When sampling ImBuf can be a char or a float buffer. Current sampling functions added overhead by checking which kind of buffer was passed every pixel that was sampled. When performing image processing this check can be removed outside the inner loop adding 5% of performance increase in the `IMB_transform` operator.
680 lines
20 KiB
C
680 lines
20 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup imbuf
|
|
*
|
|
* This file was moved here from the src/ directory. It is meant to
|
|
* deal with endianness. It resided in a general blending lib. The
|
|
* other functions were only used during rendering. This single
|
|
* function remained. It should probably move to imbuf/intern/util.c,
|
|
* but we'll keep it here for the time being. (nzc)
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_task.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "IMB_colormanagement.h"
|
|
#include "IMB_imbuf.h"
|
|
#include "IMB_imbuf_types.h"
|
|
#include <math.h>
|
|
|
|
/* Only this one is used liberally here, and in imbuf */
|
|
void IMB_convert_rgba_to_abgr(struct ImBuf *ibuf)
|
|
{
|
|
size_t size;
|
|
unsigned char rt, *cp = (unsigned char *)ibuf->rect;
|
|
float rtf, *cpf = ibuf->rect_float;
|
|
|
|
if (ibuf->rect) {
|
|
size = ibuf->x * ibuf->y;
|
|
|
|
while (size-- > 0) {
|
|
rt = cp[0];
|
|
cp[0] = cp[3];
|
|
cp[3] = rt;
|
|
rt = cp[1];
|
|
cp[1] = cp[2];
|
|
cp[2] = rt;
|
|
cp += 4;
|
|
}
|
|
}
|
|
|
|
if (ibuf->rect_float) {
|
|
size = ibuf->x * ibuf->y;
|
|
|
|
while (size-- > 0) {
|
|
rtf = cpf[0];
|
|
cpf[0] = cpf[3];
|
|
cpf[3] = rtf;
|
|
rtf = cpf[1];
|
|
cpf[1] = cpf[2];
|
|
cpf[2] = rtf;
|
|
cpf += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pixel_from_buffer(struct ImBuf *ibuf, unsigned char **outI, float **outF, int x, int y)
|
|
|
|
{
|
|
size_t offset = ((size_t)ibuf->x) * y * 4 + 4 * x;
|
|
|
|
if (ibuf->rect) {
|
|
*outI = (unsigned char *)ibuf->rect + offset;
|
|
}
|
|
|
|
if (ibuf->rect_float) {
|
|
*outF = ibuf->rect_float + offset;
|
|
}
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Bi-Cubic Interpolation
|
|
* \{ */
|
|
|
|
void bicubic_interpolation_color(
|
|
struct ImBuf *in, unsigned char outI[4], float outF[4], float u, float v)
|
|
{
|
|
if (outF) {
|
|
BLI_bicubic_interpolation_fl(in->rect_float, outF, in->x, in->y, 4, u, v);
|
|
}
|
|
else {
|
|
BLI_bicubic_interpolation_char((unsigned char *)in->rect, outI, in->x, in->y, 4, u, v);
|
|
}
|
|
}
|
|
|
|
void bicubic_interpolation(ImBuf *in, ImBuf *out, float u, float v, int xout, int yout)
|
|
{
|
|
unsigned char *outI = NULL;
|
|
float *outF = NULL;
|
|
|
|
if (in == NULL || (in->rect == NULL && in->rect_float == NULL)) {
|
|
return;
|
|
}
|
|
|
|
/* GCC warns these could be uninitialized, but its ok. */
|
|
pixel_from_buffer(out, &outI, &outF, xout, yout);
|
|
|
|
bicubic_interpolation_color(in, outI, outF, u, v);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Bi-Linear Interpolation
|
|
* \{ */
|
|
|
|
BLI_INLINE void bilinear_interpolation_color_fl(
|
|
struct ImBuf *in, unsigned char UNUSED(outI[4]), float outF[4], float u, float v)
|
|
{
|
|
BLI_assert(outF);
|
|
BLI_assert(in->rect_float);
|
|
BLI_bilinear_interpolation_fl(in->rect_float, outF, in->x, in->y, 4, u, v);
|
|
}
|
|
|
|
BLI_INLINE void bilinear_interpolation_color_char(
|
|
struct ImBuf *in, unsigned char outI[4], float UNUSED(outF[4]), float u, float v)
|
|
{
|
|
BLI_assert(outI);
|
|
BLI_assert(in->rect);
|
|
BLI_bilinear_interpolation_char((unsigned char *)in->rect, outI, in->x, in->y, 4, u, v);
|
|
}
|
|
|
|
void bilinear_interpolation_color(
|
|
struct ImBuf *in, unsigned char outI[4], float outF[4], float u, float v)
|
|
{
|
|
if (outF) {
|
|
BLI_bilinear_interpolation_fl(in->rect_float, outF, in->x, in->y, 4, u, v);
|
|
}
|
|
else {
|
|
BLI_bilinear_interpolation_char((unsigned char *)in->rect, outI, in->x, in->y, 4, u, v);
|
|
}
|
|
}
|
|
|
|
/* function assumes out to be zero'ed, only does RGBA */
|
|
/* BILINEAR INTERPOLATION */
|
|
|
|
/* Note about wrapping, the u/v still needs to be within the image bounds,
|
|
* just the interpolation is wrapped.
|
|
* This the same as bilinear_interpolation_color except it wraps
|
|
* rather than using empty and emptyI. */
|
|
void bilinear_interpolation_color_wrap(
|
|
struct ImBuf *in, unsigned char outI[4], float outF[4], float u, float v)
|
|
{
|
|
float *row1, *row2, *row3, *row4, a, b;
|
|
unsigned char *row1I, *row2I, *row3I, *row4I;
|
|
float a_b, ma_b, a_mb, ma_mb;
|
|
int y1, y2, x1, x2;
|
|
|
|
/* ImBuf in must have a valid rect or rect_float, assume this is already checked */
|
|
|
|
x1 = (int)floor(u);
|
|
x2 = (int)ceil(u);
|
|
y1 = (int)floor(v);
|
|
y2 = (int)ceil(v);
|
|
|
|
/* sample area entirely outside image? */
|
|
if (x2 < 0 || x1 > in->x - 1 || y2 < 0 || y1 > in->y - 1) {
|
|
return;
|
|
}
|
|
|
|
/* wrap interpolation pixels - main difference from bilinear_interpolation_color */
|
|
if (x1 < 0) {
|
|
x1 = in->x + x1;
|
|
}
|
|
if (y1 < 0) {
|
|
y1 = in->y + y1;
|
|
}
|
|
|
|
if (x2 >= in->x) {
|
|
x2 = x2 - in->x;
|
|
}
|
|
if (y2 >= in->y) {
|
|
y2 = y2 - in->y;
|
|
}
|
|
|
|
a = u - floorf(u);
|
|
b = v - floorf(v);
|
|
a_b = a * b;
|
|
ma_b = (1.0f - a) * b;
|
|
a_mb = a * (1.0f - b);
|
|
ma_mb = (1.0f - a) * (1.0f - b);
|
|
|
|
if (outF) {
|
|
/* sample including outside of edges of image */
|
|
row1 = in->rect_float + ((size_t)in->x) * y1 * 4 + 4 * x1;
|
|
row2 = in->rect_float + ((size_t)in->x) * y2 * 4 + 4 * x1;
|
|
row3 = in->rect_float + ((size_t)in->x) * y1 * 4 + 4 * x2;
|
|
row4 = in->rect_float + ((size_t)in->x) * y2 * 4 + 4 * x2;
|
|
|
|
outF[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
|
|
outF[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
|
|
outF[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
|
|
outF[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3];
|
|
|
|
/* clamp here or else we can easily get off-range */
|
|
clamp_v4(outF, 0.0f, 1.0f);
|
|
}
|
|
if (outI) {
|
|
/* sample including outside of edges of image */
|
|
row1I = (unsigned char *)in->rect + ((size_t)in->x) * y1 * 4 + 4 * x1;
|
|
row2I = (unsigned char *)in->rect + ((size_t)in->x) * y2 * 4 + 4 * x1;
|
|
row3I = (unsigned char *)in->rect + ((size_t)in->x) * y1 * 4 + 4 * x2;
|
|
row4I = (unsigned char *)in->rect + ((size_t)in->x) * y2 * 4 + 4 * x2;
|
|
|
|
/* Tested with white images and this should not wrap back to zero. */
|
|
outI[0] = roundf(ma_mb * row1I[0] + a_mb * row3I[0] + ma_b * row2I[0] + a_b * row4I[0]);
|
|
outI[1] = roundf(ma_mb * row1I[1] + a_mb * row3I[1] + ma_b * row2I[1] + a_b * row4I[1]);
|
|
outI[2] = roundf(ma_mb * row1I[2] + a_mb * row3I[2] + ma_b * row2I[2] + a_b * row4I[2]);
|
|
outI[3] = roundf(ma_mb * row1I[3] + a_mb * row3I[3] + ma_b * row2I[3] + a_b * row4I[3]);
|
|
}
|
|
}
|
|
|
|
void bilinear_interpolation(ImBuf *in, ImBuf *out, float u, float v, int xout, int yout)
|
|
{
|
|
unsigned char *outI = NULL;
|
|
float *outF = NULL;
|
|
|
|
if (in == NULL || (in->rect == NULL && in->rect_float == NULL)) {
|
|
return;
|
|
}
|
|
|
|
/* gcc warns these could be uninitialized, but its ok. */
|
|
pixel_from_buffer(out, &outI, &outF, xout, yout);
|
|
|
|
bilinear_interpolation_color(in, outI, outF, u, v);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Nearest Interpolation
|
|
* \{ */
|
|
|
|
/* functions assumes out to be zero'ed, only does RGBA */
|
|
BLI_INLINE void nearest_interpolation_color_char(
|
|
struct ImBuf *in, unsigned char outI[4], float UNUSED(outF[4]), float u, float v)
|
|
{
|
|
BLI_assert(outI);
|
|
BLI_assert(in->rect);
|
|
/* ImBuf in must have a valid rect or rect_float, assume this is already checked */
|
|
int x1 = (int)(u);
|
|
int y1 = (int)(v);
|
|
|
|
/* sample area entirely outside image? */
|
|
if (x1 < 0 || x1 >= in->x || y1 < 0 || y1 >= in->y) {
|
|
outI[0] = outI[1] = outI[2] = outI[3] = 0;
|
|
return;
|
|
}
|
|
|
|
const size_t offset = (in->x * y1 + x1) * 4;
|
|
const unsigned char *dataI = (unsigned char *)in->rect + offset;
|
|
outI[0] = dataI[0];
|
|
outI[1] = dataI[1];
|
|
outI[2] = dataI[2];
|
|
outI[3] = dataI[3];
|
|
}
|
|
|
|
BLI_INLINE void nearest_interpolation_color_fl(
|
|
struct ImBuf *in, unsigned char UNUSED(outI[4]), float outF[4], float u, float v)
|
|
{
|
|
BLI_assert(outF);
|
|
BLI_assert(in->rect_float);
|
|
/* ImBuf in must have a valid rect or rect_float, assume this is already checked */
|
|
int x1 = (int)(u);
|
|
int y1 = (int)(v);
|
|
|
|
/* sample area entirely outside image? */
|
|
if (x1 < 0 || x1 >= in->x || y1 < 0 || y1 >= in->y) {
|
|
zero_v4(outF);
|
|
return;
|
|
}
|
|
|
|
const size_t offset = (in->x * y1 + x1) * 4;
|
|
const float *dataF = in->rect_float + offset;
|
|
copy_v4_v4(outF, dataF);
|
|
}
|
|
|
|
void nearest_interpolation_color(
|
|
struct ImBuf *in, unsigned char outI[4], float outF[4], float u, float v)
|
|
{
|
|
if (outF) {
|
|
nearest_interpolation_color_fl(in, outI, outF, u, v);
|
|
}
|
|
else {
|
|
nearest_interpolation_color_char(in, outI, outF, u, v);
|
|
}
|
|
}
|
|
|
|
void nearest_interpolation_color_wrap(
|
|
struct ImBuf *in, unsigned char outI[4], float outF[4], float u, float v)
|
|
{
|
|
const float *dataF;
|
|
unsigned char *dataI;
|
|
int y, x;
|
|
|
|
/* ImBuf in must have a valid rect or rect_float, assume this is already checked */
|
|
|
|
x = (int)floor(u);
|
|
y = (int)floor(v);
|
|
|
|
x = x % in->x;
|
|
y = y % in->y;
|
|
|
|
/* wrap interpolation pixels - main difference from nearest_interpolation_color */
|
|
if (x < 0) {
|
|
x += in->x;
|
|
}
|
|
if (y < 0) {
|
|
y += in->y;
|
|
}
|
|
|
|
dataI = (unsigned char *)in->rect + ((size_t)in->x) * y * 4 + 4 * x;
|
|
if (outI) {
|
|
outI[0] = dataI[0];
|
|
outI[1] = dataI[1];
|
|
outI[2] = dataI[2];
|
|
outI[3] = dataI[3];
|
|
}
|
|
dataF = in->rect_float + ((size_t)in->x) * y * 4 + 4 * x;
|
|
if (outF) {
|
|
outF[0] = dataF[0];
|
|
outF[1] = dataF[1];
|
|
outF[2] = dataF[2];
|
|
outF[3] = dataF[3];
|
|
}
|
|
}
|
|
|
|
void nearest_interpolation(ImBuf *in, ImBuf *out, float u, float v, int xout, int yout)
|
|
{
|
|
unsigned char *outI = NULL;
|
|
float *outF = NULL;
|
|
|
|
if (in == NULL || (in->rect == NULL && in->rect_float == NULL)) {
|
|
return;
|
|
}
|
|
|
|
/* gcc warns these could be uninitialized, but its ok. */
|
|
pixel_from_buffer(out, &outI, &outF, xout, yout);
|
|
|
|
nearest_interpolation_color(in, outI, outF, u, v);
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Image transform
|
|
* \{ */
|
|
typedef struct TransformUserData {
|
|
ImBuf *src;
|
|
ImBuf *dst;
|
|
float start_uv[2];
|
|
float add_x[2];
|
|
float add_y[2];
|
|
rctf src_crop;
|
|
} TransformUserData;
|
|
|
|
static void imb_transform_calc_start_uv(const float transform_matrix[3][3], float r_start_uv[2])
|
|
{
|
|
float orig[2];
|
|
orig[0] = 0.0f;
|
|
orig[1] = 0.0f;
|
|
mul_v2_m3v2(r_start_uv, transform_matrix, orig);
|
|
}
|
|
|
|
static void imb_transform_calc_add_x(const float transform_matrix[3][3],
|
|
const float start_uv[2],
|
|
const int width,
|
|
float r_add_x[2])
|
|
{
|
|
float uv_max_x[2];
|
|
uv_max_x[0] = width;
|
|
uv_max_x[1] = 0.0f;
|
|
mul_v2_m3v2(r_add_x, transform_matrix, uv_max_x);
|
|
sub_v2_v2(r_add_x, start_uv);
|
|
mul_v2_fl(r_add_x, 1.0f / width);
|
|
}
|
|
|
|
static void imb_transform_calc_add_y(const float transform_matrix[3][3],
|
|
const float start_uv[2],
|
|
const int height,
|
|
float r_add_y[2])
|
|
{
|
|
float uv_max_y[2];
|
|
uv_max_y[0] = 0.0f;
|
|
uv_max_y[1] = height;
|
|
mul_v2_m3v2(r_add_y, transform_matrix, uv_max_y);
|
|
sub_v2_v2(r_add_y, start_uv);
|
|
mul_v2_fl(r_add_y, 1.0f / height);
|
|
}
|
|
|
|
typedef void (*InterpolationColorFunction)(
|
|
struct ImBuf *in, unsigned char outI[4], float outF[4], float u, float v);
|
|
BLI_INLINE void imb_transform_scanlines(const TransformUserData *user_data,
|
|
int start_scanline,
|
|
int num_scanlines,
|
|
InterpolationColorFunction interpolation)
|
|
{
|
|
const int width = user_data->dst->x;
|
|
|
|
float next_line_start_uv[2];
|
|
madd_v2_v2v2fl(next_line_start_uv, user_data->start_uv, user_data->add_y, start_scanline);
|
|
|
|
unsigned char *outI = NULL;
|
|
float *outF = NULL;
|
|
pixel_from_buffer(user_data->dst, &outI, &outF, 0, start_scanline);
|
|
|
|
for (int yi = start_scanline; yi < start_scanline + num_scanlines; yi++) {
|
|
float uv[2];
|
|
copy_v2_v2(uv, next_line_start_uv);
|
|
add_v2_v2(next_line_start_uv, user_data->add_y);
|
|
for (int xi = 0; xi < width; xi++) {
|
|
if (uv[0] >= user_data->src_crop.xmin && uv[0] < user_data->src_crop.xmax &&
|
|
uv[1] >= user_data->src_crop.ymin && uv[1] < user_data->src_crop.ymax) {
|
|
interpolation(user_data->src, outI, outF, uv[0], uv[1]);
|
|
}
|
|
add_v2_v2(uv, user_data->add_x);
|
|
if (outI) {
|
|
outI += 4;
|
|
}
|
|
if (outF) {
|
|
outF += 4;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void imb_transform_nearest_scanlines(void *custom_data,
|
|
int start_scanline,
|
|
int num_scanlines)
|
|
{
|
|
const TransformUserData *user_data = custom_data;
|
|
InterpolationColorFunction interpolation = NULL;
|
|
if (user_data->dst->rect_float) {
|
|
interpolation = nearest_interpolation_color_fl;
|
|
}
|
|
else {
|
|
interpolation = nearest_interpolation_color_char;
|
|
}
|
|
imb_transform_scanlines(user_data, start_scanline, num_scanlines, interpolation);
|
|
}
|
|
|
|
static void imb_transform_bilinear_scanlines(void *custom_data,
|
|
int start_scanline,
|
|
int num_scanlines)
|
|
{
|
|
const TransformUserData *user_data = custom_data;
|
|
InterpolationColorFunction interpolation = NULL;
|
|
if (user_data->dst->rect_float) {
|
|
interpolation = bilinear_interpolation_color_fl;
|
|
}
|
|
else if (user_data->dst->rect) {
|
|
interpolation = bilinear_interpolation_color_char;
|
|
}
|
|
imb_transform_scanlines(user_data, start_scanline, num_scanlines, interpolation);
|
|
}
|
|
|
|
static ScanlineThreadFunc imb_transform_scanline_func(const eIMBInterpolationFilterMode filter)
|
|
{
|
|
ScanlineThreadFunc scanline_func = NULL;
|
|
switch (filter) {
|
|
case IMB_FILTER_NEAREST:
|
|
scanline_func = imb_transform_nearest_scanlines;
|
|
break;
|
|
case IMB_FILTER_BILINEAR:
|
|
scanline_func = imb_transform_bilinear_scanlines;
|
|
break;
|
|
}
|
|
return scanline_func;
|
|
}
|
|
|
|
void IMB_transform(struct ImBuf *src,
|
|
struct ImBuf *dst,
|
|
float transform_matrix[3][3],
|
|
struct rctf *src_crop,
|
|
const eIMBInterpolationFilterMode filter)
|
|
{
|
|
TransformUserData user_data;
|
|
user_data.src = src;
|
|
user_data.dst = dst;
|
|
user_data.src_crop = *src_crop;
|
|
imb_transform_calc_start_uv(transform_matrix, user_data.start_uv);
|
|
imb_transform_calc_add_x(transform_matrix, user_data.start_uv, src->x, user_data.add_x);
|
|
imb_transform_calc_add_y(transform_matrix, user_data.start_uv, src->y, user_data.add_y);
|
|
ScanlineThreadFunc scanline_func = imb_transform_scanline_func(filter);
|
|
IMB_processor_apply_threaded_scanlines(dst->y, scanline_func, &user_data);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Threaded Image Processing
|
|
* \{ */
|
|
|
|
static void processor_apply_func(TaskPool *__restrict pool, void *taskdata)
|
|
{
|
|
void (*do_thread)(void *) = (void (*)(void *))BLI_task_pool_user_data(pool);
|
|
do_thread(taskdata);
|
|
}
|
|
|
|
void IMB_processor_apply_threaded(
|
|
int buffer_lines,
|
|
int handle_size,
|
|
void *init_customdata,
|
|
void(init_handle)(void *handle, int start_line, int tot_line, void *customdata),
|
|
void *(do_thread)(void *))
|
|
{
|
|
const int lines_per_task = 64;
|
|
|
|
TaskPool *task_pool;
|
|
|
|
void *handles;
|
|
int total_tasks = (buffer_lines + lines_per_task - 1) / lines_per_task;
|
|
int i, start_line;
|
|
|
|
task_pool = BLI_task_pool_create(do_thread, TASK_PRIORITY_LOW, TASK_ISOLATION_ON);
|
|
|
|
handles = MEM_callocN(handle_size * total_tasks, "processor apply threaded handles");
|
|
|
|
start_line = 0;
|
|
|
|
for (i = 0; i < total_tasks; i++) {
|
|
int lines_per_current_task;
|
|
void *handle = ((char *)handles) + handle_size * i;
|
|
|
|
if (i < total_tasks - 1) {
|
|
lines_per_current_task = lines_per_task;
|
|
}
|
|
else {
|
|
lines_per_current_task = buffer_lines - start_line;
|
|
}
|
|
|
|
init_handle(handle, start_line, lines_per_current_task, init_customdata);
|
|
|
|
BLI_task_pool_push(task_pool, processor_apply_func, handle, false, NULL);
|
|
|
|
start_line += lines_per_task;
|
|
}
|
|
|
|
/* work and wait until tasks are done */
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
|
|
/* Free memory. */
|
|
MEM_freeN(handles);
|
|
BLI_task_pool_free(task_pool);
|
|
}
|
|
|
|
typedef struct ScanlineGlobalData {
|
|
void *custom_data;
|
|
ScanlineThreadFunc do_thread;
|
|
int scanlines_per_task;
|
|
int total_scanlines;
|
|
} ScanlineGlobalData;
|
|
|
|
static void processor_apply_scanline_func(TaskPool *__restrict pool, void *taskdata)
|
|
{
|
|
ScanlineGlobalData *data = BLI_task_pool_user_data(pool);
|
|
int start_scanline = POINTER_AS_INT(taskdata);
|
|
int num_scanlines = min_ii(data->scanlines_per_task, data->total_scanlines - start_scanline);
|
|
data->do_thread(data->custom_data, start_scanline, num_scanlines);
|
|
}
|
|
|
|
void IMB_processor_apply_threaded_scanlines(int total_scanlines,
|
|
ScanlineThreadFunc do_thread,
|
|
void *custom_data)
|
|
{
|
|
const int scanlines_per_task = 64;
|
|
ScanlineGlobalData data;
|
|
data.custom_data = custom_data;
|
|
data.do_thread = do_thread;
|
|
data.scanlines_per_task = scanlines_per_task;
|
|
data.total_scanlines = total_scanlines;
|
|
const int total_tasks = (total_scanlines + scanlines_per_task - 1) / scanlines_per_task;
|
|
TaskPool *task_pool = BLI_task_pool_create(&data, TASK_PRIORITY_LOW, TASK_ISOLATION_ON);
|
|
for (int i = 0, start_line = 0; i < total_tasks; i++) {
|
|
BLI_task_pool_push(
|
|
task_pool, processor_apply_scanline_func, POINTER_FROM_INT(start_line), false, NULL);
|
|
start_line += scanlines_per_task;
|
|
}
|
|
|
|
/* work and wait until tasks are done */
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
|
|
/* Free memory. */
|
|
BLI_task_pool_free(task_pool);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Alpha-under
|
|
* \{ */
|
|
|
|
void IMB_alpha_under_color_float(float *rect_float, int x, int y, float backcol[3])
|
|
{
|
|
size_t a = ((size_t)x) * y;
|
|
float *fp = rect_float;
|
|
|
|
while (a--) {
|
|
const float mul = 1.0f - fp[3];
|
|
madd_v3_v3fl(fp, backcol, mul);
|
|
fp[3] = 1.0f;
|
|
|
|
fp += 4;
|
|
}
|
|
}
|
|
|
|
void IMB_alpha_under_color_byte(unsigned char *rect, int x, int y, const float backcol[3])
|
|
{
|
|
size_t a = ((size_t)x) * y;
|
|
unsigned char *cp = rect;
|
|
|
|
while (a--) {
|
|
if (cp[3] == 255) {
|
|
/* pass */
|
|
}
|
|
else if (cp[3] == 0) {
|
|
cp[0] = backcol[0] * 255;
|
|
cp[1] = backcol[1] * 255;
|
|
cp[2] = backcol[2] * 255;
|
|
}
|
|
else {
|
|
float alpha = cp[3] / 255.0;
|
|
float mul = 1.0f - alpha;
|
|
|
|
cp[0] = (cp[0] * alpha) + mul * backcol[0];
|
|
cp[1] = (cp[1] * alpha) + mul * backcol[1];
|
|
cp[2] = (cp[2] * alpha) + mul * backcol[2];
|
|
}
|
|
|
|
cp[3] = 255;
|
|
|
|
cp += 4;
|
|
}
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Sample Pixel
|
|
* \{ */
|
|
|
|
/* Sample pixel of image using NEAREST method. */
|
|
void IMB_sampleImageAtLocation(ImBuf *ibuf, float x, float y, bool make_linear_rgb, float color[4])
|
|
{
|
|
if (ibuf->rect_float) {
|
|
nearest_interpolation_color(ibuf, NULL, color, x, y);
|
|
}
|
|
else {
|
|
unsigned char byte_color[4];
|
|
nearest_interpolation_color(ibuf, byte_color, NULL, x, y);
|
|
rgba_uchar_to_float(color, byte_color);
|
|
if (make_linear_rgb) {
|
|
IMB_colormanagement_colorspace_to_scene_linear_v4(color, false, ibuf->rect_colorspace);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \} */
|