This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/physics/intern/hair_volume.cpp
Lukas Tönne e73df249c7 Added a margin to the number of cells used in the poisson grid solver,
to ensure we always have one layer of empty cells around the fluid.
2015-01-20 09:30:07 +01:00

1007 lines
32 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Janne Karhu, Lukas Toenne
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/hair_volume.c
* \ingroup bph
*/
#include "MEM_guardedalloc.h"
extern "C" {
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "DNA_texture_types.h"
#include "BKE_effect.h"
}
#include "implicit.h"
#include "eigen_utils.h"
/* ================ Volumetric Hair Interaction ================
* adapted from
*
* Volumetric Methods for Simulation and Rendering of Hair
* (Petrovic, Henne, Anderson, Pixar Technical Memo #06-08, Pixar Animation Studios)
*
* as well as
*
* "Detail Preserving Continuum Simulation of Straight Hair"
* (McAdams, Selle 2009)
*/
/* Note about array indexing:
* Generally the arrays here are one-dimensional.
* The relation between 3D indices and the array offset is
* offset = x + res_x * y + res_x * res_y * z
*/
static float I[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
BLI_INLINE int hair_grid_size(const int res[3])
{
return res[0] * res[1] * res[2];
}
typedef struct HairGridVert {
int samples;
float velocity[3];
float density;
float velocity_smooth[3];
} HairGridVert;
typedef struct HairGrid {
HairGridVert *verts;
int res[3];
float gmin[3], gmax[3];
float cellsize, inv_cellsize;
struct SimDebugData *debug_data;
int debug_value;
} HairGrid;
#define HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, axis) ( min_ii( max_ii( (int)((vec[axis] - gmin[axis]) * scale), 0), res[axis]-2 ) )
BLI_INLINE int hair_grid_offset(const float vec[3], const int res[3], const float gmin[3], float scale)
{
int i, j, k;
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
return i + (j + k*res[1])*res[0];
}
BLI_INLINE int hair_grid_interp_weights(const int res[3], const float gmin[3], float scale, const float vec[3], float uvw[3])
{
int i, j, k, offset;
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
offset = i + (j + k*res[1])*res[0];
uvw[0] = (vec[0] - gmin[0]) * scale - (float)i;
uvw[1] = (vec[1] - gmin[1]) * scale - (float)j;
uvw[2] = (vec[2] - gmin[2]) * scale - (float)k;
// BLI_assert(0.0f <= uvw[0] && uvw[0] <= 1.0001f);
// BLI_assert(0.0f <= uvw[1] && uvw[1] <= 1.0001f);
// BLI_assert(0.0f <= uvw[2] && uvw[2] <= 1.0001f);
return offset;
}
BLI_INLINE void hair_grid_interpolate(const HairGridVert *grid, const int res[3], const float gmin[3], float scale, const float vec[3],
float *density, float velocity[3], float vel_smooth[3], float density_gradient[3], float velocity_gradient[3][3])
{
HairGridVert data[8];
float uvw[3], muvw[3];
int res2 = res[1] * res[0];
int offset;
offset = hair_grid_interp_weights(res, gmin, scale, vec, uvw);
muvw[0] = 1.0f - uvw[0];
muvw[1] = 1.0f - uvw[1];
muvw[2] = 1.0f - uvw[2];
data[0] = grid[offset ];
data[1] = grid[offset +1];
data[2] = grid[offset +res[0] ];
data[3] = grid[offset +res[0]+1];
data[4] = grid[offset+res2 ];
data[5] = grid[offset+res2 +1];
data[6] = grid[offset+res2+res[0] ];
data[7] = grid[offset+res2+res[0]+1];
if (density) {
*density = muvw[2]*( muvw[1]*( muvw[0]*data[0].density + uvw[0]*data[1].density ) +
uvw[1]*( muvw[0]*data[2].density + uvw[0]*data[3].density ) ) +
uvw[2]*( muvw[1]*( muvw[0]*data[4].density + uvw[0]*data[5].density ) +
uvw[1]*( muvw[0]*data[6].density + uvw[0]*data[7].density ) );
}
if (velocity) {
int k;
for (k = 0; k < 3; ++k) {
velocity[k] = muvw[2]*( muvw[1]*( muvw[0]*data[0].velocity[k] + uvw[0]*data[1].velocity[k] ) +
uvw[1]*( muvw[0]*data[2].velocity[k] + uvw[0]*data[3].velocity[k] ) ) +
uvw[2]*( muvw[1]*( muvw[0]*data[4].velocity[k] + uvw[0]*data[5].velocity[k] ) +
uvw[1]*( muvw[0]*data[6].velocity[k] + uvw[0]*data[7].velocity[k] ) );
}
}
if (vel_smooth) {
int k;
for (k = 0; k < 3; ++k) {
vel_smooth[k] = muvw[2]*( muvw[1]*( muvw[0]*data[0].velocity_smooth[k] + uvw[0]*data[1].velocity_smooth[k] ) +
uvw[1]*( muvw[0]*data[2].velocity_smooth[k] + uvw[0]*data[3].velocity_smooth[k] ) ) +
uvw[2]*( muvw[1]*( muvw[0]*data[4].velocity_smooth[k] + uvw[0]*data[5].velocity_smooth[k] ) +
uvw[1]*( muvw[0]*data[6].velocity_smooth[k] + uvw[0]*data[7].velocity_smooth[k] ) );
}
}
if (density_gradient) {
density_gradient[0] = muvw[1] * muvw[2] * ( data[0].density - data[1].density ) +
uvw[1] * muvw[2] * ( data[2].density - data[3].density ) +
muvw[1] * uvw[2] * ( data[4].density - data[5].density ) +
uvw[1] * uvw[2] * ( data[6].density - data[7].density );
density_gradient[1] = muvw[2] * muvw[0] * ( data[0].density - data[2].density ) +
uvw[2] * muvw[0] * ( data[4].density - data[6].density ) +
muvw[2] * uvw[0] * ( data[1].density - data[3].density ) +
uvw[2] * uvw[0] * ( data[5].density - data[7].density );
density_gradient[2] = muvw[2] * muvw[0] * ( data[0].density - data[4].density ) +
uvw[2] * muvw[0] * ( data[1].density - data[5].density ) +
muvw[2] * uvw[0] * ( data[2].density - data[6].density ) +
uvw[2] * uvw[0] * ( data[3].density - data[7].density );
}
if (velocity_gradient) {
/* XXX TODO */
zero_m3(velocity_gradient);
}
}
void BPH_hair_volume_vertex_grid_forces(HairGrid *grid, const float x[3], const float v[3],
float smoothfac, float pressurefac, float minpressure,
float f[3], float dfdx[3][3], float dfdv[3][3])
{
float gdensity, gvelocity[3], ggrad[3], gvelgrad[3][3], gradlen;
hair_grid_interpolate(grid->verts, grid->res, grid->gmin, grid->inv_cellsize, x, &gdensity, gvelocity, NULL, ggrad, gvelgrad);
zero_v3(f);
sub_v3_v3(gvelocity, v);
mul_v3_v3fl(f, gvelocity, smoothfac);
gradlen = normalize_v3(ggrad) - minpressure;
if (gradlen > 0.0f) {
mul_v3_fl(ggrad, gradlen);
madd_v3_v3fl(f, ggrad, pressurefac);
}
zero_m3(dfdx);
sub_m3_m3m3(dfdv, gvelgrad, I);
mul_m3_fl(dfdv, smoothfac);
}
void BPH_hair_volume_grid_interpolate(HairGrid *grid, const float x[3],
float *density, float velocity[3], float velocity_smooth[3], float density_gradient[3], float velocity_gradient[3][3])
{
hair_grid_interpolate(grid->verts, grid->res, grid->gmin, grid->inv_cellsize, x, density, velocity, velocity_smooth, density_gradient, velocity_gradient);
}
void BPH_hair_volume_grid_velocity(HairGrid *grid, const float x[3], const float v[3],
float fluid_factor,
float r_v[3])
{
float gdensity, gvelocity[3], gvel_smooth[3], ggrad[3], gvelgrad[3][3];
float v_pic[3], v_flip[3];
hair_grid_interpolate(grid->verts, grid->res, grid->gmin, grid->inv_cellsize, x, &gdensity, gvelocity, gvel_smooth, ggrad, gvelgrad);
/* velocity according to PIC method (Particle-in-Cell) */
copy_v3_v3(v_pic, gvel_smooth);
/* velocity according to FLIP method (Fluid-Implicit-Particle) */
sub_v3_v3v3(v_flip, gvel_smooth, gvelocity);
add_v3_v3(v_flip, v);
interp_v3_v3v3(r_v, v_pic, v_flip, fluid_factor);
}
void BPH_hair_volume_grid_clear(HairGrid *grid)
{
const int size = hair_grid_size(grid->res);
int i;
for (i = 0; i < size; ++i) {
zero_v3(grid->verts[i].velocity);
zero_v3(grid->verts[i].velocity_smooth);
grid->verts[i].density = 0.0f;
grid->verts[i].samples = 0;
}
}
BLI_INLINE bool hair_grid_point_valid(const float vec[3], float gmin[3], float gmax[3])
{
return !(vec[0] < gmin[0] || vec[1] < gmin[1] || vec[2] < gmin[2] ||
vec[0] > gmax[0] || vec[1] > gmax[1] || vec[2] > gmax[2]);
}
BLI_INLINE float dist_tent_v3f3(const float a[3], float x, float y, float z)
{
float w = (1.0f - fabsf(a[0] - x)) * (1.0f - fabsf(a[1] - y)) * (1.0f - fabsf(a[2] - z));
return w;
}
BLI_INLINE float weights_sum(const float weights[8])
{
float totweight = 0.0f;
int i;
for (i = 0; i < 8; ++i)
totweight += weights[i];
return totweight;
}
/* returns the grid array offset as well to avoid redundant calculation */
BLI_INLINE int hair_grid_weights(const int res[3], const float gmin[3], float scale, const float vec[3], float weights[8])
{
int i, j, k, offset;
float uvw[3];
i = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 0);
j = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 1);
k = HAIR_GRID_INDEX_AXIS(vec, res, gmin, scale, 2);
offset = i + (j + k*res[1])*res[0];
uvw[0] = (vec[0] - gmin[0]) * scale;
uvw[1] = (vec[1] - gmin[1]) * scale;
uvw[2] = (vec[2] - gmin[2]) * scale;
weights[0] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)k );
weights[1] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)k );
weights[2] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)k );
weights[3] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)k );
weights[4] = dist_tent_v3f3(uvw, (float)i , (float)j , (float)(k+1));
weights[5] = dist_tent_v3f3(uvw, (float)(i+1), (float)j , (float)(k+1));
weights[6] = dist_tent_v3f3(uvw, (float)i , (float)(j+1), (float)(k+1));
weights[7] = dist_tent_v3f3(uvw, (float)(i+1), (float)(j+1), (float)(k+1));
// BLI_assert(fabsf(weights_sum(weights) - 1.0f) < 0.0001f);
return offset;
}
void BPH_hair_volume_add_vertex(HairGrid *grid, const float x[3], const float v[3])
{
const int res[3] = { grid->res[0], grid->res[1], grid->res[2] };
float weights[8];
int di, dj, dk;
int offset;
if (!hair_grid_point_valid(x, grid->gmin, grid->gmax))
return;
offset = hair_grid_weights(res, grid->gmin, grid->inv_cellsize, x, weights);
for (di = 0; di < 2; ++di) {
for (dj = 0; dj < 2; ++dj) {
for (dk = 0; dk < 2; ++dk) {
int voffset = offset + di + (dj + dk*res[1])*res[0];
int iw = di + dj*2 + dk*4;
grid->verts[voffset].density += weights[iw];
madd_v3_v3fl(grid->verts[voffset].velocity, v, weights[iw]);
}
}
}
}
BLI_INLINE void hair_volume_eval_grid_vertex(HairGridVert *vert, const float loc[3], float radius, float dist_scale,
const float x2[3], const float v2[3], const float x3[3], const float v3[3])
{
float closest[3], lambda, dist, weight;
lambda = closest_to_line_v3(closest, loc, x2, x3);
dist = len_v3v3(closest, loc);
weight = (radius - dist) * dist_scale;
if (weight > 0.0f) {
float vel[3];
interp_v3_v3v3(vel, v2, v3, lambda);
madd_v3_v3fl(vert->velocity, vel, weight);
vert->density += weight;
vert->samples += 1;
}
}
BLI_INLINE int floor_int(float value)
{
return value > 0.0f ? (int)value : ((int)value) - 1;
}
BLI_INLINE float floor_mod(float value)
{
return value - floorf(value);
}
BLI_INLINE int major_axis_v3(const float v[3])
{
const float a = fabsf(v[0]);
const float b = fabsf(v[1]);
const float c = fabsf(v[2]);
return a > b ? (a > c ? 0 : 2) : (b > c ? 1 : 2);
}
BLI_INLINE void grid_to_world(HairGrid *grid, float vecw[3], const float vec[3])
{
copy_v3_v3(vecw, vec);
mul_v3_fl(vecw, grid->cellsize);
add_v3_v3(vecw, grid->gmin);
}
void BPH_hair_volume_set_debug_value(HairGrid *grid, int debug_value)
{
grid->debug_value = debug_value;
}
BLI_INLINE void hair_volume_add_segment_2D(HairGrid *grid,
const float UNUSED(x1[3]), const float UNUSED(v1[3]), const float x2[3], const float v2[3],
const float x3[3], const float v3[3], const float UNUSED(x4[3]), const float UNUSED(v4[3]),
const float UNUSED(dir1[3]), const float dir2[3], const float UNUSED(dir3[3]),
int resj, int resk, int jmin, int jmax, int kmin, int kmax,
HairGridVert *vert, int stride_j, int stride_k, const float loc[3], int axis_j, int axis_k,
int debug_i)
{
SimDebugData *debug_data = grid->debug_data;
const float radius = 1.5f;
const float dist_scale = grid->inv_cellsize;
int j, k;
/* boundary checks to be safe */
CLAMP_MIN(jmin, 0);
CLAMP_MAX(jmax, resj-1);
CLAMP_MIN(kmin, 0);
CLAMP_MAX(kmax, resk-1);
HairGridVert *vert_j = vert + jmin * stride_j;
float loc_j[3] = { loc[0], loc[1], loc[2] };
loc_j[axis_j] += (float)jmin;
for (j = jmin; j <= jmax; ++j, vert_j += stride_j, loc_j[axis_j] += 1.0f) {
HairGridVert *vert_k = vert_j + kmin * stride_k;
float loc_k[3] = { loc_j[0], loc_j[1], loc_j[2] };
loc_k[axis_k] += (float)kmin;
for (k = kmin; k <= kmax; ++k, vert_k += stride_k, loc_k[axis_k] += 1.0f) {
hair_volume_eval_grid_vertex(vert_k, loc_k, radius, dist_scale, x2, v2, x3, v3);
#if 1
{
float wloc[3], x2w[3], x3w[3];
grid_to_world(grid, wloc, loc_k);
grid_to_world(grid, x2w, x2);
grid_to_world(grid, x3w, x3);
if (vert_k->samples > 0)
BKE_sim_debug_data_add_circle(debug_data, wloc, 0.01f, 1.0, 1.0, 0.3, "blah", hash_vertex(2525, hash_int_2d(debug_i, hash_int_2d(j, k))));
if (grid->debug_value) {
BKE_sim_debug_data_add_dot(debug_data, wloc, 1, 0, 0, "blah", hash_vertex(93, hash_int_2d(debug_i, hash_int_2d(j, k))));
BKE_sim_debug_data_add_dot(debug_data, x2w, 0.1, 0.1, 0.7, "blah", hash_vertex(649, hash_int_2d(debug_i, hash_int_2d(j, k))));
BKE_sim_debug_data_add_line(debug_data, wloc, x2w, 0.3, 0.8, 0.3, "blah", hash_vertex(253, hash_int_2d(debug_i, hash_int_2d(j, k))));
BKE_sim_debug_data_add_line(debug_data, wloc, x3w, 0.8, 0.3, 0.3, "blah", hash_vertex(254, hash_int_2d(debug_i, hash_int_2d(j, k))));
// BKE_sim_debug_data_add_circle(debug_data, x2w, len_v3v3(wloc, x2w), 0.2, 0.7, 0.2, "blah", hash_vertex(255, hash_int_2d(i, hash_int_2d(j, k))));
}
}
#endif
}
}
}
/* Uses a variation of Bresenham's algorithm for rasterizing a 3D grid with a line segment.
*
* The radius of influence around a segment is assumed to be at most 2*cellsize,
* i.e. only cells containing the segment and their direct neighbors are examined.
*
*
*/
void BPH_hair_volume_add_segment(HairGrid *grid,
const float x1[3], const float v1[3], const float x2[3], const float v2[3],
const float x3[3], const float v3[3], const float x4[3], const float v4[3],
const float dir1[3], const float dir2[3], const float dir3[3])
{
SimDebugData *debug_data = grid->debug_data;
const int res[3] = { grid->res[0], grid->res[1], grid->res[2] };
/* find the primary direction from the major axis of the direction vector */
const int axis0 = major_axis_v3(dir2);
const int axis1 = (axis0 + 1) % 3;
const int axis2 = (axis0 + 2) % 3;
/* vertex buffer offset factors along cardinal axes */
const int strides[3] = { 1, res[0], res[0] * res[1] };
const int stride0 = strides[axis0];
const int stride1 = strides[axis1];
const int stride2 = strides[axis2];
/* increment of secondary directions per step in the primary direction
* note: we always go in the positive direction along axis0, so the sign can be inverted
*/
const float inc1 = dir2[axis1] / dir2[axis0];
const float inc2 = dir2[axis2] / dir2[axis0];
/* start/end points, so increment along axis0 is always positive */
const float *start = x2[axis0] < x3[axis0] ? x2 : x3;
const float *end = x2[axis0] < x3[axis0] ? x3 : x2;
const float start0 = start[axis0], start1 = start[axis1], start2 = start[axis2];
const float end0 = end[axis0];
/* range along primary direction */
const int imin = max_ii(floor_int(start[axis0]) - 1, 0);
const int imax = min_ii(floor_int(end[axis0]) + 2, res[axis0]-1);
float h = 0.0f;
HairGridVert *vert0;
float loc0[3];
int j0, k0, j0_prev, k0_prev;
int i;
(void)debug_data;
for (i = imin; i <= imax; ++i) {
float shift1, shift2; /* fraction of a full cell shift [0.0, 1.0) */
int jmin, jmax, kmin, kmax;
h = CLAMPIS((float)i, start0, end0);
shift1 = start1 + (h - start0) * inc1;
shift2 = start2 + (h - start0) * inc2;
j0_prev = j0;
j0 = floor_int(shift1);
k0_prev = k0;
k0 = floor_int(shift2);
if (i > imin) {
jmin = min_ii(j0, j0_prev);
jmax = max_ii(j0, j0_prev);
kmin = min_ii(k0, k0_prev);
kmax = max_ii(k0, k0_prev);
}
else {
jmin = jmax = j0;
kmin = kmax = k0;
}
vert0 = grid->verts + i * stride0;
loc0[axis0] = (float)i;
loc0[axis1] = 0.0f;
loc0[axis2] = 0.0f;
hair_volume_add_segment_2D(grid, x1, v1, x2, v2, x3, v3, x4, v4, dir1, dir2, dir3,
res[axis1], res[axis2], jmin-1, jmax+2, kmin-1, kmax+2,
vert0, stride1, stride2, loc0, axis1, axis2,
i);
}
}
void BPH_hair_volume_normalize_vertex_grid(HairGrid *grid)
{
int i, size = hair_grid_size(grid->res);
/* divide velocity with density */
for (i = 0; i < size; i++) {
float density = grid->verts[i].density;
if (density > 0.0f)
mul_v3_fl(grid->verts[i].velocity, 1.0f/density);
}
}
static const float density_threshold = 0.001f; /* cells with density below this are considered empty */
/* Contribution of target density pressure to the laplacian in the pressure poisson equation.
* This is based on the model found in
* "Two-way Coupled SPH and Particle Level Set Fluid Simulation" (Losasso et al., 2008)
*/
BLI_INLINE float hair_volume_density_divergence(float density, float target_density, float strength)
{
if (density > density_threshold && density > target_density)
return strength * density * logf(target_density / density);
else
return 0.0f;
}
bool BPH_hair_volume_solve_divergence(HairGrid *grid, float dt, float target_density, float target_strength)
{
const float flowfac = grid->cellsize / dt;
const float inv_flowfac = dt / grid->cellsize;
/*const int num_cells = hair_grid_size(grid->res);*/
const int res[3] = { grid->res[0], grid->res[1], grid->res[2] };
const int resA[3] = { grid->res[0] + 2, grid->res[1] + 2, grid->res[2] + 2 };
const int stride0 = 1;
const int stride1 = grid->res[0];
const int stride2 = grid->res[1] * grid->res[0];
const int strideA0 = 1;
const int strideA1 = grid->res[0] + 2;
const int strideA2 = (grid->res[1] + 2) * (grid->res[0] + 2);
const int num_cells = res[0] * res[1] * res[2];
const int num_cellsA = (res[0] + 2) * (res[1] + 2) * (res[2] + 2);
HairGridVert *vert_start = grid->verts - (stride0 + stride1 + stride2);
HairGridVert *vert;
int i, j, k;
#define MARGIN_i0 (i < 1)
#define MARGIN_j0 (j < 1)
#define MARGIN_k0 (k < 1)
#define MARGIN_i1 (i >= resA[0]-1)
#define MARGIN_j1 (j >= resA[1]-1)
#define MARGIN_k1 (k >= resA[2]-1)
#define NEIGHBOR_MARGIN_i0 (i < 2)
#define NEIGHBOR_MARGIN_j0 (j < 2)
#define NEIGHBOR_MARGIN_k0 (k < 2)
#define NEIGHBOR_MARGIN_i1 (i >= resA[0]-2)
#define NEIGHBOR_MARGIN_j1 (j >= resA[1]-2)
#define NEIGHBOR_MARGIN_k1 (k >= resA[2]-2)
BLI_assert(num_cells >= 1);
/* Calculate divergence */
lVector B(num_cellsA);
for (k = 0; k < resA[2]; ++k) {
for (j = 0; j < resA[1]; ++j) {
for (i = 0; i < resA[0]; ++i) {
int u = i * strideA0 + j * strideA1 + k * strideA2;
bool is_margin = MARGIN_i0 || MARGIN_i1 || MARGIN_j0 || MARGIN_j1 || MARGIN_k0 || MARGIN_k1;
if (is_margin) {
B[u] = 0.0f;
continue;
}
vert = vert_start + i * stride0 + j * stride1 + k * stride2;
HairGridVert *vert_px = vert + stride0;
HairGridVert *vert_py = vert + stride1;
HairGridVert *vert_pz = vert + stride2;
const float *v = vert->velocity;
float dx = NEIGHBOR_MARGIN_i1 ? 0.0f : vert_px->velocity[0] - v[0];
float dy = NEIGHBOR_MARGIN_j1 ? 0.0f : vert_py->velocity[1] - v[1];
float dz = NEIGHBOR_MARGIN_k1 ? 0.0f : vert_pz->velocity[2] - v[2];
float divergence = (dx + dy + dz) * flowfac;
/* adjustment term for target density */
float target = hair_volume_density_divergence(vert->density, target_density, target_strength);
/* B vector contains the finite difference approximation of the velocity divergence.
* Note: according to the discretized Navier-Stokes equation the rhs vector
* and resulting pressure gradient should be multiplied by the (inverse) density;
* however, this is already included in the weighting of hair velocities on the grid!
*/
B[u] = divergence + target;
}
}
}
/* Main Poisson equation system:
* This is derived from the discretezation of the Poisson equation
* div(grad(p)) = div(v)
*
* The finite difference approximation yields the linear equation system described here:
* http://en.wikipedia.org/wiki/Discrete_Poisson_equation
*/
lMatrix A(num_cellsA, num_cellsA);
/* Reserve space for the base equation system (without boundary conditions).
* Each column contains a factor 6 on the diagonal
* and up to 6 factors -1 on other places.
*/
A.reserve(Eigen::VectorXi::Constant(num_cellsA, 7));
for (k = 0; k < resA[2]; ++k) {
for (j = 0; j < resA[1]; ++j) {
for (i = 0; i < resA[0]; ++i) {
int u = i * strideA0 + j * strideA1 + k * strideA2;
bool is_margin = MARGIN_i0 || MARGIN_i1 || MARGIN_j0 || MARGIN_j1 || MARGIN_k0 || MARGIN_k1;
vert = vert_start + i * stride0 + j * stride1 + k * stride2;
if (!is_margin && vert->density > density_threshold) {
int neighbors_lo = 0;
int neighbors_hi = 0;
int non_solid_neighbors = 0;
int neighbor_lo_index[3];
int neighbor_hi_index[3];
int n;
/* check for upper bounds in advance
* to get the correct number of neighbors,
* needed for the diagonal element
*/
if (!NEIGHBOR_MARGIN_k0 && (vert - stride2)->density > density_threshold)
neighbor_lo_index[neighbors_lo++] = u - stride2;
if (!NEIGHBOR_MARGIN_j0 && (vert - stride1)->density > density_threshold)
neighbor_lo_index[neighbors_lo++] = u - stride1;
if (!NEIGHBOR_MARGIN_i0 && (vert - stride0)->density > density_threshold)
neighbor_lo_index[neighbors_lo++] = u - stride0;
if (!NEIGHBOR_MARGIN_i1 && (vert + stride0)->density > density_threshold)
neighbor_hi_index[neighbors_hi++] = u + stride0;
if (!NEIGHBOR_MARGIN_j1 && (vert + stride1)->density > density_threshold)
neighbor_hi_index[neighbors_hi++] = u + stride1;
if (!NEIGHBOR_MARGIN_k1 && (vert + stride2)->density > density_threshold)
neighbor_hi_index[neighbors_hi++] = u + stride2;
/*int liquid_neighbors = neighbors_lo + neighbors_hi;*/
non_solid_neighbors = 6;
for (n = 0; n < neighbors_lo; ++n)
A.insert(neighbor_lo_index[n], u) = -1.0f;
A.insert(u, u) = (float)non_solid_neighbors;
for (n = 0; n < neighbors_hi; ++n)
A.insert(neighbor_hi_index[n], u) = -1.0f;
}
else {
A.insert(u, u) = 1.0f;
}
}
}
}
ConjugateGradient cg;
cg.setMaxIterations(100);
cg.setTolerance(0.01f);
cg.compute(A);
lVector p = cg.solve(B);
if (cg.info() == Eigen::Success) {
/* Calculate velocity = grad(p) */
for (k = 0; k < resA[2]; ++k) {
for (j = 0; j < resA[1]; ++j) {
for (i = 0; i < resA[0]; ++i) {
int u = i * strideA0 + j * strideA1 + k * strideA2;
bool is_margin = MARGIN_i0 || MARGIN_i1 || MARGIN_j0 || MARGIN_j1 || MARGIN_k0 || MARGIN_k1;
if (is_margin)
continue;
vert = vert_start + i * stride0 + j * stride1 + k * stride2;
if (vert->density > density_threshold) {
float p0 = p[u];
/* finite difference estimate of pressure gradient */
float grad_p[3];
grad_p[0] = p0 - p[u - stride0];
grad_p[1] = p0 - p[u - stride1];
grad_p[2] = p0 - p[u - stride2];
/* pressure gradient describes velocity delta */
madd_v3_v3v3fl(vert->velocity_smooth, vert->velocity, grad_p, inv_flowfac);
}
else {
zero_v3(vert->velocity_smooth);
}
}
}
}
return true;
}
else {
/* Clear result in case of error */
for (i = 0, vert = grid->verts; i < num_cells; ++i, ++vert) {
zero_v3(vert->velocity_smooth);
}
return false;
}
}
#if 0 /* XXX weighting is incorrect, disabled for now */
/* Velocity filter kernel
* See http://en.wikipedia.org/wiki/Filter_%28large_eddy_simulation%29
*/
BLI_INLINE void hair_volume_filter_box_convolute(HairVertexGrid *grid, float invD, const int kernel_size[3], int i, int j, int k)
{
int res = grid->res;
int p, q, r;
int minp = max_ii(i - kernel_size[0], 0), maxp = min_ii(i + kernel_size[0], res-1);
int minq = max_ii(j - kernel_size[1], 0), maxq = min_ii(j + kernel_size[1], res-1);
int minr = max_ii(k - kernel_size[2], 0), maxr = min_ii(k + kernel_size[2], res-1);
int offset, kernel_offset, kernel_dq, kernel_dr;
HairGridVert *verts;
float *vel_smooth;
offset = i + (j + k*res)*res;
verts = grid->verts;
vel_smooth = verts[offset].velocity_smooth;
kernel_offset = minp + (minq + minr*res)*res;
kernel_dq = res;
kernel_dr = res * res;
for (r = minr; r <= maxr; ++r) {
for (q = minq; q <= maxq; ++q) {
for (p = minp; p <= maxp; ++p) {
madd_v3_v3fl(vel_smooth, verts[kernel_offset].velocity, invD);
kernel_offset += 1;
}
kernel_offset += kernel_dq;
}
kernel_offset += kernel_dr;
}
}
void BPH_hair_volume_vertex_grid_filter_box(HairVertexGrid *grid, int kernel_size)
{
int size = hair_grid_size(grid->res);
int kernel_sizev[3] = {kernel_size, kernel_size, kernel_size};
int tot;
float invD;
int i, j, k;
if (kernel_size <= 0)
return;
tot = kernel_size * 2 + 1;
invD = 1.0f / (float)(tot*tot*tot);
/* clear values for convolution */
for (i = 0; i < size; ++i) {
zero_v3(grid->verts[i].velocity_smooth);
}
for (i = 0; i < grid->res; ++i) {
for (j = 0; j < grid->res; ++j) {
for (k = 0; k < grid->res; ++k) {
hair_volume_filter_box_convolute(grid, invD, kernel_sizev, i, j, k);
}
}
}
/* apply as new velocity */
for (i = 0; i < size; ++i) {
copy_v3_v3(grid->verts[i].velocity, grid->verts[i].velocity_smooth);
}
}
#endif
HairGrid *BPH_hair_volume_create_vertex_grid(float cellsize, const float gmin[3], const float gmax[3])
{
float scale;
float extent[3];
int resmin[3], resmax[3], res[3];
float gmin_margin[3], gmax_margin[3];
int size;
HairGrid *grid;
int i;
/* sanity check */
if (cellsize <= 0.0f)
cellsize = 1.0f;
scale = 1.0f / cellsize;
sub_v3_v3v3(extent, gmax, gmin);
for (i = 0; i < 3; ++i) {
resmin[i] = floor_int(gmin[i] * scale);
resmax[i] = floor_int(gmax[i] * scale) + 1;
/* add margin of 1 cell */
resmin[i] -= 1;
resmax[i] += 1;
res[i] = resmax[i] - resmin[i] + 1;
/* sanity check: avoid null-sized grid */
if (res[i] < 4) {
res[i] = 4;
resmax[i] = resmin[i] + 4;
}
/* sanity check: avoid too large grid size */
if (res[i] > MAX_HAIR_GRID_RES) {
res[i] = MAX_HAIR_GRID_RES;
resmax[i] = resmin[i] + MAX_HAIR_GRID_RES;
}
gmin_margin[i] = (float)resmin[i] * cellsize;
gmax_margin[i] = (float)resmax[i] * cellsize;
}
size = hair_grid_size(res);
grid = (HairGrid *)MEM_callocN(sizeof(HairGrid), "hair grid");
grid->res[0] = res[0];
grid->res[1] = res[1];
grid->res[2] = res[2];
copy_v3_v3(grid->gmin, gmin_margin);
copy_v3_v3(grid->gmax, gmax_margin);
grid->cellsize = cellsize;
grid->inv_cellsize = scale;
grid->verts = (HairGridVert *)MEM_callocN(sizeof(HairGridVert) * size, "hair voxel data");
return grid;
}
void BPH_hair_volume_free_vertex_grid(HairGrid *grid)
{
if (grid) {
if (grid->verts)
MEM_freeN(grid->verts);
MEM_freeN(grid);
}
}
void BPH_hair_volume_set_debug_data(HairGrid *grid, SimDebugData *debug_data)
{
grid->debug_data = debug_data;
}
void BPH_hair_volume_grid_geometry(HairGrid *grid, float *cellsize, int res[3], float gmin[3], float gmax[3])
{
if (cellsize) *cellsize = grid->cellsize;
if (res) copy_v3_v3_int(res, grid->res);
if (gmin) copy_v3_v3(gmin, grid->gmin);
if (gmax) copy_v3_v3(gmax, grid->gmax);
}
#if 0
static HairGridVert *hair_volume_create_collision_grid(ClothModifierData *clmd, lfVector *lX, unsigned int numverts)
{
int res = hair_grid_res;
int size = hair_grid_size(res);
HairGridVert *collgrid;
ListBase *colliders;
ColliderCache *col = NULL;
float gmin[3], gmax[3], scale[3];
/* 2.0f is an experimental value that seems to give good results */
float collfac = 2.0f * clmd->sim_parms->collider_friction;
unsigned int v = 0;
int i = 0;
hair_volume_get_boundbox(lX, numverts, gmin, gmax);
hair_grid_get_scale(res, gmin, gmax, scale);
collgrid = MEM_mallocN(sizeof(HairGridVert) * size, "hair collider voxel data");
/* initialize grid */
for (i = 0; i < size; ++i) {
zero_v3(collgrid[i].velocity);
collgrid[i].density = 0.0f;
}
/* gather colliders */
colliders = get_collider_cache(clmd->scene, NULL, NULL);
if (colliders && collfac > 0.0f) {
for (col = colliders->first; col; col = col->next) {
MVert *loc0 = col->collmd->x;
MVert *loc1 = col->collmd->xnew;
float vel[3];
float weights[8];
int di, dj, dk;
for (v=0; v < col->collmd->numverts; v++, loc0++, loc1++) {
int offset;
if (!hair_grid_point_valid(loc1->co, gmin, gmax))
continue;
offset = hair_grid_weights(res, gmin, scale, lX[v], weights);
sub_v3_v3v3(vel, loc1->co, loc0->co);
for (di = 0; di < 2; ++di) {
for (dj = 0; dj < 2; ++dj) {
for (dk = 0; dk < 2; ++dk) {
int voffset = offset + di + (dj + dk*res)*res;
int iw = di + dj*2 + dk*4;
collgrid[voffset].density += weights[iw];
madd_v3_v3fl(collgrid[voffset].velocity, vel, weights[iw]);
}
}
}
}
}
}
free_collider_cache(&colliders);
/* divide velocity with density */
for (i = 0; i < size; i++) {
float density = collgrid[i].density;
if (density > 0.0f)
mul_v3_fl(collgrid[i].velocity, 1.0f/density);
}
return collgrid;
}
#endif
bool BPH_hair_volume_get_texture_data(HairGrid *grid, VoxelData *vd)
{
int totres, i;
int depth;
vd->resol[0] = grid->res[0];
vd->resol[1] = grid->res[1];
vd->resol[2] = grid->res[2];
totres = hair_grid_size(grid->res);
if (vd->hair_type == TEX_VD_HAIRVELOCITY) {
depth = 4;
vd->data_type = TEX_VD_RGBA_PREMUL;
}
else {
depth = 1;
vd->data_type = TEX_VD_INTENSITY;
}
if (totres > 0) {
vd->dataset = (float *)MEM_mapallocN(sizeof(float) * depth * (totres), "hair volume texture data");
for (i = 0; i < totres; ++i) {
switch (vd->hair_type) {
case TEX_VD_HAIRDENSITY:
vd->dataset[i] = grid->verts[i].density;
break;
case TEX_VD_HAIRRESTDENSITY:
vd->dataset[i] = 0.0f; // TODO
break;
case TEX_VD_HAIRVELOCITY: {
vd->dataset[i + 0*totres] = grid->verts[i].velocity[0];
vd->dataset[i + 1*totres] = grid->verts[i].velocity[1];
vd->dataset[i + 2*totres] = grid->verts[i].velocity[2];
vd->dataset[i + 3*totres] = len_v3(grid->verts[i].velocity);
break;
}
case TEX_VD_HAIRENERGY:
vd->dataset[i] = 0.0f; // TODO
break;
}
}
}
else {
vd->dataset = NULL;
}
return true;
}