
|
|
*/
|
|
const float min_length = 0.1f * max_length;
|
|
|
|
HairKey *key;
|
|
int k;
|
|
|
|
if (pa->totkey < 2)
|
|
return false;
|
|
|
|
for (k=1, key=pa->hair+1; k<pa->totkey; k++,key++) {
|
|
float length = len_v3v3(key->co, (key-1)->co);
|
|
if (length < min_length)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static MDeformVert *hair_set_pinning(MDeformVert *dvert, float weight)
|
|
{
|
|
if (dvert) {
|
|
if (!dvert->totweight) {
|
|
dvert->dw = MEM_callocN(sizeof(MDeformWeight), "deformWeight");
|
|
dvert->totweight = 1;
|
|
}
|
|
|
|
dvert->dw->weight = weight;
|
|
dvert++;
|
|
}
|
|
return dvert;
|
|
}
|
|
|
|
static void hair_create_input_mesh(ParticleSimulationData *sim, int totpoint, int totedge, Mesh **r_mesh, ClothHairData **r_hairdata)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
Mesh *mesh;
|
|
ClothHairData *hairdata;
|
|
MVert *mvert;
|
|
MEdge *medge;
|
|
MDeformVert *dvert;
|
|
HairKey *key;
|
|
PARTICLE_P;
|
|
int k, hair_index;
|
|
float hairmat[4][4];
|
|
float max_length;
|
|
float hair_radius;
|
|
|
|
mesh = *r_mesh;
|
|
if (!mesh) {
|
|
*r_mesh = mesh = BKE_mesh_new_nomain(totpoint, totedge, 0, 0, 0);
|
|
CustomData_add_layer(&mesh->vdata, CD_MDEFORMVERT, CD_CALLOC, NULL, mesh->totvert);
|
|
BKE_mesh_update_customdata_pointers(mesh, false);
|
|
}
|
|
mvert = mesh->mvert;
|
|
medge = mesh->medge;
|
|
dvert = mesh->dvert;
|
|
|
|
hairdata = *r_hairdata;
|
|
if (!hairdata) {
|
|
*r_hairdata = hairdata = MEM_mallocN(sizeof(ClothHairData) * totpoint, "hair data");
|
|
}
|
|
|
|
/* calculate maximum segment length */
|
|
max_length = 0.0f;
|
|
LOOP_PARTICLES {
|
|
if (!(pa->flag & PARS_UNEXIST)) {
|
|
for (k=1, key=pa->hair+1; k<pa->totkey; k++,key++) {
|
|
float length = len_v3v3(key->co, (key-1)->co);
|
|
if (max_length < length)
|
|
max_length = length;
|
|
}
|
|
}
|
|
}
|
|
|
|
psys->clmd->sim_parms->vgroup_mass = 1;
|
|
|
|
/* XXX placeholder for more flexible future hair settings */
|
|
hair_radius = part->size;
|
|
|
|
/* make vgroup for pin roots etc.. */
|
|
hair_index = 1;
|
|
LOOP_PARTICLES {
|
|
if (!(pa->flag & PARS_UNEXIST)) {
|
|
float root_mat[4][4];
|
|
float bending_stiffness;
|
|
bool use_hair;
|
|
|
|
pa->hair_index = hair_index;
|
|
use_hair = psys_hair_use_simulation(pa, max_length);
|
|
|
|
psys_mat_hair_to_object(sim->ob, sim->psmd->mesh_final, psys->part->from, pa, hairmat);
|
|
mul_m4_m4m4(root_mat, sim->ob->obmat, hairmat);
|
|
normalize_m4(root_mat);
|
|
|
|
bending_stiffness = CLAMPIS(1.0f - part->bending_random * psys_frand(psys, p + 666), 0.0f, 1.0f);
|
|
|
|
for (k=0, key=pa->hair; k<pa->totkey; k++,key++) {
|
|
ClothHairData *hair;
|
|
float *co, *co_next;
|
|
|
|
co = key->co;
|
|
co_next = (key+1)->co;
|
|
|
|
/* create fake root before actual root to resist bending */
|
|
if (k==0) {
|
|
hair = &psys->clmd->hairdata[pa->hair_index - 1];
|
|
copy_v3_v3(hair->loc, root_mat[3]);
|
|
copy_m3_m4(hair->rot, root_mat);
|
|
|
|
hair->radius = hair_radius;
|
|
hair->bending_stiffness = bending_stiffness;
|
|
|
|
add_v3_v3v3(mvert->co, co, co);
|
|
sub_v3_v3(mvert->co, co_next);
|
|
mul_m4_v3(hairmat, mvert->co);
|
|
|
|
medge->v1 = pa->hair_index - 1;
|
|
medge->v2 = pa->hair_index;
|
|
|
|
dvert = hair_set_pinning(dvert, 1.0f);
|
|
|
|
mvert++;
|
|
medge++;
|
|
}
|
|
|
|
/* store root transform in cloth data */
|
|
hair = &psys->clmd->hairdata[pa->hair_index + k];
|
|
copy_v3_v3(hair->loc, root_mat[3]);
|
|
copy_m3_m4(hair->rot, root_mat);
|
|
|
|
hair->radius = hair_radius;
|
|
hair->bending_stiffness = bending_stiffness;
|
|
|
|
copy_v3_v3(mvert->co, co);
|
|
mul_m4_v3(hairmat, mvert->co);
|
|
|
|
if (k) {
|
|
medge->v1 = pa->hair_index + k - 1;
|
|
medge->v2 = pa->hair_index + k;
|
|
}
|
|
|
|
/* roots and disabled hairs should be 1.0, the rest can be anything from 0.0 to 1.0 */
|
|
if (use_hair)
|
|
dvert = hair_set_pinning(dvert, key->weight);
|
|
else
|
|
dvert = hair_set_pinning(dvert, 1.0f);
|
|
|
|
mvert++;
|
|
if (k)
|
|
medge++;
|
|
}
|
|
|
|
hair_index += pa->totkey + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_hair_dynamics(ParticleSimulationData *sim)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
PARTICLE_P;
|
|
EffectorWeights *clmd_effweights;
|
|
int totpoint;
|
|
int totedge;
|
|
float (*deformedVerts)[3];
|
|
bool realloc_roots;
|
|
|
|
if (!psys->clmd) {
|
|
psys->clmd = (ClothModifierData*)modifier_new(eModifierType_Cloth);
|
|
psys->clmd->sim_parms->goalspring = 0.0f;
|
|
psys->clmd->sim_parms->vel_damping = 1.0f;
|
|
psys->clmd->sim_parms->flags |= CLOTH_SIMSETTINGS_FLAG_GOAL|CLOTH_SIMSETTINGS_FLAG_RESIST_SPRING_COMPRESS;
|
|
psys->clmd->coll_parms->flags &= ~CLOTH_COLLSETTINGS_FLAG_SELF;
|
|
}
|
|
|
|
/* count simulated points */
|
|
totpoint = 0;
|
|
totedge = 0;
|
|
LOOP_PARTICLES {
|
|
if (!(pa->flag & PARS_UNEXIST)) {
|
|
/* "out" dm contains all hairs */
|
|
totedge += pa->totkey;
|
|
totpoint += pa->totkey + 1; /* +1 for virtual root point */
|
|
}
|
|
}
|
|
|
|
realloc_roots = false; /* whether hair root info array has to be reallocated */
|
|
if (psys->hair_in_mesh) {
|
|
Mesh *mesh = psys->hair_in_mesh;
|
|
if (totpoint != mesh->totvert || totedge != mesh->totedge) {
|
|
BKE_id_free(NULL, mesh);
|
|
psys->hair_in_mesh = NULL;
|
|
realloc_roots = true;
|
|
}
|
|
}
|
|
|
|
if (!psys->hair_in_mesh || !psys->clmd->hairdata || realloc_roots) {
|
|
if (psys->clmd->hairdata) {
|
|
MEM_freeN(psys->clmd->hairdata);
|
|
psys->clmd->hairdata = NULL;
|
|
}
|
|
}
|
|
|
|
hair_create_input_mesh(sim, totpoint, totedge, &psys->hair_in_mesh, &psys->clmd->hairdata);
|
|
|
|
if (psys->hair_out_mesh)
|
|
BKE_id_free(NULL, psys->hair_out_mesh);
|
|
|
|
psys->clmd->point_cache = psys->pointcache;
|
|
/* for hair sim we replace the internal cloth effector weights temporarily
|
|
* to use the particle settings
|
|
*/
|
|
clmd_effweights = psys->clmd->sim_parms->effector_weights;
|
|
psys->clmd->sim_parms->effector_weights = psys->part->effector_weights;
|
|
|
|
BKE_id_copy_ex(
|
|
NULL, &psys->hair_in_mesh->id, (ID **)&psys->hair_out_mesh,
|
|
LIB_ID_CREATE_NO_MAIN |
|
|
LIB_ID_CREATE_NO_USER_REFCOUNT |
|
|
LIB_ID_CREATE_NO_DEG_TAG |
|
|
LIB_ID_COPY_NO_PREVIEW,
|
|
false);
|
|
deformedVerts = BKE_mesh_vertexCos_get(psys->hair_out_mesh, NULL);
|
|
clothModifier_do(psys->clmd, sim->depsgraph, sim->scene, sim->ob, psys->hair_in_mesh, deformedVerts);
|
|
BKE_mesh_apply_vert_coords(psys->hair_out_mesh, deformedVerts);
|
|
|
|
MEM_freeN(deformedVerts);
|
|
|
|
/* restore cloth effector weights */
|
|
psys->clmd->sim_parms->effector_weights = clmd_effweights;
|
|
}
|
|
static void hair_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
PARTICLE_P;
|
|
float disp = psys_get_current_display_percentage(psys, use_render_params);
|
|
|
|
LOOP_PARTICLES {
|
|
pa->size = part->size;
|
|
if (part->randsize > 0.0f)
|
|
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
|
|
|
|
if (psys_frand(psys, p) > disp)
|
|
pa->flag |= PARS_NO_DISP;
|
|
else
|
|
pa->flag &= ~PARS_NO_DISP;
|
|
}
|
|
|
|
if (psys->recalc & PSYS_RECALC_RESET) {
|
|
/* need this for changing subsurf levels */
|
|
psys_calc_dmcache(sim->ob, sim->psmd->mesh_final, sim->psmd->mesh_original, psys);
|
|
|
|
if (psys->clmd)
|
|
cloth_free_modifier(psys->clmd);
|
|
}
|
|
|
|
/* dynamics with cloth simulation, psys->particles can be NULL with 0 particles [#25519] */
|
|
if (psys->part->type==PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS && psys->particles)
|
|
do_hair_dynamics(sim);
|
|
|
|
/* following lines were removed r29079 but cause bug [#22811], see report for details */
|
|
psys_update_effectors(sim);
|
|
psys_update_path_cache(sim, cfra, use_render_params);
|
|
|
|
psys->flag |= PSYS_HAIR_UPDATED;
|
|
}
|
|
|
|
static void save_hair(ParticleSimulationData *sim, float UNUSED(cfra))
|
|
{
|
|
Object *ob = sim->ob;
|
|
ParticleSystem *psys = sim->psys;
|
|
HairKey *key, *root;
|
|
PARTICLE_P;
|
|
|
|
invert_m4_m4(ob->imat, ob->obmat);
|
|
|
|
psys->lattice_deform_data= psys_create_lattice_deform_data(sim);
|
|
|
|
if (psys->totpart==0) return;
|
|
|
|
/* save new keys for elements if needed */
|
|
LOOP_PARTICLES {
|
|
/* first time alloc */
|
|
if (pa->totkey==0 || pa->hair==NULL) {
|
|
pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys");
|
|
pa->totkey = 0;
|
|
}
|
|
|
|
key = root = pa->hair;
|
|
key += pa->totkey;
|
|
|
|
/* convert from global to geometry space */
|
|
copy_v3_v3(key->co, pa->state.co);
|
|
mul_m4_v3(ob->imat, key->co);
|
|
|
|
if (pa->totkey) {
|
|
sub_v3_v3(key->co, root->co);
|
|
psys_vec_rot_to_face(sim->psmd->mesh_final, pa, key->co);
|
|
}
|
|
|
|
key->time = pa->state.time;
|
|
|
|
key->weight = 1.0f - key->time / 100.0f;
|
|
|
|
pa->totkey++;
|
|
|
|
/* root is always in the origin of hair space so we set it to be so after the last key is saved*/
|
|
if (pa->totkey == psys->part->hair_step + 1) {
|
|
zero_v3(root->co);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/* Code for an adaptive time step based on the Courant-Friedrichs-Lewy
|
|
* condition. */
|
|
static const float MIN_TIMESTEP = 1.0f / 101.0f;
|
|
/* Tolerance of 1.5 means the last subframe neither favors growing nor
|
|
* shrinking (e.g if it were 1.3, the last subframe would tend to be too
|
|
* small). */
|
|
static const float TIMESTEP_EXPANSION_FACTOR = 0.1f;
|
|
static const float TIMESTEP_EXPANSION_TOLERANCE = 1.5f;
|
|
|
|
/* Calculate the speed of the particle relative to the local scale of the
|
|
* simulation. This should be called once per particle during a simulation
|
|
* step, after the velocity has been updated. element_size defines the scale of
|
|
* the simulation, and is typically the distance to neighboring particles. */
|
|
static void update_courant_num(ParticleSimulationData *sim, ParticleData *pa,
|
|
float dtime, SPHData *sphdata, SpinLock *spin)
|
|
{
|
|
float relative_vel[3];
|
|
|
|
sub_v3_v3v3(relative_vel, pa->prev_state.vel, sphdata->flow);
|
|
|
|
const float courant_num = len_v3(relative_vel) * dtime / sphdata->element_size;
|
|
if (sim->courant_num < courant_num) {
|
|
BLI_spin_lock(spin);
|
|
if (sim->courant_num < courant_num) {
|
|
sim->courant_num = courant_num;
|
|
}
|
|
BLI_spin_unlock(spin);
|
|
}
|
|
}
|
|
static float get_base_time_step(ParticleSettings *part)
|
|
{
|
|
return 1.0f / (float) (part->subframes + 1);
|
|
}
|
|
/* Update time step size to suit current conditions. */
|
|
static void update_timestep(ParticleSystem *psys, ParticleSimulationData *sim)
|
|
{
|
|
float dt_target;
|
|
if (sim->courant_num == 0.0f)
|
|
dt_target = 1.0f;
|
|
else
|
|
dt_target = psys->dt_frac * (psys->part->courant_target / sim->courant_num);
|
|
|
|
/* Make sure the time step is reasonable. For some reason, the CLAMP macro
|
|
* doesn't work here. The time step becomes too large. - z0r */
|
|
if (dt_target < MIN_TIMESTEP)
|
|
dt_target = MIN_TIMESTEP;
|
|
else if (dt_target > get_base_time_step(psys->part))
|
|
dt_target = get_base_time_step(psys->part);
|
|
|
|
/* Decrease time step instantly, but increase slowly. */
|
|
if (dt_target > psys->dt_frac)
|
|
psys->dt_frac = interpf(dt_target, psys->dt_frac, TIMESTEP_EXPANSION_FACTOR);
|
|
else
|
|
psys->dt_frac = dt_target;
|
|
}
|
|
|
|
static float sync_timestep(ParticleSystem *psys, float t_frac)
|
|
{
|
|
/* Sync with frame end if it's close. */
|
|
if (t_frac == 1.0f)
|
|
return psys->dt_frac;
|
|
else if (t_frac + (psys->dt_frac * TIMESTEP_EXPANSION_TOLERANCE) >= 1.0f)
|
|
return 1.0f - t_frac;
|
|
else
|
|
return psys->dt_frac;
|
|
}
|
|
|
|
/************************************************/
|
|
/* System Core */
|
|
/************************************************/
|
|
|
|
typedef struct DynamicStepSolverTaskData {
|
|
ParticleSimulationData *sim;
|
|
|
|
float cfra;
|
|
float timestep;
|
|
float dtime;
|
|
|
|
SpinLock spin;
|
|
} DynamicStepSolverTaskData;
|
|
|
|
static void dynamics_step_sph_ddr_task_cb_ex(
|
|
void *__restrict userdata,
|
|
const int p,
|
|
const ParallelRangeTLS *__restrict tls)
|
|
{
|
|
DynamicStepSolverTaskData *data = userdata;
|
|
ParticleSimulationData *sim = data->sim;
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
|
|
SPHData *sphdata = tls->userdata_chunk;
|
|
|
|
ParticleData *pa;
|
|
|
|
if ((pa = psys->particles + p)->state.time <= 0.0f) {
|
|
return;
|
|
}
|
|
|
|
/* do global forces & effectors */
|
|
basic_integrate(sim, p, pa->state.time, data->cfra);
|
|
|
|
/* actual fluids calculations */
|
|
sph_integrate(sim, pa, pa->state.time, sphdata);
|
|
|
|
if (sim->colliders)
|
|
collision_check(sim, p, pa->state.time, data->cfra);
|
|
|
|
/* SPH particles are not physical particles, just interpolation
|
|
* particles, thus rotation has not a direct sense for them */
|
|
basic_rotate(part, pa, pa->state.time, data->timestep);
|
|
|
|
if (part->time_flag & PART_TIME_AUTOSF) {
|
|
update_courant_num(sim, pa, data->dtime, sphdata, &data->spin);
|
|
}
|
|
}
|
|
|
|
static void dynamics_step_sph_classical_basic_integrate_task_cb_ex(
|
|
void *__restrict userdata,
|
|
const int p,
|
|
const ParallelRangeTLS *__restrict UNUSED(tls))
|
|
{
|
|
DynamicStepSolverTaskData *data = userdata;
|
|
ParticleSimulationData *sim = data->sim;
|
|
ParticleSystem *psys = sim->psys;
|
|
|
|
ParticleData *pa;
|
|
|
|
if ((pa = psys->particles + p)->state.time <= 0.0f) {
|
|
return;
|
|
}
|
|
|
|
basic_integrate(sim, p, pa->state.time, data->cfra);
|
|
}
|
|
|
|
static void dynamics_step_sph_classical_calc_density_task_cb_ex(
|
|
void *__restrict userdata,
|
|
const int p,
|
|
const ParallelRangeTLS *__restrict tls)
|
|
{
|
|
DynamicStepSolverTaskData *data = userdata;
|
|
ParticleSimulationData *sim = data->sim;
|
|
ParticleSystem *psys = sim->psys;
|
|
|
|
SPHData *sphdata = tls->userdata_chunk;
|
|
|
|
ParticleData *pa;
|
|
|
|
if ((pa = psys->particles + p)->state.time <= 0.0f) {
|
|
return;
|
|
}
|
|
|
|
sphclassical_calc_dens(pa, pa->state.time, sphdata);
|
|
}
|
|
|
|
static void dynamics_step_sph_classical_integrate_task_cb_ex(
|
|
void *__restrict userdata,
|
|
const int p,
|
|
const ParallelRangeTLS *__restrict tls)
|
|
{
|
|
DynamicStepSolverTaskData *data = userdata;
|
|
ParticleSimulationData *sim = data->sim;
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
|
|
SPHData *sphdata = tls->userdata_chunk;
|
|
|
|
ParticleData *pa;
|
|
|
|
if ((pa = psys->particles + p)->state.time <= 0.0f) {
|
|
return;
|
|
}
|
|
|
|
/* actual fluids calculations */
|
|
sph_integrate(sim, pa, pa->state.time, sphdata);
|
|
|
|
if (sim->colliders)
|
|
collision_check(sim, p, pa->state.time, data->cfra);
|
|
|
|
/* SPH particles are not physical particles, just interpolation
|
|
* particles, thus rotation has not a direct sense for them */
|
|
basic_rotate(part, pa, pa->state.time, data->timestep);
|
|
|
|
if (part->time_flag & PART_TIME_AUTOSF) {
|
|
update_courant_num(sim, pa, data->dtime, sphdata, &data->spin);
|
|
}
|
|
}
|
|
|
|
/* unbaked particles are calculated dynamically */
|
|
static void dynamics_step(ParticleSimulationData *sim, float cfra)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part=psys->part;
|
|
BoidBrainData bbd;
|
|
ParticleTexture ptex;
|
|
PARTICLE_P;
|
|
float timestep;
|
|
/* frame & time changes */
|
|
float dfra, dtime;
|
|
float birthtime, dietime;
|
|
|
|
/* where have we gone in time since last time */
|
|
dfra= cfra - psys->cfra;
|
|
|
|
timestep = psys_get_timestep(sim);
|
|
dtime= dfra*timestep;
|
|
|
|
if (dfra < 0.0f) {
|
|
LOOP_EXISTING_PARTICLES {
|
|
psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
|
|
pa->size = part->size*ptex.size;
|
|
if (part->randsize > 0.0f)
|
|
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
|
|
|
|
reset_particle(sim, pa, dtime, cfra);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* for now do both, boids us 'rng' */
|
|
sim->rng = BLI_rng_new_srandom(31415926 + (int)cfra + psys->seed);
|
|
|
|
psys_update_effectors(sim);
|
|
|
|
if (part->type != PART_HAIR)
|
|
sim->colliders = BKE_collider_cache_create(sim->depsgraph, sim->ob, part->collision_group);
|
|
|
|
/* initialize physics type specific stuff */
|
|
switch (part->phystype) {
|
|
case PART_PHYS_BOIDS:
|
|
{
|
|
ParticleTarget *pt = psys->targets.first;
|
|
bbd.sim = sim;
|
|
bbd.part = part;
|
|
bbd.cfra = cfra;
|
|
bbd.dfra = dfra;
|
|
bbd.timestep = timestep;
|
|
bbd.rng = sim->rng;
|
|
|
|
psys_update_particle_tree(psys, cfra);
|
|
|
|
boids_precalc_rules(part, cfra);
|
|
|
|
for (; pt; pt=pt->next) {
|
|
ParticleSystem *psys_target = psys_get_target_system(sim->ob, pt);
|
|
if (psys_target && psys_target != psys) {
|
|
psys_update_particle_tree(psys_target, cfra);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case PART_PHYS_FLUID:
|
|
{
|
|
ParticleTarget *pt = psys->targets.first;
|
|
psys_update_particle_bvhtree(psys, cfra);
|
|
|
|
for (; pt; pt=pt->next) { /* Updating others systems particle tree for fluid-fluid interaction */
|
|
if (pt->ob)
|
|
psys_update_particle_bvhtree(BLI_findlink(&pt->ob->particlesystem, pt->psys-1), cfra);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
/* initialize all particles for dynamics */
|
|
LOOP_SHOWN_PARTICLES {
|
|
copy_particle_key(&pa->prev_state,&pa->state,1);
|
|
|
|
psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
|
|
|
|
pa->size = part->size*ptex.size;
|
|
if (part->randsize > 0.0f)
|
|
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
|
|
|
|
birthtime = pa->time;
|
|
dietime = pa->dietime;
|
|
|
|
/* store this, so we can do multiple loops over particles */
|
|
pa->state.time = dfra;
|
|
|
|
if (dietime <= cfra && psys->cfra < dietime) {
|
|
/* particle dies some time between this and last step */
|
|
pa->state.time = dietime - ((birthtime > psys->cfra) ? birthtime : psys->cfra);
|
|
pa->alive = PARS_DYING;
|
|
}
|
|
else if (birthtime <= cfra && birthtime >= psys->cfra) {
|
|
/* particle is born some time between this and last step*/
|
|
reset_particle(sim, pa, dfra*timestep, cfra);
|
|
pa->alive = PARS_ALIVE;
|
|
pa->state.time = cfra - birthtime;
|
|
}
|
|
else if (dietime < cfra) {
|
|
/* nothing to be done when particle is dead */
|
|
}
|
|
|
|
/* only reset unborn particles if they're shown or if the particle is born soon*/
|
|
if (pa->alive==PARS_UNBORN && (part->flag & PART_UNBORN || (cfra + psys->pointcache->step > pa->time))) {
|
|
reset_particle(sim, pa, dtime, cfra);
|
|
}
|
|
else if (part->phystype == PART_PHYS_NO) {
|
|
reset_particle(sim, pa, dtime, cfra);
|
|
}
|
|
|
|
if (ELEM(pa->alive, PARS_ALIVE, PARS_DYING)==0 || (pa->flag & (PARS_UNEXIST|PARS_NO_DISP)))
|
|
pa->state.time = -1.f;
|
|
}
|
|
|
|
switch (part->phystype) {
|
|
case PART_PHYS_NEWTON:
|
|
{
|
|
LOOP_DYNAMIC_PARTICLES {
|
|
/* do global forces & effectors */
|
|
basic_integrate(sim, p, pa->state.time, cfra);
|
|
|
|
/* deflection */
|
|
if (sim->colliders)
|
|
collision_check(sim, p, pa->state.time, cfra);
|
|
|
|
/* rotations */
|
|
basic_rotate(part, pa, pa->state.time, timestep);
|
|
}
|
|
break;
|
|
}
|
|
case PART_PHYS_BOIDS:
|
|
{
|
|
LOOP_DYNAMIC_PARTICLES {
|
|
bbd.goal_ob = NULL;
|
|
|
|
boid_brain(&bbd, p, pa);
|
|
|
|
if (pa->alive != PARS_DYING) {
|
|
boid_body(&bbd, pa);
|
|
|
|
/* deflection */
|
|
if (sim->colliders)
|
|
collision_check(sim, p, pa->state.time, cfra);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case PART_PHYS_FLUID:
|
|
{
|
|
SPHData sphdata;
|
|
psys_sph_init(sim, &sphdata);
|
|
|
|
DynamicStepSolverTaskData task_data = {
|
|
.sim = sim, .cfra = cfra, .timestep = timestep, .dtime = dtime,
|
|
};
|
|
|
|
BLI_spin_init(&task_data.spin);
|
|
|
|
if (part->fluid->solver == SPH_SOLVER_DDR) {
|
|
/* Apply SPH forces using double-density relaxation algorithm
|
|
* (Clavat et. al.) */
|
|
|
|
ParallelRangeSettings settings;
|
|
BLI_parallel_range_settings_defaults(&settings);
|
|
settings.use_threading = (psys->totpart > 100);
|
|
settings.userdata_chunk = &sphdata;
|
|
settings.userdata_chunk_size = sizeof(sphdata);
|
|
BLI_task_parallel_range(
|
|
0, psys->totpart,
|
|
&task_data,
|
|
dynamics_step_sph_ddr_task_cb_ex,
|
|
&settings);
|
|
|
|
sph_springs_modify(psys, timestep);
|
|
}
|
|
else {
|
|
/* SPH_SOLVER_CLASSICAL */
|
|
/* Apply SPH forces using classical algorithm (due to Gingold
|
|
* and Monaghan). Note that, unlike double-density relaxation,
|
|
* this algorithm is separated into distinct loops. */
|
|
|
|
{
|
|
ParallelRangeSettings settings;
|
|
BLI_parallel_range_settings_defaults(&settings);
|
|
settings.use_threading = (psys->totpart > 100);
|
|
BLI_task_parallel_range(
|
|
0, psys->totpart,
|
|
&task_data,
|
|
dynamics_step_sph_classical_basic_integrate_task_cb_ex,
|
|
&settings);
|
|
}
|
|
|
|
/* calculate summation density */
|
|
/* Note that we could avoid copying sphdata for each thread here (it's only read here),
|
|
* but doubt this would gain us anything except confusion... */
|
|
{
|
|
ParallelRangeSettings settings;
|
|
BLI_parallel_range_settings_defaults(&settings);
|
|
settings.use_threading = (psys->totpart > 100);
|
|
settings.userdata_chunk = &sphdata;
|
|
settings.userdata_chunk_size = sizeof(sphdata);
|
|
BLI_task_parallel_range(
|
|
0, psys->totpart,
|
|
&task_data,
|
|
dynamics_step_sph_classical_calc_density_task_cb_ex,
|
|
&settings);
|
|
}
|
|
|
|
/* do global forces & effectors */
|
|
{
|
|
ParallelRangeSettings settings;
|
|
BLI_parallel_range_settings_defaults(&settings);
|
|
settings.use_threading = (psys->totpart > 100);
|
|
settings.userdata_chunk = &sphdata;
|
|
settings.userdata_chunk_size = sizeof(sphdata);
|
|
BLI_task_parallel_range(
|
|
0, psys->totpart,
|
|
&task_data,
|
|
dynamics_step_sph_classical_integrate_task_cb_ex,
|
|
&settings);
|
|
}
|
|
}
|
|
|
|
BLI_spin_end(&task_data.spin);
|
|
|
|
psys_sph_finalise(&sphdata);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* finalize particle state and time after dynamics */
|
|
LOOP_DYNAMIC_PARTICLES {
|
|
if (pa->alive == PARS_DYING) {
|
|
pa->alive=PARS_DEAD;
|
|
pa->state.time=pa->dietime;
|
|
}
|
|
else
|
|
pa->state.time=cfra;
|
|
}
|
|
|
|
BKE_collider_cache_free(&sim->colliders);
|
|
BLI_rng_free(sim->rng);
|
|
sim->rng = NULL;
|
|
}
|
|
|
|
static void update_children(ParticleSimulationData *sim, const bool use_render_params)
|
|
{
|
|
if ((sim->psys->part->type == PART_HAIR) && (sim->psys->flag & PSYS_HAIR_DONE)==0)
|
|
/* don't generate children while growing hair - waste of time */
|
|
psys_free_children(sim->psys);
|
|
else if (sim->psys->part->childtype) {
|
|
if (sim->psys->totchild != psys_get_tot_child(sim->scene, sim->psys, use_render_params))
|
|
distribute_particles(sim, PART_FROM_CHILD);
|
|
else {
|
|
/* Children are up to date, nothing to do. */
|
|
}
|
|
}
|
|
else
|
|
psys_free_children(sim->psys);
|
|
}
|
|
/* updates cached particles' alive & other flags etc..*/
|
|
static void cached_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
ParticleTexture ptex;
|
|
PARTICLE_P;
|
|
float disp, dietime;
|
|
|
|
psys_update_effectors(sim);
|
|
|
|
disp= psys_get_current_display_percentage(psys, use_render_params);
|
|
|
|
LOOP_PARTICLES {
|
|
psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
|
|
pa->size = part->size*ptex.size;
|
|
if (part->randsize > 0.0f)
|
|
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
|
|
|
|
psys->lattice_deform_data = psys_create_lattice_deform_data(sim);
|
|
|
|
dietime = pa->dietime;
|
|
|
|
/* update alive status and push events */
|
|
if (pa->time > cfra) {
|
|
pa->alive = PARS_UNBORN;
|
|
if (part->flag & PART_UNBORN && (psys->pointcache->flag & PTCACHE_EXTERNAL) == 0)
|
|
reset_particle(sim, pa, 0.0f, cfra);
|
|
}
|
|
else if (dietime <= cfra)
|
|
pa->alive = PARS_DEAD;
|
|
else
|
|
pa->alive = PARS_ALIVE;
|
|
|
|
if (psys->lattice_deform_data) {
|
|
end_latt_deform(psys->lattice_deform_data);
|
|
psys->lattice_deform_data = NULL;
|
|
}
|
|
|
|
if (psys_frand(psys, p) > disp)
|
|
pa->flag |= PARS_NO_DISP;
|
|
else
|
|
pa->flag &= ~PARS_NO_DISP;
|
|
}
|
|
}
|
|
|
|
static void particles_fluid_step(
|
|
ParticleSimulationData *sim, int UNUSED(cfra), const bool use_render_params)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
if (psys->particles) {
|
|
MEM_freeN(psys->particles);
|
|
psys->particles = 0;
|
|
psys->totpart = 0;
|
|
}
|
|
|
|
/* fluid sim particle import handling, actual loading of particles from file */
|
|
#ifdef WITH_MOD_FLUID
|
|
{
|
|
FluidsimModifierData *fluidmd = (FluidsimModifierData *)modifiers_findByType(sim->ob, eModifierType_Fluidsim);
|
|
|
|
if ( fluidmd && fluidmd->fss) {
|
|
FluidsimSettings *fss= fluidmd->fss;
|
|
ParticleSettings *part = psys->part;
|
|
ParticleData *pa=NULL;
|
|
char filename[256];
|
|
char debugStrBuffer[256];
|
|
int curFrame = sim->scene->r.cfra -1; // warning - sync with derived mesh fsmesh loading
|
|
int p, j, totpart;
|
|
int readMask, activeParts = 0, fileParts = 0;
|
|
gzFile gzf;
|
|
|
|
// XXX if (ob==G.obedit) // off...
|
|
// return;
|
|
|
|
// ok, start loading
|
|
BLI_join_dirfile(filename, sizeof(filename), fss->surfdataPath, OB_FLUIDSIM_SURF_PARTICLES_FNAME);
|
|
|
|
BLI_path_abs(filename, modifier_path_relbase_from_global(sim->ob));
|
|
|
|
BLI_path_frame(filename, curFrame, 0); // fixed #frame-no
|
|
|
|
gzf = BLI_gzopen(filename, "rb");
|
|
if (!gzf) {
|
|
BLI_snprintf(debugStrBuffer, sizeof(debugStrBuffer),"readFsPartData::error - Unable to open file for reading '%s'\n", filename);
|
|
// XXX bad level call elbeemDebugOut(debugStrBuffer);
|
|
return;
|
|
}
|
|
|
|
gzread(gzf, &totpart, sizeof(totpart));
|
|
totpart = (use_render_params) ? totpart:(part->disp*totpart) / 100;
|
|
|
|
part->totpart= totpart;
|
|
part->sta=part->end = 1.0f;
|
|
part->lifetime = sim->scene->r.efra + 1;
|
|
|
|
/* allocate particles */
|
|
realloc_particles(sim, part->totpart);
|
|
|
|
// set up reading mask
|
|
readMask = fss->typeFlags;
|
|
|
|
for (p=0, pa=psys->particles; p<totpart; p++, pa++) {
|
|
int ptype=0;
|
|
|
|
gzread(gzf, &ptype, sizeof( ptype ));
|
|
if (ptype & readMask) {
|
|
activeParts++;
|
|
|
|
gzread(gzf, &(pa->size), sizeof(float));
|
|
|
|
pa->size /= 10.0f;
|
|
|
|
for (j=0; j<3; j++) {
|
|
float wrf;
|
|
gzread(gzf, &wrf, sizeof( wrf ));
|
|
pa->state.co[j] = wrf;
|
|
//fprintf(stderr,"Rj%d ",j);
|
|
}
|
|
for (j=0; j<3; j++) {
|
|
float wrf;
|
|
gzread(gzf, &wrf, sizeof( wrf ));
|
|
pa->state.vel[j] = wrf;
|
|
}
|
|
|
|
zero_v3(pa->state.ave);
|
|
unit_qt(pa->state.rot);
|
|
|
|
pa->time = 1.f;
|
|
pa->dietime = sim->scene->r.efra + 1;
|
|
pa->lifetime = sim->scene->r.efra;
|
|
pa->alive = PARS_ALIVE;
|
|
//if (a < 25) fprintf(stderr,"FSPARTICLE debug set %s, a%d = %f,%f,%f, life=%f\n", filename, a, pa->co[0],pa->co[1],pa->co[2], pa->lifetime );
|
|
}
|
|
else {
|
|
// skip...
|
|
for (j=0; j<2*3+1; j++) {
|
|
float wrf; gzread(gzf, &wrf, sizeof( wrf ));
|
|
}
|
|
}
|
|
fileParts++;
|
|
}
|
|
gzclose(gzf);
|
|
|
|
totpart = psys->totpart = activeParts;
|
|
BLI_snprintf(debugStrBuffer,sizeof(debugStrBuffer),"readFsPartData::done - particles:%d, active:%d, file:%d, mask:%d\n", psys->totpart,activeParts,fileParts,readMask);
|
|
// bad level call
|
|
// XXX elbeemDebugOut(debugStrBuffer);
|
|
|
|
} // fluid sim particles done
|
|
}
|
|
#else
|
|
UNUSED_VARS(use_render_params);
|
|
#endif // WITH_MOD_FLUID
|
|
}
|
|
|
|
static int emit_particles(ParticleSimulationData *sim, PTCacheID *pid, float UNUSED(cfra))
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
int oldtotpart = psys->totpart;
|
|
int totpart = tot_particles(psys, pid);
|
|
|
|
if (totpart != oldtotpart)
|
|
realloc_particles(sim, totpart);
|
|
|
|
return totpart - oldtotpart;
|
|
}
|
|
|
|
/* Calculates the next state for all particles of the system
|
|
* In particles code most fra-ending are frames, time-ending are fra*timestep (seconds)
|
|
* 1. Emit particles
|
|
* 2. Check cache (if used) and return if frame is cached
|
|
* 3. Do dynamics
|
|
* 4. Save to cache */
|
|
static void system_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
|
|
{
|
|
ParticleSystem *psys = sim->psys;
|
|
ParticleSettings *part = psys->part;
|
|
PointCache *cache = psys->pointcache;
|
|
PTCacheID ptcacheid, *pid = NULL;
|
|
PARTICLE_P;
|
|
float disp, cache_cfra = cfra; /*, *vg_vel= 0, *vg_tan= 0, *vg_rot= 0, *vg_size= 0; */
|
|
int startframe = 0, endframe = 100, oldtotpart = 0;
|
|
|
|
/* cache shouldn't be used for hair or "continue physics" */
|
|
if (part->type != PART_HAIR) {
|
|
psys_clear_temp_pointcache(psys);
|
|
|
|
/* set suitable cache range automatically */
|
|
if ((cache->flag & (PTCACHE_BAKING|PTCACHE_BAKED))==0)
|
|
psys_get_pointcache_start_end(sim->scene, psys, &cache->startframe, &cache->endframe);
|
|
|
|
pid = &ptcacheid;
|
|
BKE_ptcache_id_from_particles(pid, sim->ob, psys);
|
|
|
|
BKE_ptcache_id_time(pid, sim->scene, 0.0f, &startframe, &endframe, NULL);
|
|
|
|
/* clear everything on start frame, or when psys needs full reset! */
|
|
if ((cfra == startframe) || (psys->recalc & PSYS_RECALC_RESET)) {
|
|
BKE_ptcache_id_reset(sim->scene, pid, PTCACHE_RESET_OUTDATED);
|
|
BKE_ptcache_validate(cache, startframe);
|
|
cache->flag &= ~PTCACHE_REDO_NEEDED;
|
|
}
|
|
|
|
CLAMP(cache_cfra, startframe, endframe);
|
|
}
|
|
|
|
/* 1. emit particles and redo particles if needed */
|
|
oldtotpart = psys->totpart;
|
|
if (emit_particles(sim, pid, cfra) || psys->recalc & PSYS_RECALC_RESET) {
|
|
distribute_particles(sim, part->from);
|
|
initialize_all_particles(sim);
|
|
/* reset only just created particles (on startframe all particles are recreated) */
|
|
reset_all_particles(sim, 0.0, cfra, oldtotpart);
|
|
free_unexisting_particles(sim);
|
|
|
|
if (psys->fluid_springs) {
|
|
MEM_freeN(psys->fluid_springs);
|
|
psys->fluid_springs = NULL;
|
|
}
|
|
|
|
psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
|
|
|
|
/* flag for possible explode modifiers after this system */
|
|
sim->psmd->flag |= eParticleSystemFlag_Pars;
|
|
|
|
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, cfra);
|
|
}
|
|
|
|
/* 2. try to read from the cache */
|
|
if (pid) {
|
|
int cache_result = BKE_ptcache_read(pid, cache_cfra, true);
|
|
|
|
if (ELEM(cache_result, PTCACHE_READ_EXACT, PTCACHE_READ_INTERPOLATED)) {
|
|
cached_step(sim, cfra, use_render_params);
|
|
update_children(sim, use_render_params);
|
|
psys_update_path_cache(sim, cfra, use_render_params);
|
|
|
|
BKE_ptcache_validate(cache, (int)cache_cfra);
|
|
|
|
if (cache_result == PTCACHE_READ_INTERPOLATED && cache->flag & PTCACHE_REDO_NEEDED)
|
|
BKE_ptcache_write(pid, (int)cache_cfra);
|
|
|
|
return;
|
|
}
|
|
/* Cache is supposed to be baked, but no data was found so bail out */
|
|
else if (cache->flag & PTCACHE_BAKED) {
|
|
psys_reset(psys, PSYS_RESET_CACHE_MISS);
|
|
return;
|
|
}
|
|
else if (cache_result == PTCACHE_READ_OLD) {
|
|
psys->cfra = (float)cache->simframe;
|
|
cached_step(sim, psys->cfra, use_render_params);
|
|
}
|
|
|
|
/* if on second frame, write cache for first frame */
|
|
if (psys->cfra == startframe && (cache->flag & PTCACHE_OUTDATED || cache->last_exact==0))
|
|
BKE_ptcache_write(pid, startframe);
|
|
}
|
|
else
|
|
BKE_ptcache_invalidate(cache);
|
|
|
|
/* 3. do dynamics */
|
|
/* set particles to be not calculated TODO: can't work with pointcache */
|
|
disp= psys_get_current_display_percentage(psys, use_render_params);
|
|
|
|
LOOP_PARTICLES {
|
|
if (psys_frand(psys, p) > disp)
|
|
pa->flag |= PARS_NO_DISP;
|
|
else
|
|
pa->flag &= ~PARS_NO_DISP;
|
|
}
|
|
|
|
if (psys->totpart) {
|
|
int dframe, totframesback = 0;
|
|
float t_frac, dt_frac;
|
|
|
|
/* handle negative frame start at the first frame by doing
|
|
* all the steps before the first frame */
|
|
if ((int)cfra == startframe && part->sta < startframe)
|
|
totframesback = (startframe - (int)part->sta);
|
|
|
|
if (!(part->time_flag & PART_TIME_AUTOSF)) {
|
|
/* Constant time step */
|
|
psys->dt_frac = get_base_time_step(part);
|
|
}
|
|
else if ((int)cfra == startframe) {
|
|
/* Variable time step; initialise to subframes */
|
|
psys->dt_frac = get_base_time_step(part);
|
|
}
|
|
else if (psys->dt_frac < MIN_TIMESTEP) {
|
|
/* Variable time step; subsequent frames */
|
|
psys->dt_frac = MIN_TIMESTEP;
|
|
}
|
|
|
|
for (dframe=-totframesback; dframe<=0; dframe++) {
|
|
/* simulate each subframe */
|
|
dt_frac = psys->dt_frac;
|
|
for (t_frac = dt_frac; t_frac <= 1.0f; t_frac += dt_frac) {
|
|
sim->courant_num = 0.0f;
|
|
dynamics_step(sim, cfra+dframe+t_frac - 1.f);
|
|
psys->cfra = cfra+dframe+t_frac - 1.f;
|
|
#if 0
|
|
printf("%f,%f,%f,%f\n", cfra+dframe+t_frac - 1.f, t_frac, dt_frac, sim->courant_num);
|
|
#endif
|
|
if (part->time_flag & PART_TIME_AUTOSF)
|
|
update_timestep(psys, sim);
|
|
/* Even without AUTOSF dt_frac may not add up to 1.0 due to float precision. */
|
|
dt_frac = sync_timestep(psys, t_frac);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* 4. only write cache starting from second frame */
|
|
if (pid) {
|
|
BKE_ptcache_validate(cache, (int)cache_cfra);
|
|
if ((int)cache_cfra != startframe)
|
|
BKE_ptcache_write(pid, (int)cache_cfra);
|
|
}
|
|
|
|
update_children(sim, use_render_params);
|
|
|
|
/* cleanup */
|
|
if (psys->lattice_deform_data) {
|
|
end_latt_deform(psys->lattice_deform_data);
|
|
psys->lattice_deform_data = NULL;
|
|
}
|
|
}
|
|
|
|
/* system type has changed so set sensible defaults and clear non applicable flags */
|
|
void psys_changed_type(Object *ob, ParticleSystem *psys)
|
|
{
|
|
ParticleSettings *part = psys->part;
|
|
PTCacheID pid;
|
|
|
|
BKE_ptcache_id_from_particles(&pid, ob, psys);
|
|
|
|
if (part->phystype != PART_PHYS_KEYED)
|
|
psys->flag &= ~PSYS_KEYED;
|
|
|
|
if (part->type == PART_HAIR) {
|
|
if (ELEM(part->ren_as, PART_DRAW_NOT, PART_DRAW_PATH, PART_DRAW_OB, PART_DRAW_GR)==0)
|
|
part->ren_as = PART_DRAW_PATH;
|
|
|
|
if (part->distr == PART_DISTR_GRID)
|
|
part->distr = PART_DISTR_JIT;
|
|
|
|
if (ELEM(part->draw_as, PART_DRAW_NOT, PART_DRAW_REND, PART_DRAW_PATH)==0)
|
|
part->draw_as = PART_DRAW_REND;
|
|
|
|
CLAMP(part->path_start, 0.0f, 100.0f);
|
|
CLAMP(part->path_end, 0.0f, 100.0f);
|
|
|
|
BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
|
|
}
|
|
else {
|
|
free_hair(ob, psys, 1);
|
|
|
|
CLAMP(part->path_start, 0.0f, MAX2(100.0f, part->end + part->lifetime));
|
|
CLAMP(part->path_end, 0.0f, MAX2(100.0f, part->end + part->lifetime));
|
|
}
|
|
|
|
psys_reset(psys, PSYS_RESET_ALL);
|
|
}
|
|
void psys_check_boid_data(ParticleSystem *psys)
|
|
{
|
|
BoidParticle *bpa;
|
|
PARTICLE_P;
|
|
|
|
pa = psys->particles;
|
|
|
|
if (!pa)
|
|
return;
|
|
|
|
if (psys->part && psys->part->phystype==PART_PHYS_BOIDS) {
|
|
if (!pa->boid) {
|
|
bpa = MEM_callocN(psys->totpart * sizeof(BoidParticle), "Boid Data");
|
|
|
|
LOOP_PARTICLES {
|
|
pa->boid = bpa++;
|
|
}
|
|
}
|
|
}
|
|
else if (pa->boid) {
|
|
MEM_freeN(pa->boid);
|
|
LOOP_PARTICLES {
|
|
pa->boid = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BKE_particlesettings_fluid_default_settings(ParticleSettings *part)
|
|
{
|
|
SPHFluidSettings *fluid = part->fluid;
|
|
|
|
fluid->spring_k = 0.f;
|
|
fluid->plasticity_constant = 0.1f;
|
|
fluid->yield_ratio = 0.1f;
|
|
fluid->rest_length = 1.f;
|
|
fluid->viscosity_omega = 2.f;
|
|
fluid->viscosity_beta = 0.1f;
|
|
fluid->stiffness_k = 1.f;
|
|
fluid->stiffness_knear = 1.f;
|
|
fluid->rest_density = 1.f;
|
|
fluid->buoyancy = 0.f;
|
|
fluid->radius = 1.f;
|
|
fluid->flag |= SPH_FAC_REPULSION|SPH_FAC_DENSITY|SPH_FAC_RADIUS|SPH_FAC_VISCOSITY|SPH_FAC_REST_LENGTH;
|
|
}
|
|
|
|
static void psys_prepare_physics(ParticleSimulationData *sim)
|
|
{
|
|
ParticleSettings *part = sim->psys->part;
|
|
|
|
if (ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)) {
|
|
PTCacheID pid;
|
|
BKE_ptcache_id_from_particles(&pid, sim->ob, sim->psys);
|
|
BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
|
|
}
|
|
else {
|
|
free_keyed_keys(sim->psys);
|
|
sim->psys->flag &= ~PSYS_KEYED;
|
|
}
|
|
|
|
/* RNA Update must ensure this is true. */
|
|
if (part->phystype == PART_PHYS_BOIDS) {
|
|
BLI_assert(part->boids != NULL);
|
|
}
|
|
else if (part->phystype == PART_PHYS_FLUID) {
|
|
BLI_assert(part->fluid != NULL);
|
|
}
|
|
|
|
psys_check_boid_data(sim->psys);
|
|
}
|
|
static int hair_needs_recalc(ParticleSystem *psys)
|
|
{
|
|
if (!(psys->flag & PSYS_EDITED) && (!psys->edit || !psys->edit->edited) &&
|
|
((psys->flag & PSYS_HAIR_DONE)==0 || psys->recalc & PSYS_RECALC_RESET || (psys->part->flag & PART_HAIR_REGROW && !psys->edit)))
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* main particle update call, checks that things are ok on the large scale and
|
|
* then advances in to actual particle calculations depending on particle type */
|
|
void particle_system_update(struct Depsgraph *depsgraph, Scene *scene, Object *ob, ParticleSystem *psys, const bool use_render_params)
|
|
{
|
|
ParticleSimulationData sim= {0};
|
|
ParticleSettings *part = psys->part;
|
|
ParticleSystem *psys_orig = psys_orig_get(psys);
|
|
float cfra;
|
|
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
|
|
|
|
/* drawdata is outdated after ANY change */
|
|
if (psys->pdd) psys->pdd->flag &= ~PARTICLE_DRAW_DATA_UPDATED;
|
|
|
|
if (!psys_check_enabled(ob, psys, use_render_params))
|
|
return;
|
|
|
|
cfra = DEG_get_ctime(depsgraph);
|
|
|
|
sim.depsgraph = depsgraph;
|
|
sim.scene = scene;
|
|
sim.ob = ob;
|
|
sim.psys = psys;
|
|
sim.psmd = psmd;
|
|
|
|
/* system was already updated from modifier stack */
|
|
if (sim.psmd->flag & eParticleSystemFlag_psys_updated) {
|
|
sim.psmd->flag &= ~eParticleSystemFlag_psys_updated;
|
|
/* make sure it really was updated to cfra */
|
|
if (psys->cfra == cfra)
|
|
return;
|
|
}
|
|
|
|
if (!sim.psmd->mesh_final)
|
|
return;
|
|
|
|
if (part->from != PART_FROM_VERT) {
|
|
BKE_mesh_tessface_ensure(sim.psmd->mesh_final);
|
|
}
|
|
|
|
/* execute drivers only, as animation has already been done */
|
|
BKE_animsys_evaluate_animdata(depsgraph, scene, &part->id, part->adt, cfra, ADT_RECALC_DRIVERS);
|
|
|
|
/* to verify if we need to restore object afterwards */
|
|
psys->flag &= ~PSYS_OB_ANIM_RESTORE;
|
|
|
|
if (psys->recalc & PSYS_RECALC_RESET)
|
|
psys->totunexist = 0;
|
|
|
|
/* setup necessary physics type dependent additional data if it doesn't yet exist */
|
|
psys_prepare_physics(&sim);
|
|
|
|
switch (part->type) {
|
|
case PART_HAIR:
|
|
{
|
|
/* nothing to do so bail out early */
|
|
if (psys->totpart == 0 && part->totpart == 0) {
|
|
psys_free_path_cache(psys, NULL);
|
|
free_hair(ob, psys, 0);
|
|
psys->flag |= PSYS_HAIR_DONE;
|
|
}
|
|
/* (re-)create hair */
|
|
else if (hair_needs_recalc(psys)) {
|
|
float hcfra=0.0f;
|
|
int i, recalc = psys->recalc;
|
|
|
|
free_hair(ob, psys, 0);
|
|
|
|
if (psys_orig->edit && psys_orig->free_edit) {
|
|
psys_orig->free_edit(psys_orig->edit);
|
|
psys_orig->edit = NULL;
|
|
psys_orig->free_edit = NULL;
|
|
}
|
|
|
|
/* first step is negative so particles get killed and reset */
|
|
psys->cfra= 1.0f;
|
|
|
|
for (i=0; i<=part->hair_step; i++) {
|
|
hcfra=100.0f*(float)i/(float)psys->part->hair_step;
|
|
if ((part->flag & PART_HAIR_REGROW)==0)
|
|
BKE_animsys_evaluate_animdata(depsgraph, scene, &part->id, part->adt, hcfra, ADT_RECALC_ANIM);
|
|
system_step(&sim, hcfra, use_render_params);
|
|
psys->cfra = hcfra;
|
|
psys->recalc = 0;
|
|
save_hair(&sim, hcfra);
|
|
}
|
|
|
|
psys->flag |= PSYS_HAIR_DONE;
|
|
psys->recalc = recalc;
|
|
}
|
|
else if (psys->flag & PSYS_EDITED)
|
|
psys->flag |= PSYS_HAIR_DONE;
|
|
|
|
if (psys->flag & PSYS_HAIR_DONE)
|
|
hair_step(&sim, cfra, use_render_params);
|
|
break;
|
|
}
|
|
case PART_FLUID:
|
|
{
|
|
particles_fluid_step(&sim, (int)cfra, use_render_params);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
switch (part->phystype) {
|
|
case PART_PHYS_NO:
|
|
case PART_PHYS_KEYED:
|
|
{
|
|
PARTICLE_P;
|
|
float disp = psys_get_current_display_percentage(psys, use_render_params);
|
|
bool free_unexisting = false;
|
|
|
|
/* Particles without dynamics haven't been reset yet because they don't use pointcache */
|
|
if (psys->recalc & PSYS_RECALC_RESET)
|
|
psys_reset(psys, PSYS_RESET_ALL);
|
|
|
|
if (emit_particles(&sim, NULL, cfra) || (psys->recalc & PSYS_RECALC_RESET)) {
|
|
free_keyed_keys(psys);
|
|
distribute_particles(&sim, part->from);
|
|
initialize_all_particles(&sim);
|
|
free_unexisting = true;
|
|
|
|
/* flag for possible explode modifiers after this system */
|
|
sim.psmd->flag |= eParticleSystemFlag_Pars;
|
|
}
|
|
|
|
LOOP_EXISTING_PARTICLES {
|
|
pa->size = part->size;
|
|
if (part->randsize > 0.0f)
|
|
pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
|
|
|
|
reset_particle(&sim, pa, 0.0, cfra);
|
|
|
|
if (psys_frand(psys, p) > disp)
|
|
pa->flag |= PARS_NO_DISP;
|
|
else
|
|
pa->flag &= ~PARS_NO_DISP;
|
|
}
|
|
|
|
/* free unexisting after reseting particles */
|
|
if (free_unexisting)
|
|
free_unexisting_particles(&sim);
|
|
|
|
if (part->phystype == PART_PHYS_KEYED) {
|
|
psys_count_keyed_targets(&sim);
|
|
set_keyed_keys(&sim);
|
|
psys_update_path_cache(&sim, (int)cfra, use_render_params);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
/* the main dynamic particle system step */
|
|
system_step(&sim, cfra, use_render_params);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* make sure emitter is left at correct time (particle emission can change this) */
|
|
if (psys->flag & PSYS_OB_ANIM_RESTORE) {
|
|
evaluate_emitter_anim(depsgraph, scene, ob, cfra);
|
|
psys->flag &= ~PSYS_OB_ANIM_RESTORE;
|
|
}
|
|
|
|
if (psys_orig->edit) {
|
|
psys_orig->edit->flags |= PT_CACHE_EDIT_UPDATE_PARTICLE_FROM_EVAL;
|
|
}
|
|
|
|
if (DEG_is_active(depsgraph)) {
|
|
if (psys_orig != psys) {
|
|
if (psys_orig->edit != NULL &&
|
|
psys_orig->edit->psys == psys_orig)
|
|
{
|
|
psys_orig->edit->psys_eval = psys;
|
|
psys_orig->edit->psmd_eval = psmd;
|
|
}
|
|
psys_orig->flag = psys->flag;
|
|
}
|
|
}
|
|
|
|
psys->cfra = cfra;
|
|
psys->recalc = 0;
|
|
|
|
/* save matrix for duplicators, at rendertime the actual dupliobject's matrix is used so don't update! */
|
|
invert_m4_m4(psys->imat, ob->obmat);
|
|
|
|
BKE_particle_batch_cache_dirty_tag(psys, BKE_PARTICLE_BATCH_DIRTY_ALL);
|
|
}
|
|
|
|
/* ID looper */
|
|
|
|
void BKE_particlesystem_id_loop(ParticleSystem *psys, ParticleSystemIDFunc func, void *userdata)
|
|
{
|
|
ParticleTarget *pt;
|
|
|
|
func(psys, (ID **)&psys->part, userdata, IDWALK_CB_USER | IDWALK_CB_NEVER_NULL);
|
|
func(psys, (ID **)&psys->target_ob, userdata, IDWALK_CB_NOP);
|
|
func(psys, (ID **)&psys->parent, userdata, IDWALK_CB_NOP);
|
|
|
|
for (pt = psys->targets.first; pt; pt = pt->next) {
|
|
func(psys, (ID **)&pt->ob, userdata, IDWALK_CB_NOP);
|
|
}
|
|
|
|
/* Even though psys->part should never be NULL, this can happen as an exception during deletion.
|
|
* See ID_REMAP_SKIP/FORCE/FLAG_NEVER_NULL_USAGE in BKE_library_remap. */
|
|
if (psys->part && psys->part->phystype == PART_PHYS_BOIDS) {
|
|
ParticleData *pa;
|
|
int p;
|
|
|
|
for (p = 0, pa = psys->particles; p < psys->totpart; p++, pa++) {
|
|
func(psys, (ID **)&pa->boid->ground, userdata, IDWALK_CB_NOP);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* **** Depsgraph evaluation **** */
|
|
|
|
void BKE_particle_system_eval_init(struct Depsgraph *depsgraph,
|
|
Scene *scene,
|
|
Object *ob)
|
|
{
|
|
DEG_debug_print_eval(depsgraph, __func__, ob->id.name, ob);
|
|
for (ParticleSystem *psys = ob->particlesystem.first;
|
|
psys != NULL;
|
|
psys = psys->next)
|
|
{
|
|
psys->recalc |= (psys->part->id.recalc & DEG_TAG_PSYS_ALL);
|
|
}
|
|
BKE_ptcache_object_reset(scene, ob, PTCACHE_RESET_DEPSGRAPH);
|
|
}
|