This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/source/raytrace.c

1443 lines
32 KiB
C

/**
* $Id: $
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 1990-1998 NeoGeo BV.
* All rights reserved.
*
* Contributors: 2004/2005 Blender Foundation, full recode
*
* ***** END GPL LICENSE BLOCK *****
*/
/* IMPORTANT NOTE: this code must be independent of any other render code
to use it outside the renderer! */
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "DNA_material_types.h"
#include "BKE_utildefines.h"
#include "BLI_arithb.h"
#include "RE_raytrace.h"
/* ********** structs *************** */
#define BRANCH_ARRAY 1024
#define NODE_ARRAY 4096
typedef struct Branch
{
struct Branch *b[8];
} Branch;
typedef struct OcVal
{
short ocx, ocy, ocz;
} OcVal;
typedef struct Node
{
struct RayFace *v[8];
int ob[8];
struct OcVal ov[8];
struct Node *next;
} Node;
typedef struct Octree {
struct Branch **adrbranch;
struct Node **adrnode;
float ocsize; /* ocsize: mult factor, max size octree */
float ocfacx,ocfacy,ocfacz;
float min[3], max[3];
int ocres;
int branchcount, nodecount;
char *ocface; /* during building only */
RayCoordsFunc coordsfunc;
RayCheckFunc checkfunc;
RayObjectTransformFunc transformfunc;
void *userdata;
} Octree;
/* ******** globals ***************** */
/* just for statistics */
static int raycount;
static int accepted, rejected, coherent_ray;
/* **************** ocval method ******************* */
/* within one octree node, a set of 3x15 bits defines a 'boundbox' to OR with */
#define OCVALRES 15
#define BROW16(min, max) (((max)>=OCVALRES? 0xFFFF: (1<<(max+1))-1) - ((min>0)? ((1<<(min))-1):0) )
static void calc_ocval_face(float *v1, float *v2, float *v3, float *v4, short x, short y, short z, OcVal *ov)
{
float min[3], max[3];
int ocmin, ocmax;
VECCOPY(min, v1);
VECCOPY(max, v1);
DO_MINMAX(v2, min, max);
DO_MINMAX(v3, min, max);
if(v4) {
DO_MINMAX(v4, min, max);
}
ocmin= OCVALRES*(min[0]-x);
ocmax= OCVALRES*(max[0]-x);
ov->ocx= BROW16(ocmin, ocmax);
ocmin= OCVALRES*(min[1]-y);
ocmax= OCVALRES*(max[1]-y);
ov->ocy= BROW16(ocmin, ocmax);
ocmin= OCVALRES*(min[2]-z);
ocmax= OCVALRES*(max[2]-z);
ov->ocz= BROW16(ocmin, ocmax);
}
static void calc_ocval_ray(OcVal *ov, float xo, float yo, float zo, float *vec1, float *vec2)
{
int ocmin, ocmax;
if(vec1[0]<vec2[0]) {
ocmin= OCVALRES*(vec1[0] - xo);
ocmax= OCVALRES*(vec2[0] - xo);
} else {
ocmin= OCVALRES*(vec2[0] - xo);
ocmax= OCVALRES*(vec1[0] - xo);
}
ov->ocx= BROW16(ocmin, ocmax);
if(vec1[1]<vec2[1]) {
ocmin= OCVALRES*(vec1[1] - yo);
ocmax= OCVALRES*(vec2[1] - yo);
} else {
ocmin= OCVALRES*(vec2[1] - yo);
ocmax= OCVALRES*(vec1[1] - yo);
}
ov->ocy= BROW16(ocmin, ocmax);
if(vec1[2]<vec2[2]) {
ocmin= OCVALRES*(vec1[2] - zo);
ocmax= OCVALRES*(vec2[2] - zo);
} else {
ocmin= OCVALRES*(vec2[2] - zo);
ocmax= OCVALRES*(vec1[2] - zo);
}
ov->ocz= BROW16(ocmin, ocmax);
}
/* ************* octree ************** */
static Branch *addbranch(Octree *oc, Branch *br, short ocb)
{
int index;
if(br->b[ocb]) return br->b[ocb];
oc->branchcount++;
index= oc->branchcount>>12;
if(oc->adrbranch[index]==NULL)
oc->adrbranch[index]= MEM_callocN(4096*sizeof(Branch), "new oc branch");
if(oc->branchcount>= BRANCH_ARRAY*4096) {
printf("error; octree branches full\n");
oc->branchcount=0;
}
return br->b[ocb]= oc->adrbranch[index]+(oc->branchcount & 4095);
}
static Node *addnode(Octree *oc)
{
int index;
oc->nodecount++;
index= oc->nodecount>>12;
if(oc->adrnode[index]==NULL)
oc->adrnode[index]= MEM_callocN(4096*sizeof(Node),"addnode");
if(oc->nodecount> NODE_ARRAY*NODE_ARRAY) {
printf("error; octree nodes full\n");
oc->nodecount=0;
}
return oc->adrnode[index]+(oc->nodecount & 4095);
}
static int face_in_node(RayFace *face, short x, short y, short z, float rtf[][3])
{
static float nor[3], d;
float fx, fy, fz;
// init static vars
if(face) {
CalcNormFloat(rtf[0], rtf[1], rtf[2], nor);
d= -nor[0]*rtf[0][0] - nor[1]*rtf[0][1] - nor[2]*rtf[0][2];
return 0;
}
fx= x;
fy= y;
fz= z;
if((fx)*nor[0] + (fy)*nor[1] + (fz)*nor[2] + d > 0.0f) {
if((fx+1)*nor[0] + (fy )*nor[1] + (fz )*nor[2] + d < 0.0f) return 1;
if((fx )*nor[0] + (fy+1)*nor[1] + (fz )*nor[2] + d < 0.0f) return 1;
if((fx+1)*nor[0] + (fy+1)*nor[1] + (fz )*nor[2] + d < 0.0f) return 1;
if((fx )*nor[0] + (fy )*nor[1] + (fz+1)*nor[2] + d < 0.0f) return 1;
if((fx+1)*nor[0] + (fy )*nor[1] + (fz+1)*nor[2] + d < 0.0f) return 1;
if((fx )*nor[0] + (fy+1)*nor[1] + (fz+1)*nor[2] + d < 0.0f) return 1;
if((fx+1)*nor[0] + (fy+1)*nor[1] + (fz+1)*nor[2] + d < 0.0f) return 1;
}
else {
if((fx+1)*nor[0] + (fy )*nor[1] + (fz )*nor[2] + d > 0.0f) return 1;
if((fx )*nor[0] + (fy+1)*nor[1] + (fz )*nor[2] + d > 0.0f) return 1;
if((fx+1)*nor[0] + (fy+1)*nor[1] + (fz )*nor[2] + d > 0.0f) return 1;
if((fx )*nor[0] + (fy )*nor[1] + (fz+1)*nor[2] + d > 0.0f) return 1;
if((fx+1)*nor[0] + (fy )*nor[1] + (fz+1)*nor[2] + d > 0.0f) return 1;
if((fx )*nor[0] + (fy+1)*nor[1] + (fz+1)*nor[2] + d > 0.0f) return 1;
if((fx+1)*nor[0] + (fy+1)*nor[1] + (fz+1)*nor[2] + d > 0.0f) return 1;
}
return 0;
}
static void ocwrite(Octree *oc, int ob, RayFace *face, int quad, short x, short y, short z, float rtf[][3])
{
Branch *br;
Node *no;
short a, oc0, oc1, oc2, oc3, oc4, oc5;
x<<=2;
y<<=1;
br= oc->adrbranch[0];
if(oc->ocres==512) {
oc0= ((x & 1024)+(y & 512)+(z & 256))>>8;
br= addbranch(oc, br, oc0);
}
if(oc->ocres>=256) {
oc0= ((x & 512)+(y & 256)+(z & 128))>>7;
br= addbranch(oc, br, oc0);
}
if(oc->ocres>=128) {
oc0= ((x & 256)+(y & 128)+(z & 64))>>6;
br= addbranch(oc, br, oc0);
}
oc0= ((x & 128)+(y & 64)+(z & 32))>>5;
oc1= ((x & 64)+(y & 32)+(z & 16))>>4;
oc2= ((x & 32)+(y & 16)+(z & 8))>>3;
oc3= ((x & 16)+(y & 8)+(z & 4))>>2;
oc4= ((x & 8)+(y & 4)+(z & 2))>>1;
oc5= ((x & 4)+(y & 2)+(z & 1));
br= addbranch(oc, br,oc0);
br= addbranch(oc, br,oc1);
br= addbranch(oc, br,oc2);
br= addbranch(oc, br,oc3);
br= addbranch(oc, br,oc4);
no= (Node *)br->b[oc5];
if(no==NULL) br->b[oc5]= (Branch *)(no= addnode(oc));
while(no->next) no= no->next;
a= 0;
if(no->v[7]) { /* node full */
no->next= addnode(oc);
no= no->next;
}
else {
while(no->v[a]!=NULL) a++;
}
no->v[a]= face;
no->ob[a]= ob;
if(quad)
calc_ocval_face(rtf[0], rtf[1], rtf[2], rtf[3], x>>2, y>>1, z, &no->ov[a]);
else
calc_ocval_face(rtf[0], rtf[1], rtf[2], NULL, x>>2, y>>1, z, &no->ov[a]);
}
static void d2dda(Octree *oc, short b1, short b2, short c1, short c2, char *ocface, short rts[][3], float rtf[][3])
{
int ocx1,ocx2,ocy1,ocy2;
int x,y,dx=0,dy=0;
float ox1,ox2,oy1,oy2;
float labda,labdao,labdax,labday,ldx,ldy;
ocx1= rts[b1][c1];
ocy1= rts[b1][c2];
ocx2= rts[b2][c1];
ocy2= rts[b2][c2];
if(ocx1==ocx2 && ocy1==ocy2) {
ocface[oc->ocres*ocx1+ocy1]= 1;
return;
}
ox1= rtf[b1][c1];
oy1= rtf[b1][c2];
ox2= rtf[b2][c1];
oy2= rtf[b2][c2];
if(ox1!=ox2) {
if(ox2-ox1>0.0f) {
labdax= (ox1-ocx1-1.0f)/(ox1-ox2);
ldx= -1.0f/(ox1-ox2);
dx= 1;
} else {
labdax= (ox1-ocx1)/(ox1-ox2);
ldx= 1.0f/(ox1-ox2);
dx= -1;
}
} else {
labdax=1.0f;
ldx=0;
}
if(oy1!=oy2) {
if(oy2-oy1>0.0f) {
labday= (oy1-ocy1-1.0f)/(oy1-oy2);
ldy= -1.0f/(oy1-oy2);
dy= 1;
} else {
labday= (oy1-ocy1)/(oy1-oy2);
ldy= 1.0f/(oy1-oy2);
dy= -1;
}
} else {
labday=1.0f;
ldy=0;
}
x=ocx1; y=ocy1;
labda= MIN2(labdax, labday);
while(TRUE) {
if(x<0 || y<0 || x>=oc->ocres || y>=oc->ocres);
else ocface[oc->ocres*x+y]= 1;
labdao=labda;
if(labdax==labday) {
labdax+=ldx;
x+=dx;
labday+=ldy;
y+=dy;
} else {
if(labdax<labday) {
labdax+=ldx;
x+=dx;
} else {
labday+=ldy;
y+=dy;
}
}
labda=MIN2(labdax,labday);
if(labda==labdao) break;
if(labda>=1.0f) break;
}
ocface[oc->ocres*ocx2+ocy2]=1;
}
static void filltriangle(Octree *oc, short c1, short c2, char *ocface, short *ocmin)
{
short *ocmax;
int a, x, y, y1, y2;
ocmax=ocmin+3;
for(x=ocmin[c1];x<=ocmax[c1];x++) {
a= oc->ocres*x;
for(y=ocmin[c2];y<=ocmax[c2];y++) {
if(ocface[a+y]) {
y++;
while(ocface[a+y] && y!=ocmax[c2]) y++;
for(y1=ocmax[c2];y1>y;y1--) {
if(ocface[a+y1]) {
for(y2=y;y2<=y1;y2++) ocface[a+y2]=1;
y1=0;
}
}
y=ocmax[c2];
}
}
}
}
void RE_ray_tree_free(RayTree *tree)
{
Octree *oc= (Octree*)tree;
#if 0
printf("branches %d nodes %d\n", oc->branchcount, oc->nodecount);
printf("raycount %d \n", raycount);
printf("ray coherent %d \n", coherent_ray);
printf("accepted %d rejected %d\n", accepted, rejected);
#endif
if(oc->ocface)
MEM_freeN(oc->ocface);
if(oc->adrbranch) {
int a= 0;
while(oc->adrbranch[a]) {
MEM_freeN(oc->adrbranch[a]);
oc->adrbranch[a]= NULL;
a++;
}
MEM_freeN(oc->adrbranch);
oc->adrbranch= NULL;
}
oc->branchcount= 0;
if(oc->adrnode) {
int a= 0;
while(oc->adrnode[a]) {
MEM_freeN(oc->adrnode[a]);
oc->adrnode[a]= NULL;
a++;
}
MEM_freeN(oc->adrnode);
oc->adrnode= NULL;
}
oc->nodecount= 0;
MEM_freeN(oc);
}
RayTree *RE_ray_tree_create(int ocres, int totface, float *min, float *max, RayCoordsFunc coordsfunc, RayCheckFunc checkfunc, RayObjectTransformFunc transformfunc, void *userdata)
{
Octree *oc;
float t00, t01, t02;
int c, ocres2;
oc= MEM_callocN(sizeof(Octree), "Octree");
oc->adrbranch= MEM_callocN(sizeof(void *)*BRANCH_ARRAY, "octree branches");
oc->adrnode= MEM_callocN(sizeof(void *)*NODE_ARRAY, "octree nodes");
oc->coordsfunc= coordsfunc;
oc->checkfunc= checkfunc;
oc->transformfunc= transformfunc;
oc->userdata= userdata;
/* only for debug info */
raycount=0;
accepted= 0;
rejected= 0;
coherent_ray= 0;
/* fill main octree struct */
oc->ocres= ocres;
ocres2= oc->ocres*oc->ocres;
VECCOPY(oc->min, min);
VECCOPY(oc->max, max);
oc->adrbranch[0]=(Branch *)MEM_callocN(4096*sizeof(Branch), "makeoctree");
/* the lookup table, per face, for which nodes to fill in */
oc->ocface= MEM_callocN( 3*ocres2 + 8, "ocface");
memset(oc->ocface, 0, 3*ocres2);
for(c=0;c<3;c++) { /* octree enlarge, still needed? */
oc->min[c]-= 0.01f;
oc->max[c]+= 0.01f;
}
t00= oc->max[0]-oc->min[0];
t01= oc->max[1]-oc->min[1];
t02= oc->max[2]-oc->min[2];
/* this minus 0.1 is old safety... seems to be needed? */
oc->ocfacx= (oc->ocres-0.1)/t00;
oc->ocfacy= (oc->ocres-0.1)/t01;
oc->ocfacz= (oc->ocres-0.1)/t02;
oc->ocsize= sqrt(t00*t00+t01*t01+t02*t02); /* global, max size octree */
return (RayTree*)oc;
}
void RE_ray_tree_add_face(RayTree *tree, int ob, RayFace *face)
{
Octree *oc = (Octree*)tree;
float *v1, *v2, *v3, *v4, ocfac[3], rtf[4][3];
float co1[3], co2[3], co3[3], co4[3];
short rts[4][3], ocmin[6], *ocmax;
char *ocface= oc->ocface; // front, top, size view of face, to fill in
int a, b, c, oc1, oc2, oc3, oc4, x, y, z, ocres2;
ocfac[0]= oc->ocfacx;
ocfac[1]= oc->ocfacy;
ocfac[2]= oc->ocfacz;
ocres2= oc->ocres*oc->ocres;
ocmax= ocmin+3;
oc->coordsfunc(face, &v1, &v2, &v3, &v4);
VECCOPY(co1, v1);
VECCOPY(co2, v2);
VECCOPY(co3, v3);
if(v4)
VECCOPY(co4, v4);
if(ob >= RE_RAY_TRANSFORM_OFFS) {
float (*mat)[4]= (float(*)[4])oc->transformfunc(oc->userdata, ob);
if(mat) {
Mat4MulVecfl(mat, co1);
Mat4MulVecfl(mat, co2);
Mat4MulVecfl(mat, co3);
if(v4)
Mat4MulVecfl(mat, co4);
}
}
for(c=0;c<3;c++) {
rtf[0][c]= (co1[c]-oc->min[c])*ocfac[c] ;
rts[0][c]= (short)rtf[0][c];
rtf[1][c]= (co2[c]-oc->min[c])*ocfac[c] ;
rts[1][c]= (short)rtf[1][c];
rtf[2][c]= (co3[c]-oc->min[c])*ocfac[c] ;
rts[2][c]= (short)rtf[2][c];
if(v4) {
rtf[3][c]= (co4[c]-oc->min[c])*ocfac[c] ;
rts[3][c]= (short)rtf[3][c];
}
}
for(c=0;c<3;c++) {
oc1= rts[0][c];
oc2= rts[1][c];
oc3= rts[2][c];
if(v4==NULL) {
ocmin[c]= MIN3(oc1,oc2,oc3);
ocmax[c]= MAX3(oc1,oc2,oc3);
}
else {
oc4= rts[3][c];
ocmin[c]= MIN4(oc1,oc2,oc3,oc4);
ocmax[c]= MAX4(oc1,oc2,oc3,oc4);
}
if(ocmax[c]>oc->ocres-1) ocmax[c]=oc->ocres-1;
if(ocmin[c]<0) ocmin[c]=0;
}
if(ocmin[0]==ocmax[0] && ocmin[1]==ocmax[1] && ocmin[2]==ocmax[2]) {
ocwrite(oc, ob, face, (v4 != NULL), ocmin[0], ocmin[1], ocmin[2], rtf);
}
else {
d2dda(oc, 0,1,0,1,ocface+ocres2,rts,rtf);
d2dda(oc, 0,1,0,2,ocface,rts,rtf);
d2dda(oc, 0,1,1,2,ocface+2*ocres2,rts,rtf);
d2dda(oc, 1,2,0,1,ocface+ocres2,rts,rtf);
d2dda(oc, 1,2,0,2,ocface,rts,rtf);
d2dda(oc, 1,2,1,2,ocface+2*ocres2,rts,rtf);
if(v4==NULL) {
d2dda(oc, 2,0,0,1,ocface+ocres2,rts,rtf);
d2dda(oc, 2,0,0,2,ocface,rts,rtf);
d2dda(oc, 2,0,1,2,ocface+2*ocres2,rts,rtf);
}
else {
d2dda(oc, 2,3,0,1,ocface+ocres2,rts,rtf);
d2dda(oc, 2,3,0,2,ocface,rts,rtf);
d2dda(oc, 2,3,1,2,ocface+2*ocres2,rts,rtf);
d2dda(oc, 3,0,0,1,ocface+ocres2,rts,rtf);
d2dda(oc, 3,0,0,2,ocface,rts,rtf);
d2dda(oc, 3,0,1,2,ocface+2*ocres2,rts,rtf);
}
/* nothing todo with triangle..., just fills :) */
filltriangle(oc, 0,1,ocface+ocres2,ocmin);
filltriangle(oc, 0,2,ocface,ocmin);
filltriangle(oc, 1,2,ocface+2*ocres2,ocmin);
/* init static vars here */
face_in_node(face, 0,0,0, rtf);
for(x=ocmin[0];x<=ocmax[0];x++) {
a= oc->ocres*x;
for(y=ocmin[1];y<=ocmax[1];y++) {
if(ocface[a+y+ocres2]) {
b= oc->ocres*y+2*ocres2;
for(z=ocmin[2];z<=ocmax[2];z++) {
if(ocface[b+z] && ocface[a+z]) {
if(face_in_node(NULL, x, y, z, rtf))
ocwrite(oc, ob, face, (v4 != NULL), x,y,z, rtf);
}
}
}
}
}
/* same loops to clear octree, doubt it can be done smarter */
for(x=ocmin[0];x<=ocmax[0];x++) {
a= oc->ocres*x;
for(y=ocmin[1];y<=ocmax[1];y++) {
/* x-y */
ocface[a+y+ocres2]= 0;
b= oc->ocres*y + 2*ocres2;
for(z=ocmin[2];z<=ocmax[2];z++) {
/* y-z */
ocface[b+z]= 0;
/* x-z */
ocface[a+z]= 0;
}
}
}
}
}
void RE_ray_tree_done(RayTree *tree)
{
Octree *oc= (Octree*)tree;
MEM_freeN(oc->ocface);
oc->ocface= NULL;
}
/* ************ raytracer **************** */
#define ISECT_EPSILON ((float)FLT_EPSILON)
/* only for self-intersecting test with current render face (where ray left) */
static int intersection2(RayFace *face, int ob, RayObjectTransformFunc transformfunc, RayCoordsFunc coordsfunc, void *userdata, float r0, float r1, float r2, float rx1, float ry1, float rz1)
{
float *v1, *v2, *v3, *v4, co1[3], co2[3], co3[3], co4[3];
float x0,x1,x2,t00,t01,t02,t10,t11,t12,t20,t21,t22;
float m0, m1, m2, divdet, det, det1;
float u1, v, u2;
coordsfunc(face, &v1, &v2, &v3, &v4);
/* happens for baking with non existing face */
if(v1==NULL)
return 1;
if(v4) {
SWAP(float*, v3, v4);
}
VECCOPY(co1, v1);
VECCOPY(co2, v2);
VECCOPY(co3, v3);
if(v4)
VECCOPY(co4, v4);
if(ob >= RE_RAY_TRANSFORM_OFFS) {
float (*mat)[4]= (float(*)[4])transformfunc(userdata, ob);
if(mat) {
Mat4MulVecfl(mat, co1);
Mat4MulVecfl(mat, co2);
Mat4MulVecfl(mat, co3);
if(v4)
Mat4MulVecfl(mat, co4);
}
}
t00= co3[0]-co1[0];
t01= co3[1]-co1[1];
t02= co3[2]-co1[2];
t10= co3[0]-co2[0];
t11= co3[1]-co2[1];
t12= co3[2]-co2[2];
x0= t11*r2-t12*r1;
x1= t12*r0-t10*r2;
x2= t10*r1-t11*r0;
divdet= t00*x0+t01*x1+t02*x2;
m0= rx1-co3[0];
m1= ry1-co3[1];
m2= rz1-co3[2];
det1= m0*x0+m1*x1+m2*x2;
if(divdet!=0.0f) {
u1= det1/divdet;
if(u1<ISECT_EPSILON) {
det= t00*(m1*r2-m2*r1);
det+= t01*(m2*r0-m0*r2);
det+= t02*(m0*r1-m1*r0);
v= det/divdet;
if(v<ISECT_EPSILON && (u1 + v) > -(1.0f+ISECT_EPSILON)) {
return 1;
}
}
}
if(v4) {
t20= co3[0]-co4[0];
t21= co3[1]-co4[1];
t22= co3[2]-co4[2];
divdet= t20*x0+t21*x1+t22*x2;
if(divdet!=0.0f) {
u2= det1/divdet;
if(u2<ISECT_EPSILON) {
det= t20*(m1*r2-m2*r1);
det+= t21*(m2*r0-m0*r2);
det+= t22*(m0*r1-m1*r0);
v= det/divdet;
if(v<ISECT_EPSILON && (u2 + v) >= -(1.0f+ISECT_EPSILON)) {
return 2;
}
}
}
}
return 0;
}
#if 0
/* ray - line intersection */
/* disabled until i got real & fast cylinder checking, this code doesnt work proper
for faster strands */
static int intersection_strand(Isect *is)
{
float v1[3], v2[3]; /* length of strand */
float axis[3], rc[3], nor[3], radline, dist, len;
/* radius strand */
radline= 0.5f*VecLenf(is->vlr->v1->co, is->vlr->v2->co);
VecMidf(v1, is->vlr->v1->co, is->vlr->v2->co);
VecMidf(v2, is->vlr->v3->co, is->vlr->v4->co);
VECSUB(rc, v1, is->start); /* vector from base ray to base cylinder */
VECSUB(axis, v2, v1); /* cylinder axis */
CROSS(nor, is->vec, axis);
len= VecLength(nor);
if(len<FLT_EPSILON)
return 0;
dist= INPR(rc, nor)/len; /* distance between ray and axis cylinder */
if(dist<radline && dist>-radline) {
float dot1, dot2, dot3, rlen, alen, div;
float labda;
/* calculating the intersection point of shortest distance */
dot1 = INPR(rc, is->vec);
dot2 = INPR(is->vec, axis);
dot3 = INPR(rc, axis);
rlen = INPR(is->vec, is->vec);
alen = INPR(axis, axis);
div = alen * rlen - dot2 * dot2;
if (ABS(div) < FLT_EPSILON)
return 0;
labda = (dot1*dot2 - dot3*rlen)/div;
radline/= sqrt(alen);
/* labda: where on axis do we have closest intersection? */
if(labda >= -radline && labda <= 1.0f+radline) {
VlakRen *vlr= is->faceorig;
VertRen *v1= is->vlr->v1, *v2= is->vlr->v2, *v3= is->vlr->v3, *v4= is->vlr->v4;
/* but we dont do shadows from faces sharing edge */
if(v1==vlr->v1 || v2==vlr->v1 || v3==vlr->v1 || v4==vlr->v1) return 0;
if(v1==vlr->v2 || v2==vlr->v2 || v3==vlr->v2 || v4==vlr->v2) return 0;
if(v1==vlr->v3 || v2==vlr->v3 || v3==vlr->v3 || v4==vlr->v3) return 0;
if(vlr->v4) {
if(v1==vlr->v4 || v2==vlr->v4 || v3==vlr->v4 || v4==vlr->v4) return 0;
}
return 1;
}
}
return 0;
}
#endif
/* ray - triangle or quad intersection */
int RE_ray_face_intersection(Isect *is, RayObjectTransformFunc transformfunc, RayCoordsFunc coordsfunc)
{
RayFace *face= is->face;
int ob= is->ob;
float *v1,*v2,*v3,*v4,co1[3],co2[3],co3[3],co4[3];
float x0,x1,x2,t00,t01,t02,t10,t11,t12,t20,t21,t22,r0,r1,r2;
float m0, m1, m2, divdet, det1;
short ok=0;
/* disabled until i got real & fast cylinder checking, this code doesnt work proper
for faster strands */
// if(is->mode==RE_RAY_SHADOW && is->vlr->flag & R_STRAND)
// return intersection_strand(is);
coordsfunc(face, &v1, &v2, &v3, &v4);
if(v4) {
SWAP(float*, v3, v4);
}
VECCOPY(co1, v1);
VECCOPY(co2, v2);
VECCOPY(co3, v3);
if(v4)
VECCOPY(co4, v4);
if(ob) {
float (*mat)[4]= (float(*)[4])transformfunc(is->userdata, ob);
if(mat) {
Mat4MulVecfl(mat, co1);
Mat4MulVecfl(mat, co2);
Mat4MulVecfl(mat, co3);
if(v4)
Mat4MulVecfl(mat, co4);
}
}
t00= co3[0]-co1[0];
t01= co3[1]-co1[1];
t02= co3[2]-co1[2];
t10= co3[0]-co2[0];
t11= co3[1]-co2[1];
t12= co3[2]-co2[2];
r0= is->vec[0];
r1= is->vec[1];
r2= is->vec[2];
x0= t12*r1-t11*r2;
x1= t10*r2-t12*r0;
x2= t11*r0-t10*r1;
divdet= t00*x0+t01*x1+t02*x2;
m0= is->start[0]-co3[0];
m1= is->start[1]-co3[1];
m2= is->start[2]-co3[2];
det1= m0*x0+m1*x1+m2*x2;
if(divdet!=0.0f) {
float u;
divdet= 1.0f/divdet;
u= det1*divdet;
if(u<ISECT_EPSILON && u>-(1.0f+ISECT_EPSILON)) {
float v, cros0, cros1, cros2;
cros0= m1*t02-m2*t01;
cros1= m2*t00-m0*t02;
cros2= m0*t01-m1*t00;
v= divdet*(cros0*r0 + cros1*r1 + cros2*r2);
if(v<ISECT_EPSILON && (u + v) > -(1.0f+ISECT_EPSILON)) {
float labda;
labda= divdet*(cros0*t10 + cros1*t11 + cros2*t12);
if(labda>-ISECT_EPSILON && labda<1.0f+ISECT_EPSILON) {
is->labda= labda;
is->u= u; is->v= v;
ok= 1;
}
}
}
}
if(ok==0 && v4) {
t20= co3[0]-co4[0];
t21= co3[1]-co4[1];
t22= co3[2]-co4[2];
divdet= t20*x0+t21*x1+t22*x2;
if(divdet!=0.0f) {
float u;
divdet= 1.0f/divdet;
u = det1*divdet;
if(u<ISECT_EPSILON && u>-(1.0f+ISECT_EPSILON)) {
float v, cros0, cros1, cros2;
cros0= m1*t22-m2*t21;
cros1= m2*t20-m0*t22;
cros2= m0*t21-m1*t20;
v= divdet*(cros0*r0 + cros1*r1 + cros2*r2);
if(v<ISECT_EPSILON && (u + v) >-(1.0f+ISECT_EPSILON)) {
float labda;
labda= divdet*(cros0*t10 + cros1*t11 + cros2*t12);
if(labda>-ISECT_EPSILON && labda<1.0f+ISECT_EPSILON) {
ok= 2;
is->labda= labda;
is->u= u; is->v= v;
}
}
}
}
}
if(ok) {
is->isect= ok; // wich half of the quad
if(is->mode!=RE_RAY_SHADOW) {
/* for mirror & tra-shadow: large faces can be filled in too often, this prevents
a face being detected too soon... */
if(is->labda > is->ddalabda) {
return 0;
}
}
/* when a shadow ray leaves a face, it can be little outside the edges of it, causing
intersection to be detected in its neighbour face */
if(is->facecontr && is->faceisect); // optimizing, the tests below are not needed
else if(is->labda< .1) {
RayFace *face= is->faceorig;
float *origv1, *origv2, *origv3, *origv4;
short de= 0;
coordsfunc(face, &origv1, &origv2, &origv3, &origv4);
if(ob == is->oborig) {
if(v1==origv1 || v2==origv1 || v3==origv1 || v4==origv1) de++;
if(v1==origv2 || v2==origv2 || v3==origv2 || v4==origv2) de++;
if(v1==origv3 || v2==origv3 || v3==origv3 || v4==origv3) de++;
if(origv4) {
if(v1==origv4 || v2==origv4 || v3==origv4 || v4==origv4) de++;
}
}
if(de) {
/* so there's a shared edge or vertex, let's intersect ray with face
itself, if that's true we can safely return 1, otherwise we assume
the intersection is invalid, 0 */
if(is->facecontr==NULL) {
is->obcontr= is->oborig;
is->facecontr= face;
is->faceisect= intersection2(face, is->oborig, transformfunc, coordsfunc, is->userdata, -r0, -r1, -r2, is->start[0], is->start[1], is->start[2]);
}
if(is->faceisect) return 1;
return 0;
}
}
return 1;
}
return 0;
}
/* check all faces in this node */
static int testnode(Octree *oc, Isect *is, Node *no, OcVal ocval, RayCheckFunc checkfunc)
{
RayFace *face;
int ob;
short nr=0;
OcVal *ov;
/* return on any first hit */
if(is->mode==RE_RAY_SHADOW) {
face= no->v[0];
ob= no->ob[0];
while(face) {
if(!(is->faceorig == face && is->oborig == ob)) {
if(checkfunc(is, ob, face)) {
ov= no->ov+nr;
if( (ov->ocx & ocval.ocx) && (ov->ocy & ocval.ocy) && (ov->ocz & ocval.ocz) ) {
//accepted++;
is->ob= ob;
is->face= face;
if(RE_ray_face_intersection(is, oc->transformfunc, oc->coordsfunc)) {
is->ob_last= ob;
is->face_last= face;
return 1;
}
}
//else rejected++;
}
}
nr++;
if(nr==8) {
no= no->next;
if(no==0) return 0;
nr=0;
}
face= no->v[nr];
ob= no->ob[nr];
}
}
else { /* else mirror or glass or shadowtra, return closest face */
Isect isect;
int found= 0;
is->labda= 1.0f; /* needed? */
isect= *is; /* copy for sorting */
face= no->v[0];
ob= no->ob[0];
while(face) {
if(!(is->faceorig == face && is->oborig == ob)) {
if(checkfunc(is, ob, face)) {
ov= no->ov+nr;
if( (ov->ocx & ocval.ocx) && (ov->ocy & ocval.ocy) && (ov->ocz & ocval.ocz) ) {
//accepted++;
isect.ob= ob;
isect.face= face;
if(RE_ray_face_intersection(&isect, oc->transformfunc, oc->coordsfunc)) {
if(isect.labda<is->labda) {
*is= isect;
found= 1;
}
}
}
//else rejected++;
}
}
nr++;
if(nr==8) {
no= no->next;
if(no==NULL) break;
nr=0;
}
face= no->v[nr];
ob= no->ob[nr];
}
return found;
}
return 0;
}
/* find the Node for the octree coord x y z */
static Node *ocread(Octree *oc, int x, int y, int z)
{
Branch *br;
int oc1;
x<<=2;
y<<=1;
br= oc->adrbranch[0];
if(oc->ocres==512) {
oc1= ((x & 1024)+(y & 512)+(z & 256))>>8;
br= br->b[oc1];
if(br==NULL) {
return NULL;
}
}
if(oc->ocres>=256) {
oc1= ((x & 512)+(y & 256)+(z & 128))>>7;
br= br->b[oc1];
if(br==NULL) {
return NULL;
}
}
if(oc->ocres>=128) {
oc1= ((x & 256)+(y & 128)+(z & 64))>>6;
br= br->b[oc1];
if(br==NULL) {
return NULL;
}
}
oc1= ((x & 128)+(y & 64)+(z & 32))>>5;
br= br->b[oc1];
if(br) {
oc1= ((x & 64)+(y & 32)+(z & 16))>>4;
br= br->b[oc1];
if(br) {
oc1= ((x & 32)+(y & 16)+(z & 8))>>3;
br= br->b[oc1];
if(br) {
oc1= ((x & 16)+(y & 8)+(z & 4))>>2;
br= br->b[oc1];
if(br) {
oc1= ((x & 8)+(y & 4)+(z & 2))>>1;
br= br->b[oc1];
if(br) {
oc1= ((x & 4)+(y & 2)+(z & 1));
return (Node *)br->b[oc1];
}
}
}
}
}
return NULL;
}
static int cliptest(float p, float q, float *u1, float *u2)
{
float r;
if(p<0.0f) {
if(q<p) return 0;
else if(q<0.0f) {
r= q/p;
if(r>*u2) return 0;
else if(r>*u1) *u1=r;
}
}
else {
if(p>0.0f) {
if(q<0.0f) return 0;
else if(q<p) {
r= q/p;
if(r<*u1) return 0;
else if(r<*u2) *u2=r;
}
}
else if(q<0.0f) return 0;
}
return 1;
}
/* extensive coherence checks/storage cancels out the benefit of it, and gives errors... we
need better methods, sample code commented out below (ton) */
/*
in top: static int coh_nodes[16*16*16][6];
in makeoctree: memset(coh_nodes, 0, sizeof(coh_nodes));
static void add_coherence_test(int ocx1, int ocx2, int ocy1, int ocy2, int ocz1, int ocz2)
{
short *sp;
sp= coh_nodes[ (ocx2 & 15) + 16*(ocy2 & 15) + 256*(ocz2 & 15) ];
sp[0]= ocx1; sp[1]= ocy1; sp[2]= ocz1;
sp[3]= ocx2; sp[4]= ocy2; sp[5]= ocz2;
}
static int do_coherence_test(int ocx1, int ocx2, int ocy1, int ocy2, int ocz1, int ocz2)
{
short *sp;
sp= coh_nodes[ (ocx2 & 15) + 16*(ocy2 & 15) + 256*(ocz2 & 15) ];
if(sp[0]==ocx1 && sp[1]==ocy1 && sp[2]==ocz1 &&
sp[3]==ocx2 && sp[4]==ocy2 && sp[5]==ocz2) return 1;
return 0;
}
*/
int RE_ray_tree_intersect(RayTree *tree, Isect *is)
{
Octree *oc= (Octree*)tree;
return RE_ray_tree_intersect_check(tree, is, oc->checkfunc);
}
/* return 1: found valid intersection */
/* starts with is->faceorig */
int RE_ray_tree_intersect_check(RayTree *tree, Isect *is, RayCheckFunc checkfunc)
{
Octree *oc= (Octree*)tree;
Node *no;
OcVal ocval;
float vec1[3], vec2[3];
float u1,u2,ox1,ox2,oy1,oy2,oz1,oz2;
float labdao,labdax,ldx,labday,ldy,labdaz,ldz, ddalabda;
int dx,dy,dz;
int xo,yo,zo,c1=0;
int ocx1,ocx2,ocy1, ocy2,ocz1,ocz2;
/* clip with octree */
if(oc->branchcount==0) return 0;
/* do this before intersect calls */
is->facecontr= NULL; /* to check shared edge */
is->obcontr= 0;
is->faceisect= is->isect= 0; /* shared edge, quad half flag */
is->userdata= oc->userdata;
/* only for shadow! */
if(is->mode==RE_RAY_SHADOW) {
/* check with last intersected shadow face */
if(is->face_last!=NULL && !(is->face_last==is->faceorig && is->ob_last==is->oborig)) {
if(checkfunc(is, is->ob_last, is->face_last)) {
is->ob= is->ob_last;
is->face= is->face_last;
VECSUB(is->vec, is->end, is->start);
if(RE_ray_face_intersection(is, oc->transformfunc, oc->coordsfunc)) return 1;
}
}
}
ldx= is->end[0] - is->start[0];
u1= 0.0f;
u2= 1.0f;
/* clip with octree cube */
if(cliptest(-ldx, is->start[0]-oc->min[0], &u1,&u2)) {
if(cliptest(ldx, oc->max[0]-is->start[0], &u1,&u2)) {
ldy= is->end[1] - is->start[1];
if(cliptest(-ldy, is->start[1]-oc->min[1], &u1,&u2)) {
if(cliptest(ldy, oc->max[1]-is->start[1], &u1,&u2)) {
ldz= is->end[2] - is->start[2];
if(cliptest(-ldz, is->start[2]-oc->min[2], &u1,&u2)) {
if(cliptest(ldz, oc->max[2]-is->start[2], &u1,&u2)) {
c1=1;
if(u2<1.0f) {
is->end[0]= is->start[0]+u2*ldx;
is->end[1]= is->start[1]+u2*ldy;
is->end[2]= is->start[2]+u2*ldz;
}
if(u1>0.0f) {
is->start[0]+=u1*ldx;
is->start[1]+=u1*ldy;
is->start[2]+=u1*ldz;
}
}
}
}
}
}
}
if(c1==0) return 0;
/* reset static variables in ocread */
//ocread(oc, oc->ocres, 0, 0);
/* setup 3dda to traverse octree */
ox1= (is->start[0]-oc->min[0])*oc->ocfacx;
oy1= (is->start[1]-oc->min[1])*oc->ocfacy;
oz1= (is->start[2]-oc->min[2])*oc->ocfacz;
ox2= (is->end[0]-oc->min[0])*oc->ocfacx;
oy2= (is->end[1]-oc->min[1])*oc->ocfacy;
oz2= (is->end[2]-oc->min[2])*oc->ocfacz;
ocx1= (int)ox1;
ocy1= (int)oy1;
ocz1= (int)oz1;
ocx2= (int)ox2;
ocy2= (int)oy2;
ocz2= (int)oz2;
/* for intersection */
VECSUB(is->vec, is->end, is->start);
if(ocx1==ocx2 && ocy1==ocy2 && ocz1==ocz2) {
no= ocread(oc, ocx1, ocy1, ocz1);
if(no) {
/* exact intersection with node */
vec1[0]= ox1; vec1[1]= oy1; vec1[2]= oz1;
vec2[0]= ox2; vec2[1]= oy2; vec2[2]= oz2;
calc_ocval_ray(&ocval, (float)ocx1, (float)ocy1, (float)ocz1, vec1, vec2);
is->ddalabda= 1.0f;
if( testnode(oc, is, no, ocval, checkfunc) ) return 1;
}
}
else {
//static int coh_ocx1,coh_ocx2,coh_ocy1, coh_ocy2,coh_ocz1,coh_ocz2;
float dox, doy, doz;
int eqval;
/* calc labda en ld */
dox= ox1-ox2;
doy= oy1-oy2;
doz= oz1-oz2;
if(dox<-FLT_EPSILON) {
ldx= -1.0f/dox;
labdax= (ocx1-ox1+1.0f)*ldx;
dx= 1;
} else if(dox>FLT_EPSILON) {
ldx= 1.0f/dox;
labdax= (ox1-ocx1)*ldx;
dx= -1;
} else {
labdax=1.0f;
ldx=0;
dx= 0;
}
if(doy<-FLT_EPSILON) {
ldy= -1.0f/doy;
labday= (ocy1-oy1+1.0f)*ldy;
dy= 1;
} else if(doy>FLT_EPSILON) {
ldy= 1.0f/doy;
labday= (oy1-ocy1)*ldy;
dy= -1;
} else {
labday=1.0f;
ldy=0;
dy= 0;
}
if(doz<-FLT_EPSILON) {
ldz= -1.0f/doz;
labdaz= (ocz1-oz1+1.0f)*ldz;
dz= 1;
} else if(doz>FLT_EPSILON) {
ldz= 1.0f/doz;
labdaz= (oz1-ocz1)*ldz;
dz= -1;
} else {
labdaz=1.0f;
ldz=0;
dz= 0;
}
xo=ocx1; yo=ocy1; zo=ocz1;
labdao= ddalabda= MIN3(labdax,labday,labdaz);
vec2[0]= ox1;
vec2[1]= oy1;
vec2[2]= oz1;
/* this loop has been constructed to make sure the first and last node of ray
are always included, even when ddalabda==1.0f or larger */
while(TRUE) {
no= ocread(oc, xo, yo, zo);
if(no) {
/* calculate ray intersection with octree node */
VECCOPY(vec1, vec2);
// dox,y,z is negative
vec2[0]= ox1-ddalabda*dox;
vec2[1]= oy1-ddalabda*doy;
vec2[2]= oz1-ddalabda*doz;
calc_ocval_ray(&ocval, (float)xo, (float)yo, (float)zo, vec1, vec2);
is->ddalabda= ddalabda;
if( testnode(oc, is, no, ocval, checkfunc) ) return 1;
}
labdao= ddalabda;
/* traversing ocree nodes need careful detection of smallest values, with proper
exceptions for equal labdas */
eqval= (labdax==labday);
if(labday==labdaz) eqval += 2;
if(labdax==labdaz) eqval += 4;
if(eqval) { // only 4 cases exist!
if(eqval==7) { // x=y=z
xo+=dx; labdax+=ldx;
yo+=dy; labday+=ldy;
zo+=dz; labdaz+=ldz;
}
else if(eqval==1) { // x=y
if(labday < labdaz) {
xo+=dx; labdax+=ldx;
yo+=dy; labday+=ldy;
}
else {
zo+=dz; labdaz+=ldz;
}
}
else if(eqval==2) { // y=z
if(labdax < labday) {
xo+=dx; labdax+=ldx;
}
else {
yo+=dy; labday+=ldy;
zo+=dz; labdaz+=ldz;
}
}
else { // x=z
if(labday < labdax) {
yo+=dy; labday+=ldy;
}
else {
xo+=dx; labdax+=ldx;
zo+=dz; labdaz+=ldz;
}
}
}
else { // all three different, just three cases exist
eqval= (labdax<labday);
if(labday<labdaz) eqval += 2;
if(labdax<labdaz) eqval += 4;
if(eqval==7 || eqval==5) { // x smallest
xo+=dx; labdax+=ldx;
}
else if(eqval==2 || eqval==6) { // y smallest
yo+=dy; labday+=ldy;
}
else { // z smallest
zo+=dz; labdaz+=ldz;
}
}
ddalabda=MIN3(labdax,labday,labdaz);
if(ddalabda==labdao) break;
/* to make sure the last node is always checked */
if(labdao>=1.0f) break;
}
}
/* reached end, no intersections found */
is->ob_last= 0;
is->face_last= NULL;
return 0;
}
float RE_ray_tree_max_size(RayTree *tree)
{
return ((Octree*)tree)->ocsize;
}