This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/bmesh/intern/bmesh_mesh.c
Campbell Barton c4e041da23 Cleanup: move public doc-strings into headers for 'bmesh'
Some minor improvements to doc-strings too.

Ref T92709
2021-12-03 20:10:57 +11:00

1369 lines
39 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bmesh
*
* BM mesh level functions.
*/
#include "MEM_guardedalloc.h"
#include "DNA_listBase.h"
#include "DNA_scene_types.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BKE_customdata.h"
#include "BKE_mesh.h"
#include "bmesh.h"
const BMAllocTemplate bm_mesh_allocsize_default = {512, 1024, 2048, 512};
const BMAllocTemplate bm_mesh_chunksize_default = {512, 1024, 2048, 512};
static void bm_mempool_init_ex(const BMAllocTemplate *allocsize,
const bool use_toolflags,
BLI_mempool **r_vpool,
BLI_mempool **r_epool,
BLI_mempool **r_lpool,
BLI_mempool **r_fpool)
{
size_t vert_size, edge_size, loop_size, face_size;
if (use_toolflags == true) {
vert_size = sizeof(BMVert_OFlag);
edge_size = sizeof(BMEdge_OFlag);
loop_size = sizeof(BMLoop);
face_size = sizeof(BMFace_OFlag);
}
else {
vert_size = sizeof(BMVert);
edge_size = sizeof(BMEdge);
loop_size = sizeof(BMLoop);
face_size = sizeof(BMFace);
}
if (r_vpool) {
*r_vpool = BLI_mempool_create(
vert_size, allocsize->totvert, bm_mesh_chunksize_default.totvert, BLI_MEMPOOL_ALLOW_ITER);
}
if (r_epool) {
*r_epool = BLI_mempool_create(
edge_size, allocsize->totedge, bm_mesh_chunksize_default.totedge, BLI_MEMPOOL_ALLOW_ITER);
}
if (r_lpool) {
*r_lpool = BLI_mempool_create(
loop_size, allocsize->totloop, bm_mesh_chunksize_default.totloop, BLI_MEMPOOL_NOP);
}
if (r_fpool) {
*r_fpool = BLI_mempool_create(
face_size, allocsize->totface, bm_mesh_chunksize_default.totface, BLI_MEMPOOL_ALLOW_ITER);
}
}
static void bm_mempool_init(BMesh *bm, const BMAllocTemplate *allocsize, const bool use_toolflags)
{
bm_mempool_init_ex(allocsize, use_toolflags, &bm->vpool, &bm->epool, &bm->lpool, &bm->fpool);
#ifdef USE_BMESH_HOLES
bm->looplistpool = BLI_mempool_create(sizeof(BMLoopList), 512, 512, BLI_MEMPOOL_NOP);
#endif
}
void BM_mesh_elem_toolflags_ensure(BMesh *bm)
{
BLI_assert(bm->use_toolflags);
if (bm->vtoolflagpool && bm->etoolflagpool && bm->ftoolflagpool) {
return;
}
bm->vtoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totvert, 512, BLI_MEMPOOL_NOP);
bm->etoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totedge, 512, BLI_MEMPOOL_NOP);
bm->ftoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totface, 512, BLI_MEMPOOL_NOP);
BMIter iter;
BMVert_OFlag *v_olfag;
BLI_mempool *toolflagpool = bm->vtoolflagpool;
BM_ITER_MESH (v_olfag, &iter, bm, BM_VERTS_OF_MESH) {
v_olfag->oflags = BLI_mempool_calloc(toolflagpool);
}
BMEdge_OFlag *e_olfag;
toolflagpool = bm->etoolflagpool;
BM_ITER_MESH (e_olfag, &iter, bm, BM_EDGES_OF_MESH) {
e_olfag->oflags = BLI_mempool_calloc(toolflagpool);
}
BMFace_OFlag *f_olfag;
toolflagpool = bm->ftoolflagpool;
BM_ITER_MESH (f_olfag, &iter, bm, BM_FACES_OF_MESH) {
f_olfag->oflags = BLI_mempool_calloc(toolflagpool);
}
bm->totflags = 1;
}
void BM_mesh_elem_toolflags_clear(BMesh *bm)
{
if (bm->vtoolflagpool) {
BLI_mempool_destroy(bm->vtoolflagpool);
bm->vtoolflagpool = NULL;
}
if (bm->etoolflagpool) {
BLI_mempool_destroy(bm->etoolflagpool);
bm->etoolflagpool = NULL;
}
if (bm->ftoolflagpool) {
BLI_mempool_destroy(bm->ftoolflagpool);
bm->ftoolflagpool = NULL;
}
}
BMesh *BM_mesh_create(const BMAllocTemplate *allocsize, const struct BMeshCreateParams *params)
{
/* allocate the structure */
BMesh *bm = MEM_callocN(sizeof(BMesh), __func__);
/* allocate the memory pools for the mesh elements */
bm_mempool_init(bm, allocsize, params->use_toolflags);
/* allocate one flag pool that we don't get rid of. */
bm->use_toolflags = params->use_toolflags;
bm->toolflag_index = 0;
bm->totflags = 0;
CustomData_reset(&bm->vdata);
CustomData_reset(&bm->edata);
CustomData_reset(&bm->ldata);
CustomData_reset(&bm->pdata);
return bm;
}
void BM_mesh_data_free(BMesh *bm)
{
BMVert *v;
BMEdge *e;
BMLoop *l;
BMFace *f;
BMIter iter;
BMIter itersub;
const bool is_ldata_free = CustomData_bmesh_has_free(&bm->ldata);
const bool is_pdata_free = CustomData_bmesh_has_free(&bm->pdata);
/* Check if we have to call free, if not we can avoid a lot of looping */
if (CustomData_bmesh_has_free(&(bm->vdata))) {
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
CustomData_bmesh_free_block(&(bm->vdata), &(v->head.data));
}
}
if (CustomData_bmesh_has_free(&(bm->edata))) {
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
CustomData_bmesh_free_block(&(bm->edata), &(e->head.data));
}
}
if (is_ldata_free || is_pdata_free) {
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
if (is_pdata_free) {
CustomData_bmesh_free_block(&(bm->pdata), &(f->head.data));
}
if (is_ldata_free) {
BM_ITER_ELEM (l, &itersub, f, BM_LOOPS_OF_FACE) {
CustomData_bmesh_free_block(&(bm->ldata), &(l->head.data));
}
}
}
}
/* Free custom data pools, This should probably go in CustomData_free? */
if (bm->vdata.totlayer) {
BLI_mempool_destroy(bm->vdata.pool);
}
if (bm->edata.totlayer) {
BLI_mempool_destroy(bm->edata.pool);
}
if (bm->ldata.totlayer) {
BLI_mempool_destroy(bm->ldata.pool);
}
if (bm->pdata.totlayer) {
BLI_mempool_destroy(bm->pdata.pool);
}
/* free custom data */
CustomData_free(&bm->vdata, 0);
CustomData_free(&bm->edata, 0);
CustomData_free(&bm->ldata, 0);
CustomData_free(&bm->pdata, 0);
/* destroy element pools */
BLI_mempool_destroy(bm->vpool);
BLI_mempool_destroy(bm->epool);
BLI_mempool_destroy(bm->lpool);
BLI_mempool_destroy(bm->fpool);
if (bm->vtable) {
MEM_freeN(bm->vtable);
}
if (bm->etable) {
MEM_freeN(bm->etable);
}
if (bm->ftable) {
MEM_freeN(bm->ftable);
}
/* destroy flag pool */
BM_mesh_elem_toolflags_clear(bm);
#ifdef USE_BMESH_HOLES
BLI_mempool_destroy(bm->looplistpool);
#endif
BLI_freelistN(&bm->selected);
if (bm->lnor_spacearr) {
BKE_lnor_spacearr_free(bm->lnor_spacearr);
MEM_freeN(bm->lnor_spacearr);
}
BMO_error_clear(bm);
}
void BM_mesh_clear(BMesh *bm)
{
const bool use_toolflags = bm->use_toolflags;
/* free old mesh */
BM_mesh_data_free(bm);
memset(bm, 0, sizeof(BMesh));
/* allocate the memory pools for the mesh elements */
bm_mempool_init(bm, &bm_mesh_allocsize_default, use_toolflags);
bm->use_toolflags = use_toolflags;
bm->toolflag_index = 0;
bm->totflags = 0;
CustomData_reset(&bm->vdata);
CustomData_reset(&bm->edata);
CustomData_reset(&bm->ldata);
CustomData_reset(&bm->pdata);
}
void BM_mesh_free(BMesh *bm)
{
BM_mesh_data_free(bm);
if (bm->py_handle) {
/* keep this out of 'BM_mesh_data_free' because we want python
* to be able to clear the mesh and maintain access. */
bpy_bm_generic_invalidate(bm->py_handle);
bm->py_handle = NULL;
}
MEM_freeN(bm);
}
void bmesh_edit_begin(BMesh *UNUSED(bm), BMOpTypeFlag UNUSED(type_flag))
{
/* Most operators seem to be using BMO_OPTYPE_FLAG_UNTAN_MULTIRES to change the MDisps to
* absolute space during mesh edits. With this enabled, changes to the topology
* (loop cuts, edge subdivides, etc) are not reflected in the higher levels of
* the mesh at all, which doesn't seem right. Turning off completely for now,
* until this is shown to be better for certain types of mesh edits. */
#ifdef BMOP_UNTAN_MULTIRES_ENABLED
/* switch multires data out of tangent space */
if ((type_flag & BMO_OPTYPE_FLAG_UNTAN_MULTIRES) &&
CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
bmesh_mdisps_space_set(bm, MULTIRES_SPACE_TANGENT, MULTIRES_SPACE_ABSOLUTE);
/* ensure correct normals, if possible */
bmesh_rationalize_normals(bm, 0);
BM_mesh_normals_update(bm);
}
#endif
}
void bmesh_edit_end(BMesh *bm, BMOpTypeFlag type_flag)
{
ListBase select_history;
/* BMO_OPTYPE_FLAG_UNTAN_MULTIRES disabled for now, see comment above in bmesh_edit_begin. */
#ifdef BMOP_UNTAN_MULTIRES_ENABLED
/* switch multires data into tangent space */
if ((flag & BMO_OPTYPE_FLAG_UNTAN_MULTIRES) && CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
/* set normals to their previous winding */
bmesh_rationalize_normals(bm, 1);
bmesh_mdisps_space_set(bm, MULTIRES_SPACE_ABSOLUTE, MULTIRES_SPACE_TANGENT);
}
else if (flag & BMO_OP_FLAG_RATIONALIZE_NORMALS) {
bmesh_rationalize_normals(bm, 1);
}
#endif
/* compute normals, clear temp flags and flush selections */
if (type_flag & BMO_OPTYPE_FLAG_NORMALS_CALC) {
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
BM_mesh_normals_update(bm);
}
if ((type_flag & BMO_OPTYPE_FLAG_SELECT_VALIDATE) == 0) {
select_history = bm->selected;
BLI_listbase_clear(&bm->selected);
}
if (type_flag & BMO_OPTYPE_FLAG_SELECT_FLUSH) {
BM_mesh_select_mode_flush(bm);
}
if ((type_flag & BMO_OPTYPE_FLAG_SELECT_VALIDATE) == 0) {
bm->selected = select_history;
}
if (type_flag & BMO_OPTYPE_FLAG_INVALIDATE_CLNOR_ALL) {
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
}
}
void BM_mesh_elem_index_ensure_ex(BMesh *bm, const char htype, int elem_offset[4])
{
#ifdef DEBUG
BM_ELEM_INDEX_VALIDATE(bm, "Should Never Fail!", __func__);
#endif
if (elem_offset == NULL) {
/* Simple case. */
const char htype_needed = bm->elem_index_dirty & htype;
if (htype_needed == 0) {
goto finally;
}
}
if (htype & BM_VERT) {
if ((bm->elem_index_dirty & BM_VERT) || (elem_offset && elem_offset[0])) {
BMIter iter;
BMElem *ele;
int index = elem_offset ? elem_offset[0] : 0;
BM_ITER_MESH (ele, &iter, bm, BM_VERTS_OF_MESH) {
BM_elem_index_set(ele, index++); /* set_ok */
}
BLI_assert(elem_offset || index == bm->totvert);
}
else {
// printf("%s: skipping vert index calc!\n", __func__);
}
}
if (htype & BM_EDGE) {
if ((bm->elem_index_dirty & BM_EDGE) || (elem_offset && elem_offset[1])) {
BMIter iter;
BMElem *ele;
int index = elem_offset ? elem_offset[1] : 0;
BM_ITER_MESH (ele, &iter, bm, BM_EDGES_OF_MESH) {
BM_elem_index_set(ele, index++); /* set_ok */
}
BLI_assert(elem_offset || index == bm->totedge);
}
else {
// printf("%s: skipping edge index calc!\n", __func__);
}
}
if (htype & (BM_FACE | BM_LOOP)) {
if ((bm->elem_index_dirty & (BM_FACE | BM_LOOP)) ||
(elem_offset && (elem_offset[2] || elem_offset[3]))) {
BMIter iter;
BMElem *ele;
const bool update_face = (htype & BM_FACE) && (bm->elem_index_dirty & BM_FACE);
const bool update_loop = (htype & BM_LOOP) && (bm->elem_index_dirty & BM_LOOP);
int index_loop = elem_offset ? elem_offset[2] : 0;
int index = elem_offset ? elem_offset[3] : 0;
BM_ITER_MESH (ele, &iter, bm, BM_FACES_OF_MESH) {
if (update_face) {
BM_elem_index_set(ele, index++); /* set_ok */
}
if (update_loop) {
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP((BMFace *)ele);
do {
BM_elem_index_set(l_iter, index_loop++); /* set_ok */
} while ((l_iter = l_iter->next) != l_first);
}
}
BLI_assert(elem_offset || !update_face || index == bm->totface);
if (update_loop) {
BLI_assert(elem_offset || !update_loop || index_loop == bm->totloop);
}
}
else {
// printf("%s: skipping face/loop index calc!\n", __func__);
}
}
finally:
bm->elem_index_dirty &= ~htype;
if (elem_offset) {
if (htype & BM_VERT) {
elem_offset[0] += bm->totvert;
if (elem_offset[0] != bm->totvert) {
bm->elem_index_dirty |= BM_VERT;
}
}
if (htype & BM_EDGE) {
elem_offset[1] += bm->totedge;
if (elem_offset[1] != bm->totedge) {
bm->elem_index_dirty |= BM_EDGE;
}
}
if (htype & BM_LOOP) {
elem_offset[2] += bm->totloop;
if (elem_offset[2] != bm->totloop) {
bm->elem_index_dirty |= BM_LOOP;
}
}
if (htype & BM_FACE) {
elem_offset[3] += bm->totface;
if (elem_offset[3] != bm->totface) {
bm->elem_index_dirty |= BM_FACE;
}
}
}
}
void BM_mesh_elem_index_ensure(BMesh *bm, const char htype)
{
BM_mesh_elem_index_ensure_ex(bm, htype, NULL);
}
void BM_mesh_elem_index_validate(
BMesh *bm, const char *location, const char *func, const char *msg_a, const char *msg_b)
{
const char iter_types[3] = {BM_VERTS_OF_MESH, BM_EDGES_OF_MESH, BM_FACES_OF_MESH};
const char flag_types[3] = {BM_VERT, BM_EDGE, BM_FACE};
const char *type_names[3] = {"vert", "edge", "face"};
BMIter iter;
BMElem *ele;
int i;
bool is_any_error = 0;
for (i = 0; i < 3; i++) {
const bool is_dirty = (flag_types[i] & bm->elem_index_dirty) != 0;
int index = 0;
bool is_error = false;
int err_val = 0;
int err_idx = 0;
BM_ITER_MESH (ele, &iter, bm, iter_types[i]) {
if (!is_dirty) {
if (BM_elem_index_get(ele) != index) {
err_val = BM_elem_index_get(ele);
err_idx = index;
is_error = true;
break;
}
}
index++;
}
if ((is_error == true) && (is_dirty == false)) {
is_any_error = true;
fprintf(stderr,
"Invalid Index: at %s, %s, %s[%d] invalid index %d, '%s', '%s'\n",
location,
func,
type_names[i],
err_idx,
err_val,
msg_a,
msg_b);
}
else if ((is_error == false) && (is_dirty == true)) {
#if 0 /* mostly annoying */
/* dirty may have been incorrectly set */
fprintf(stderr,
"Invalid Dirty: at %s, %s (%s), dirty flag was set but all index values are "
"correct, '%s', '%s'\n",
location,
func,
type_names[i],
msg_a,
msg_b);
#endif
}
}
#if 0 /* mostly annoying, even in debug mode */
# ifdef DEBUG
if (is_any_error == 0) {
fprintf(stderr, "Valid Index Success: at %s, %s, '%s', '%s'\n", location, func, msg_a, msg_b);
}
# endif
#endif
(void)is_any_error; /* shut up the compiler */
}
/* debug check only - no need to optimize */
#ifndef NDEBUG
bool BM_mesh_elem_table_check(BMesh *bm)
{
BMIter iter;
BMElem *ele;
int i;
if (bm->vtable && ((bm->elem_table_dirty & BM_VERT) == 0)) {
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_VERTS_OF_MESH, i) {
if (ele != (BMElem *)bm->vtable[i]) {
return false;
}
}
}
if (bm->etable && ((bm->elem_table_dirty & BM_EDGE) == 0)) {
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_EDGES_OF_MESH, i) {
if (ele != (BMElem *)bm->etable[i]) {
return false;
}
}
}
if (bm->ftable && ((bm->elem_table_dirty & BM_FACE) == 0)) {
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_FACES_OF_MESH, i) {
if (ele != (BMElem *)bm->ftable[i]) {
return false;
}
}
}
return true;
}
#endif
void BM_mesh_elem_table_ensure(BMesh *bm, const char htype)
{
/* assume if the array is non-null then its valid and no need to recalc */
const char htype_needed =
(((bm->vtable && ((bm->elem_table_dirty & BM_VERT) == 0)) ? 0 : BM_VERT) |
((bm->etable && ((bm->elem_table_dirty & BM_EDGE) == 0)) ? 0 : BM_EDGE) |
((bm->ftable && ((bm->elem_table_dirty & BM_FACE) == 0)) ? 0 : BM_FACE)) &
htype;
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
/* in debug mode double check we didn't need to recalculate */
BLI_assert(BM_mesh_elem_table_check(bm) == true);
if (htype_needed == 0) {
goto finally;
}
if (htype_needed & BM_VERT) {
if (bm->vtable && bm->totvert <= bm->vtable_tot && bm->totvert * 2 >= bm->vtable_tot) {
/* pass (re-use the array) */
}
else {
if (bm->vtable) {
MEM_freeN(bm->vtable);
}
bm->vtable = MEM_mallocN(sizeof(void **) * bm->totvert, "bm->vtable");
bm->vtable_tot = bm->totvert;
}
}
if (htype_needed & BM_EDGE) {
if (bm->etable && bm->totedge <= bm->etable_tot && bm->totedge * 2 >= bm->etable_tot) {
/* pass (re-use the array) */
}
else {
if (bm->etable) {
MEM_freeN(bm->etable);
}
bm->etable = MEM_mallocN(sizeof(void **) * bm->totedge, "bm->etable");
bm->etable_tot = bm->totedge;
}
}
if (htype_needed & BM_FACE) {
if (bm->ftable && bm->totface <= bm->ftable_tot && bm->totface * 2 >= bm->ftable_tot) {
/* pass (re-use the array) */
}
else {
if (bm->ftable) {
MEM_freeN(bm->ftable);
}
bm->ftable = MEM_mallocN(sizeof(void **) * bm->totface, "bm->ftable");
bm->ftable_tot = bm->totface;
}
}
if (htype_needed & BM_VERT) {
BM_iter_as_array(bm, BM_VERTS_OF_MESH, NULL, (void **)bm->vtable, bm->totvert);
}
if (htype_needed & BM_EDGE) {
BM_iter_as_array(bm, BM_EDGES_OF_MESH, NULL, (void **)bm->etable, bm->totedge);
}
if (htype_needed & BM_FACE) {
BM_iter_as_array(bm, BM_FACES_OF_MESH, NULL, (void **)bm->ftable, bm->totface);
}
finally:
/* Only clear dirty flags when all the pointers and data are actually valid.
* This prevents possible threading issues when dirty flag check failed but
* data wasn't ready still.
*/
bm->elem_table_dirty &= ~htype_needed;
}
void BM_mesh_elem_table_init(BMesh *bm, const char htype)
{
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
/* force recalc */
BM_mesh_elem_table_free(bm, BM_ALL_NOLOOP);
BM_mesh_elem_table_ensure(bm, htype);
}
void BM_mesh_elem_table_free(BMesh *bm, const char htype)
{
if (htype & BM_VERT) {
MEM_SAFE_FREE(bm->vtable);
}
if (htype & BM_EDGE) {
MEM_SAFE_FREE(bm->etable);
}
if (htype & BM_FACE) {
MEM_SAFE_FREE(bm->ftable);
}
}
BMVert *BM_vert_at_index_find(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->vpool, index);
}
BMEdge *BM_edge_at_index_find(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->epool, index);
}
BMFace *BM_face_at_index_find(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->fpool, index);
}
BMLoop *BM_loop_at_index_find(BMesh *bm, const int index)
{
BMIter iter;
BMFace *f;
int i = index;
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
if (i < f->len) {
BMLoop *l_first, *l_iter;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
if (i == 0) {
return l_iter;
}
i -= 1;
} while ((l_iter = l_iter->next) != l_first);
}
i -= f->len;
}
return NULL;
}
BMVert *BM_vert_at_index_find_or_table(BMesh *bm, const int index)
{
if ((bm->elem_table_dirty & BM_VERT) == 0) {
return (index < bm->totvert) ? bm->vtable[index] : NULL;
}
return BM_vert_at_index_find(bm, index);
}
BMEdge *BM_edge_at_index_find_or_table(BMesh *bm, const int index)
{
if ((bm->elem_table_dirty & BM_EDGE) == 0) {
return (index < bm->totedge) ? bm->etable[index] : NULL;
}
return BM_edge_at_index_find(bm, index);
}
BMFace *BM_face_at_index_find_or_table(BMesh *bm, const int index)
{
if ((bm->elem_table_dirty & BM_FACE) == 0) {
return (index < bm->totface) ? bm->ftable[index] : NULL;
}
return BM_face_at_index_find(bm, index);
}
int BM_mesh_elem_count(BMesh *bm, const char htype)
{
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
switch (htype) {
case BM_VERT:
return bm->totvert;
case BM_EDGE:
return bm->totedge;
case BM_FACE:
return bm->totface;
default: {
BLI_assert(0);
return 0;
}
}
}
void BM_mesh_remap(BMesh *bm, const uint *vert_idx, const uint *edge_idx, const uint *face_idx)
{
/* Mapping old to new pointers. */
GHash *vptr_map = NULL, *eptr_map = NULL, *fptr_map = NULL;
BMIter iter, iterl;
BMVert *ve;
BMEdge *ed;
BMFace *fa;
BMLoop *lo;
if (!(vert_idx || edge_idx || face_idx)) {
return;
}
BM_mesh_elem_table_ensure(
bm, (vert_idx ? BM_VERT : 0) | (edge_idx ? BM_EDGE : 0) | (face_idx ? BM_FACE : 0));
/* Remap Verts */
if (vert_idx) {
BMVert **verts_pool, *verts_copy, **vep;
int i, totvert = bm->totvert;
const uint *new_idx;
/* Special case: Python uses custom data layers to hold PyObject references.
* These have to be kept in place, else the PyObjects we point to, won't point back to us. */
const int cd_vert_pyptr = CustomData_get_offset(&bm->vdata, CD_BM_ELEM_PYPTR);
/* Init the old-to-new vert pointers mapping */
vptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap vert pointers mapping", bm->totvert);
/* Make a copy of all vertices. */
verts_pool = bm->vtable;
verts_copy = MEM_mallocN(sizeof(BMVert) * totvert, "BM_mesh_remap verts copy");
void **pyptrs = (cd_vert_pyptr != -1) ? MEM_mallocN(sizeof(void *) * totvert, __func__) : NULL;
for (i = totvert, ve = verts_copy + totvert - 1, vep = verts_pool + totvert - 1; i--;
ve--, vep--) {
*ve = **vep;
// printf("*vep: %p, verts_pool[%d]: %p\n", *vep, i, verts_pool[i]);
if (cd_vert_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)ve), cd_vert_pyptr);
pyptrs[i] = *pyptr;
}
}
/* Copy back verts to their new place, and update old2new pointers mapping. */
new_idx = vert_idx + totvert - 1;
ve = verts_copy + totvert - 1;
vep = verts_pool + totvert - 1; /* old, org pointer */
for (i = totvert; i--; new_idx--, ve--, vep--) {
BMVert *new_vep = verts_pool[*new_idx];
*new_vep = *ve;
#if 0
printf(
"mapping vert from %d to %d (%p/%p to %p)\n", i, *new_idx, *vep, verts_pool[i], new_vep);
#endif
BLI_ghash_insert(vptr_map, *vep, new_vep);
if (cd_vert_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)new_vep), cd_vert_pyptr);
*pyptr = pyptrs[*new_idx];
}
}
bm->elem_index_dirty |= BM_VERT;
bm->elem_table_dirty |= BM_VERT;
MEM_freeN(verts_copy);
if (pyptrs) {
MEM_freeN(pyptrs);
}
}
/* Remap Edges */
if (edge_idx) {
BMEdge **edges_pool, *edges_copy, **edp;
int i, totedge = bm->totedge;
const uint *new_idx;
/* Special case: Python uses custom data layers to hold PyObject references.
* These have to be kept in place, else the PyObjects we point to, won't point back to us. */
const int cd_edge_pyptr = CustomData_get_offset(&bm->edata, CD_BM_ELEM_PYPTR);
/* Init the old-to-new vert pointers mapping */
eptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap edge pointers mapping", bm->totedge);
/* Make a copy of all vertices. */
edges_pool = bm->etable;
edges_copy = MEM_mallocN(sizeof(BMEdge) * totedge, "BM_mesh_remap edges copy");
void **pyptrs = (cd_edge_pyptr != -1) ? MEM_mallocN(sizeof(void *) * totedge, __func__) : NULL;
for (i = totedge, ed = edges_copy + totedge - 1, edp = edges_pool + totedge - 1; i--;
ed--, edp--) {
*ed = **edp;
if (cd_edge_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)ed), cd_edge_pyptr);
pyptrs[i] = *pyptr;
}
}
/* Copy back verts to their new place, and update old2new pointers mapping. */
new_idx = edge_idx + totedge - 1;
ed = edges_copy + totedge - 1;
edp = edges_pool + totedge - 1; /* old, org pointer */
for (i = totedge; i--; new_idx--, ed--, edp--) {
BMEdge *new_edp = edges_pool[*new_idx];
*new_edp = *ed;
BLI_ghash_insert(eptr_map, *edp, new_edp);
#if 0
printf(
"mapping edge from %d to %d (%p/%p to %p)\n", i, *new_idx, *edp, edges_pool[i], new_edp);
#endif
if (cd_edge_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)new_edp), cd_edge_pyptr);
*pyptr = pyptrs[*new_idx];
}
}
bm->elem_index_dirty |= BM_EDGE;
bm->elem_table_dirty |= BM_EDGE;
MEM_freeN(edges_copy);
if (pyptrs) {
MEM_freeN(pyptrs);
}
}
/* Remap Faces */
if (face_idx) {
BMFace **faces_pool, *faces_copy, **fap;
int i, totface = bm->totface;
const uint *new_idx;
/* Special case: Python uses custom data layers to hold PyObject references.
* These have to be kept in place, else the PyObjects we point to, won't point back to us. */
const int cd_poly_pyptr = CustomData_get_offset(&bm->pdata, CD_BM_ELEM_PYPTR);
/* Init the old-to-new vert pointers mapping */
fptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap face pointers mapping", bm->totface);
/* Make a copy of all vertices. */
faces_pool = bm->ftable;
faces_copy = MEM_mallocN(sizeof(BMFace) * totface, "BM_mesh_remap faces copy");
void **pyptrs = (cd_poly_pyptr != -1) ? MEM_mallocN(sizeof(void *) * totface, __func__) : NULL;
for (i = totface, fa = faces_copy + totface - 1, fap = faces_pool + totface - 1; i--;
fa--, fap--) {
*fa = **fap;
if (cd_poly_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)fa), cd_poly_pyptr);
pyptrs[i] = *pyptr;
}
}
/* Copy back verts to their new place, and update old2new pointers mapping. */
new_idx = face_idx + totface - 1;
fa = faces_copy + totface - 1;
fap = faces_pool + totface - 1; /* old, org pointer */
for (i = totface; i--; new_idx--, fa--, fap--) {
BMFace *new_fap = faces_pool[*new_idx];
*new_fap = *fa;
BLI_ghash_insert(fptr_map, *fap, new_fap);
if (cd_poly_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)new_fap), cd_poly_pyptr);
*pyptr = pyptrs[*new_idx];
}
}
bm->elem_index_dirty |= BM_FACE | BM_LOOP;
bm->elem_table_dirty |= BM_FACE;
MEM_freeN(faces_copy);
if (pyptrs) {
MEM_freeN(pyptrs);
}
}
/* And now, fix all vertices/edges/faces/loops pointers! */
/* Verts' pointers, only edge pointers... */
if (eptr_map) {
BM_ITER_MESH (ve, &iter, bm, BM_VERTS_OF_MESH) {
// printf("Vert e: %p -> %p\n", ve->e, BLI_ghash_lookup(eptr_map, ve->e));
if (ve->e) {
ve->e = BLI_ghash_lookup(eptr_map, ve->e);
BLI_assert(ve->e);
}
}
}
/* Edges' pointers, only vert pointers (as we don't mess with loops!),
* and - ack! - edge pointers,
* as we have to handle disklinks... */
if (vptr_map || eptr_map) {
BM_ITER_MESH (ed, &iter, bm, BM_EDGES_OF_MESH) {
if (vptr_map) {
#if 0
printf("Edge v1: %p -> %p\n", ed->v1, BLI_ghash_lookup(vptr_map, ed->v1));
printf("Edge v2: %p -> %p\n", ed->v2, BLI_ghash_lookup(vptr_map, ed->v2));
#endif
ed->v1 = BLI_ghash_lookup(vptr_map, ed->v1);
ed->v2 = BLI_ghash_lookup(vptr_map, ed->v2);
BLI_assert(ed->v1);
BLI_assert(ed->v2);
}
if (eptr_map) {
#if 0
printf("Edge v1_disk_link prev: %p -> %p\n",
ed->v1_disk_link.prev,
BLI_ghash_lookup(eptr_map, ed->v1_disk_link.prev));
printf("Edge v1_disk_link next: %p -> %p\n",
ed->v1_disk_link.next,
BLI_ghash_lookup(eptr_map, ed->v1_disk_link.next));
printf("Edge v2_disk_link prev: %p -> %p\n",
ed->v2_disk_link.prev,
BLI_ghash_lookup(eptr_map, ed->v2_disk_link.prev));
printf("Edge v2_disk_link next: %p -> %p\n",
ed->v2_disk_link.next,
BLI_ghash_lookup(eptr_map, ed->v2_disk_link.next));
#endif
ed->v1_disk_link.prev = BLI_ghash_lookup(eptr_map, ed->v1_disk_link.prev);
ed->v1_disk_link.next = BLI_ghash_lookup(eptr_map, ed->v1_disk_link.next);
ed->v2_disk_link.prev = BLI_ghash_lookup(eptr_map, ed->v2_disk_link.prev);
ed->v2_disk_link.next = BLI_ghash_lookup(eptr_map, ed->v2_disk_link.next);
BLI_assert(ed->v1_disk_link.prev);
BLI_assert(ed->v1_disk_link.next);
BLI_assert(ed->v2_disk_link.prev);
BLI_assert(ed->v2_disk_link.next);
}
}
}
/* Faces' pointers (loops, in fact), always needed... */
BM_ITER_MESH (fa, &iter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (lo, &iterl, fa, BM_LOOPS_OF_FACE) {
if (vptr_map) {
// printf("Loop v: %p -> %p\n", lo->v, BLI_ghash_lookup(vptr_map, lo->v));
lo->v = BLI_ghash_lookup(vptr_map, lo->v);
BLI_assert(lo->v);
}
if (eptr_map) {
// printf("Loop e: %p -> %p\n", lo->e, BLI_ghash_lookup(eptr_map, lo->e));
lo->e = BLI_ghash_lookup(eptr_map, lo->e);
BLI_assert(lo->e);
}
if (fptr_map) {
// printf("Loop f: %p -> %p\n", lo->f, BLI_ghash_lookup(fptr_map, lo->f));
lo->f = BLI_ghash_lookup(fptr_map, lo->f);
BLI_assert(lo->f);
}
}
}
/* Selection history */
{
BMEditSelection *ese;
for (ese = bm->selected.first; ese; ese = ese->next) {
switch (ese->htype) {
case BM_VERT:
if (vptr_map) {
ese->ele = BLI_ghash_lookup(vptr_map, ese->ele);
BLI_assert(ese->ele);
}
break;
case BM_EDGE:
if (eptr_map) {
ese->ele = BLI_ghash_lookup(eptr_map, ese->ele);
BLI_assert(ese->ele);
}
break;
case BM_FACE:
if (fptr_map) {
ese->ele = BLI_ghash_lookup(fptr_map, ese->ele);
BLI_assert(ese->ele);
}
break;
}
}
}
if (fptr_map) {
if (bm->act_face) {
bm->act_face = BLI_ghash_lookup(fptr_map, bm->act_face);
BLI_assert(bm->act_face);
}
}
if (vptr_map) {
BLI_ghash_free(vptr_map, NULL, NULL);
}
if (eptr_map) {
BLI_ghash_free(eptr_map, NULL, NULL);
}
if (fptr_map) {
BLI_ghash_free(fptr_map, NULL, NULL);
}
}
void BM_mesh_rebuild(BMesh *bm,
const struct BMeshCreateParams *params,
BLI_mempool *vpool_dst,
BLI_mempool *epool_dst,
BLI_mempool *lpool_dst,
BLI_mempool *fpool_dst)
{
const char remap = (vpool_dst ? BM_VERT : 0) | (epool_dst ? BM_EDGE : 0) |
(lpool_dst ? BM_LOOP : 0) | (fpool_dst ? BM_FACE : 0);
BMVert **vtable_dst = (remap & BM_VERT) ? MEM_mallocN(bm->totvert * sizeof(BMVert *), __func__) :
NULL;
BMEdge **etable_dst = (remap & BM_EDGE) ? MEM_mallocN(bm->totedge * sizeof(BMEdge *), __func__) :
NULL;
BMLoop **ltable_dst = (remap & BM_LOOP) ? MEM_mallocN(bm->totloop * sizeof(BMLoop *), __func__) :
NULL;
BMFace **ftable_dst = (remap & BM_FACE) ? MEM_mallocN(bm->totface * sizeof(BMFace *), __func__) :
NULL;
const bool use_toolflags = params->use_toolflags;
if (remap & BM_VERT) {
BMIter iter;
int index;
BMVert *v_src;
BM_ITER_MESH_INDEX (v_src, &iter, bm, BM_VERTS_OF_MESH, index) {
BMVert *v_dst = BLI_mempool_alloc(vpool_dst);
memcpy(v_dst, v_src, sizeof(BMVert));
if (use_toolflags) {
((BMVert_OFlag *)v_dst)->oflags = bm->vtoolflagpool ?
BLI_mempool_calloc(bm->vtoolflagpool) :
NULL;
}
vtable_dst[index] = v_dst;
BM_elem_index_set(v_src, index); /* set_ok */
}
}
if (remap & BM_EDGE) {
BMIter iter;
int index;
BMEdge *e_src;
BM_ITER_MESH_INDEX (e_src, &iter, bm, BM_EDGES_OF_MESH, index) {
BMEdge *e_dst = BLI_mempool_alloc(epool_dst);
memcpy(e_dst, e_src, sizeof(BMEdge));
if (use_toolflags) {
((BMEdge_OFlag *)e_dst)->oflags = bm->etoolflagpool ?
BLI_mempool_calloc(bm->etoolflagpool) :
NULL;
}
etable_dst[index] = e_dst;
BM_elem_index_set(e_src, index); /* set_ok */
}
}
if (remap & (BM_LOOP | BM_FACE)) {
BMIter iter;
int index, index_loop = 0;
BMFace *f_src;
BM_ITER_MESH_INDEX (f_src, &iter, bm, BM_FACES_OF_MESH, index) {
if (remap & BM_FACE) {
BMFace *f_dst = BLI_mempool_alloc(fpool_dst);
memcpy(f_dst, f_src, sizeof(BMFace));
if (use_toolflags) {
((BMFace_OFlag *)f_dst)->oflags = bm->ftoolflagpool ?
BLI_mempool_calloc(bm->ftoolflagpool) :
NULL;
}
ftable_dst[index] = f_dst;
BM_elem_index_set(f_src, index); /* set_ok */
}
/* handle loops */
if (remap & BM_LOOP) {
BMLoop *l_iter_src, *l_first_src;
l_iter_src = l_first_src = BM_FACE_FIRST_LOOP((BMFace *)f_src);
do {
BMLoop *l_dst = BLI_mempool_alloc(lpool_dst);
memcpy(l_dst, l_iter_src, sizeof(BMLoop));
ltable_dst[index_loop] = l_dst;
BM_elem_index_set(l_iter_src, index_loop++); /* set_ok */
} while ((l_iter_src = l_iter_src->next) != l_first_src);
}
}
}
#define MAP_VERT(ele) vtable_dst[BM_elem_index_get(ele)]
#define MAP_EDGE(ele) etable_dst[BM_elem_index_get(ele)]
#define MAP_LOOP(ele) ltable_dst[BM_elem_index_get(ele)]
#define MAP_FACE(ele) ftable_dst[BM_elem_index_get(ele)]
#define REMAP_VERT(ele) \
{ \
if (remap & BM_VERT) { \
ele = MAP_VERT(ele); \
} \
} \
((void)0)
#define REMAP_EDGE(ele) \
{ \
if (remap & BM_EDGE) { \
ele = MAP_EDGE(ele); \
} \
} \
((void)0)
#define REMAP_LOOP(ele) \
{ \
if (remap & BM_LOOP) { \
ele = MAP_LOOP(ele); \
} \
} \
((void)0)
#define REMAP_FACE(ele) \
{ \
if (remap & BM_FACE) { \
ele = MAP_FACE(ele); \
} \
} \
((void)0)
/* verts */
{
for (int i = 0; i < bm->totvert; i++) {
BMVert *v = vtable_dst[i];
if (v->e) {
REMAP_EDGE(v->e);
}
}
}
/* edges */
{
for (int i = 0; i < bm->totedge; i++) {
BMEdge *e = etable_dst[i];
REMAP_VERT(e->v1);
REMAP_VERT(e->v2);
REMAP_EDGE(e->v1_disk_link.next);
REMAP_EDGE(e->v1_disk_link.prev);
REMAP_EDGE(e->v2_disk_link.next);
REMAP_EDGE(e->v2_disk_link.prev);
if (e->l) {
REMAP_LOOP(e->l);
}
}
}
/* faces */
{
for (int i = 0; i < bm->totface; i++) {
BMFace *f = ftable_dst[i];
REMAP_LOOP(f->l_first);
{
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP((BMFace *)f);
do {
REMAP_VERT(l_iter->v);
REMAP_EDGE(l_iter->e);
REMAP_FACE(l_iter->f);
REMAP_LOOP(l_iter->radial_next);
REMAP_LOOP(l_iter->radial_prev);
REMAP_LOOP(l_iter->next);
REMAP_LOOP(l_iter->prev);
} while ((l_iter = l_iter->next) != l_first);
}
}
}
LISTBASE_FOREACH (BMEditSelection *, ese, &bm->selected) {
switch (ese->htype) {
case BM_VERT:
if (remap & BM_VERT) {
ese->ele = (BMElem *)MAP_VERT(ese->ele);
}
break;
case BM_EDGE:
if (remap & BM_EDGE) {
ese->ele = (BMElem *)MAP_EDGE(ese->ele);
}
break;
case BM_FACE:
if (remap & BM_FACE) {
ese->ele = (BMElem *)MAP_FACE(ese->ele);
}
break;
}
}
if (bm->act_face) {
REMAP_FACE(bm->act_face);
}
#undef MAP_VERT
#undef MAP_EDGE
#undef MAP_LOOP
#undef MAP_EDGE
#undef REMAP_VERT
#undef REMAP_EDGE
#undef REMAP_LOOP
#undef REMAP_EDGE
/* Cleanup, re-use local tables if the current mesh had tables allocated.
* could use irrespective but it may use more memory than the caller wants
* (and not be needed). */
if (remap & BM_VERT) {
if (bm->vtable) {
SWAP(BMVert **, vtable_dst, bm->vtable);
bm->vtable_tot = bm->totvert;
bm->elem_table_dirty &= ~BM_VERT;
}
MEM_freeN(vtable_dst);
BLI_mempool_destroy(bm->vpool);
bm->vpool = vpool_dst;
}
if (remap & BM_EDGE) {
if (bm->etable) {
SWAP(BMEdge **, etable_dst, bm->etable);
bm->etable_tot = bm->totedge;
bm->elem_table_dirty &= ~BM_EDGE;
}
MEM_freeN(etable_dst);
BLI_mempool_destroy(bm->epool);
bm->epool = epool_dst;
}
if (remap & BM_LOOP) {
/* no loop table */
MEM_freeN(ltable_dst);
BLI_mempool_destroy(bm->lpool);
bm->lpool = lpool_dst;
}
if (remap & BM_FACE) {
if (bm->ftable) {
SWAP(BMFace **, ftable_dst, bm->ftable);
bm->ftable_tot = bm->totface;
bm->elem_table_dirty &= ~BM_FACE;
}
MEM_freeN(ftable_dst);
BLI_mempool_destroy(bm->fpool);
bm->fpool = fpool_dst;
}
}
void BM_mesh_toolflags_set(BMesh *bm, bool use_toolflags)
{
if (bm->use_toolflags == use_toolflags) {
return;
}
const BMAllocTemplate allocsize = BMALLOC_TEMPLATE_FROM_BM(bm);
BLI_mempool *vpool_dst = NULL;
BLI_mempool *epool_dst = NULL;
BLI_mempool *fpool_dst = NULL;
bm_mempool_init_ex(&allocsize, use_toolflags, &vpool_dst, &epool_dst, NULL, &fpool_dst);
if (use_toolflags == false) {
BLI_mempool_destroy(bm->vtoolflagpool);
BLI_mempool_destroy(bm->etoolflagpool);
BLI_mempool_destroy(bm->ftoolflagpool);
bm->vtoolflagpool = NULL;
bm->etoolflagpool = NULL;
bm->ftoolflagpool = NULL;
}
BM_mesh_rebuild(bm,
&((struct BMeshCreateParams){
.use_toolflags = use_toolflags,
}),
vpool_dst,
epool_dst,
NULL,
fpool_dst);
bm->use_toolflags = use_toolflags;
}
/* -------------------------------------------------------------------- */
/** \name BMesh Coordinate Access
* \{ */
void BM_mesh_vert_coords_get(BMesh *bm, float (*vert_coords)[3])
{
BMIter iter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
copy_v3_v3(vert_coords[i], v->co);
}
}
float (*BM_mesh_vert_coords_alloc(BMesh *bm, int *r_vert_len))[3]
{
float(*vert_coords)[3] = MEM_mallocN(bm->totvert * sizeof(*vert_coords), __func__);
BM_mesh_vert_coords_get(bm, vert_coords);
*r_vert_len = bm->totvert;
return vert_coords;
}
void BM_mesh_vert_coords_apply(BMesh *bm, const float (*vert_coords)[3])
{
BMIter iter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
copy_v3_v3(v->co, vert_coords[i]);
}
}
void BM_mesh_vert_coords_apply_with_mat4(BMesh *bm,
const float (*vert_coords)[3],
const float mat[4][4])
{
BMIter iter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
mul_v3_m4v3(v->co, mat, vert_coords[i]);
}
}
/** \} */