At last, the 'Local' option for Armatures works properly! Tonight I went through carefully and cross-checked the code once again, and found several bad mistakes I had made. These were: * the value of one variable from the armatures code was not what I expected it to be, based off the name). * Mat4MulSerie swaps the first two args! Grrr... Note: There's only one rig that I've tested that was broken. That was slikdigit's "mancandy", and the part in question was the jaw. It is likely that a few more rigs out there (in particular, their 'local' action constraints) relied on the wacky rotation values that used to be used, so are now broken.
2705 lines
70 KiB
C
2705 lines
70 KiB
C
/**
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): 2007, Joshua Leung, major recode
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
#include "nla.h"
|
|
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_arithb.h"
|
|
|
|
#include "DNA_armature_types.h"
|
|
#include "DNA_constraint_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_action_types.h"
|
|
#include "DNA_curve_types.h"
|
|
#include "DNA_scene_types.h"
|
|
|
|
#include "BKE_utildefines.h"
|
|
#include "BKE_action.h"
|
|
#include "BKE_anim.h" // for the curve calculation part
|
|
#include "BKE_armature.h"
|
|
#include "BKE_blender.h"
|
|
#include "BKE_constraint.h"
|
|
#include "BKE_displist.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_ipo.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_library.h"
|
|
#include "BKE_idprop.h"
|
|
|
|
#include "BPY_extern.h"
|
|
|
|
#include "blendef.h"
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
|
|
/* ********************* Data level ****************** */
|
|
|
|
void free_constraint_data (bConstraint *con)
|
|
{
|
|
if (con->data) {
|
|
/* any constraint-type specific stuff here */
|
|
switch (con->type) {
|
|
case CONSTRAINT_TYPE_PYTHON:
|
|
{
|
|
bPythonConstraint *data= con->data;
|
|
IDP_FreeProperty(data->prop);
|
|
MEM_freeN(data->prop);
|
|
}
|
|
break;
|
|
}
|
|
|
|
MEM_freeN(con->data);
|
|
}
|
|
}
|
|
|
|
void free_constraints (ListBase *conlist)
|
|
{
|
|
bConstraint *con;
|
|
|
|
/* Do any specific freeing */
|
|
for (con=conlist->first; con; con=con->next) {
|
|
free_constraint_data(con);
|
|
}
|
|
|
|
/* Free the whole list */
|
|
BLI_freelistN(conlist);
|
|
}
|
|
|
|
void free_constraint_channels (ListBase *chanbase)
|
|
{
|
|
bConstraintChannel *chan;
|
|
|
|
for (chan=chanbase->first; chan; chan=chan->next) {
|
|
if (chan->ipo) {
|
|
chan->ipo->id.us--;
|
|
}
|
|
}
|
|
|
|
BLI_freelistN(chanbase);
|
|
}
|
|
|
|
void relink_constraints (struct ListBase *list)
|
|
{
|
|
bConstraint *con;
|
|
|
|
for (con = list->first; con; con=con->next) {
|
|
/* check if constraint has a target that needs relinking */
|
|
if (constraint_has_target(con)) {
|
|
Object *tar;
|
|
char *subtarget;
|
|
|
|
tar = get_constraint_target(con, &subtarget);
|
|
ID_NEW(tar);
|
|
}
|
|
}
|
|
}
|
|
|
|
void copy_constraint_channels (ListBase *dst, ListBase *src)
|
|
{
|
|
bConstraintChannel *dchan, *schan;
|
|
|
|
dst->first=dst->last=NULL;
|
|
duplicatelist(dst, src);
|
|
|
|
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next) {
|
|
dchan->ipo = copy_ipo(schan->ipo);
|
|
}
|
|
}
|
|
|
|
void clone_constraint_channels (ListBase *dst, ListBase *src)
|
|
{
|
|
bConstraintChannel *dchan, *schan;
|
|
|
|
dst->first=dst->last=NULL;
|
|
duplicatelist(dst, src);
|
|
|
|
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next) {
|
|
id_us_plus((ID *)dchan->ipo);
|
|
}
|
|
}
|
|
|
|
void copy_constraints (ListBase *dst, ListBase *src)
|
|
{
|
|
bConstraint *con, *srccon;
|
|
|
|
dst->first= dst->last= NULL;
|
|
duplicatelist (dst, src);
|
|
|
|
for (con = dst->first, srccon=src->first; con; srccon=srccon->next, con=con->next) {
|
|
con->data = MEM_dupallocN (con->data);
|
|
|
|
/* only do specific constraints if required */
|
|
if (con->type == CONSTRAINT_TYPE_PYTHON) {
|
|
bPythonConstraint *pycon = (bPythonConstraint *)con->data;
|
|
bPythonConstraint *opycon = (bPythonConstraint *)srccon->data;
|
|
|
|
pycon->prop = IDP_CopyProperty(opycon->prop);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* **************** Editor Functions **************** */
|
|
|
|
char constraint_has_target (bConstraint *con)
|
|
{
|
|
switch (con->type) {
|
|
case CONSTRAINT_TYPE_PYTHON:
|
|
{
|
|
bPythonConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
bActionConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
|
|
{
|
|
bRigidBodyJointConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CLAMPTO:
|
|
{
|
|
bClampToConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CHILDOF:
|
|
{
|
|
bChildOfConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRANSFORM:
|
|
{
|
|
bTransformConstraint *data = con->data;
|
|
if (data->tar) return 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Unknown types or CONSTRAINT_TYPE_NULL or no target */
|
|
return 0;
|
|
}
|
|
|
|
Object *get_constraint_target(bConstraint *con, char **subtarget)
|
|
{
|
|
/* If the target for this constraint is target, return a pointer
|
|
* to the name for this constraints subtarget ... NULL otherwise
|
|
*/
|
|
switch (con->type) {
|
|
case CONSTRAINT_TYPE_PYTHON:
|
|
{
|
|
bPythonConstraint *data=con->data;
|
|
*subtarget = data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
bActionConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data = con->data;
|
|
*subtarget= NULL;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
|
|
{
|
|
bRigidBodyJointConstraint *data = con->data;
|
|
*subtarget= NULL;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CLAMPTO:
|
|
{
|
|
bClampToConstraint *data = con->data;
|
|
*subtarget= NULL;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CHILDOF:
|
|
{
|
|
bChildOfConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRANSFORM:
|
|
{
|
|
bTransformConstraint *data = con->data;
|
|
*subtarget= data->subtarget;
|
|
return data->tar;
|
|
}
|
|
break;
|
|
default:
|
|
*subtarget= NULL;
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void set_constraint_target(bConstraint *con, Object *ob, char *subtarget)
|
|
{
|
|
/* Set the target for this constraint */
|
|
switch (con->type) {
|
|
case CONSTRAINT_TYPE_PYTHON:
|
|
{
|
|
bPythonConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
bActionConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data = con->data;
|
|
data->tar= ob;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
|
|
{
|
|
bRigidBodyJointConstraint *data = con->data;
|
|
data->tar= ob;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data = (bMinMaxConstraint*)con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CLAMPTO:
|
|
{
|
|
bClampToConstraint *data = con->data;
|
|
data->tar= ob;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CHILDOF:
|
|
{
|
|
bChildOfConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRANSFORM:
|
|
{
|
|
bTransformConstraint *data = con->data;
|
|
data->tar= ob;
|
|
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void unique_constraint_name (bConstraint *con, ListBase *list)
|
|
{
|
|
bConstraint *curcon;
|
|
char tempname[64];
|
|
int number = 1, exists = 0;
|
|
char *dot;
|
|
|
|
/* See if we are given an empty string */
|
|
if (con->name[0] == '\0') {
|
|
/* give it default name first */
|
|
strcpy(con->name, "Const");
|
|
}
|
|
|
|
/* See if we even need to do this */
|
|
for (curcon = list->first; curcon; curcon=curcon->next) {
|
|
if (curcon != con) {
|
|
if (!strcmp(curcon->name, con->name)) {
|
|
exists = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!exists)
|
|
return;
|
|
|
|
/* Strip off the suffix */
|
|
dot=strchr(con->name, '.');
|
|
if (dot)
|
|
*dot=0;
|
|
|
|
for (number = 1; number <= 999; number++) {
|
|
sprintf(tempname, "%s.%03d", con->name, number);
|
|
|
|
exists = 0;
|
|
for (curcon=list->first; curcon; curcon=curcon->next) {
|
|
if (con!=curcon) {
|
|
if (!strcmp(curcon->name, tempname)) {
|
|
exists = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!exists) {
|
|
strcpy(con->name, tempname);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void *new_constraint_data (short type)
|
|
{
|
|
void *result;
|
|
|
|
switch (type) {
|
|
case CONSTRAINT_TYPE_PYTHON:
|
|
{
|
|
bPythonConstraint *data;
|
|
data = MEM_callocN(sizeof(bPythonConstraint), "pythonConstraint");
|
|
|
|
/* everything should be set correctly by calloc, except for the prop->type constant.*/
|
|
data->prop = MEM_callocN(sizeof(IDProperty), "PyConstraintProps");
|
|
data->prop->type = IDP_GROUP;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data;
|
|
data = MEM_callocN(sizeof(bKinematicConstraint), "kinematicConstraint");
|
|
|
|
data->weight= (float)1.0;
|
|
data->orientweight= (float)1.0;
|
|
data->iterations = 500;
|
|
data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data;
|
|
data = MEM_callocN(sizeof(bTrackToConstraint), "tracktoConstraint");
|
|
|
|
data->reserved1 = TRACK_Y;
|
|
data->reserved2 = UP_Z;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data;
|
|
data = MEM_callocN(sizeof(bMinMaxConstraint), "minmaxConstraint");
|
|
|
|
data->minmaxflag = TRACK_Z;
|
|
data->offset = 0.0f;
|
|
data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
|
|
data->flag = 0;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data;
|
|
data = MEM_callocN(sizeof(bLocateLikeConstraint), "LocLikeConstraint");
|
|
data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data;
|
|
data = MEM_callocN(sizeof(bRotateLikeConstraint), "RotLikeConstraint");
|
|
data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data;
|
|
data = MEM_callocN(sizeof(bLocateLikeConstraint), "SizeLikeConstraint");
|
|
data->flag = SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
bActionConstraint *data;
|
|
data = MEM_callocN(sizeof(bActionConstraint), "ActionConstraint");
|
|
|
|
/* set type to 20 (Loc X), as 0 is Rot X for backwards compatability */
|
|
data->type = 20;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data;
|
|
data = MEM_callocN(sizeof(bLockTrackConstraint), "locktrackConstraint");
|
|
|
|
data->trackflag = TRACK_Y;
|
|
data->lockflag = LOCK_Z;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data;
|
|
data = MEM_callocN(sizeof(bFollowPathConstraint), "followpathConstraint");
|
|
|
|
data->trackflag = TRACK_Y;
|
|
data->upflag = UP_Z;
|
|
data->offset = 0;
|
|
data->followflag = 0;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data;
|
|
data = MEM_callocN(sizeof(bStretchToConstraint), "StretchToConstraint");
|
|
|
|
data->volmode = 0;
|
|
data->plane = 0;
|
|
data->orglength = 0.0;
|
|
data->bulge = 1.0;
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIMIT:
|
|
{
|
|
bLocLimitConstraint *data;
|
|
data = MEM_callocN(sizeof(bLocLimitConstraint), "LocLimitConstraint");
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIMIT:
|
|
{
|
|
bRotLimitConstraint *data;
|
|
data = MEM_callocN(sizeof(bRotLimitConstraint), "RotLimitConstraint");
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIMIT:
|
|
{
|
|
bSizeLimitConstraint *data;
|
|
data = MEM_callocN(sizeof(bSizeLimitConstraint), "SizeLimitConstraint");
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
|
|
{
|
|
bRigidBodyJointConstraint *data;
|
|
data = MEM_callocN(sizeof(bRigidBodyJointConstraint), "RigidBodyToConstraint");
|
|
|
|
// removed code which set target of this constraint
|
|
data->type=1;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CLAMPTO:
|
|
{
|
|
bClampToConstraint *data;
|
|
data = MEM_callocN(sizeof(bClampToConstraint), "ClampToConstraint");
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CHILDOF:
|
|
{
|
|
bChildOfConstraint *data;
|
|
data = MEM_callocN(sizeof(bChildOfConstraint), "ChildOfConstraint");
|
|
|
|
data->flag = (CHILDOF_LOCX | CHILDOF_LOCY | CHILDOF_LOCZ |
|
|
CHILDOF_ROTX |CHILDOF_ROTY | CHILDOF_ROTZ |
|
|
CHILDOF_SIZEX | CHILDOF_SIZEY | CHILDOF_SIZEZ);
|
|
Mat4One(data->invmat);
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRANSFORM:
|
|
{
|
|
bTransformConstraint *data;
|
|
data = MEM_callocN(sizeof(bTransformConstraint), "TransformationConstraint");
|
|
|
|
data->map[0]= 0;
|
|
data->map[1]= 1;
|
|
data->map[2]= 2;
|
|
|
|
result = data;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
result = NULL;
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bConstraintChannel *get_constraint_channel (ListBase *list, const char *name)
|
|
{
|
|
bConstraintChannel *chan;
|
|
|
|
for (chan = list->first; chan; chan=chan->next) {
|
|
if (!strcmp(name, chan->name)) {
|
|
return chan;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* finds or creates new constraint channel */
|
|
bConstraintChannel *verify_constraint_channel (ListBase *list, const char *name)
|
|
{
|
|
bConstraintChannel *chan;
|
|
|
|
chan= get_constraint_channel (list, name);
|
|
if(chan==NULL) {
|
|
chan= MEM_callocN(sizeof(bConstraintChannel), "new constraint chan");
|
|
BLI_addtail(list, chan);
|
|
strcpy(chan->name, name);
|
|
}
|
|
|
|
return chan;
|
|
}
|
|
|
|
|
|
/* ***************** Evaluating ********************* */
|
|
|
|
/* package an object/bone for use in constraint evaluation */
|
|
/* This function MEM_calloc's a bConstraintOb struct, that will need to be freed after evaluation */
|
|
bConstraintOb *constraints_make_evalob (Object *ob, void *subdata, short datatype)
|
|
{
|
|
bConstraintOb *cob;
|
|
|
|
/* create regardless of whether we have any data! */
|
|
cob= MEM_callocN(sizeof(bConstraintOb), "bConstraintOb");
|
|
|
|
/* based on type of available data */
|
|
switch (datatype) {
|
|
case TARGET_OBJECT:
|
|
{
|
|
/* disregard subdata... calloc should set other values right */
|
|
if (ob) {
|
|
cob->ob = ob;
|
|
cob->type = datatype;
|
|
Mat4CpyMat4(cob->matrix, ob->obmat);
|
|
}
|
|
else
|
|
Mat4One(cob->matrix);
|
|
|
|
Mat4CpyMat4(cob->startmat, cob->matrix);
|
|
}
|
|
break;
|
|
case TARGET_BONE:
|
|
{
|
|
/* only set if we have valid bone, otherwise default */
|
|
if (ob && subdata) {
|
|
cob->ob = ob;
|
|
cob->pchan = (bPoseChannel *)subdata;
|
|
cob->type = datatype;
|
|
|
|
/* matrix in world-space */
|
|
Mat4MulMat4(cob->matrix, cob->pchan->pose_mat, ob->obmat);
|
|
}
|
|
else
|
|
Mat4One(cob->matrix);
|
|
|
|
Mat4CpyMat4(cob->startmat, cob->matrix);
|
|
}
|
|
break;
|
|
|
|
default: // other types not yet handled
|
|
Mat4One(cob->matrix);
|
|
Mat4One(cob->startmat);
|
|
break;
|
|
}
|
|
|
|
return cob;
|
|
}
|
|
|
|
/* cleanup after constraint evaluation */
|
|
void constraints_clear_evalob (bConstraintOb *cob)
|
|
{
|
|
float delta[4][4], imat[4][4];
|
|
|
|
/* prevent crashes */
|
|
if (cob == NULL)
|
|
return;
|
|
|
|
/* calculate delta of constraints evaluation */
|
|
Mat4Invert(imat, cob->startmat);
|
|
Mat4MulMat4(delta, cob->matrix, imat);
|
|
|
|
/* copy matrices back to source */
|
|
switch (cob->type) {
|
|
case TARGET_OBJECT:
|
|
{
|
|
/* copy new ob-matrix back to owner */
|
|
Mat4CpyMat4(cob->ob->obmat, cob->matrix);
|
|
|
|
/* copy inverse of delta back to owner */
|
|
Mat4Invert(cob->ob->constinv, delta);
|
|
}
|
|
break;
|
|
case TARGET_BONE:
|
|
{
|
|
/* copy new pose-matrix back to owner */
|
|
Mat4MulMat4(cob->pchan->pose_mat, cob->matrix, cob->ob->imat);
|
|
|
|
/* copy inverse of delta back to owner */
|
|
Mat4Invert(cob->pchan->constinv, delta);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* free tempolary struct */
|
|
MEM_freeN(cob);
|
|
}
|
|
|
|
/* -------------------------------- Constraint Channels ---------------------------- */
|
|
|
|
/* does IPO's of constraint channels only */
|
|
void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime)
|
|
{
|
|
bConstraint *con;
|
|
bConstraintChannel *chan;
|
|
IpoCurve *icu= NULL;
|
|
|
|
/* for each Constraint, calculate its Influence from the corresponding ConstraintChannel */
|
|
for (con=conbase->first; con; con=con->next) {
|
|
chan = get_constraint_channel(chanbase, con->name);
|
|
if (chan && chan->ipo) {
|
|
calc_ipo(chan->ipo, ctime);
|
|
for (icu=chan->ipo->curve.first; icu; icu=icu->next) {
|
|
switch (icu->adrcode) {
|
|
case CO_ENFORCE:
|
|
{
|
|
/* Influence is clamped to 0.0f -> 1.0f range */
|
|
con->enforce = CLAMPIS(icu->curval, 0.0f, 1.0f);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ------------------------------- Space-Conversion API ---------------------------- */
|
|
|
|
/* This function is responsible for the correct transformations/conversions
|
|
* of a matrix from one space to another for constraint evaluation.
|
|
* For now, this is only implemented for Objects and PoseChannels.
|
|
*/
|
|
static void constraint_mat_convertspace (Object *ob, bPoseChannel *pchan, float mat[][4], short from, short to)
|
|
{
|
|
float tempmat[4][4];
|
|
float diff_mat[4][4];
|
|
float imat[4][4];
|
|
|
|
/* prevent crashes in these unlikely events */
|
|
if (ob==NULL || mat==NULL) return;
|
|
/* optimise trick - check if need to do anything */
|
|
if (from == to) return;
|
|
|
|
/* are we dealing with pose-channels or objects */
|
|
if (pchan) {
|
|
/* pose channels */
|
|
switch (from) {
|
|
case CONSTRAINT_SPACE_WORLD: /* ---------- FROM WORLDSPACE ---------- */
|
|
{
|
|
/* world to pose */
|
|
if (to==CONSTRAINT_SPACE_POSE || to==CONSTRAINT_SPACE_LOCAL || to==CONSTRAINT_SPACE_PARLOCAL) {
|
|
Mat4Invert(imat, ob->obmat);
|
|
Mat4CpyMat4(tempmat, mat);
|
|
Mat4MulMat4(mat, tempmat, imat);
|
|
}
|
|
|
|
/* pose to local */
|
|
if (to == CONSTRAINT_SPACE_LOCAL) {
|
|
/* call self with slightly different values */
|
|
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
|
|
}
|
|
/* pose to local + parent */
|
|
else if (to == CONSTRAINT_SPACE_PARLOCAL) {
|
|
/* call self with slightly different values */
|
|
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_SPACE_POSE: /* ---------- FROM POSESPACE ---------- */
|
|
{
|
|
/* pose to world */
|
|
if (to == CONSTRAINT_SPACE_WORLD) {
|
|
Mat4CpyMat4(tempmat, mat);
|
|
Mat4MulMat4(mat, tempmat, ob->obmat);
|
|
}
|
|
/* pose to local */
|
|
else if (to == CONSTRAINT_SPACE_LOCAL) {
|
|
if (pchan->bone) {
|
|
if (pchan->parent) {
|
|
float offs_bone[4][4];
|
|
|
|
/* construct offs_bone the same way it is done in armature.c */
|
|
Mat4CpyMat3(offs_bone, pchan->bone->bone_mat);
|
|
VECCOPY(offs_bone[3], pchan->bone->head);
|
|
offs_bone[3][1]+= pchan->bone->parent->length;
|
|
|
|
if (pchan->bone->flag & BONE_HINGE) {
|
|
/* pose_mat = par_pose-space_location * chan_mat */
|
|
float tmat[4][4];
|
|
|
|
/* the rotation of the parent restposition */
|
|
Mat4CpyMat4(tmat, pchan->bone->parent->arm_mat);
|
|
|
|
/* the location of actual parent transform */
|
|
VECCOPY(tmat[3], offs_bone[3]);
|
|
offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
|
|
Mat4MulVecfl(pchan->parent->pose_mat, tmat[3]);
|
|
|
|
Mat4MulMat4(diff_mat, offs_bone, tmat);
|
|
Mat4Invert(imat, diff_mat);
|
|
}
|
|
else {
|
|
/* pose_mat = par_pose_mat * bone_mat * chan_mat */
|
|
Mat4MulMat4(diff_mat, offs_bone, pchan->parent->pose_mat);
|
|
Mat4Invert(imat, diff_mat);
|
|
}
|
|
}
|
|
else {
|
|
/* pose_mat = chan_mat * arm_mat */
|
|
Mat4Invert(imat, pchan->bone->arm_mat);
|
|
}
|
|
|
|
Mat4CpyMat4(tempmat, mat);
|
|
Mat4MulMat4(mat, tempmat, imat);
|
|
}
|
|
}
|
|
/* pose to local with parent */
|
|
else if (to == CONSTRAINT_SPACE_PARLOCAL) {
|
|
if (pchan->bone) {
|
|
Mat4Invert(imat, pchan->bone->arm_mat);
|
|
Mat4CpyMat4(tempmat, mat);
|
|
Mat4MulMat4(mat, tempmat, imat);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_SPACE_LOCAL: /* ------------ FROM LOCALSPACE --------- */
|
|
{
|
|
/* local to pose */
|
|
if (to==CONSTRAINT_SPACE_POSE || to==CONSTRAINT_SPACE_WORLD) {
|
|
/* do inverse procedure that was done for pose to local */
|
|
if (pchan->bone) {
|
|
/* we need the posespace_matrix = local_matrix + (parent_posespace_matrix + restpos) */
|
|
if (pchan->parent) {
|
|
float offs_bone[4][4];
|
|
|
|
/* construct offs_bone the same way it is done in armature.c */
|
|
Mat4CpyMat3(offs_bone, pchan->bone->bone_mat);
|
|
VECCOPY(offs_bone[3], pchan->bone->head);
|
|
offs_bone[3][1]+= pchan->bone->parent->length;
|
|
|
|
if (pchan->bone->flag & BONE_HINGE) {
|
|
/* pose_mat = par_pose-space_location * chan_mat */
|
|
float tmat[4][4];
|
|
|
|
/* the rotation of the parent restposition */
|
|
Mat4CpyMat4(tmat, pchan->bone->parent->arm_mat);
|
|
|
|
/* the location of actual parent transform */
|
|
VECCOPY(tmat[3], offs_bone[3]);
|
|
offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
|
|
Mat4MulVecfl(pchan->parent->pose_mat, tmat[3]);
|
|
|
|
Mat4MulMat4(diff_mat, offs_bone, tmat);
|
|
Mat4CpyMat4(tempmat, mat);
|
|
Mat4MulMat4(mat, tempmat, diff_mat);
|
|
}
|
|
else {
|
|
/* pose_mat = par_pose_mat * bone_mat * chan_mat */
|
|
Mat4MulMat4(diff_mat, offs_bone, pchan->parent->pose_mat);
|
|
Mat4CpyMat4(tempmat, mat);
|
|
Mat4MulMat4(mat, tempmat, diff_mat);
|
|
}
|
|
}
|
|
else {
|
|
Mat4CpyMat4(diff_mat, pchan->bone->arm_mat);
|
|
|
|
Mat4CpyMat4(tempmat, mat);
|
|
Mat4MulMat4(mat, tempmat, diff_mat);
|
|
}
|
|
}
|
|
}
|
|
/* local to world */
|
|
if (to == CONSTRAINT_SPACE_WORLD) {
|
|
/* call self with slightly different values */
|
|
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_SPACE_PARLOCAL: /* -------------- FROM LOCAL WITH PARENT ---------- */
|
|
{
|
|
/* local to pose */
|
|
if (to==CONSTRAINT_SPACE_POSE || to==CONSTRAINT_SPACE_WORLD) {
|
|
if (pchan->bone) {
|
|
Mat4CpyMat4(diff_mat, pchan->bone->arm_mat);
|
|
Mat4CpyMat4(tempmat, mat);
|
|
Mat4MulMat4(mat, diff_mat, tempmat);
|
|
}
|
|
}
|
|
/* local to world */
|
|
if (to == CONSTRAINT_SPACE_WORLD) {
|
|
/* call self with slightly different values */
|
|
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
/* objects */
|
|
if (from==CONSTRAINT_SPACE_WORLD && to==CONSTRAINT_SPACE_LOCAL) {
|
|
/* check if object has a parent - otherwise this won't work */
|
|
if (ob->parent) {
|
|
/* 'subtract' parent's effects from owner */
|
|
Mat4MulMat4(diff_mat, ob->parentinv, ob->parent->obmat);
|
|
Mat4Invert(imat, diff_mat);
|
|
Mat4CpyMat4(tempmat, mat);
|
|
Mat4MulMat4(mat, tempmat, imat);
|
|
}
|
|
}
|
|
else if (from==CONSTRAINT_SPACE_LOCAL && to==CONSTRAINT_SPACE_WORLD) {
|
|
/* check that object has a parent - otherwise this won't work */
|
|
if (ob->parent) {
|
|
/* 'add' parent's effect back to owner */
|
|
Mat4CpyMat4(tempmat, mat);
|
|
Mat4MulMat4(diff_mat, ob->parentinv, ob->parent->obmat);
|
|
Mat4MulMat4(mat, tempmat, diff_mat);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ------------------------------- Target ---------------------------- */
|
|
|
|
/* generic function to get the appropriate matrix for most target cases */
|
|
/* The cases where the target can be object data have not been implemented */
|
|
static void constraint_target_to_mat4 (Object *ob, const char *substring, float mat[][4], short from, short to)
|
|
{
|
|
/* Case OBJECT */
|
|
if (!strlen(substring)) {
|
|
Mat4CpyMat4(mat, ob->obmat);
|
|
constraint_mat_convertspace(ob, NULL, mat, from, to);
|
|
}
|
|
/* Case VERTEXGROUP */
|
|
else if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
|
|
/* devise a matrix from the data in the vertexgroup */
|
|
/* TODO: will be handled in other files */
|
|
}
|
|
/* Case BONE */
|
|
else {
|
|
bPoseChannel *pchan;
|
|
|
|
pchan = get_pose_channel(ob->pose, substring);
|
|
if (pchan) {
|
|
/* Multiply the PoseSpace accumulation/final matrix for this
|
|
* PoseChannel by the Armature Object's Matrix to get a worldspace
|
|
* matrix.
|
|
*/
|
|
Mat4MulMat4(mat, pchan->pose_mat, ob->obmat);
|
|
}
|
|
else
|
|
Mat4CpyMat4(mat, ob->obmat);
|
|
|
|
/* convert matrix space as required */
|
|
constraint_mat_convertspace(ob, pchan, mat, from, to);
|
|
}
|
|
}
|
|
|
|
|
|
/* stupid little cross product function, 0:x, 1:y, 2:z axes */
|
|
static int basis_cross(int n, int m)
|
|
{
|
|
if(n-m == 1) return 1;
|
|
if(n-m == -1) return -1;
|
|
if(n-m == 2) return -1;
|
|
if(n-m == -2) return 1;
|
|
else return 0;
|
|
}
|
|
|
|
static void vectomat(float *vec, float *target_up, short axis, short upflag, short flags, float m[][3])
|
|
{
|
|
float n[3];
|
|
float u[3]; /* vector specifying the up axis */
|
|
float proj[3];
|
|
float right[3];
|
|
float neg = -1;
|
|
int right_index;
|
|
|
|
VecCopyf(n, vec);
|
|
if(Normalize(n) == 0.0) {
|
|
n[0] = 0.0;
|
|
n[1] = 0.0;
|
|
n[2] = 1.0;
|
|
}
|
|
if(axis > 2) axis -= 3;
|
|
else VecMulf(n,-1);
|
|
|
|
/* n specifies the transformation of the track axis */
|
|
|
|
if(flags & TARGET_Z_UP) {
|
|
/* target Z axis is the global up axis */
|
|
u[0] = target_up[0];
|
|
u[1] = target_up[1];
|
|
u[2] = target_up[2];
|
|
}
|
|
else {
|
|
/* world Z axis is the global up axis */
|
|
u[0] = 0;
|
|
u[1] = 0;
|
|
u[2] = 1;
|
|
}
|
|
|
|
/* project the up vector onto the plane specified by n */
|
|
Projf(proj, u, n); /* first u onto n... */
|
|
VecSubf(proj, u, proj); /* then onto the plane */
|
|
/* proj specifies the transformation of the up axis */
|
|
|
|
if(Normalize(proj) == 0.0) { /* degenerate projection */
|
|
proj[0] = 0.0;
|
|
proj[1] = 1.0;
|
|
proj[2] = 0.0;
|
|
}
|
|
|
|
/* Normalized cross product of n and proj specifies transformation of the right axis */
|
|
Crossf(right, proj, n);
|
|
Normalize(right);
|
|
|
|
if(axis != upflag) {
|
|
right_index = 3 - axis - upflag;
|
|
neg = (float) basis_cross(axis, upflag);
|
|
|
|
/* account for up direction, track direction */
|
|
m[right_index][0] = neg * right[0];
|
|
m[right_index][1] = neg * right[1];
|
|
m[right_index][2] = neg * right[2];
|
|
|
|
m[upflag][0] = proj[0];
|
|
m[upflag][1] = proj[1];
|
|
m[upflag][2] = proj[2];
|
|
|
|
m[axis][0] = n[0];
|
|
m[axis][1] = n[1];
|
|
m[axis][2] = n[2];
|
|
}
|
|
/* identity matrix - don't do anything if the two axes are the same */
|
|
else {
|
|
m[0][0]= m[1][1]= m[2][2]= 1.0;
|
|
m[0][1]= m[0][2]= m[0][3]= 0.0;
|
|
m[1][0]= m[1][2]= m[1][3]= 0.0;
|
|
m[2][0]= m[2][1]= m[2][3]= 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
/* called during solve_constraints */
|
|
/* also for make_parent, to find correct inverse of "follow path" */
|
|
/* warning: ownerdata is PoseChannel or Object */
|
|
/* ctime is global time, uncorrected for local bsystem_time */
|
|
short get_constraint_target_matrix (bConstraint *con, short ownertype, void *ownerdata, float mat[][4], float ctime)
|
|
{
|
|
short valid=0;
|
|
|
|
switch (con->type) {
|
|
case CONSTRAINT_TYPE_NULL:
|
|
{
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
if (ownertype == TARGET_BONE) {
|
|
extern void chan_calc_mat(bPoseChannel *chan);
|
|
bActionConstraint *data = (bActionConstraint*)con->data;
|
|
bPose *pose;
|
|
bPoseChannel *pchan, *tchan;
|
|
float tempmat[4][4], vec[3];
|
|
float s, t;
|
|
short axis;
|
|
|
|
/* initialise return matrix */
|
|
Mat4One(mat);
|
|
|
|
/* only continue if there is a target */
|
|
if (data->tar==NULL) return 0;
|
|
|
|
/* get the transform matrix of the target */
|
|
constraint_target_to_mat4(data->tar, data->subtarget, tempmat, CONSTRAINT_SPACE_WORLD, con->tarspace); // FIXME: change these spaces
|
|
|
|
/* determine where in transform range target is */
|
|
/* data->type is mapped as follows for backwards compatability:
|
|
* 00,01,02 - rotation (it used to be like this)
|
|
* 10,11,12 - scaling
|
|
* 20,21,22 - location
|
|
*/
|
|
if (data->type < 10) {
|
|
/* extract rotation (is in whatever space target should be in) */
|
|
Mat4ToEul(tempmat, vec);
|
|
vec[0] *= (float)(180.0/M_PI);
|
|
vec[1] *= (float)(180.0/M_PI);
|
|
vec[2] *= (float)(180.0/M_PI);
|
|
axis= data->type;
|
|
}
|
|
else if (data->type < 20) {
|
|
/* extract scaling (is in whatever space target should be in) */
|
|
Mat4ToSize(tempmat, vec);
|
|
axis= data->type - 10;
|
|
}
|
|
else {
|
|
/* extract location */
|
|
VECCOPY(vec, tempmat[3]);
|
|
axis= data->type - 20;
|
|
}
|
|
|
|
/* Target defines the animation */
|
|
s = (vec[axis]-data->min) / (data->max-data->min);
|
|
CLAMP(s, 0, 1);
|
|
t = ( s * (data->end-data->start)) + data->start;
|
|
|
|
/* Get the appropriate information from the action, we make temp pose */
|
|
pose = MEM_callocN(sizeof(bPose), "pose");
|
|
|
|
pchan = ownerdata;
|
|
tchan= verify_pose_channel(pose, pchan->name);
|
|
extract_pose_from_action(pose, data->act, t);
|
|
|
|
chan_calc_mat(tchan);
|
|
|
|
Mat4CpyMat4(mat, tchan->chan_mat);
|
|
|
|
/* Clean up */
|
|
free_pose_channels(pose);
|
|
MEM_freeN(pose);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data = (bLocateLikeConstraint*)con->data;
|
|
Object *ob= data->tar;
|
|
|
|
if (data->tar) {
|
|
if (strlen(data->subtarget)) {
|
|
bPoseChannel *pchan;
|
|
float tmat[4][4];
|
|
|
|
pchan = get_pose_channel(ob->pose, data->subtarget);
|
|
if (pchan) {
|
|
Mat4CpyMat4(tmat, pchan->pose_mat);
|
|
|
|
if (data->flag & LOCLIKE_TIP) {
|
|
VECCOPY(tmat[3], pchan->pose_tail);
|
|
}
|
|
|
|
Mat4MulMat4(mat, tmat, ob->obmat);
|
|
}
|
|
else
|
|
Mat4CpyMat4(mat, ob->obmat);
|
|
|
|
/* convert matrix space as required */
|
|
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
}
|
|
else {
|
|
Mat4CpyMat4(mat, ob->obmat);
|
|
|
|
/* convert matrix space as required */
|
|
constraint_mat_convertspace(ob, NULL, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
}
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data;
|
|
data = (bRotateLikeConstraint*)con->data;
|
|
|
|
if (data->tar) {
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data;
|
|
data = (bSizeLikeConstraint*)con->data;
|
|
|
|
if (data->tar) {
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data = (bMinMaxConstraint*)con->data;
|
|
|
|
if (data->tar) {
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data;
|
|
data = (bTrackToConstraint*)con->data;
|
|
|
|
if (data->tar) {
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One (mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_KINEMATIC:
|
|
{
|
|
bKinematicConstraint *data;
|
|
data = (bKinematicConstraint*)con->data;
|
|
|
|
if (data->tar) {
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
valid=1;
|
|
}
|
|
else if (data->flag & CONSTRAINT_IK_AUTO) {
|
|
Object *ob= (Object *)ownerdata;
|
|
|
|
if (ob==NULL)
|
|
Mat4One(mat);
|
|
else {
|
|
float vec[3];
|
|
/* move grabtarget into world space */
|
|
VECCOPY(vec, data->grabtarget);
|
|
Mat4MulVecfl(ob->obmat, vec);
|
|
Mat4CpyMat4(mat, ob->obmat);
|
|
VECCOPY(mat[3], vec);
|
|
}
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data;
|
|
data = (bLockTrackConstraint*)con->data;
|
|
|
|
if (data->tar) {
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data;
|
|
data = (bFollowPathConstraint*)con->data;
|
|
|
|
if (data->tar) {
|
|
Curve *cu;
|
|
float q[4], vec[4], dir[3], *quat, x1;
|
|
float totmat[4][4];
|
|
float curvetime;
|
|
|
|
Mat4One(totmat);
|
|
Mat4One(mat);
|
|
|
|
cu= data->tar->data;
|
|
|
|
/* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
|
|
currently for paths to work it needs to go through the bevlist/displist system (ton) */
|
|
|
|
if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
|
|
makeDispListCurveTypes(data->tar, 0);
|
|
if (cu->path && cu->path->data) {
|
|
curvetime= bsystem_time(data->tar, data->tar->parent, (float)ctime, 0.0) - data->offset;
|
|
|
|
if (calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) {
|
|
curvetime /= cu->pathlen;
|
|
CLAMP(curvetime, 0.0, 1.0);
|
|
}
|
|
|
|
if (where_on_path(data->tar, curvetime, vec, dir) ) {
|
|
if (data->followflag) {
|
|
quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag);
|
|
|
|
Normalize(dir);
|
|
q[0]= (float)cos(0.5*vec[3]);
|
|
x1= (float)sin(0.5*vec[3]);
|
|
q[1]= -x1*dir[0];
|
|
q[2]= -x1*dir[1];
|
|
q[3]= -x1*dir[2];
|
|
QuatMul(quat, q, quat);
|
|
|
|
QuatToMat4(quat, totmat);
|
|
}
|
|
VECCOPY(totmat[3], vec);
|
|
|
|
Mat4MulSerie(mat, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
valid=1;
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data;
|
|
data = (bStretchToConstraint*)con->data;
|
|
|
|
if (data->tar) {
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
valid = 1;
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_PYTHON:
|
|
{
|
|
bPythonConstraint *data;
|
|
data = (bPythonConstraint*)con->data;
|
|
|
|
/* special exception for curves - depsgraph issues */
|
|
if (data->tar && data->tar->type == OB_CURVE) {
|
|
Curve *cu= data->tar->data;
|
|
|
|
/* this check is to make sure curve objects get updated on file load correctly.*/
|
|
if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
|
|
makeDispListCurveTypes(data->tar, 0);
|
|
}
|
|
|
|
/* if the script doesn't set the target matrix for any reason, fall back to standard methods */
|
|
if (BPY_pyconstraint_targets(data, mat) < 1) {
|
|
if (data->tar) {
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
valid = 1;
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CLAMPTO:
|
|
{
|
|
bClampToConstraint *data;
|
|
data = (bClampToConstraint*)con->data;
|
|
|
|
if (data->tar) {
|
|
Curve *cu= data->tar->data;
|
|
|
|
/* note; when creating constraints that follow path, the curve gets the CU_PATH set now,
|
|
currently for paths to work it needs to go through the bevlist/displist system (ton) */
|
|
|
|
if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
|
|
makeDispListCurveTypes(data->tar, 0);
|
|
|
|
valid = 1;
|
|
}
|
|
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CHILDOF:
|
|
{
|
|
bChildOfConstraint *data;
|
|
data= (bChildOfConstraint *)con->data;
|
|
|
|
if (data->tar) {
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
valid = 1;
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRANSFORM:
|
|
{
|
|
bTransformConstraint *data;
|
|
data= (bTransformConstraint *)con->data;
|
|
|
|
if (data->tar) {
|
|
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
|
|
valid = 1;
|
|
}
|
|
else
|
|
Mat4One(mat);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Mat4One(mat);
|
|
break;
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
/* ---------------------------------------------- Constraint Evaluation ------------------------------------------------- */
|
|
|
|
/* This is only called during solve_constraints to solve a particular constraint.
|
|
* It works on ownermat, and uses targetmat to help accomplish its tasks.
|
|
*/
|
|
static void evaluate_constraint (bConstraint *constraint, float ownermat[][4], float targetmat[][4])
|
|
{
|
|
if (constraint == NULL || constraint->data == NULL)
|
|
return;
|
|
|
|
switch (constraint->type) {
|
|
case CONSTRAINT_TYPE_NULL:
|
|
case CONSTRAINT_TYPE_KINEMATIC: /* removed */
|
|
break;
|
|
case CONSTRAINT_TYPE_PYTHON:
|
|
{
|
|
bPythonConstraint *data;
|
|
|
|
data = constraint->data;
|
|
BPY_pyconstraint_eval(data, ownermat, targetmat);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ACTION:
|
|
{
|
|
bActionConstraint *data;
|
|
float temp[4][4];
|
|
|
|
data = constraint->data;
|
|
Mat4CpyMat4(temp, ownermat);
|
|
|
|
Mat4MulMat4(ownermat, targetmat, temp);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIKE:
|
|
{
|
|
bLocateLikeConstraint *data;
|
|
float offset[3] = {0.0f, 0.0f, 0.0f};
|
|
|
|
data = constraint->data;
|
|
|
|
if (data->flag & LOCLIKE_OFFSET)
|
|
VECCOPY(offset, ownermat[3]);
|
|
|
|
if (data->flag & LOCLIKE_X) {
|
|
ownermat[3][0] = targetmat[3][0];
|
|
|
|
if(data->flag & LOCLIKE_X_INVERT) ownermat[3][0] *= -1;
|
|
ownermat[3][0] += offset[0];
|
|
}
|
|
if (data->flag & LOCLIKE_Y) {
|
|
ownermat[3][1] = targetmat[3][1];
|
|
|
|
if(data->flag & LOCLIKE_Y_INVERT) ownermat[3][1] *= -1;
|
|
ownermat[3][1] += offset[1];
|
|
}
|
|
if (data->flag & LOCLIKE_Z) {
|
|
ownermat[3][2] = targetmat[3][2];
|
|
|
|
if(data->flag & LOCLIKE_Z_INVERT) ownermat[3][2] *= -1;
|
|
ownermat[3][2] += offset[2];
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIKE:
|
|
{
|
|
bRotateLikeConstraint *data;
|
|
float loc[3];
|
|
float eul[3], obeul[3];
|
|
float size[3];
|
|
short changed= 0;
|
|
|
|
data = constraint->data;
|
|
|
|
VECCOPY(loc, ownermat[3]);
|
|
Mat4ToSize(ownermat, size);
|
|
|
|
Mat4ToEul(targetmat, eul);
|
|
Mat4ToEul(ownermat, obeul);
|
|
|
|
if ((data->flag & ROTLIKE_X)==0) {
|
|
eul[0] = obeul[0];
|
|
changed = 1;
|
|
}
|
|
else if (data->flag & ROTLIKE_X_INVERT) {
|
|
eul[0] *= -1;
|
|
changed = 1;
|
|
}
|
|
if ((data->flag & ROTLIKE_Y)==0) {
|
|
eul[1] = obeul[1];
|
|
changed = 1;
|
|
}
|
|
else if (data->flag & ROTLIKE_Y_INVERT) {
|
|
eul[1] *= -1;
|
|
changed = 1;
|
|
}
|
|
if ((data->flag & ROTLIKE_Z)==0) {
|
|
eul[2] = obeul[2];
|
|
changed = 1;
|
|
}
|
|
else if (data->flag & ROTLIKE_Z_INVERT) {
|
|
eul[2] *= -1;
|
|
changed = 1;
|
|
}
|
|
|
|
|
|
if (changed) {
|
|
compatible_eul(eul, obeul);
|
|
LocEulSizeToMat4(ownermat, loc, eul, size);
|
|
}
|
|
else {
|
|
float quat[4];
|
|
|
|
Mat4ToQuat(targetmat, quat);
|
|
LocQuatSizeToMat4(ownermat, loc, quat, size);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIKE:
|
|
{
|
|
bSizeLikeConstraint *data;
|
|
float obsize[3], size[3];
|
|
|
|
data = constraint->data;
|
|
|
|
Mat4ToSize(targetmat, size);
|
|
Mat4ToSize(ownermat, obsize);
|
|
|
|
if ((data->flag & SIZELIKE_X) && obsize[0] != 0)
|
|
VecMulf(ownermat[0], size[0] / obsize[0]);
|
|
if ((data->flag & SIZELIKE_Y) && obsize[1] != 0)
|
|
VecMulf(ownermat[1], size[1] / obsize[1]);
|
|
if ((data->flag & SIZELIKE_Z) && obsize[2] != 0)
|
|
VecMulf(ownermat[2], size[2] / obsize[2]);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_MINMAX:
|
|
{
|
|
bMinMaxConstraint *data;
|
|
float obmat[4][4], imat[4][4], tarmat[4][4], tmat[4][4];
|
|
float val1, val2;
|
|
int index;
|
|
|
|
data = constraint->data;
|
|
|
|
Mat4CpyMat4(obmat, ownermat);
|
|
Mat4CpyMat4(tarmat, targetmat);
|
|
|
|
if (data->flag & MINMAX_USEROT) {
|
|
/* take rotation of target into account by doing the transaction in target's localspace */
|
|
Mat4Invert(imat, tarmat);
|
|
Mat4MulMat4(tmat, obmat, imat);
|
|
Mat4CpyMat4(obmat, tmat);
|
|
Mat4One(tarmat);
|
|
}
|
|
|
|
switch (data->minmaxflag) {
|
|
case TRACK_Z:
|
|
val1 = tarmat[3][2];
|
|
val2 = obmat[3][2]-data->offset;
|
|
index = 2;
|
|
break;
|
|
case TRACK_Y:
|
|
val1 = tarmat[3][1];
|
|
val2 = obmat[3][1]-data->offset;
|
|
index = 1;
|
|
break;
|
|
case TRACK_X:
|
|
val1 = tarmat[3][0];
|
|
val2 = obmat[3][0]-data->offset;
|
|
index = 0;
|
|
break;
|
|
case TRACK_nZ:
|
|
val2 = tarmat[3][2];
|
|
val1 = obmat[3][2]-data->offset;
|
|
index = 2;
|
|
break;
|
|
case TRACK_nY:
|
|
val2 = tarmat[3][1];
|
|
val1 = obmat[3][1]-data->offset;
|
|
index = 1;
|
|
break;
|
|
case TRACK_nX:
|
|
val2 = tarmat[3][0];
|
|
val1 = obmat[3][0]-data->offset;
|
|
index = 0;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (val1 > val2) {
|
|
obmat[3][index] = tarmat[3][index] + data->offset;
|
|
if (data->flag & MINMAX_STICKY) {
|
|
if (data->flag & MINMAX_STUCK) {
|
|
VECCOPY(obmat[3], data->cache);
|
|
}
|
|
else {
|
|
VECCOPY(data->cache, obmat[3]);
|
|
data->flag |= MINMAX_STUCK;
|
|
}
|
|
}
|
|
if (data->flag & MINMAX_USEROT) {
|
|
/* get out of localspace */
|
|
Mat4MulMat4(tmat, obmat, targetmat);
|
|
Mat4CpyMat4(ownermat, tmat);
|
|
}
|
|
else {
|
|
VECCOPY(ownermat[3], obmat[3]);
|
|
}
|
|
}
|
|
else {
|
|
data->flag &= ~MINMAX_STUCK;
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRACKTO:
|
|
{
|
|
bTrackToConstraint *data;
|
|
float size[3], vec[3];
|
|
float totmat[3][3];
|
|
float tmat[4][4];
|
|
|
|
data = constraint->data;
|
|
|
|
if (data->tar) {
|
|
/* Get size property, since ob->size is only the object's own relative size, not its global one */
|
|
Mat4ToSize (ownermat, size);
|
|
|
|
/* Clear the object's rotation */
|
|
ownermat[0][0]=size[0];
|
|
ownermat[0][1]=0;
|
|
ownermat[0][2]=0;
|
|
ownermat[1][0]=0;
|
|
ownermat[1][1]=size[1];
|
|
ownermat[1][2]=0;
|
|
ownermat[2][0]=0;
|
|
ownermat[2][1]=0;
|
|
ownermat[2][2]=size[2];
|
|
|
|
VecSubf(vec, ownermat[3], targetmat[3]);
|
|
vectomat(vec, ownermat[2],
|
|
(short)data->reserved1, (short)data->reserved2,
|
|
data->flags, totmat);
|
|
|
|
Mat4CpyMat4(tmat, ownermat);
|
|
Mat4MulMat34(ownermat, totmat, tmat);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCKTRACK:
|
|
{
|
|
bLockTrackConstraint *data;
|
|
float vec[3],vec2[3];
|
|
float totmat[3][3];
|
|
float tmpmat[3][3];
|
|
float invmat[3][3];
|
|
float tmat[4][4];
|
|
float mdet;
|
|
|
|
data = constraint->data;
|
|
|
|
if (data->tar) {
|
|
/* Vector object -> target */
|
|
VecSubf(vec, targetmat[3], ownermat[3]);
|
|
switch (data->lockflag){
|
|
case LOCK_X: /* LOCK X */
|
|
{
|
|
switch (data->trackflag) {
|
|
case TRACK_Y: /* LOCK X TRACK Y */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[0]);
|
|
VecSubf(totmat[1], vec, vec2);
|
|
Normalize(totmat[1]);
|
|
|
|
/* the x axis is fixed */
|
|
totmat[0][0] = ownermat[0][0];
|
|
totmat[0][1] = ownermat[0][1];
|
|
totmat[0][2] = ownermat[0][2];
|
|
Normalize(totmat[0]);
|
|
|
|
/* the z axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[2], totmat[0], totmat[1]);
|
|
}
|
|
break;
|
|
case TRACK_Z: /* LOCK X TRACK Z */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[0]);
|
|
VecSubf(totmat[2], vec, vec2);
|
|
Normalize(totmat[2]);
|
|
|
|
/* the x axis is fixed */
|
|
totmat[0][0] = ownermat[0][0];
|
|
totmat[0][1] = ownermat[0][1];
|
|
totmat[0][2] = ownermat[0][2];
|
|
Normalize(totmat[0]);
|
|
|
|
/* the z axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[1], totmat[2], totmat[0]);
|
|
}
|
|
break;
|
|
case TRACK_nY: /* LOCK X TRACK -Y */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[0]);
|
|
VecSubf(totmat[1], vec, vec2);
|
|
Normalize(totmat[1]);
|
|
VecMulf(totmat[1],-1);
|
|
|
|
/* the x axis is fixed */
|
|
totmat[0][0] = ownermat[0][0];
|
|
totmat[0][1] = ownermat[0][1];
|
|
totmat[0][2] = ownermat[0][2];
|
|
Normalize(totmat[0]);
|
|
|
|
/* the z axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[2], totmat[0], totmat[1]);
|
|
}
|
|
break;
|
|
case TRACK_nZ: /* LOCK X TRACK -Z */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[0]);
|
|
VecSubf(totmat[2], vec, vec2);
|
|
Normalize(totmat[2]);
|
|
VecMulf(totmat[2],-1);
|
|
|
|
/* the x axis is fixed */
|
|
totmat[0][0] = ownermat[0][0];
|
|
totmat[0][1] = ownermat[0][1];
|
|
totmat[0][2] = ownermat[0][2];
|
|
Normalize(totmat[0]);
|
|
|
|
/* the z axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[1], totmat[2], totmat[0]);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
|
|
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
|
|
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case LOCK_Y: /* LOCK Y */
|
|
{
|
|
switch (data->trackflag) {
|
|
case TRACK_X: /* LOCK Y TRACK X */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[1]);
|
|
VecSubf(totmat[0], vec, vec2);
|
|
Normalize(totmat[0]);
|
|
|
|
/* the y axis is fixed */
|
|
totmat[1][0] = ownermat[1][0];
|
|
totmat[1][1] = ownermat[1][1];
|
|
totmat[1][2] = ownermat[1][2];
|
|
Normalize(totmat[1]);
|
|
|
|
/* the z axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[2], totmat[0], totmat[1]);
|
|
}
|
|
break;
|
|
case TRACK_Z: /* LOCK Y TRACK Z */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[1]);
|
|
VecSubf(totmat[2], vec, vec2);
|
|
Normalize(totmat[2]);
|
|
|
|
/* the y axis is fixed */
|
|
totmat[1][0] = ownermat[1][0];
|
|
totmat[1][1] = ownermat[1][1];
|
|
totmat[1][2] = ownermat[1][2];
|
|
Normalize(totmat[1]);
|
|
|
|
/* the z axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[0], totmat[1], totmat[2]);
|
|
}
|
|
break;
|
|
case TRACK_nX: /* LOCK Y TRACK -X */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[1]);
|
|
VecSubf(totmat[0], vec, vec2);
|
|
Normalize(totmat[0]);
|
|
VecMulf(totmat[0],-1);
|
|
|
|
/* the y axis is fixed */
|
|
totmat[1][0] = ownermat[1][0];
|
|
totmat[1][1] = ownermat[1][1];
|
|
totmat[1][2] = ownermat[1][2];
|
|
Normalize(totmat[1]);
|
|
|
|
/* the z axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[2], totmat[0], totmat[1]);
|
|
}
|
|
break;
|
|
case TRACK_nZ: /* LOCK Y TRACK -Z */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[1]);
|
|
VecSubf(totmat[2], vec, vec2);
|
|
Normalize(totmat[2]);
|
|
VecMulf(totmat[2],-1);
|
|
|
|
/* the y axis is fixed */
|
|
totmat[1][0] = ownermat[1][0];
|
|
totmat[1][1] = ownermat[1][1];
|
|
totmat[1][2] = ownermat[1][2];
|
|
Normalize(totmat[1]);
|
|
|
|
/* the z axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[0], totmat[1], totmat[2]);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
|
|
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
|
|
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case LOCK_Z: /* LOCK Z */
|
|
{
|
|
switch (data->trackflag) {
|
|
case TRACK_X: /* LOCK Z TRACK X */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[2]);
|
|
VecSubf(totmat[0], vec, vec2);
|
|
Normalize(totmat[0]);
|
|
|
|
/* the z axis is fixed */
|
|
totmat[2][0] = ownermat[2][0];
|
|
totmat[2][1] = ownermat[2][1];
|
|
totmat[2][2] = ownermat[2][2];
|
|
Normalize(totmat[2]);
|
|
|
|
/* the x axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[1], totmat[2], totmat[0]);
|
|
}
|
|
break;
|
|
case TRACK_Y: /* LOCK Z TRACK Y */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[2]);
|
|
VecSubf(totmat[1], vec, vec2);
|
|
Normalize(totmat[1]);
|
|
|
|
/* the z axis is fixed */
|
|
totmat[2][0] = ownermat[2][0];
|
|
totmat[2][1] = ownermat[2][1];
|
|
totmat[2][2] = ownermat[2][2];
|
|
Normalize(totmat[2]);
|
|
|
|
/* the x axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[0], totmat[1], totmat[2]);
|
|
}
|
|
break;
|
|
case TRACK_nX: /* LOCK Z TRACK -X */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[2]);
|
|
VecSubf(totmat[0], vec, vec2);
|
|
Normalize(totmat[0]);
|
|
VecMulf(totmat[0],-1);
|
|
|
|
/* the z axis is fixed */
|
|
totmat[2][0] = ownermat[2][0];
|
|
totmat[2][1] = ownermat[2][1];
|
|
totmat[2][2] = ownermat[2][2];
|
|
Normalize(totmat[2]);
|
|
|
|
/* the x axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[1], totmat[2], totmat[0]);
|
|
}
|
|
break;
|
|
case TRACK_nY: /* LOCK Z TRACK -Y */
|
|
{
|
|
/* Projection of Vector on the plane */
|
|
Projf(vec2, vec, ownermat[2]);
|
|
VecSubf(totmat[1], vec, vec2);
|
|
Normalize(totmat[1]);
|
|
VecMulf(totmat[1],-1);
|
|
|
|
/* the z axis is fixed */
|
|
totmat[2][0] = ownermat[2][0];
|
|
totmat[2][1] = ownermat[2][1];
|
|
totmat[2][2] = ownermat[2][2];
|
|
Normalize(totmat[2]);
|
|
|
|
/* the x axis gets mapped onto a third orthogonal vector */
|
|
Crossf(totmat[0], totmat[1], totmat[2]);
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
|
|
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
|
|
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
|
|
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
|
|
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
|
|
}
|
|
break;
|
|
}
|
|
/* Block to keep matrix heading */
|
|
tmpmat[0][0] = ownermat[0][0];tmpmat[0][1] = ownermat[0][1];tmpmat[0][2] = ownermat[0][2];
|
|
tmpmat[1][0] = ownermat[1][0];tmpmat[1][1] = ownermat[1][1];tmpmat[1][2] = ownermat[1][2];
|
|
tmpmat[2][0] = ownermat[2][0];tmpmat[2][1] = ownermat[2][1];tmpmat[2][2] = ownermat[2][2];
|
|
Normalize(tmpmat[0]);
|
|
Normalize(tmpmat[1]);
|
|
Normalize(tmpmat[2]);
|
|
Mat3Inv(invmat,tmpmat);
|
|
Mat3MulMat3(tmpmat, totmat, invmat);
|
|
totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
|
|
totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
|
|
totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
|
|
|
|
Mat4CpyMat4(tmat, ownermat);
|
|
|
|
mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2],
|
|
totmat[1][0],totmat[1][1],totmat[1][2],
|
|
totmat[2][0],totmat[2][1],totmat[2][2]);
|
|
if (mdet==0)
|
|
{
|
|
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
|
|
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
|
|
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
|
|
}
|
|
|
|
/* apply out transformaton to the object */
|
|
Mat4MulMat34(ownermat, totmat, tmat);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_FOLLOWPATH:
|
|
{
|
|
bFollowPathConstraint *data;
|
|
float obmat[4][4];
|
|
float size[3], obsize[3];
|
|
|
|
data = constraint->data;
|
|
|
|
if (data->tar) {
|
|
/* get Object local transform (loc/rot/size) to determine transformation from path */
|
|
//object_to_mat4(ob, obmat);
|
|
Mat4CpyMat4(obmat, ownermat); // FIXME!!!
|
|
|
|
/* get scaling of object before applying constraint */
|
|
Mat4ToSize(ownermat, size);
|
|
|
|
/* apply targetmat - containing location on path, and rotation */
|
|
Mat4MulSerie(ownermat, targetmat, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
|
|
/* un-apply scaling caused by path */
|
|
Mat4ToSize(ownermat, obsize);
|
|
if (obsize[0] != 0)
|
|
VecMulf(ownermat[0], size[0] / obsize[0]);
|
|
if (obsize[1] != 0)
|
|
VecMulf(ownermat[1], size[1] / obsize[1]);
|
|
if (obsize[2] != 0)
|
|
VecMulf(ownermat[2], size[2] / obsize[2]);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_STRETCHTO:
|
|
{
|
|
bStretchToConstraint *data;
|
|
float size[3],scale[3],vec[3],xx[3],zz[3],orth[3];
|
|
float totmat[3][3];
|
|
float tmat[4][4];
|
|
float dist;
|
|
|
|
data = constraint->data;
|
|
Mat4ToSize (ownermat, size);
|
|
|
|
if (data->tar) {
|
|
/* store X orientation before destroying obmat */
|
|
xx[0] = ownermat[0][0];
|
|
xx[1] = ownermat[0][1];
|
|
xx[2] = ownermat[0][2];
|
|
Normalize(xx);
|
|
|
|
/* store Z orientation before destroying obmat */
|
|
zz[0] = ownermat[2][0];
|
|
zz[1] = ownermat[2][1];
|
|
zz[2] = ownermat[2][2];
|
|
Normalize(zz);
|
|
|
|
VecSubf(vec, ownermat[3], targetmat[3]);
|
|
vec[0] /= size[0];
|
|
vec[1] /= size[1];
|
|
vec[2] /= size[2];
|
|
|
|
dist = Normalize(vec);
|
|
//dist = VecLenf( ob->obmat[3], targetmat[3]);
|
|
|
|
if (data->orglength == 0) data->orglength = dist;
|
|
if (data->bulge ==0) data->bulge = 1.0;
|
|
|
|
scale[1] = dist/data->orglength;
|
|
switch (data->volmode) {
|
|
/* volume preserving scaling */
|
|
case VOLUME_XZ :
|
|
scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
|
|
scale[2] = scale[0];
|
|
break;
|
|
case VOLUME_X:
|
|
scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
|
|
scale[2] = 1.0;
|
|
break;
|
|
case VOLUME_Z:
|
|
scale[0] = 1.0;
|
|
scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
|
|
break;
|
|
/* don't care for volume */
|
|
case NO_VOLUME:
|
|
scale[0] = 1.0;
|
|
scale[2] = 1.0;
|
|
break;
|
|
default: /* should not happen, but in case*/
|
|
return;
|
|
} /* switch (data->volmode) */
|
|
|
|
/* Clear the object's rotation and scale */
|
|
ownermat[0][0]=size[0]*scale[0];
|
|
ownermat[0][1]=0;
|
|
ownermat[0][2]=0;
|
|
ownermat[1][0]=0;
|
|
ownermat[1][1]=size[1]*scale[1];
|
|
ownermat[1][2]=0;
|
|
ownermat[2][0]=0;
|
|
ownermat[2][1]=0;
|
|
ownermat[2][2]=size[2]*scale[2];
|
|
|
|
VecSubf(vec, ownermat[3], targetmat[3]);
|
|
Normalize(vec);
|
|
|
|
/* new Y aligns object target connection*/
|
|
totmat[1][0] = -vec[0];
|
|
totmat[1][1] = -vec[1];
|
|
totmat[1][2] = -vec[2];
|
|
switch (data->plane) {
|
|
case PLANE_X:
|
|
/* build new Z vector */
|
|
/* othogonal to "new Y" "old X! plane */
|
|
Crossf(orth, vec, xx);
|
|
Normalize(orth);
|
|
|
|
/* new Z*/
|
|
totmat[2][0] = orth[0];
|
|
totmat[2][1] = orth[1];
|
|
totmat[2][2] = orth[2];
|
|
|
|
/* we decided to keep X plane*/
|
|
Crossf(xx, orth, vec);
|
|
Normalize(xx);
|
|
totmat[0][0] = xx[0];
|
|
totmat[0][1] = xx[1];
|
|
totmat[0][2] = xx[2];
|
|
break;
|
|
case PLANE_Z:
|
|
/* build new X vector */
|
|
/* othogonal to "new Y" "old Z! plane */
|
|
Crossf(orth, vec, zz);
|
|
Normalize(orth);
|
|
|
|
/* new X */
|
|
totmat[0][0] = -orth[0];
|
|
totmat[0][1] = -orth[1];
|
|
totmat[0][2] = -orth[2];
|
|
|
|
/* we decided to keep Z */
|
|
Crossf(zz, orth, vec);
|
|
Normalize(zz);
|
|
totmat[2][0] = zz[0];
|
|
totmat[2][1] = zz[1];
|
|
totmat[2][2] = zz[2];
|
|
break;
|
|
} /* switch (data->plane) */
|
|
|
|
Mat4CpyMat4(tmat, ownermat);
|
|
|
|
Mat4MulMat34(ownermat, totmat, tmat);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_LOCLIMIT:
|
|
{
|
|
bLocLimitConstraint *data;
|
|
|
|
data = constraint->data;
|
|
|
|
if (data->flag & LIMIT_XMIN) {
|
|
if(ownermat[3][0] < data->xmin)
|
|
ownermat[3][0] = data->xmin;
|
|
}
|
|
if (data->flag & LIMIT_XMAX) {
|
|
if (ownermat[3][0] > data->xmax)
|
|
ownermat[3][0] = data->xmax;
|
|
}
|
|
if (data->flag & LIMIT_YMIN) {
|
|
if(ownermat[3][1] < data->ymin)
|
|
ownermat[3][1] = data->ymin;
|
|
}
|
|
if (data->flag & LIMIT_YMAX) {
|
|
if (ownermat[3][1] > data->ymax)
|
|
ownermat[3][1] = data->ymax;
|
|
}
|
|
if (data->flag & LIMIT_ZMIN) {
|
|
if(ownermat[3][2] < data->zmin)
|
|
ownermat[3][2] = data->zmin;
|
|
}
|
|
if (data->flag & LIMIT_ZMAX) {
|
|
if (ownermat[3][2] > data->zmax)
|
|
ownermat[3][2] = data->zmax;
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_ROTLIMIT:
|
|
{
|
|
bRotLimitConstraint *data;
|
|
float loc[3];
|
|
float eul[3];
|
|
float size[3];
|
|
|
|
data = constraint->data;
|
|
|
|
VECCOPY(loc, ownermat[3]);
|
|
Mat4ToSize(ownermat, size);
|
|
|
|
Mat4ToEul(ownermat, eul);
|
|
|
|
/* eulers: radians to degrees! */
|
|
eul[0] = (eul[0] / M_PI * 180);
|
|
eul[1] = (eul[1] / M_PI * 180);
|
|
eul[2] = (eul[2] / M_PI * 180);
|
|
|
|
/* limiting of euler values... */
|
|
if (data->flag & LIMIT_XROT) {
|
|
if (eul[0] < data->xmin)
|
|
eul[0] = data->xmin;
|
|
|
|
if (eul[0] > data->xmax)
|
|
eul[0] = data->xmax;
|
|
}
|
|
if (data->flag & LIMIT_YROT) {
|
|
if (eul[1] < data->ymin)
|
|
eul[1] = data->ymin;
|
|
|
|
if (eul[1] > data->ymax)
|
|
eul[1] = data->ymax;
|
|
}
|
|
if (data->flag & LIMIT_ZROT) {
|
|
if (eul[2] < data->zmin)
|
|
eul[2] = data->zmin;
|
|
|
|
if (eul[2] > data->zmax)
|
|
eul[2] = data->zmax;
|
|
}
|
|
|
|
/* eulers: degrees to radians ! */
|
|
eul[0] = (eul[0] / 180 * M_PI);
|
|
eul[1] = (eul[1] / 180 * M_PI);
|
|
eul[2] = (eul[2] / 180 * M_PI);
|
|
|
|
LocEulSizeToMat4(ownermat, loc, eul, size);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_SIZELIMIT:
|
|
{
|
|
bSizeLimitConstraint *data;
|
|
float obsize[3], size[3];
|
|
|
|
data = constraint->data;
|
|
|
|
Mat4ToSize(ownermat, size);
|
|
Mat4ToSize(ownermat, obsize);
|
|
|
|
if (data->flag & LIMIT_XMIN) {
|
|
if (size[0] < data->xmin)
|
|
size[0] = data->xmin;
|
|
}
|
|
if (data->flag & LIMIT_XMAX) {
|
|
if (size[0] > data->xmax)
|
|
size[0] = data->xmax;
|
|
}
|
|
if (data->flag & LIMIT_YMIN) {
|
|
if (size[1] < data->ymin)
|
|
size[1] = data->ymin;
|
|
}
|
|
if (data->flag & LIMIT_YMAX) {
|
|
if (size[1] > data->ymax)
|
|
size[1] = data->ymax;
|
|
}
|
|
if (data->flag & LIMIT_ZMIN) {
|
|
if (size[2] < data->zmin)
|
|
size[2] = data->zmin;
|
|
}
|
|
if (data->flag & LIMIT_ZMAX) {
|
|
if (size[2] > data->zmax)
|
|
size[2] = data->zmax;
|
|
}
|
|
|
|
VecMulf(ownermat[0], size[0]/obsize[0]);
|
|
VecMulf(ownermat[1], size[1]/obsize[1]);
|
|
VecMulf(ownermat[2], size[2]/obsize[2]);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
|
|
{
|
|
/* Do nothing. The GameEngine will take care of this.*/
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CLAMPTO:
|
|
{
|
|
bClampToConstraint *data;
|
|
Curve *cu;
|
|
float obmat[4][4], targetMatrix[4][4], ownLoc[3];
|
|
float curveMin[3], curveMax[3];
|
|
|
|
data = constraint->data;
|
|
|
|
/* prevent crash if user deletes curve */
|
|
if ((data->tar == NULL) || (data->tar->type != OB_CURVE) )
|
|
return;
|
|
else
|
|
cu= data->tar->data;
|
|
|
|
Mat4CpyMat4(obmat, ownermat);
|
|
Mat4One(targetMatrix);
|
|
VECCOPY(ownLoc, obmat[3]);
|
|
|
|
INIT_MINMAX(curveMin, curveMax)
|
|
minmax_object(data->tar, curveMin, curveMax);
|
|
|
|
/* get targetmatrix */
|
|
if (cu->path && cu->path->data) {
|
|
float vec[4], dir[3], totmat[4][4];
|
|
float curvetime;
|
|
short clamp_axis;
|
|
|
|
/* find best position on curve */
|
|
/* 1. determine which axis to sample on? */
|
|
if (data->flag==CLAMPTO_AUTO) {
|
|
float size[3];
|
|
VecSubf(size, curveMax, curveMin);
|
|
|
|
/* find axis along which the bounding box has the greatest
|
|
* extent. Otherwise, default to the x-axis, as that is quite
|
|
* frequently used.
|
|
*/
|
|
if ((size[2]>size[0]) && (size[2]>size[1]))
|
|
clamp_axis= CLAMPTO_Z;
|
|
else if ((size[1]>size[0]) && (size[1]>size[2]))
|
|
clamp_axis= CLAMPTO_Y;
|
|
else
|
|
clamp_axis = CLAMPTO_X;
|
|
}
|
|
else
|
|
clamp_axis= data->flag;
|
|
|
|
/* 2. determine position relative to curve on a 0-1 scale */
|
|
if (clamp_axis > 0) clamp_axis--;
|
|
if (ownLoc[clamp_axis] <= curveMin[clamp_axis])
|
|
curvetime = 0.0;
|
|
else if (ownLoc[clamp_axis] >= curveMax[clamp_axis])
|
|
curvetime = 1.0;
|
|
else
|
|
curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (curveMax[clamp_axis] - curveMin[clamp_axis]);
|
|
|
|
/* 3. position on curve */
|
|
if(where_on_path(data->tar, curvetime, vec, dir) ) {
|
|
Mat4One(totmat);
|
|
VECCOPY(totmat[3], vec);
|
|
|
|
Mat4MulSerie(targetMatrix, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
/* obtain final object position */
|
|
VECCOPY(ownermat[3], targetMatrix[3]);
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_CHILDOF:
|
|
{
|
|
bChildOfConstraint *data;
|
|
|
|
data = constraint->data;
|
|
|
|
/* only evaluate if there is a target */
|
|
if (data->tar) {
|
|
float parmat[4][4], invmat[4][4], tempmat[4][4];
|
|
float loc[3], eul[3], size[3];
|
|
float loco[3], eulo[3], sizo[3];
|
|
|
|
/* get offset (parent-inverse) matrix */
|
|
Mat4CpyMat4(invmat, data->invmat);
|
|
|
|
/* extract components of both matrices */
|
|
VECCOPY(loc, targetmat[3]);
|
|
Mat4ToEul(targetmat, eul);
|
|
Mat4ToSize(targetmat, size);
|
|
|
|
VECCOPY(loco, invmat[3]);
|
|
Mat4ToEul(invmat, eulo);
|
|
Mat4ToSize(invmat, sizo);
|
|
|
|
/* disable channels not enabled */
|
|
if (!(data->flag & CHILDOF_LOCX)) loc[0]= loco[0]= 0.0f;
|
|
if (!(data->flag & CHILDOF_LOCY)) loc[1]= loco[1]= 0.0f;
|
|
if (!(data->flag & CHILDOF_LOCZ)) loc[2]= loco[2]= 0.0f;
|
|
if (!(data->flag & CHILDOF_ROTX)) eul[0]= eulo[0]= 0.0f;
|
|
if (!(data->flag & CHILDOF_ROTY)) eul[1]= eulo[1]= 0.0f;
|
|
if (!(data->flag & CHILDOF_ROTZ)) eul[2]= eulo[2]= 0.0f;
|
|
if (!(data->flag & CHILDOF_SIZEX)) size[0]= sizo[0]= 1.0f;
|
|
if (!(data->flag & CHILDOF_SIZEY)) size[1]= sizo[1]= 1.0f;
|
|
if (!(data->flag & CHILDOF_SIZEZ)) size[2]= sizo[2]= 1.0f;
|
|
|
|
/* make new target mat and offset mat */
|
|
LocEulSizeToMat4(targetmat, loc, eul, size);
|
|
LocEulSizeToMat4(invmat, loco, eulo, sizo);
|
|
|
|
/* multiply target (parent matrix) by offset (parent inverse) to get
|
|
* the effect of the parent that will be exherted on the owner
|
|
*/
|
|
Mat4MulMat4(parmat, invmat, targetmat);
|
|
|
|
/* now multiply the parent matrix by the owner matrix to get the
|
|
* the effect of this constraint (i.e. owner is 'parented' to parent)
|
|
*/
|
|
Mat4CpyMat4(tempmat, ownermat);
|
|
Mat4MulMat4(ownermat, tempmat, parmat);
|
|
}
|
|
}
|
|
break;
|
|
case CONSTRAINT_TYPE_TRANSFORM:
|
|
{
|
|
bTransformConstraint *data;
|
|
|
|
data = constraint->data;
|
|
|
|
/* only work if there is a target */
|
|
if (data->tar) {
|
|
float loc[3], eul[3], size[3];
|
|
float dvec[3], sval[3];
|
|
short i;
|
|
|
|
/* obtain target effect */
|
|
switch (data->from) {
|
|
case 2: /* scale */
|
|
{
|
|
Mat4ToSize(targetmat, dvec);
|
|
}
|
|
break;
|
|
case 1: /* rotation */
|
|
{
|
|
/* copy, and reduce to smallest rotation distance */
|
|
Mat4ToEul(targetmat, dvec);
|
|
|
|
/* reduce rotation */
|
|
for (i=0; i<3; i++)
|
|
dvec[i]= fmod(dvec[i], M_PI*2);
|
|
}
|
|
break;
|
|
default: /* location */
|
|
{
|
|
VECCOPY(dvec, targetmat[3]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* extract components of owner's matrix */
|
|
VECCOPY(loc, ownermat[3]);
|
|
Mat4ToEul(ownermat, eul);
|
|
Mat4ToSize(ownermat, size);
|
|
|
|
/* determine where in range current transforms lie */
|
|
if (data->expo) {
|
|
for (i=0; i<3; i++) {
|
|
if (data->from_max[i] - data->from_min[i])
|
|
sval[i]= (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
|
|
else
|
|
sval[i]= 0.0f;
|
|
}
|
|
}
|
|
else {
|
|
/* clamp transforms out of range */
|
|
for (i=0; i<3; i++) {
|
|
CLAMP(dvec[i], data->from_min[i], data->from_max[i]);
|
|
if (data->from_max[i] - data->from_min[i])
|
|
sval[i]= (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
|
|
else
|
|
sval[i]= 0.0f;
|
|
}
|
|
}
|
|
|
|
/* convert radian<->degree */
|
|
if (data->from==1 && data->to==0) {
|
|
/* from radians to degrees */
|
|
for (i=0; i<3; i++)
|
|
sval[i] = sval[i] / M_PI * 180;
|
|
}
|
|
else if (data->from==0 && data->to==1) {
|
|
/* from degrees to radians */
|
|
for (i=0; i<3; i++)
|
|
sval[i] = sval[i] / 180 * M_PI;
|
|
}
|
|
|
|
/* apply transforms */
|
|
switch (data->to) {
|
|
case 2: /* scaling */
|
|
for (i=0; i<3; i++)
|
|
size[i]= data->to_min[i] + (sval[data->map[i]] * (data->to_max[i] - data->to_min[i]));
|
|
break;
|
|
case 1: /* rotation */
|
|
for (i=0; i<3; i++) {
|
|
float tmin, tmax;
|
|
|
|
/* convert destination min/max ranges from degrees to radians */
|
|
tmin= data->to_min[i] / M_PI * 180;
|
|
tmax= data->to_max[i] / M_PI * 180;
|
|
|
|
eul[i]= tmin + (sval[data->map[i]] * (tmax - tmin));
|
|
}
|
|
break;
|
|
default: /* location */
|
|
for (i=0; i<3; i++)
|
|
loc[i] += (data->to_min[i] + (sval[data->map[i]] * (data->to_max[i] - data->to_min[i])));
|
|
break;
|
|
}
|
|
|
|
/* apply to matrix */
|
|
LocEulSizeToMat4(ownermat, loc, eul, size);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
printf("Error: Unknown constraint type\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* this function is called whenever constraints need to be evaluated */
|
|
void solve_constraints (ListBase *conlist, bConstraintOb *cob, float ctime)
|
|
{
|
|
bConstraint *con;
|
|
void *ownerdata;
|
|
float tarmat[4][4], oldmat[4][4];
|
|
float solution[4][4], delta[4][4], imat[4][4];
|
|
float enf;
|
|
|
|
/* check that there is a valid constraint object to evaluate */
|
|
if (cob == NULL)
|
|
return;
|
|
|
|
/* loop over available constraints, solving and blending them */
|
|
for (con= conlist->first; con; con= con->next) {
|
|
/* this we can skip completely */
|
|
if (con->flag & CONSTRAINT_DISABLE) continue;
|
|
/* influence == 0 should be ignored */
|
|
if (con->enforce == 0.0f) continue;
|
|
/* and inverse kinematics is solved seperate */
|
|
if (con->type==CONSTRAINT_TYPE_KINEMATIC) continue;
|
|
/* rigidbody is really a game-engine thing - and is not solved here */
|
|
if (con->type==CONSTRAINT_TYPE_RIGIDBODYJOINT) continue;
|
|
|
|
/* influence of constraint */
|
|
/* value should have been set from IPO's/Constraint Channels already */
|
|
enf = con->enforce;
|
|
|
|
/* move target/owner into right spaces */
|
|
constraint_mat_convertspace(cob->ob, cob->pchan, cob->matrix, CONSTRAINT_SPACE_WORLD, con->ownspace);
|
|
|
|
/* Get the target matrix */
|
|
ownerdata= ((cob->pchan)? (void *)cob->pchan : (void *)cob->ob);
|
|
get_constraint_target_matrix(con, cob->type, ownerdata, tarmat, ctime);
|
|
|
|
Mat4CpyMat4(oldmat, cob->matrix);
|
|
|
|
/* solve the constraint */
|
|
evaluate_constraint(con, cob->matrix, tarmat);
|
|
|
|
/* Interpolate the enforcement, to blend result of constraint into final owner transform */
|
|
/* 1. Remove effects of original matrix from constraint solution ==> delta */
|
|
Mat4Invert(imat, oldmat);
|
|
Mat4CpyMat4(solution, cob->matrix);
|
|
Mat4MulMat4(delta, solution, imat);
|
|
|
|
/* 2. If constraint influence is not full strength, then interpolate
|
|
* identity_matrix --> delta_matrix to get the effect the constraint actually exerts
|
|
*/
|
|
if (enf < 1.0) {
|
|
float identity[4][4];
|
|
Mat4One(identity);
|
|
Mat4BlendMat4(delta, identity, delta, enf);
|
|
}
|
|
|
|
/* 3. Now multiply the delta by the matrix in use before the evaluation */
|
|
Mat4MulMat4(cob->matrix, delta, oldmat);
|
|
|
|
/* move target/owner back into worldspace for next constraint/other business */
|
|
if ((con->flag & CONSTRAINT_SPACEONCE) == 0)
|
|
constraint_mat_convertspace(cob->ob, cob->pchan, cob->matrix, con->ownspace, CONSTRAINT_SPACE_WORLD);
|
|
}
|
|
}
|