This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/constraint.c
Joshua Leung e765fbf126 == Constraints - Important Bugfix ==
At last, the 'Local' option for Armatures works properly! 
Tonight I went through carefully and cross-checked the code once again, and found several bad mistakes I had made. These were:
* the value of one variable from the armatures code was not what I expected it to be, based off the name). 
* Mat4MulSerie swaps the first two args! Grrr...

Note: 
There's only one rig that I've tested that was broken. That was slikdigit's "mancandy", and the part in question was the jaw. It is likely that a few more rigs out there (in particular, their 'local' action constraints) relied on the wacky rotation values that used to be used, so are now broken.
2007-07-28 10:44:03 +00:00

2705 lines
70 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): 2007, Joshua Leung, major recode
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "MEM_guardedalloc.h"
#include "nla.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_object_types.h"
#include "DNA_action_types.h"
#include "DNA_curve_types.h"
#include "DNA_scene_types.h"
#include "BKE_utildefines.h"
#include "BKE_action.h"
#include "BKE_anim.h" // for the curve calculation part
#include "BKE_armature.h"
#include "BKE_blender.h"
#include "BKE_constraint.h"
#include "BKE_displist.h"
#include "BKE_object.h"
#include "BKE_ipo.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_idprop.h"
#include "BPY_extern.h"
#include "blendef.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/* ********************* Data level ****************** */
void free_constraint_data (bConstraint *con)
{
if (con->data) {
/* any constraint-type specific stuff here */
switch (con->type) {
case CONSTRAINT_TYPE_PYTHON:
{
bPythonConstraint *data= con->data;
IDP_FreeProperty(data->prop);
MEM_freeN(data->prop);
}
break;
}
MEM_freeN(con->data);
}
}
void free_constraints (ListBase *conlist)
{
bConstraint *con;
/* Do any specific freeing */
for (con=conlist->first; con; con=con->next) {
free_constraint_data(con);
}
/* Free the whole list */
BLI_freelistN(conlist);
}
void free_constraint_channels (ListBase *chanbase)
{
bConstraintChannel *chan;
for (chan=chanbase->first; chan; chan=chan->next) {
if (chan->ipo) {
chan->ipo->id.us--;
}
}
BLI_freelistN(chanbase);
}
void relink_constraints (struct ListBase *list)
{
bConstraint *con;
for (con = list->first; con; con=con->next) {
/* check if constraint has a target that needs relinking */
if (constraint_has_target(con)) {
Object *tar;
char *subtarget;
tar = get_constraint_target(con, &subtarget);
ID_NEW(tar);
}
}
}
void copy_constraint_channels (ListBase *dst, ListBase *src)
{
bConstraintChannel *dchan, *schan;
dst->first=dst->last=NULL;
duplicatelist(dst, src);
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next) {
dchan->ipo = copy_ipo(schan->ipo);
}
}
void clone_constraint_channels (ListBase *dst, ListBase *src)
{
bConstraintChannel *dchan, *schan;
dst->first=dst->last=NULL;
duplicatelist(dst, src);
for (dchan=dst->first, schan=src->first; dchan; dchan=dchan->next, schan=schan->next) {
id_us_plus((ID *)dchan->ipo);
}
}
void copy_constraints (ListBase *dst, ListBase *src)
{
bConstraint *con, *srccon;
dst->first= dst->last= NULL;
duplicatelist (dst, src);
for (con = dst->first, srccon=src->first; con; srccon=srccon->next, con=con->next) {
con->data = MEM_dupallocN (con->data);
/* only do specific constraints if required */
if (con->type == CONSTRAINT_TYPE_PYTHON) {
bPythonConstraint *pycon = (bPythonConstraint *)con->data;
bPythonConstraint *opycon = (bPythonConstraint *)srccon->data;
pycon->prop = IDP_CopyProperty(opycon->prop);
}
}
}
/* **************** Editor Functions **************** */
char constraint_has_target (bConstraint *con)
{
switch (con->type) {
case CONSTRAINT_TYPE_PYTHON:
{
bPythonConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data = con->data;
if (data->tar) return 1;
}
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
bRigidBodyJointConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_CLAMPTO:
{
bClampToConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_CHILDOF:
{
bChildOfConstraint *data = con->data;
if (data->tar) return 1;
}
break;
case CONSTRAINT_TYPE_TRANSFORM:
{
bTransformConstraint *data = con->data;
if (data->tar) return 1;
}
break;
}
/* Unknown types or CONSTRAINT_TYPE_NULL or no target */
return 0;
}
Object *get_constraint_target(bConstraint *con, char **subtarget)
{
/* If the target for this constraint is target, return a pointer
* to the name for this constraints subtarget ... NULL otherwise
*/
switch (con->type) {
case CONSTRAINT_TYPE_PYTHON:
{
bPythonConstraint *data=con->data;
*subtarget = data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data = con->data;
*subtarget= NULL;
return data->tar;
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
bRigidBodyJointConstraint *data = con->data;
*subtarget= NULL;
return data->tar;
}
break;
case CONSTRAINT_TYPE_CLAMPTO:
{
bClampToConstraint *data = con->data;
*subtarget= NULL;
return data->tar;
}
break;
case CONSTRAINT_TYPE_CHILDOF:
{
bChildOfConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
case CONSTRAINT_TYPE_TRANSFORM:
{
bTransformConstraint *data = con->data;
*subtarget= data->subtarget;
return data->tar;
}
break;
default:
*subtarget= NULL;
break;
}
return NULL;
}
void set_constraint_target(bConstraint *con, Object *ob, char *subtarget)
{
/* Set the target for this constraint */
switch (con->type) {
case CONSTRAINT_TYPE_PYTHON:
{
bPythonConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data = con->data;
data->tar= ob;
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
bRigidBodyJointConstraint *data = con->data;
data->tar= ob;
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data = (bMinMaxConstraint*)con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_CLAMPTO:
{
bClampToConstraint *data = con->data;
data->tar= ob;
}
break;
case CONSTRAINT_TYPE_CHILDOF:
{
bChildOfConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
case CONSTRAINT_TYPE_TRANSFORM:
{
bTransformConstraint *data = con->data;
data->tar= ob;
if (subtarget) BLI_strncpy(data->subtarget, subtarget, 32);
}
break;
}
}
void unique_constraint_name (bConstraint *con, ListBase *list)
{
bConstraint *curcon;
char tempname[64];
int number = 1, exists = 0;
char *dot;
/* See if we are given an empty string */
if (con->name[0] == '\0') {
/* give it default name first */
strcpy(con->name, "Const");
}
/* See if we even need to do this */
for (curcon = list->first; curcon; curcon=curcon->next) {
if (curcon != con) {
if (!strcmp(curcon->name, con->name)) {
exists = 1;
break;
}
}
}
if (!exists)
return;
/* Strip off the suffix */
dot=strchr(con->name, '.');
if (dot)
*dot=0;
for (number = 1; number <= 999; number++) {
sprintf(tempname, "%s.%03d", con->name, number);
exists = 0;
for (curcon=list->first; curcon; curcon=curcon->next) {
if (con!=curcon) {
if (!strcmp(curcon->name, tempname)) {
exists = 1;
break;
}
}
}
if (!exists) {
strcpy(con->name, tempname);
return;
}
}
}
void *new_constraint_data (short type)
{
void *result;
switch (type) {
case CONSTRAINT_TYPE_PYTHON:
{
bPythonConstraint *data;
data = MEM_callocN(sizeof(bPythonConstraint), "pythonConstraint");
/* everything should be set correctly by calloc, except for the prop->type constant.*/
data->prop = MEM_callocN(sizeof(IDProperty), "PyConstraintProps");
data->prop->type = IDP_GROUP;
result = data;
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data;
data = MEM_callocN(sizeof(bKinematicConstraint), "kinematicConstraint");
data->weight= (float)1.0;
data->orientweight= (float)1.0;
data->iterations = 500;
data->flag= CONSTRAINT_IK_TIP|CONSTRAINT_IK_STRETCH|CONSTRAINT_IK_POS;
result = data;
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
data = MEM_callocN(sizeof(bTrackToConstraint), "tracktoConstraint");
data->reserved1 = TRACK_Y;
data->reserved2 = UP_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data;
data = MEM_callocN(sizeof(bMinMaxConstraint), "minmaxConstraint");
data->minmaxflag = TRACK_Z;
data->offset = 0.0f;
data->cache[0] = data->cache[1] = data->cache[2] = 0.0f;
data->flag = 0;
result = data;
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data;
data = MEM_callocN(sizeof(bLocateLikeConstraint), "LocLikeConstraint");
data->flag = LOCLIKE_X|LOCLIKE_Y|LOCLIKE_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
data = MEM_callocN(sizeof(bRotateLikeConstraint), "RotLikeConstraint");
data->flag = ROTLIKE_X|ROTLIKE_Y|ROTLIKE_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data;
data = MEM_callocN(sizeof(bLocateLikeConstraint), "SizeLikeConstraint");
data->flag = SIZELIKE_X|SIZELIKE_Y|SIZELIKE_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data;
data = MEM_callocN(sizeof(bActionConstraint), "ActionConstraint");
/* set type to 20 (Loc X), as 0 is Rot X for backwards compatability */
data->type = 20;
result = data;
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
data = MEM_callocN(sizeof(bLockTrackConstraint), "locktrackConstraint");
data->trackflag = TRACK_Y;
data->lockflag = LOCK_Z;
result = data;
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
data = MEM_callocN(sizeof(bFollowPathConstraint), "followpathConstraint");
data->trackflag = TRACK_Y;
data->upflag = UP_Z;
data->offset = 0;
data->followflag = 0;
result = data;
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
data = MEM_callocN(sizeof(bStretchToConstraint), "StretchToConstraint");
data->volmode = 0;
data->plane = 0;
data->orglength = 0.0;
data->bulge = 1.0;
result = data;
}
break;
case CONSTRAINT_TYPE_LOCLIMIT:
{
bLocLimitConstraint *data;
data = MEM_callocN(sizeof(bLocLimitConstraint), "LocLimitConstraint");
result = data;
}
break;
case CONSTRAINT_TYPE_ROTLIMIT:
{
bRotLimitConstraint *data;
data = MEM_callocN(sizeof(bRotLimitConstraint), "RotLimitConstraint");
result = data;
}
break;
case CONSTRAINT_TYPE_SIZELIMIT:
{
bSizeLimitConstraint *data;
data = MEM_callocN(sizeof(bSizeLimitConstraint), "SizeLimitConstraint");
result = data;
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
bRigidBodyJointConstraint *data;
data = MEM_callocN(sizeof(bRigidBodyJointConstraint), "RigidBodyToConstraint");
// removed code which set target of this constraint
data->type=1;
result = data;
}
break;
case CONSTRAINT_TYPE_CLAMPTO:
{
bClampToConstraint *data;
data = MEM_callocN(sizeof(bClampToConstraint), "ClampToConstraint");
result = data;
}
break;
case CONSTRAINT_TYPE_CHILDOF:
{
bChildOfConstraint *data;
data = MEM_callocN(sizeof(bChildOfConstraint), "ChildOfConstraint");
data->flag = (CHILDOF_LOCX | CHILDOF_LOCY | CHILDOF_LOCZ |
CHILDOF_ROTX |CHILDOF_ROTY | CHILDOF_ROTZ |
CHILDOF_SIZEX | CHILDOF_SIZEY | CHILDOF_SIZEZ);
Mat4One(data->invmat);
result = data;
}
break;
case CONSTRAINT_TYPE_TRANSFORM:
{
bTransformConstraint *data;
data = MEM_callocN(sizeof(bTransformConstraint), "TransformationConstraint");
data->map[0]= 0;
data->map[1]= 1;
data->map[2]= 2;
result = data;
}
break;
default:
result = NULL;
break;
}
return result;
}
bConstraintChannel *get_constraint_channel (ListBase *list, const char *name)
{
bConstraintChannel *chan;
for (chan = list->first; chan; chan=chan->next) {
if (!strcmp(name, chan->name)) {
return chan;
}
}
return NULL;
}
/* finds or creates new constraint channel */
bConstraintChannel *verify_constraint_channel (ListBase *list, const char *name)
{
bConstraintChannel *chan;
chan= get_constraint_channel (list, name);
if(chan==NULL) {
chan= MEM_callocN(sizeof(bConstraintChannel), "new constraint chan");
BLI_addtail(list, chan);
strcpy(chan->name, name);
}
return chan;
}
/* ***************** Evaluating ********************* */
/* package an object/bone for use in constraint evaluation */
/* This function MEM_calloc's a bConstraintOb struct, that will need to be freed after evaluation */
bConstraintOb *constraints_make_evalob (Object *ob, void *subdata, short datatype)
{
bConstraintOb *cob;
/* create regardless of whether we have any data! */
cob= MEM_callocN(sizeof(bConstraintOb), "bConstraintOb");
/* based on type of available data */
switch (datatype) {
case TARGET_OBJECT:
{
/* disregard subdata... calloc should set other values right */
if (ob) {
cob->ob = ob;
cob->type = datatype;
Mat4CpyMat4(cob->matrix, ob->obmat);
}
else
Mat4One(cob->matrix);
Mat4CpyMat4(cob->startmat, cob->matrix);
}
break;
case TARGET_BONE:
{
/* only set if we have valid bone, otherwise default */
if (ob && subdata) {
cob->ob = ob;
cob->pchan = (bPoseChannel *)subdata;
cob->type = datatype;
/* matrix in world-space */
Mat4MulMat4(cob->matrix, cob->pchan->pose_mat, ob->obmat);
}
else
Mat4One(cob->matrix);
Mat4CpyMat4(cob->startmat, cob->matrix);
}
break;
default: // other types not yet handled
Mat4One(cob->matrix);
Mat4One(cob->startmat);
break;
}
return cob;
}
/* cleanup after constraint evaluation */
void constraints_clear_evalob (bConstraintOb *cob)
{
float delta[4][4], imat[4][4];
/* prevent crashes */
if (cob == NULL)
return;
/* calculate delta of constraints evaluation */
Mat4Invert(imat, cob->startmat);
Mat4MulMat4(delta, cob->matrix, imat);
/* copy matrices back to source */
switch (cob->type) {
case TARGET_OBJECT:
{
/* copy new ob-matrix back to owner */
Mat4CpyMat4(cob->ob->obmat, cob->matrix);
/* copy inverse of delta back to owner */
Mat4Invert(cob->ob->constinv, delta);
}
break;
case TARGET_BONE:
{
/* copy new pose-matrix back to owner */
Mat4MulMat4(cob->pchan->pose_mat, cob->matrix, cob->ob->imat);
/* copy inverse of delta back to owner */
Mat4Invert(cob->pchan->constinv, delta);
}
break;
}
/* free tempolary struct */
MEM_freeN(cob);
}
/* -------------------------------- Constraint Channels ---------------------------- */
/* does IPO's of constraint channels only */
void do_constraint_channels (ListBase *conbase, ListBase *chanbase, float ctime)
{
bConstraint *con;
bConstraintChannel *chan;
IpoCurve *icu= NULL;
/* for each Constraint, calculate its Influence from the corresponding ConstraintChannel */
for (con=conbase->first; con; con=con->next) {
chan = get_constraint_channel(chanbase, con->name);
if (chan && chan->ipo) {
calc_ipo(chan->ipo, ctime);
for (icu=chan->ipo->curve.first; icu; icu=icu->next) {
switch (icu->adrcode) {
case CO_ENFORCE:
{
/* Influence is clamped to 0.0f -> 1.0f range */
con->enforce = CLAMPIS(icu->curval, 0.0f, 1.0f);
}
break;
}
}
}
}
}
/* ------------------------------- Space-Conversion API ---------------------------- */
/* This function is responsible for the correct transformations/conversions
* of a matrix from one space to another for constraint evaluation.
* For now, this is only implemented for Objects and PoseChannels.
*/
static void constraint_mat_convertspace (Object *ob, bPoseChannel *pchan, float mat[][4], short from, short to)
{
float tempmat[4][4];
float diff_mat[4][4];
float imat[4][4];
/* prevent crashes in these unlikely events */
if (ob==NULL || mat==NULL) return;
/* optimise trick - check if need to do anything */
if (from == to) return;
/* are we dealing with pose-channels or objects */
if (pchan) {
/* pose channels */
switch (from) {
case CONSTRAINT_SPACE_WORLD: /* ---------- FROM WORLDSPACE ---------- */
{
/* world to pose */
if (to==CONSTRAINT_SPACE_POSE || to==CONSTRAINT_SPACE_LOCAL || to==CONSTRAINT_SPACE_PARLOCAL) {
Mat4Invert(imat, ob->obmat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, imat);
}
/* pose to local */
if (to == CONSTRAINT_SPACE_LOCAL) {
/* call self with slightly different values */
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
/* pose to local + parent */
else if (to == CONSTRAINT_SPACE_PARLOCAL) {
/* call self with slightly different values */
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
}
break;
case CONSTRAINT_SPACE_POSE: /* ---------- FROM POSESPACE ---------- */
{
/* pose to world */
if (to == CONSTRAINT_SPACE_WORLD) {
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, ob->obmat);
}
/* pose to local */
else if (to == CONSTRAINT_SPACE_LOCAL) {
if (pchan->bone) {
if (pchan->parent) {
float offs_bone[4][4];
/* construct offs_bone the same way it is done in armature.c */
Mat4CpyMat3(offs_bone, pchan->bone->bone_mat);
VECCOPY(offs_bone[3], pchan->bone->head);
offs_bone[3][1]+= pchan->bone->parent->length;
if (pchan->bone->flag & BONE_HINGE) {
/* pose_mat = par_pose-space_location * chan_mat */
float tmat[4][4];
/* the rotation of the parent restposition */
Mat4CpyMat4(tmat, pchan->bone->parent->arm_mat);
/* the location of actual parent transform */
VECCOPY(tmat[3], offs_bone[3]);
offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
Mat4MulVecfl(pchan->parent->pose_mat, tmat[3]);
Mat4MulMat4(diff_mat, offs_bone, tmat);
Mat4Invert(imat, diff_mat);
}
else {
/* pose_mat = par_pose_mat * bone_mat * chan_mat */
Mat4MulMat4(diff_mat, offs_bone, pchan->parent->pose_mat);
Mat4Invert(imat, diff_mat);
}
}
else {
/* pose_mat = chan_mat * arm_mat */
Mat4Invert(imat, pchan->bone->arm_mat);
}
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, imat);
}
}
/* pose to local with parent */
else if (to == CONSTRAINT_SPACE_PARLOCAL) {
if (pchan->bone) {
Mat4Invert(imat, pchan->bone->arm_mat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, imat);
}
}
}
break;
case CONSTRAINT_SPACE_LOCAL: /* ------------ FROM LOCALSPACE --------- */
{
/* local to pose */
if (to==CONSTRAINT_SPACE_POSE || to==CONSTRAINT_SPACE_WORLD) {
/* do inverse procedure that was done for pose to local */
if (pchan->bone) {
/* we need the posespace_matrix = local_matrix + (parent_posespace_matrix + restpos) */
if (pchan->parent) {
float offs_bone[4][4];
/* construct offs_bone the same way it is done in armature.c */
Mat4CpyMat3(offs_bone, pchan->bone->bone_mat);
VECCOPY(offs_bone[3], pchan->bone->head);
offs_bone[3][1]+= pchan->bone->parent->length;
if (pchan->bone->flag & BONE_HINGE) {
/* pose_mat = par_pose-space_location * chan_mat */
float tmat[4][4];
/* the rotation of the parent restposition */
Mat4CpyMat4(tmat, pchan->bone->parent->arm_mat);
/* the location of actual parent transform */
VECCOPY(tmat[3], offs_bone[3]);
offs_bone[3][0]= offs_bone[3][1]= offs_bone[3][2]= 0.0f;
Mat4MulVecfl(pchan->parent->pose_mat, tmat[3]);
Mat4MulMat4(diff_mat, offs_bone, tmat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, diff_mat);
}
else {
/* pose_mat = par_pose_mat * bone_mat * chan_mat */
Mat4MulMat4(diff_mat, offs_bone, pchan->parent->pose_mat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, diff_mat);
}
}
else {
Mat4CpyMat4(diff_mat, pchan->bone->arm_mat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, diff_mat);
}
}
}
/* local to world */
if (to == CONSTRAINT_SPACE_WORLD) {
/* call self with slightly different values */
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
}
break;
case CONSTRAINT_SPACE_PARLOCAL: /* -------------- FROM LOCAL WITH PARENT ---------- */
{
/* local to pose */
if (to==CONSTRAINT_SPACE_POSE || to==CONSTRAINT_SPACE_WORLD) {
if (pchan->bone) {
Mat4CpyMat4(diff_mat, pchan->bone->arm_mat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, diff_mat, tempmat);
}
}
/* local to world */
if (to == CONSTRAINT_SPACE_WORLD) {
/* call self with slightly different values */
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
}
break;
}
}
else {
/* objects */
if (from==CONSTRAINT_SPACE_WORLD && to==CONSTRAINT_SPACE_LOCAL) {
/* check if object has a parent - otherwise this won't work */
if (ob->parent) {
/* 'subtract' parent's effects from owner */
Mat4MulMat4(diff_mat, ob->parentinv, ob->parent->obmat);
Mat4Invert(imat, diff_mat);
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(mat, tempmat, imat);
}
}
else if (from==CONSTRAINT_SPACE_LOCAL && to==CONSTRAINT_SPACE_WORLD) {
/* check that object has a parent - otherwise this won't work */
if (ob->parent) {
/* 'add' parent's effect back to owner */
Mat4CpyMat4(tempmat, mat);
Mat4MulMat4(diff_mat, ob->parentinv, ob->parent->obmat);
Mat4MulMat4(mat, tempmat, diff_mat);
}
}
}
}
/* ------------------------------- Target ---------------------------- */
/* generic function to get the appropriate matrix for most target cases */
/* The cases where the target can be object data have not been implemented */
static void constraint_target_to_mat4 (Object *ob, const char *substring, float mat[][4], short from, short to)
{
/* Case OBJECT */
if (!strlen(substring)) {
Mat4CpyMat4(mat, ob->obmat);
constraint_mat_convertspace(ob, NULL, mat, from, to);
}
/* Case VERTEXGROUP */
else if (ELEM(ob->type, OB_MESH, OB_LATTICE)) {
/* devise a matrix from the data in the vertexgroup */
/* TODO: will be handled in other files */
}
/* Case BONE */
else {
bPoseChannel *pchan;
pchan = get_pose_channel(ob->pose, substring);
if (pchan) {
/* Multiply the PoseSpace accumulation/final matrix for this
* PoseChannel by the Armature Object's Matrix to get a worldspace
* matrix.
*/
Mat4MulMat4(mat, pchan->pose_mat, ob->obmat);
}
else
Mat4CpyMat4(mat, ob->obmat);
/* convert matrix space as required */
constraint_mat_convertspace(ob, pchan, mat, from, to);
}
}
/* stupid little cross product function, 0:x, 1:y, 2:z axes */
static int basis_cross(int n, int m)
{
if(n-m == 1) return 1;
if(n-m == -1) return -1;
if(n-m == 2) return -1;
if(n-m == -2) return 1;
else return 0;
}
static void vectomat(float *vec, float *target_up, short axis, short upflag, short flags, float m[][3])
{
float n[3];
float u[3]; /* vector specifying the up axis */
float proj[3];
float right[3];
float neg = -1;
int right_index;
VecCopyf(n, vec);
if(Normalize(n) == 0.0) {
n[0] = 0.0;
n[1] = 0.0;
n[2] = 1.0;
}
if(axis > 2) axis -= 3;
else VecMulf(n,-1);
/* n specifies the transformation of the track axis */
if(flags & TARGET_Z_UP) {
/* target Z axis is the global up axis */
u[0] = target_up[0];
u[1] = target_up[1];
u[2] = target_up[2];
}
else {
/* world Z axis is the global up axis */
u[0] = 0;
u[1] = 0;
u[2] = 1;
}
/* project the up vector onto the plane specified by n */
Projf(proj, u, n); /* first u onto n... */
VecSubf(proj, u, proj); /* then onto the plane */
/* proj specifies the transformation of the up axis */
if(Normalize(proj) == 0.0) { /* degenerate projection */
proj[0] = 0.0;
proj[1] = 1.0;
proj[2] = 0.0;
}
/* Normalized cross product of n and proj specifies transformation of the right axis */
Crossf(right, proj, n);
Normalize(right);
if(axis != upflag) {
right_index = 3 - axis - upflag;
neg = (float) basis_cross(axis, upflag);
/* account for up direction, track direction */
m[right_index][0] = neg * right[0];
m[right_index][1] = neg * right[1];
m[right_index][2] = neg * right[2];
m[upflag][0] = proj[0];
m[upflag][1] = proj[1];
m[upflag][2] = proj[2];
m[axis][0] = n[0];
m[axis][1] = n[1];
m[axis][2] = n[2];
}
/* identity matrix - don't do anything if the two axes are the same */
else {
m[0][0]= m[1][1]= m[2][2]= 1.0;
m[0][1]= m[0][2]= m[0][3]= 0.0;
m[1][0]= m[1][2]= m[1][3]= 0.0;
m[2][0]= m[2][1]= m[2][3]= 0.0;
}
}
/* called during solve_constraints */
/* also for make_parent, to find correct inverse of "follow path" */
/* warning: ownerdata is PoseChannel or Object */
/* ctime is global time, uncorrected for local bsystem_time */
short get_constraint_target_matrix (bConstraint *con, short ownertype, void *ownerdata, float mat[][4], float ctime)
{
short valid=0;
switch (con->type) {
case CONSTRAINT_TYPE_NULL:
{
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_ACTION:
{
if (ownertype == TARGET_BONE) {
extern void chan_calc_mat(bPoseChannel *chan);
bActionConstraint *data = (bActionConstraint*)con->data;
bPose *pose;
bPoseChannel *pchan, *tchan;
float tempmat[4][4], vec[3];
float s, t;
short axis;
/* initialise return matrix */
Mat4One(mat);
/* only continue if there is a target */
if (data->tar==NULL) return 0;
/* get the transform matrix of the target */
constraint_target_to_mat4(data->tar, data->subtarget, tempmat, CONSTRAINT_SPACE_WORLD, con->tarspace); // FIXME: change these spaces
/* determine where in transform range target is */
/* data->type is mapped as follows for backwards compatability:
* 00,01,02 - rotation (it used to be like this)
* 10,11,12 - scaling
* 20,21,22 - location
*/
if (data->type < 10) {
/* extract rotation (is in whatever space target should be in) */
Mat4ToEul(tempmat, vec);
vec[0] *= (float)(180.0/M_PI);
vec[1] *= (float)(180.0/M_PI);
vec[2] *= (float)(180.0/M_PI);
axis= data->type;
}
else if (data->type < 20) {
/* extract scaling (is in whatever space target should be in) */
Mat4ToSize(tempmat, vec);
axis= data->type - 10;
}
else {
/* extract location */
VECCOPY(vec, tempmat[3]);
axis= data->type - 20;
}
/* Target defines the animation */
s = (vec[axis]-data->min) / (data->max-data->min);
CLAMP(s, 0, 1);
t = ( s * (data->end-data->start)) + data->start;
/* Get the appropriate information from the action, we make temp pose */
pose = MEM_callocN(sizeof(bPose), "pose");
pchan = ownerdata;
tchan= verify_pose_channel(pose, pchan->name);
extract_pose_from_action(pose, data->act, t);
chan_calc_mat(tchan);
Mat4CpyMat4(mat, tchan->chan_mat);
/* Clean up */
free_pose_channels(pose);
MEM_freeN(pose);
}
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data = (bLocateLikeConstraint*)con->data;
Object *ob= data->tar;
if (data->tar) {
if (strlen(data->subtarget)) {
bPoseChannel *pchan;
float tmat[4][4];
pchan = get_pose_channel(ob->pose, data->subtarget);
if (pchan) {
Mat4CpyMat4(tmat, pchan->pose_mat);
if (data->flag & LOCLIKE_TIP) {
VECCOPY(tmat[3], pchan->pose_tail);
}
Mat4MulMat4(mat, tmat, ob->obmat);
}
else
Mat4CpyMat4(mat, ob->obmat);
/* convert matrix space as required */
constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
}
else {
Mat4CpyMat4(mat, ob->obmat);
/* convert matrix space as required */
constraint_mat_convertspace(ob, NULL, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
}
valid=1;
}
else
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
data = (bRotateLikeConstraint*)con->data;
if (data->tar) {
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
valid=1;
}
else
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data;
data = (bSizeLikeConstraint*)con->data;
if (data->tar) {
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
valid=1;
}
else
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data = (bMinMaxConstraint*)con->data;
if (data->tar) {
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
valid=1;
}
else
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
data = (bTrackToConstraint*)con->data;
if (data->tar) {
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
valid=1;
}
else
Mat4One (mat);
}
break;
case CONSTRAINT_TYPE_KINEMATIC:
{
bKinematicConstraint *data;
data = (bKinematicConstraint*)con->data;
if (data->tar) {
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
valid=1;
}
else if (data->flag & CONSTRAINT_IK_AUTO) {
Object *ob= (Object *)ownerdata;
if (ob==NULL)
Mat4One(mat);
else {
float vec[3];
/* move grabtarget into world space */
VECCOPY(vec, data->grabtarget);
Mat4MulVecfl(ob->obmat, vec);
Mat4CpyMat4(mat, ob->obmat);
VECCOPY(mat[3], vec);
}
}
else
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
data = (bLockTrackConstraint*)con->data;
if (data->tar) {
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
valid=1;
}
else
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
data = (bFollowPathConstraint*)con->data;
if (data->tar) {
Curve *cu;
float q[4], vec[4], dir[3], *quat, x1;
float totmat[4][4];
float curvetime;
Mat4One(totmat);
Mat4One(mat);
cu= data->tar->data;
/* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
currently for paths to work it needs to go through the bevlist/displist system (ton) */
if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
makeDispListCurveTypes(data->tar, 0);
if (cu->path && cu->path->data) {
curvetime= bsystem_time(data->tar, data->tar->parent, (float)ctime, 0.0) - data->offset;
if (calc_ipo_spec(cu->ipo, CU_SPEED, &curvetime)==0) {
curvetime /= cu->pathlen;
CLAMP(curvetime, 0.0, 1.0);
}
if (where_on_path(data->tar, curvetime, vec, dir) ) {
if (data->followflag) {
quat= vectoquat(dir, (short) data->trackflag, (short) data->upflag);
Normalize(dir);
q[0]= (float)cos(0.5*vec[3]);
x1= (float)sin(0.5*vec[3]);
q[1]= -x1*dir[0];
q[2]= -x1*dir[1];
q[3]= -x1*dir[2];
QuatMul(quat, q, quat);
QuatToMat4(quat, totmat);
}
VECCOPY(totmat[3], vec);
Mat4MulSerie(mat, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
}
}
valid=1;
}
else
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
data = (bStretchToConstraint*)con->data;
if (data->tar) {
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
valid = 1;
}
else
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_PYTHON:
{
bPythonConstraint *data;
data = (bPythonConstraint*)con->data;
/* special exception for curves - depsgraph issues */
if (data->tar && data->tar->type == OB_CURVE) {
Curve *cu= data->tar->data;
/* this check is to make sure curve objects get updated on file load correctly.*/
if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
makeDispListCurveTypes(data->tar, 0);
}
/* if the script doesn't set the target matrix for any reason, fall back to standard methods */
if (BPY_pyconstraint_targets(data, mat) < 1) {
if (data->tar) {
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
valid = 1;
}
else
Mat4One(mat);
}
}
break;
case CONSTRAINT_TYPE_CLAMPTO:
{
bClampToConstraint *data;
data = (bClampToConstraint*)con->data;
if (data->tar) {
Curve *cu= data->tar->data;
/* note; when creating constraints that follow path, the curve gets the CU_PATH set now,
currently for paths to work it needs to go through the bevlist/displist system (ton) */
if (cu->path==NULL || cu->path->data==NULL) /* only happens on reload file, but violates depsgraph still... fix! */
makeDispListCurveTypes(data->tar, 0);
valid = 1;
}
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_CHILDOF:
{
bChildOfConstraint *data;
data= (bChildOfConstraint *)con->data;
if (data->tar) {
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
valid = 1;
}
else
Mat4One(mat);
}
break;
case CONSTRAINT_TYPE_TRANSFORM:
{
bTransformConstraint *data;
data= (bTransformConstraint *)con->data;
if (data->tar) {
constraint_target_to_mat4(data->tar, data->subtarget, mat, CONSTRAINT_SPACE_WORLD, con->tarspace);
valid = 1;
}
else
Mat4One(mat);
}
break;
default:
Mat4One(mat);
break;
}
return valid;
}
/* ---------------------------------------------- Constraint Evaluation ------------------------------------------------- */
/* This is only called during solve_constraints to solve a particular constraint.
* It works on ownermat, and uses targetmat to help accomplish its tasks.
*/
static void evaluate_constraint (bConstraint *constraint, float ownermat[][4], float targetmat[][4])
{
if (constraint == NULL || constraint->data == NULL)
return;
switch (constraint->type) {
case CONSTRAINT_TYPE_NULL:
case CONSTRAINT_TYPE_KINEMATIC: /* removed */
break;
case CONSTRAINT_TYPE_PYTHON:
{
bPythonConstraint *data;
data = constraint->data;
BPY_pyconstraint_eval(data, ownermat, targetmat);
}
break;
case CONSTRAINT_TYPE_ACTION:
{
bActionConstraint *data;
float temp[4][4];
data = constraint->data;
Mat4CpyMat4(temp, ownermat);
Mat4MulMat4(ownermat, targetmat, temp);
}
break;
case CONSTRAINT_TYPE_LOCLIKE:
{
bLocateLikeConstraint *data;
float offset[3] = {0.0f, 0.0f, 0.0f};
data = constraint->data;
if (data->flag & LOCLIKE_OFFSET)
VECCOPY(offset, ownermat[3]);
if (data->flag & LOCLIKE_X) {
ownermat[3][0] = targetmat[3][0];
if(data->flag & LOCLIKE_X_INVERT) ownermat[3][0] *= -1;
ownermat[3][0] += offset[0];
}
if (data->flag & LOCLIKE_Y) {
ownermat[3][1] = targetmat[3][1];
if(data->flag & LOCLIKE_Y_INVERT) ownermat[3][1] *= -1;
ownermat[3][1] += offset[1];
}
if (data->flag & LOCLIKE_Z) {
ownermat[3][2] = targetmat[3][2];
if(data->flag & LOCLIKE_Z_INVERT) ownermat[3][2] *= -1;
ownermat[3][2] += offset[2];
}
}
break;
case CONSTRAINT_TYPE_ROTLIKE:
{
bRotateLikeConstraint *data;
float loc[3];
float eul[3], obeul[3];
float size[3];
short changed= 0;
data = constraint->data;
VECCOPY(loc, ownermat[3]);
Mat4ToSize(ownermat, size);
Mat4ToEul(targetmat, eul);
Mat4ToEul(ownermat, obeul);
if ((data->flag & ROTLIKE_X)==0) {
eul[0] = obeul[0];
changed = 1;
}
else if (data->flag & ROTLIKE_X_INVERT) {
eul[0] *= -1;
changed = 1;
}
if ((data->flag & ROTLIKE_Y)==0) {
eul[1] = obeul[1];
changed = 1;
}
else if (data->flag & ROTLIKE_Y_INVERT) {
eul[1] *= -1;
changed = 1;
}
if ((data->flag & ROTLIKE_Z)==0) {
eul[2] = obeul[2];
changed = 1;
}
else if (data->flag & ROTLIKE_Z_INVERT) {
eul[2] *= -1;
changed = 1;
}
if (changed) {
compatible_eul(eul, obeul);
LocEulSizeToMat4(ownermat, loc, eul, size);
}
else {
float quat[4];
Mat4ToQuat(targetmat, quat);
LocQuatSizeToMat4(ownermat, loc, quat, size);
}
}
break;
case CONSTRAINT_TYPE_SIZELIKE:
{
bSizeLikeConstraint *data;
float obsize[3], size[3];
data = constraint->data;
Mat4ToSize(targetmat, size);
Mat4ToSize(ownermat, obsize);
if ((data->flag & SIZELIKE_X) && obsize[0] != 0)
VecMulf(ownermat[0], size[0] / obsize[0]);
if ((data->flag & SIZELIKE_Y) && obsize[1] != 0)
VecMulf(ownermat[1], size[1] / obsize[1]);
if ((data->flag & SIZELIKE_Z) && obsize[2] != 0)
VecMulf(ownermat[2], size[2] / obsize[2]);
}
break;
case CONSTRAINT_TYPE_MINMAX:
{
bMinMaxConstraint *data;
float obmat[4][4], imat[4][4], tarmat[4][4], tmat[4][4];
float val1, val2;
int index;
data = constraint->data;
Mat4CpyMat4(obmat, ownermat);
Mat4CpyMat4(tarmat, targetmat);
if (data->flag & MINMAX_USEROT) {
/* take rotation of target into account by doing the transaction in target's localspace */
Mat4Invert(imat, tarmat);
Mat4MulMat4(tmat, obmat, imat);
Mat4CpyMat4(obmat, tmat);
Mat4One(tarmat);
}
switch (data->minmaxflag) {
case TRACK_Z:
val1 = tarmat[3][2];
val2 = obmat[3][2]-data->offset;
index = 2;
break;
case TRACK_Y:
val1 = tarmat[3][1];
val2 = obmat[3][1]-data->offset;
index = 1;
break;
case TRACK_X:
val1 = tarmat[3][0];
val2 = obmat[3][0]-data->offset;
index = 0;
break;
case TRACK_nZ:
val2 = tarmat[3][2];
val1 = obmat[3][2]-data->offset;
index = 2;
break;
case TRACK_nY:
val2 = tarmat[3][1];
val1 = obmat[3][1]-data->offset;
index = 1;
break;
case TRACK_nX:
val2 = tarmat[3][0];
val1 = obmat[3][0]-data->offset;
index = 0;
break;
default:
return;
}
if (val1 > val2) {
obmat[3][index] = tarmat[3][index] + data->offset;
if (data->flag & MINMAX_STICKY) {
if (data->flag & MINMAX_STUCK) {
VECCOPY(obmat[3], data->cache);
}
else {
VECCOPY(data->cache, obmat[3]);
data->flag |= MINMAX_STUCK;
}
}
if (data->flag & MINMAX_USEROT) {
/* get out of localspace */
Mat4MulMat4(tmat, obmat, targetmat);
Mat4CpyMat4(ownermat, tmat);
}
else {
VECCOPY(ownermat[3], obmat[3]);
}
}
else {
data->flag &= ~MINMAX_STUCK;
}
}
break;
case CONSTRAINT_TYPE_TRACKTO:
{
bTrackToConstraint *data;
float size[3], vec[3];
float totmat[3][3];
float tmat[4][4];
data = constraint->data;
if (data->tar) {
/* Get size property, since ob->size is only the object's own relative size, not its global one */
Mat4ToSize (ownermat, size);
/* Clear the object's rotation */
ownermat[0][0]=size[0];
ownermat[0][1]=0;
ownermat[0][2]=0;
ownermat[1][0]=0;
ownermat[1][1]=size[1];
ownermat[1][2]=0;
ownermat[2][0]=0;
ownermat[2][1]=0;
ownermat[2][2]=size[2];
VecSubf(vec, ownermat[3], targetmat[3]);
vectomat(vec, ownermat[2],
(short)data->reserved1, (short)data->reserved2,
data->flags, totmat);
Mat4CpyMat4(tmat, ownermat);
Mat4MulMat34(ownermat, totmat, tmat);
}
}
break;
case CONSTRAINT_TYPE_LOCKTRACK:
{
bLockTrackConstraint *data;
float vec[3],vec2[3];
float totmat[3][3];
float tmpmat[3][3];
float invmat[3][3];
float tmat[4][4];
float mdet;
data = constraint->data;
if (data->tar) {
/* Vector object -> target */
VecSubf(vec, targetmat[3], ownermat[3]);
switch (data->lockflag){
case LOCK_X: /* LOCK X */
{
switch (data->trackflag) {
case TRACK_Y: /* LOCK X TRACK Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[0]);
VecSubf(totmat[1], vec, vec2);
Normalize(totmat[1]);
/* the x axis is fixed */
totmat[0][0] = ownermat[0][0];
totmat[0][1] = ownermat[0][1];
totmat[0][2] = ownermat[0][2];
Normalize(totmat[0]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_Z: /* LOCK X TRACK Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[0]);
VecSubf(totmat[2], vec, vec2);
Normalize(totmat[2]);
/* the x axis is fixed */
totmat[0][0] = ownermat[0][0];
totmat[0][1] = ownermat[0][1];
totmat[0][2] = ownermat[0][2];
Normalize(totmat[0]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_nY: /* LOCK X TRACK -Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[0]);
VecSubf(totmat[1], vec, vec2);
Normalize(totmat[1]);
VecMulf(totmat[1],-1);
/* the x axis is fixed */
totmat[0][0] = ownermat[0][0];
totmat[0][1] = ownermat[0][1];
totmat[0][2] = ownermat[0][2];
Normalize(totmat[0]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_nZ: /* LOCK X TRACK -Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[0]);
VecSubf(totmat[2], vec, vec2);
Normalize(totmat[2]);
VecMulf(totmat[2],-1);
/* the x axis is fixed */
totmat[0][0] = ownermat[0][0];
totmat[0][1] = ownermat[0][1];
totmat[0][2] = ownermat[0][2];
Normalize(totmat[0]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
case LOCK_Y: /* LOCK Y */
{
switch (data->trackflag) {
case TRACK_X: /* LOCK Y TRACK X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[1]);
VecSubf(totmat[0], vec, vec2);
Normalize(totmat[0]);
/* the y axis is fixed */
totmat[1][0] = ownermat[1][0];
totmat[1][1] = ownermat[1][1];
totmat[1][2] = ownermat[1][2];
Normalize(totmat[1]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_Z: /* LOCK Y TRACK Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[1]);
VecSubf(totmat[2], vec, vec2);
Normalize(totmat[2]);
/* the y axis is fixed */
totmat[1][0] = ownermat[1][0];
totmat[1][1] = ownermat[1][1];
totmat[1][2] = ownermat[1][2];
Normalize(totmat[1]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
case TRACK_nX: /* LOCK Y TRACK -X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[1]);
VecSubf(totmat[0], vec, vec2);
Normalize(totmat[0]);
VecMulf(totmat[0],-1);
/* the y axis is fixed */
totmat[1][0] = ownermat[1][0];
totmat[1][1] = ownermat[1][1];
totmat[1][2] = ownermat[1][2];
Normalize(totmat[1]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[2], totmat[0], totmat[1]);
}
break;
case TRACK_nZ: /* LOCK Y TRACK -Z */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[1]);
VecSubf(totmat[2], vec, vec2);
Normalize(totmat[2]);
VecMulf(totmat[2],-1);
/* the y axis is fixed */
totmat[1][0] = ownermat[1][0];
totmat[1][1] = ownermat[1][1];
totmat[1][2] = ownermat[1][2];
Normalize(totmat[1]);
/* the z axis gets mapped onto a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
case LOCK_Z: /* LOCK Z */
{
switch (data->trackflag) {
case TRACK_X: /* LOCK Z TRACK X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[2]);
VecSubf(totmat[0], vec, vec2);
Normalize(totmat[0]);
/* the z axis is fixed */
totmat[2][0] = ownermat[2][0];
totmat[2][1] = ownermat[2][1];
totmat[2][2] = ownermat[2][2];
Normalize(totmat[2]);
/* the x axis gets mapped onto a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_Y: /* LOCK Z TRACK Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[2]);
VecSubf(totmat[1], vec, vec2);
Normalize(totmat[1]);
/* the z axis is fixed */
totmat[2][0] = ownermat[2][0];
totmat[2][1] = ownermat[2][1];
totmat[2][2] = ownermat[2][2];
Normalize(totmat[2]);
/* the x axis gets mapped onto a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
case TRACK_nX: /* LOCK Z TRACK -X */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[2]);
VecSubf(totmat[0], vec, vec2);
Normalize(totmat[0]);
VecMulf(totmat[0],-1);
/* the z axis is fixed */
totmat[2][0] = ownermat[2][0];
totmat[2][1] = ownermat[2][1];
totmat[2][2] = ownermat[2][2];
Normalize(totmat[2]);
/* the x axis gets mapped onto a third orthogonal vector */
Crossf(totmat[1], totmat[2], totmat[0]);
}
break;
case TRACK_nY: /* LOCK Z TRACK -Y */
{
/* Projection of Vector on the plane */
Projf(vec2, vec, ownermat[2]);
VecSubf(totmat[1], vec, vec2);
Normalize(totmat[1]);
VecMulf(totmat[1],-1);
/* the z axis is fixed */
totmat[2][0] = ownermat[2][0];
totmat[2][1] = ownermat[2][1];
totmat[2][2] = ownermat[2][2];
Normalize(totmat[2]);
/* the x axis gets mapped onto a third orthogonal vector */
Crossf(totmat[0], totmat[1], totmat[2]);
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
}
break;
default:
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
break;
}
/* Block to keep matrix heading */
tmpmat[0][0] = ownermat[0][0];tmpmat[0][1] = ownermat[0][1];tmpmat[0][2] = ownermat[0][2];
tmpmat[1][0] = ownermat[1][0];tmpmat[1][1] = ownermat[1][1];tmpmat[1][2] = ownermat[1][2];
tmpmat[2][0] = ownermat[2][0];tmpmat[2][1] = ownermat[2][1];tmpmat[2][2] = ownermat[2][2];
Normalize(tmpmat[0]);
Normalize(tmpmat[1]);
Normalize(tmpmat[2]);
Mat3Inv(invmat,tmpmat);
Mat3MulMat3(tmpmat, totmat, invmat);
totmat[0][0] = tmpmat[0][0];totmat[0][1] = tmpmat[0][1];totmat[0][2] = tmpmat[0][2];
totmat[1][0] = tmpmat[1][0];totmat[1][1] = tmpmat[1][1];totmat[1][2] = tmpmat[1][2];
totmat[2][0] = tmpmat[2][0];totmat[2][1] = tmpmat[2][1];totmat[2][2] = tmpmat[2][2];
Mat4CpyMat4(tmat, ownermat);
mdet = Det3x3( totmat[0][0],totmat[0][1],totmat[0][2],
totmat[1][0],totmat[1][1],totmat[1][2],
totmat[2][0],totmat[2][1],totmat[2][2]);
if (mdet==0)
{
totmat[0][0] = 1;totmat[0][1] = 0;totmat[0][2] = 0;
totmat[1][0] = 0;totmat[1][1] = 1;totmat[1][2] = 0;
totmat[2][0] = 0;totmat[2][1] = 0;totmat[2][2] = 1;
}
/* apply out transformaton to the object */
Mat4MulMat34(ownermat, totmat, tmat);
}
}
break;
case CONSTRAINT_TYPE_FOLLOWPATH:
{
bFollowPathConstraint *data;
float obmat[4][4];
float size[3], obsize[3];
data = constraint->data;
if (data->tar) {
/* get Object local transform (loc/rot/size) to determine transformation from path */
//object_to_mat4(ob, obmat);
Mat4CpyMat4(obmat, ownermat); // FIXME!!!
/* get scaling of object before applying constraint */
Mat4ToSize(ownermat, size);
/* apply targetmat - containing location on path, and rotation */
Mat4MulSerie(ownermat, targetmat, obmat, NULL, NULL, NULL, NULL, NULL, NULL);
/* un-apply scaling caused by path */
Mat4ToSize(ownermat, obsize);
if (obsize[0] != 0)
VecMulf(ownermat[0], size[0] / obsize[0]);
if (obsize[1] != 0)
VecMulf(ownermat[1], size[1] / obsize[1]);
if (obsize[2] != 0)
VecMulf(ownermat[2], size[2] / obsize[2]);
}
}
break;
case CONSTRAINT_TYPE_STRETCHTO:
{
bStretchToConstraint *data;
float size[3],scale[3],vec[3],xx[3],zz[3],orth[3];
float totmat[3][3];
float tmat[4][4];
float dist;
data = constraint->data;
Mat4ToSize (ownermat, size);
if (data->tar) {
/* store X orientation before destroying obmat */
xx[0] = ownermat[0][0];
xx[1] = ownermat[0][1];
xx[2] = ownermat[0][2];
Normalize(xx);
/* store Z orientation before destroying obmat */
zz[0] = ownermat[2][0];
zz[1] = ownermat[2][1];
zz[2] = ownermat[2][2];
Normalize(zz);
VecSubf(vec, ownermat[3], targetmat[3]);
vec[0] /= size[0];
vec[1] /= size[1];
vec[2] /= size[2];
dist = Normalize(vec);
//dist = VecLenf( ob->obmat[3], targetmat[3]);
if (data->orglength == 0) data->orglength = dist;
if (data->bulge ==0) data->bulge = 1.0;
scale[1] = dist/data->orglength;
switch (data->volmode) {
/* volume preserving scaling */
case VOLUME_XZ :
scale[0] = 1.0f - (float)sqrt(data->bulge) + (float)sqrt(data->bulge*(data->orglength/dist));
scale[2] = scale[0];
break;
case VOLUME_X:
scale[0] = 1.0f + data->bulge * (data->orglength /dist - 1);
scale[2] = 1.0;
break;
case VOLUME_Z:
scale[0] = 1.0;
scale[2] = 1.0f + data->bulge * (data->orglength /dist - 1);
break;
/* don't care for volume */
case NO_VOLUME:
scale[0] = 1.0;
scale[2] = 1.0;
break;
default: /* should not happen, but in case*/
return;
} /* switch (data->volmode) */
/* Clear the object's rotation and scale */
ownermat[0][0]=size[0]*scale[0];
ownermat[0][1]=0;
ownermat[0][2]=0;
ownermat[1][0]=0;
ownermat[1][1]=size[1]*scale[1];
ownermat[1][2]=0;
ownermat[2][0]=0;
ownermat[2][1]=0;
ownermat[2][2]=size[2]*scale[2];
VecSubf(vec, ownermat[3], targetmat[3]);
Normalize(vec);
/* new Y aligns object target connection*/
totmat[1][0] = -vec[0];
totmat[1][1] = -vec[1];
totmat[1][2] = -vec[2];
switch (data->plane) {
case PLANE_X:
/* build new Z vector */
/* othogonal to "new Y" "old X! plane */
Crossf(orth, vec, xx);
Normalize(orth);
/* new Z*/
totmat[2][0] = orth[0];
totmat[2][1] = orth[1];
totmat[2][2] = orth[2];
/* we decided to keep X plane*/
Crossf(xx, orth, vec);
Normalize(xx);
totmat[0][0] = xx[0];
totmat[0][1] = xx[1];
totmat[0][2] = xx[2];
break;
case PLANE_Z:
/* build new X vector */
/* othogonal to "new Y" "old Z! plane */
Crossf(orth, vec, zz);
Normalize(orth);
/* new X */
totmat[0][0] = -orth[0];
totmat[0][1] = -orth[1];
totmat[0][2] = -orth[2];
/* we decided to keep Z */
Crossf(zz, orth, vec);
Normalize(zz);
totmat[2][0] = zz[0];
totmat[2][1] = zz[1];
totmat[2][2] = zz[2];
break;
} /* switch (data->plane) */
Mat4CpyMat4(tmat, ownermat);
Mat4MulMat34(ownermat, totmat, tmat);
}
}
break;
case CONSTRAINT_TYPE_LOCLIMIT:
{
bLocLimitConstraint *data;
data = constraint->data;
if (data->flag & LIMIT_XMIN) {
if(ownermat[3][0] < data->xmin)
ownermat[3][0] = data->xmin;
}
if (data->flag & LIMIT_XMAX) {
if (ownermat[3][0] > data->xmax)
ownermat[3][0] = data->xmax;
}
if (data->flag & LIMIT_YMIN) {
if(ownermat[3][1] < data->ymin)
ownermat[3][1] = data->ymin;
}
if (data->flag & LIMIT_YMAX) {
if (ownermat[3][1] > data->ymax)
ownermat[3][1] = data->ymax;
}
if (data->flag & LIMIT_ZMIN) {
if(ownermat[3][2] < data->zmin)
ownermat[3][2] = data->zmin;
}
if (data->flag & LIMIT_ZMAX) {
if (ownermat[3][2] > data->zmax)
ownermat[3][2] = data->zmax;
}
}
break;
case CONSTRAINT_TYPE_ROTLIMIT:
{
bRotLimitConstraint *data;
float loc[3];
float eul[3];
float size[3];
data = constraint->data;
VECCOPY(loc, ownermat[3]);
Mat4ToSize(ownermat, size);
Mat4ToEul(ownermat, eul);
/* eulers: radians to degrees! */
eul[0] = (eul[0] / M_PI * 180);
eul[1] = (eul[1] / M_PI * 180);
eul[2] = (eul[2] / M_PI * 180);
/* limiting of euler values... */
if (data->flag & LIMIT_XROT) {
if (eul[0] < data->xmin)
eul[0] = data->xmin;
if (eul[0] > data->xmax)
eul[0] = data->xmax;
}
if (data->flag & LIMIT_YROT) {
if (eul[1] < data->ymin)
eul[1] = data->ymin;
if (eul[1] > data->ymax)
eul[1] = data->ymax;
}
if (data->flag & LIMIT_ZROT) {
if (eul[2] < data->zmin)
eul[2] = data->zmin;
if (eul[2] > data->zmax)
eul[2] = data->zmax;
}
/* eulers: degrees to radians ! */
eul[0] = (eul[0] / 180 * M_PI);
eul[1] = (eul[1] / 180 * M_PI);
eul[2] = (eul[2] / 180 * M_PI);
LocEulSizeToMat4(ownermat, loc, eul, size);
}
break;
case CONSTRAINT_TYPE_SIZELIMIT:
{
bSizeLimitConstraint *data;
float obsize[3], size[3];
data = constraint->data;
Mat4ToSize(ownermat, size);
Mat4ToSize(ownermat, obsize);
if (data->flag & LIMIT_XMIN) {
if (size[0] < data->xmin)
size[0] = data->xmin;
}
if (data->flag & LIMIT_XMAX) {
if (size[0] > data->xmax)
size[0] = data->xmax;
}
if (data->flag & LIMIT_YMIN) {
if (size[1] < data->ymin)
size[1] = data->ymin;
}
if (data->flag & LIMIT_YMAX) {
if (size[1] > data->ymax)
size[1] = data->ymax;
}
if (data->flag & LIMIT_ZMIN) {
if (size[2] < data->zmin)
size[2] = data->zmin;
}
if (data->flag & LIMIT_ZMAX) {
if (size[2] > data->zmax)
size[2] = data->zmax;
}
VecMulf(ownermat[0], size[0]/obsize[0]);
VecMulf(ownermat[1], size[1]/obsize[1]);
VecMulf(ownermat[2], size[2]/obsize[2]);
}
break;
case CONSTRAINT_TYPE_RIGIDBODYJOINT:
{
/* Do nothing. The GameEngine will take care of this.*/
}
break;
case CONSTRAINT_TYPE_CLAMPTO:
{
bClampToConstraint *data;
Curve *cu;
float obmat[4][4], targetMatrix[4][4], ownLoc[3];
float curveMin[3], curveMax[3];
data = constraint->data;
/* prevent crash if user deletes curve */
if ((data->tar == NULL) || (data->tar->type != OB_CURVE) )
return;
else
cu= data->tar->data;
Mat4CpyMat4(obmat, ownermat);
Mat4One(targetMatrix);
VECCOPY(ownLoc, obmat[3]);
INIT_MINMAX(curveMin, curveMax)
minmax_object(data->tar, curveMin, curveMax);
/* get targetmatrix */
if (cu->path && cu->path->data) {
float vec[4], dir[3], totmat[4][4];
float curvetime;
short clamp_axis;
/* find best position on curve */
/* 1. determine which axis to sample on? */
if (data->flag==CLAMPTO_AUTO) {
float size[3];
VecSubf(size, curveMax, curveMin);
/* find axis along which the bounding box has the greatest
* extent. Otherwise, default to the x-axis, as that is quite
* frequently used.
*/
if ((size[2]>size[0]) && (size[2]>size[1]))
clamp_axis= CLAMPTO_Z;
else if ((size[1]>size[0]) && (size[1]>size[2]))
clamp_axis= CLAMPTO_Y;
else
clamp_axis = CLAMPTO_X;
}
else
clamp_axis= data->flag;
/* 2. determine position relative to curve on a 0-1 scale */
if (clamp_axis > 0) clamp_axis--;
if (ownLoc[clamp_axis] <= curveMin[clamp_axis])
curvetime = 0.0;
else if (ownLoc[clamp_axis] >= curveMax[clamp_axis])
curvetime = 1.0;
else
curvetime = (ownLoc[clamp_axis] - curveMin[clamp_axis]) / (curveMax[clamp_axis] - curveMin[clamp_axis]);
/* 3. position on curve */
if(where_on_path(data->tar, curvetime, vec, dir) ) {
Mat4One(totmat);
VECCOPY(totmat[3], vec);
Mat4MulSerie(targetMatrix, data->tar->obmat, totmat, NULL, NULL, NULL, NULL, NULL, NULL);
}
}
/* obtain final object position */
VECCOPY(ownermat[3], targetMatrix[3]);
}
break;
case CONSTRAINT_TYPE_CHILDOF:
{
bChildOfConstraint *data;
data = constraint->data;
/* only evaluate if there is a target */
if (data->tar) {
float parmat[4][4], invmat[4][4], tempmat[4][4];
float loc[3], eul[3], size[3];
float loco[3], eulo[3], sizo[3];
/* get offset (parent-inverse) matrix */
Mat4CpyMat4(invmat, data->invmat);
/* extract components of both matrices */
VECCOPY(loc, targetmat[3]);
Mat4ToEul(targetmat, eul);
Mat4ToSize(targetmat, size);
VECCOPY(loco, invmat[3]);
Mat4ToEul(invmat, eulo);
Mat4ToSize(invmat, sizo);
/* disable channels not enabled */
if (!(data->flag & CHILDOF_LOCX)) loc[0]= loco[0]= 0.0f;
if (!(data->flag & CHILDOF_LOCY)) loc[1]= loco[1]= 0.0f;
if (!(data->flag & CHILDOF_LOCZ)) loc[2]= loco[2]= 0.0f;
if (!(data->flag & CHILDOF_ROTX)) eul[0]= eulo[0]= 0.0f;
if (!(data->flag & CHILDOF_ROTY)) eul[1]= eulo[1]= 0.0f;
if (!(data->flag & CHILDOF_ROTZ)) eul[2]= eulo[2]= 0.0f;
if (!(data->flag & CHILDOF_SIZEX)) size[0]= sizo[0]= 1.0f;
if (!(data->flag & CHILDOF_SIZEY)) size[1]= sizo[1]= 1.0f;
if (!(data->flag & CHILDOF_SIZEZ)) size[2]= sizo[2]= 1.0f;
/* make new target mat and offset mat */
LocEulSizeToMat4(targetmat, loc, eul, size);
LocEulSizeToMat4(invmat, loco, eulo, sizo);
/* multiply target (parent matrix) by offset (parent inverse) to get
* the effect of the parent that will be exherted on the owner
*/
Mat4MulMat4(parmat, invmat, targetmat);
/* now multiply the parent matrix by the owner matrix to get the
* the effect of this constraint (i.e. owner is 'parented' to parent)
*/
Mat4CpyMat4(tempmat, ownermat);
Mat4MulMat4(ownermat, tempmat, parmat);
}
}
break;
case CONSTRAINT_TYPE_TRANSFORM:
{
bTransformConstraint *data;
data = constraint->data;
/* only work if there is a target */
if (data->tar) {
float loc[3], eul[3], size[3];
float dvec[3], sval[3];
short i;
/* obtain target effect */
switch (data->from) {
case 2: /* scale */
{
Mat4ToSize(targetmat, dvec);
}
break;
case 1: /* rotation */
{
/* copy, and reduce to smallest rotation distance */
Mat4ToEul(targetmat, dvec);
/* reduce rotation */
for (i=0; i<3; i++)
dvec[i]= fmod(dvec[i], M_PI*2);
}
break;
default: /* location */
{
VECCOPY(dvec, targetmat[3]);
}
break;
}
/* extract components of owner's matrix */
VECCOPY(loc, ownermat[3]);
Mat4ToEul(ownermat, eul);
Mat4ToSize(ownermat, size);
/* determine where in range current transforms lie */
if (data->expo) {
for (i=0; i<3; i++) {
if (data->from_max[i] - data->from_min[i])
sval[i]= (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
else
sval[i]= 0.0f;
}
}
else {
/* clamp transforms out of range */
for (i=0; i<3; i++) {
CLAMP(dvec[i], data->from_min[i], data->from_max[i]);
if (data->from_max[i] - data->from_min[i])
sval[i]= (dvec[i] - data->from_min[i]) / (data->from_max[i] - data->from_min[i]);
else
sval[i]= 0.0f;
}
}
/* convert radian<->degree */
if (data->from==1 && data->to==0) {
/* from radians to degrees */
for (i=0; i<3; i++)
sval[i] = sval[i] / M_PI * 180;
}
else if (data->from==0 && data->to==1) {
/* from degrees to radians */
for (i=0; i<3; i++)
sval[i] = sval[i] / 180 * M_PI;
}
/* apply transforms */
switch (data->to) {
case 2: /* scaling */
for (i=0; i<3; i++)
size[i]= data->to_min[i] + (sval[data->map[i]] * (data->to_max[i] - data->to_min[i]));
break;
case 1: /* rotation */
for (i=0; i<3; i++) {
float tmin, tmax;
/* convert destination min/max ranges from degrees to radians */
tmin= data->to_min[i] / M_PI * 180;
tmax= data->to_max[i] / M_PI * 180;
eul[i]= tmin + (sval[data->map[i]] * (tmax - tmin));
}
break;
default: /* location */
for (i=0; i<3; i++)
loc[i] += (data->to_min[i] + (sval[data->map[i]] * (data->to_max[i] - data->to_min[i])));
break;
}
/* apply to matrix */
LocEulSizeToMat4(ownermat, loc, eul, size);
}
}
break;
default:
printf("Error: Unknown constraint type\n");
break;
}
}
/* this function is called whenever constraints need to be evaluated */
void solve_constraints (ListBase *conlist, bConstraintOb *cob, float ctime)
{
bConstraint *con;
void *ownerdata;
float tarmat[4][4], oldmat[4][4];
float solution[4][4], delta[4][4], imat[4][4];
float enf;
/* check that there is a valid constraint object to evaluate */
if (cob == NULL)
return;
/* loop over available constraints, solving and blending them */
for (con= conlist->first; con; con= con->next) {
/* this we can skip completely */
if (con->flag & CONSTRAINT_DISABLE) continue;
/* influence == 0 should be ignored */
if (con->enforce == 0.0f) continue;
/* and inverse kinematics is solved seperate */
if (con->type==CONSTRAINT_TYPE_KINEMATIC) continue;
/* rigidbody is really a game-engine thing - and is not solved here */
if (con->type==CONSTRAINT_TYPE_RIGIDBODYJOINT) continue;
/* influence of constraint */
/* value should have been set from IPO's/Constraint Channels already */
enf = con->enforce;
/* move target/owner into right spaces */
constraint_mat_convertspace(cob->ob, cob->pchan, cob->matrix, CONSTRAINT_SPACE_WORLD, con->ownspace);
/* Get the target matrix */
ownerdata= ((cob->pchan)? (void *)cob->pchan : (void *)cob->ob);
get_constraint_target_matrix(con, cob->type, ownerdata, tarmat, ctime);
Mat4CpyMat4(oldmat, cob->matrix);
/* solve the constraint */
evaluate_constraint(con, cob->matrix, tarmat);
/* Interpolate the enforcement, to blend result of constraint into final owner transform */
/* 1. Remove effects of original matrix from constraint solution ==> delta */
Mat4Invert(imat, oldmat);
Mat4CpyMat4(solution, cob->matrix);
Mat4MulMat4(delta, solution, imat);
/* 2. If constraint influence is not full strength, then interpolate
* identity_matrix --> delta_matrix to get the effect the constraint actually exerts
*/
if (enf < 1.0) {
float identity[4][4];
Mat4One(identity);
Mat4BlendMat4(delta, identity, delta, enf);
}
/* 3. Now multiply the delta by the matrix in use before the evaluation */
Mat4MulMat4(cob->matrix, delta, oldmat);
/* move target/owner back into worldspace for next constraint/other business */
if ((con->flag & CONSTRAINT_SPACEONCE) == 0)
constraint_mat_convertspace(cob->ob, cob->pchan, cob->matrix, con->ownspace, CONSTRAINT_SPACE_WORLD);
}
}