2582 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2582 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) Blender Foundation
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: all of this file.
 | 
						|
 *
 | 
						|
 * Contributor(s): none yet.
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
/** \file blender/blenkernel/intern/collision.c
 | 
						|
 *  \ingroup bke
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
 | 
						|
#include "BKE_cloth.h"
 | 
						|
 | 
						|
#include "DNA_cloth_types.h"
 | 
						|
#include "DNA_group_types.h"
 | 
						|
#include "DNA_mesh_types.h"
 | 
						|
#include "DNA_object_types.h"
 | 
						|
#include "DNA_object_force.h"
 | 
						|
#include "DNA_scene_types.h"
 | 
						|
#include "DNA_meshdata_types.h"
 | 
						|
 | 
						|
#include "BLI_utildefines.h"
 | 
						|
#include "BLI_blenlib.h"
 | 
						|
#include "BLI_math.h"
 | 
						|
#include "BLI_edgehash.h"
 | 
						|
#include "BLI_utildefines.h"
 | 
						|
#include "BLI_ghash.h"
 | 
						|
#include "BLI_memarena.h"
 | 
						|
#include "BLI_rand.h"
 | 
						|
 | 
						|
#include "BKE_DerivedMesh.h"
 | 
						|
#include "BKE_global.h"
 | 
						|
#include "BKE_scene.h"
 | 
						|
#include "BKE_mesh.h"
 | 
						|
#include "BKE_object.h"
 | 
						|
#include "BKE_modifier.h"
 | 
						|
 | 
						|
#include "BKE_DerivedMesh.h"
 | 
						|
#ifdef USE_BULLET
 | 
						|
#include "Bullet-C-Api.h"
 | 
						|
#endif
 | 
						|
#include "BLI_kdopbvh.h"
 | 
						|
#include "BKE_collision.h"
 | 
						|
 | 
						|
#ifdef WITH_ELTOPO
 | 
						|
#include "eltopo-capi.h"
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/***********************************
 | 
						|
Collision modifier code start
 | 
						|
***********************************/
 | 
						|
 | 
						|
/* step is limited from 0 (frame start position) to 1 (frame end position) */
 | 
						|
void collision_move_object ( CollisionModifierData *collmd, float step, float prevstep )
 | 
						|
{
 | 
						|
	float tv[3] = {0, 0, 0};
 | 
						|
	unsigned int i = 0;
 | 
						|
 | 
						|
	for ( i = 0; i < collmd->numverts; i++ )
 | 
						|
	{
 | 
						|
		VECSUB ( tv, collmd->xnew[i].co, collmd->x[i].co );
 | 
						|
		VECADDS ( collmd->current_x[i].co, collmd->x[i].co, tv, prevstep );
 | 
						|
		VECADDS ( collmd->current_xnew[i].co, collmd->x[i].co, tv, step );
 | 
						|
		VECSUB ( collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co );
 | 
						|
	}
 | 
						|
 | 
						|
	bvhtree_update_from_mvert ( collmd->bvhtree, collmd->mfaces, collmd->numfaces, collmd->current_x, collmd->current_xnew, collmd->numverts, 1 );
 | 
						|
}
 | 
						|
 | 
						|
BVHTree *bvhtree_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int UNUSED(numverts), float epsilon )
 | 
						|
{
 | 
						|
	BVHTree *tree;
 | 
						|
	float co[12];
 | 
						|
	unsigned int i;
 | 
						|
	MFace *tface = mfaces;
 | 
						|
 | 
						|
	tree = BLI_bvhtree_new ( numfaces*2, epsilon, 4, 26 );
 | 
						|
 | 
						|
	// fill tree
 | 
						|
	for ( i = 0; i < numfaces; i++, tface++ )
 | 
						|
	{
 | 
						|
		copy_v3_v3 ( &co[0*3], x[tface->v1].co );
 | 
						|
		copy_v3_v3 ( &co[1*3], x[tface->v2].co );
 | 
						|
		copy_v3_v3 ( &co[2*3], x[tface->v3].co );
 | 
						|
		if ( tface->v4 )
 | 
						|
			copy_v3_v3 ( &co[3*3], x[tface->v4].co );
 | 
						|
 | 
						|
		BLI_bvhtree_insert ( tree, i, co, ( mfaces->v4 ? 4 : 3 ) );
 | 
						|
	}
 | 
						|
 | 
						|
	// balance tree
 | 
						|
	BLI_bvhtree_balance ( tree );
 | 
						|
 | 
						|
	return tree;
 | 
						|
}
 | 
						|
 | 
						|
void bvhtree_update_from_mvert ( BVHTree * bvhtree, MFace *faces, int numfaces, MVert *x, MVert *xnew, int UNUSED(numverts), int moving )
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	MFace *mfaces = faces;
 | 
						|
	float co[12], co_moving[12];
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if ( !bvhtree )
 | 
						|
		return;
 | 
						|
 | 
						|
	if ( x )
 | 
						|
	{
 | 
						|
		for ( i = 0; i < numfaces; i++, mfaces++ )
 | 
						|
		{
 | 
						|
			copy_v3_v3 ( &co[0*3], x[mfaces->v1].co );
 | 
						|
			copy_v3_v3 ( &co[1*3], x[mfaces->v2].co );
 | 
						|
			copy_v3_v3 ( &co[2*3], x[mfaces->v3].co );
 | 
						|
			if ( mfaces->v4 )
 | 
						|
				copy_v3_v3 ( &co[3*3], x[mfaces->v4].co );
 | 
						|
 | 
						|
			// copy new locations into array
 | 
						|
			if ( moving && xnew )
 | 
						|
			{
 | 
						|
				// update moving positions
 | 
						|
				copy_v3_v3 ( &co_moving[0*3], xnew[mfaces->v1].co );
 | 
						|
				copy_v3_v3 ( &co_moving[1*3], xnew[mfaces->v2].co );
 | 
						|
				copy_v3_v3 ( &co_moving[2*3], xnew[mfaces->v3].co );
 | 
						|
				if ( mfaces->v4 )
 | 
						|
					copy_v3_v3 ( &co_moving[3*3], xnew[mfaces->v4].co );
 | 
						|
 | 
						|
				ret = BLI_bvhtree_update_node ( bvhtree, i, co, co_moving, ( mfaces->v4 ? 4 : 3 ) );
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				ret = BLI_bvhtree_update_node ( bvhtree, i, co, NULL, ( mfaces->v4 ? 4 : 3 ) );
 | 
						|
			}
 | 
						|
 | 
						|
			// check if tree is already full
 | 
						|
			if ( !ret )
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		BLI_bvhtree_update_tree ( bvhtree );
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/***********************************
 | 
						|
Collision modifier code end
 | 
						|
***********************************/
 | 
						|
 | 
						|
/**
 | 
						|
* gsl_poly_solve_cubic -
 | 
						|
*
 | 
						|
* copied from SOLVE_CUBIC.C --> GSL
 | 
						|
*/
 | 
						|
 | 
						|
#define mySWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)
 | 
						|
#if 0 /* UNUSED */
 | 
						|
static int 
 | 
						|
gsl_poly_solve_cubic (double a, double b, double c, 
 | 
						|
					  double *x0, double *x1, double *x2)
 | 
						|
{
 | 
						|
	double q = (a * a - 3 * b);
 | 
						|
	double r = (2 * a * a * a - 9 * a * b + 27 * c);
 | 
						|
 | 
						|
	double Q = q / 9;
 | 
						|
	double R = r / 54;
 | 
						|
 | 
						|
	double Q3 = Q * Q * Q;
 | 
						|
	double R2 = R * R;
 | 
						|
 | 
						|
	double CR2 = 729 * r * r;
 | 
						|
	double CQ3 = 2916 * q * q * q;
 | 
						|
 | 
						|
	if (R == 0 && Q == 0)
 | 
						|
	{
 | 
						|
		*x0 = - a / 3;
 | 
						|
		*x1 = - a / 3;
 | 
						|
		*x2 = - a / 3;
 | 
						|
		return 3;
 | 
						|
	}
 | 
						|
	else if (CR2 == CQ3) 
 | 
						|
	{
 | 
						|
		/* this test is actually R2 == Q3, written in a form suitable
 | 
						|
		for exact computation with integers */
 | 
						|
 | 
						|
		/* Due to finite precision some double roots may be missed, and
 | 
						|
		considered to be a pair of complex roots z = x +/- epsilon i
 | 
						|
		close to the real axis. */
 | 
						|
 | 
						|
		double sqrtQ = sqrt (Q);
 | 
						|
 | 
						|
		if (R > 0)
 | 
						|
		{
 | 
						|
			*x0 = -2 * sqrtQ  - a / 3;
 | 
						|
			*x1 = sqrtQ - a / 3;
 | 
						|
			*x2 = sqrtQ - a / 3;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			*x0 = - sqrtQ  - a / 3;
 | 
						|
			*x1 = - sqrtQ - a / 3;
 | 
						|
			*x2 = 2 * sqrtQ - a / 3;
 | 
						|
		}
 | 
						|
		return 3;
 | 
						|
	}
 | 
						|
	else if (CR2 < CQ3) /* equivalent to R2 < Q3 */
 | 
						|
	{
 | 
						|
		double sqrtQ = sqrt (Q);
 | 
						|
		double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
 | 
						|
		double theta = acos (R / sqrtQ3);
 | 
						|
		double norm = -2 * sqrtQ;
 | 
						|
		*x0 = norm * cos (theta / 3) - a / 3;
 | 
						|
		*x1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
 | 
						|
		*x2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;
 | 
						|
 | 
						|
		/* Sort *x0, *x1, *x2 into increasing order */
 | 
						|
 | 
						|
		if (*x0 > *x1)
 | 
						|
			mySWAP(*x0, *x1);
 | 
						|
 | 
						|
		if (*x1 > *x2)
 | 
						|
		{
 | 
						|
			mySWAP(*x1, *x2);
 | 
						|
 | 
						|
			if (*x0 > *x1)
 | 
						|
				mySWAP(*x0, *x1);
 | 
						|
		}
 | 
						|
 | 
						|
		return 3;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		double sgnR = (R >= 0 ? 1 : -1);
 | 
						|
		double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0/3.0);
 | 
						|
		double B = Q / A;
 | 
						|
		*x0 = A + B - a / 3;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
* gsl_poly_solve_quadratic
 | 
						|
*
 | 
						|
* copied from GSL
 | 
						|
*/
 | 
						|
static int 
 | 
						|
gsl_poly_solve_quadratic (double a, double b, double c, 
 | 
						|
						  double *x0, double *x1)
 | 
						|
{
 | 
						|
	double disc = b * b - 4 * a * c;
 | 
						|
 | 
						|
	if (a == 0) /* Handle linear case */
 | 
						|
	{
 | 
						|
		if (b == 0)
 | 
						|
		{
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			*x0 = -c / b;
 | 
						|
			return 1;
 | 
						|
		};
 | 
						|
	}
 | 
						|
 | 
						|
	if (disc > 0)
 | 
						|
	{
 | 
						|
		if (b == 0)
 | 
						|
		{
 | 
						|
			double r = fabs (0.5 * sqrt (disc) / a);
 | 
						|
			*x0 = -r;
 | 
						|
			*x1 =  r;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			double sgnb = (b > 0 ? 1 : -1);
 | 
						|
			double temp = -0.5 * (b + sgnb * sqrt (disc));
 | 
						|
			double r1 = temp / a;
 | 
						|
			double r2 = c / temp;
 | 
						|
 | 
						|
			if (r1 < r2) 
 | 
						|
			{
 | 
						|
				*x0 = r1;
 | 
						|
				*x1 = r2;
 | 
						|
			} 
 | 
						|
			else 
 | 
						|
			{
 | 
						|
				*x0 = r2;
 | 
						|
				*x1 = r1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return 2;
 | 
						|
	}
 | 
						|
	else if (disc == 0) 
 | 
						|
	{
 | 
						|
		*x0 = -0.5 * b / a;
 | 
						|
		*x1 = -0.5 * b / a;
 | 
						|
		return 2;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* UNUSED */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
* See Bridson et al. "Robust Treatment of Collision, Contact and Friction for Cloth Animation"
 | 
						|
*     page 4, left column
 | 
						|
*/
 | 
						|
#if 0
 | 
						|
static int cloth_get_collision_time ( double a[3], double b[3], double c[3], double d[3], double e[3], double f[3], double solution[3] )
 | 
						|
{
 | 
						|
	int num_sols = 0;
 | 
						|
 | 
						|
	// x^0 - checked 
 | 
						|
	double g = 	a[0] * c[1] * e[2] - a[0] * c[2] * e[1] +
 | 
						|
		a[1] * c[2] * e[0] - a[1] * c[0] * e[2] + 
 | 
						|
		a[2] * c[0] * e[1] - a[2] * c[1] * e[0];
 | 
						|
 | 
						|
	// x^1
 | 
						|
	double h = -b[2] * c[1] * e[0] + b[1] * c[2] * e[0] - a[2] * d[1] * e[0] +
 | 
						|
		a[1] * d[2] * e[0] + b[2] * c[0] * e[1] - b[0] * c[2] * e[1] +
 | 
						|
		a[2] * d[0] * e[1] - a[0] * d[2] * e[1] - b[1] * c[0] * e[2] +
 | 
						|
		b[0] * c[1] * e[2] - a[1] * d[0] * e[2] + a[0] * d[1] * e[2] -
 | 
						|
		a[2] * c[1] * f[0] + a[1] * c[2] * f[0] + a[2] * c[0] * f[1] -
 | 
						|
		a[0] * c[2] * f[1] - a[1] * c[0] * f[2] + a[0] * c[1] * f[2];
 | 
						|
 | 
						|
	// x^2
 | 
						|
	double i = -b[2] * d[1] * e[0] + b[1] * d[2] * e[0] +
 | 
						|
		b[2] * d[0] * e[1] - b[0] * d[2] * e[1] -
 | 
						|
		b[1] * d[0] * e[2] + b[0] * d[1] * e[2] -
 | 
						|
		b[2] * c[1] * f[0] + b[1] * c[2] * f[0] -
 | 
						|
		a[2] * d[1] * f[0] + a[1] * d[2] * f[0] +
 | 
						|
		b[2] * c[0] * f[1] - b[0] * c[2] * f[1] + 
 | 
						|
		a[2] * d[0] * f[1] - a[0] * d[2] * f[1] -
 | 
						|
		b[1] * c[0] * f[2] + b[0] * c[1] * f[2] -
 | 
						|
		a[1] * d[0] * f[2] + a[0] * d[1] * f[2];
 | 
						|
 | 
						|
	// x^3 - checked
 | 
						|
	double j = -b[2] * d[1] * f[0] + b[1] * d[2] * f[0] +
 | 
						|
		b[2] * d[0] * f[1] - b[0] * d[2] * f[1] -
 | 
						|
		b[1] * d[0] * f[2] + b[0] * d[1] * f[2];
 | 
						|
 | 
						|
	/*
 | 
						|
	printf("r1: %lf\n", a[0] * c[1] * e[2] - a[0] * c[2] * e[1]);
 | 
						|
	printf("r2: %lf\n", a[1] * c[2] * e[0] - a[1] * c[0] * e[2]);
 | 
						|
	printf("r3: %lf\n", a[2] * c[0] * e[1] - a[2] * c[1] * e[0]);
 | 
						|
 | 
						|
	printf("x1 x: %f, y: %f, z: %f\n", a[0], a[1], a[2]);
 | 
						|
	printf("x2 x: %f, y: %f, z: %f\n", c[0], c[1], c[2]);
 | 
						|
	printf("x3 x: %f, y: %f, z: %f\n", e[0], e[1], e[2]);
 | 
						|
 | 
						|
	printf("v1 x: %f, y: %f, z: %f\n", b[0], b[1], b[2]);
 | 
						|
	printf("v2 x: %f, y: %f, z: %f\n", d[0], d[1], d[2]);
 | 
						|
	printf("v3 x: %f, y: %f, z: %f\n", f[0], f[1], f[2]);
 | 
						|
 | 
						|
	printf("t^3: %lf, t^2: %lf, t^1: %lf, t^0: %lf\n", j, i, h, g);
 | 
						|
	
 | 
						|
*/
 | 
						|
	// Solve cubic equation to determine times t1, t2, t3, when the collision will occur.
 | 
						|
	if ( ABS ( j ) > DBL_EPSILON )
 | 
						|
	{
 | 
						|
		i /= j;
 | 
						|
		h /= j;
 | 
						|
		g /= j;
 | 
						|
		num_sols = gsl_poly_solve_cubic ( i, h, g, &solution[0], &solution[1], &solution[2] );
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		num_sols = gsl_poly_solve_quadratic ( i, h, g, &solution[0], &solution[1] );
 | 
						|
		solution[2] = -1.0;
 | 
						|
	}
 | 
						|
 | 
						|
	// printf("num_sols: %d, sol1: %lf, sol2: %lf, sol3: %lf\n", num_sols, solution[0],  solution[1],  solution[2]);
 | 
						|
 | 
						|
	// Discard negative solutions
 | 
						|
	if ( ( num_sols >= 1 ) && ( solution[0] < DBL_EPSILON ) )
 | 
						|
	{
 | 
						|
		--num_sols;
 | 
						|
		solution[0] = solution[num_sols];
 | 
						|
	}
 | 
						|
	if ( ( num_sols >= 2 ) && ( solution[1] < DBL_EPSILON ) )
 | 
						|
	{
 | 
						|
		--num_sols;
 | 
						|
		solution[1] = solution[num_sols];
 | 
						|
	}
 | 
						|
	if ( ( num_sols == 3 ) && ( solution[2] < DBL_EPSILON ) )
 | 
						|
	{
 | 
						|
		--num_sols;
 | 
						|
	}
 | 
						|
 | 
						|
	// Sort
 | 
						|
	if ( num_sols == 2 )
 | 
						|
	{
 | 
						|
		if ( solution[0] > solution[1] )
 | 
						|
		{
 | 
						|
			double tmp = solution[0];
 | 
						|
			solution[0] = solution[1];
 | 
						|
			solution[1] = tmp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if ( num_sols == 3 )
 | 
						|
	{
 | 
						|
 | 
						|
		// Bubblesort
 | 
						|
		if ( solution[0] > solution[1] )
 | 
						|
		{
 | 
						|
			double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
 | 
						|
		}
 | 
						|
		if ( solution[1] > solution[2] )
 | 
						|
		{
 | 
						|
			double tmp = solution[1]; solution[1] = solution[2]; solution[2] = tmp;
 | 
						|
		}
 | 
						|
		if ( solution[0] > solution[1] )
 | 
						|
		{
 | 
						|
			double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return num_sols;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
// w3 is not perfect
 | 
						|
static void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
 | 
						|
{
 | 
						|
	double	tempV1[3], tempV2[3], tempV4[3];
 | 
						|
	double	a,b,c,d,e,f;
 | 
						|
 | 
						|
	VECSUB ( tempV1, p1, p3 );
 | 
						|
	VECSUB ( tempV2, p2, p3 );
 | 
						|
	VECSUB ( tempV4, pv, p3 );
 | 
						|
 | 
						|
	a = INPR ( tempV1, tempV1 );
 | 
						|
	b = INPR ( tempV1, tempV2 );
 | 
						|
	c = INPR ( tempV2, tempV2 );
 | 
						|
	e = INPR ( tempV1, tempV4 );
 | 
						|
	f = INPR ( tempV2, tempV4 );
 | 
						|
 | 
						|
	d = ( a * c - b * b );
 | 
						|
 | 
						|
	if ( ABS ( d ) < (double)ALMOST_ZERO )
 | 
						|
	{
 | 
						|
		*w1 = *w2 = *w3 = 1.0 / 3.0;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	w1[0] = ( float ) ( ( e * c - b * f ) / d );
 | 
						|
 | 
						|
	if ( w1[0] < 0 )
 | 
						|
		w1[0] = 0;
 | 
						|
 | 
						|
	w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
 | 
						|
 | 
						|
	if ( w2[0] < 0 )
 | 
						|
		w2[0] = 0;
 | 
						|
 | 
						|
	w3[0] = 1.0f - w1[0] - w2[0];
 | 
						|
}
 | 
						|
 | 
						|
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
 | 
						|
{
 | 
						|
	to[0] = to[1] = to[2] = 0;
 | 
						|
	VECADDMUL ( to, v1, w1 );
 | 
						|
	VECADDMUL ( to, v2, w2 );
 | 
						|
	VECADDMUL ( to, v3, w3 );
 | 
						|
}
 | 
						|
 | 
						|
#ifndef WITH_ELTOPO
 | 
						|
static int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
 | 
						|
{
 | 
						|
	int result = 0;
 | 
						|
	Cloth *cloth1;
 | 
						|
	float w1, w2, w3, u1, u2, u3;
 | 
						|
	float v1[3], v2[3], relativeVelocity[3];
 | 
						|
	float magrelVel;
 | 
						|
	float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
 | 
						|
 | 
						|
	cloth1 = clmd->clothObject;
 | 
						|
 | 
						|
	for ( ; collpair != collision_end; collpair++ )
 | 
						|
	{
 | 
						|
		// only handle static collisions here
 | 
						|
		if ( collpair->flag & COLLISION_IN_FUTURE )
 | 
						|
			continue;
 | 
						|
 | 
						|
		// compute barycentric coordinates for both collision points
 | 
						|
		collision_compute_barycentric ( collpair->pa,
 | 
						|
			cloth1->verts[collpair->ap1].txold,
 | 
						|
			cloth1->verts[collpair->ap2].txold,
 | 
						|
			cloth1->verts[collpair->ap3].txold,
 | 
						|
			&w1, &w2, &w3 );
 | 
						|
 | 
						|
		// was: txold
 | 
						|
		collision_compute_barycentric ( collpair->pb,
 | 
						|
			collmd->current_x[collpair->bp1].co,
 | 
						|
			collmd->current_x[collpair->bp2].co,
 | 
						|
			collmd->current_x[collpair->bp3].co,
 | 
						|
			&u1, &u2, &u3 );
 | 
						|
 | 
						|
		// Calculate relative "velocity".
 | 
						|
		collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
 | 
						|
 | 
						|
		collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
 | 
						|
 | 
						|
		VECSUB ( relativeVelocity, v2, v1 );
 | 
						|
 | 
						|
		// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
 | 
						|
		magrelVel = INPR ( relativeVelocity, collpair->normal );
 | 
						|
 | 
						|
		// printf("magrelVel: %f\n", magrelVel);
 | 
						|
 | 
						|
		// Calculate masses of points.
 | 
						|
		// TODO
 | 
						|
 | 
						|
		// If v_n_mag < 0 the edges are approaching each other.
 | 
						|
		if ( magrelVel > ALMOST_ZERO )
 | 
						|
		{
 | 
						|
			// Calculate Impulse magnitude to stop all motion in normal direction.
 | 
						|
			float magtangent = 0, repulse = 0, d = 0;
 | 
						|
			double impulse = 0.0;
 | 
						|
			float vrel_t_pre[3];
 | 
						|
			float temp[3], spf;
 | 
						|
 | 
						|
			// calculate tangential velocity
 | 
						|
			copy_v3_v3 ( temp, collpair->normal );
 | 
						|
			mul_v3_fl( temp, magrelVel );
 | 
						|
			VECSUB ( vrel_t_pre, relativeVelocity, temp );
 | 
						|
 | 
						|
			// Decrease in magnitude of relative tangential velocity due to coulomb friction
 | 
						|
			// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
 | 
						|
			magtangent = MIN2 ( clmd->coll_parms->friction * 0.01f * magrelVel, sqrtf( INPR ( vrel_t_pre,vrel_t_pre ) ) );
 | 
						|
 | 
						|
			// Apply friction impulse.
 | 
						|
			if ( magtangent > ALMOST_ZERO )
 | 
						|
			{
 | 
						|
				normalize_v3( vrel_t_pre );
 | 
						|
 | 
						|
				impulse = magtangent / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); // 2.0 *
 | 
						|
				VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
 | 
						|
				VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
 | 
						|
				VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
 | 
						|
			}
 | 
						|
 | 
						|
			// Apply velocity stopping impulse
 | 
						|
			// I_c = m * v_N / 2.0
 | 
						|
			// no 2.0 * magrelVel normally, but looks nicer DG
 | 
						|
			impulse =  magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
 | 
						|
 | 
						|
			VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
 | 
						|
			cloth1->verts[collpair->ap1].impulse_count++;
 | 
						|
 | 
						|
			VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
 | 
						|
			cloth1->verts[collpair->ap2].impulse_count++;
 | 
						|
 | 
						|
			VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
 | 
						|
			cloth1->verts[collpair->ap3].impulse_count++;
 | 
						|
 | 
						|
			// Apply repulse impulse if distance too short
 | 
						|
			// I_r = -min(dt*kd, m(0,1d/dt - v_n))
 | 
						|
			spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
 | 
						|
 | 
						|
			d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - collpair->distance;
 | 
						|
			if ( ( magrelVel < 0.1f*d*spf ) && ( d > ALMOST_ZERO ) )
 | 
						|
			{
 | 
						|
				repulse = MIN2 ( d*1.0f/spf, 0.1f*d*spf - magrelVel );
 | 
						|
 | 
						|
				// stay on the safe side and clamp repulse
 | 
						|
				if ( impulse > ALMOST_ZERO )
 | 
						|
					repulse = MIN2 ( repulse, 5.0*impulse );
 | 
						|
				repulse = MAX2 ( impulse, repulse );
 | 
						|
 | 
						|
				impulse = repulse / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
 | 
						|
				VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal,  impulse );
 | 
						|
				VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal,  impulse );
 | 
						|
				VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal,  impulse );
 | 
						|
			}
 | 
						|
 | 
						|
			result = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
#endif /* !WITH_ELTOPO */
 | 
						|
 | 
						|
#ifdef WITH_ELTOPO
 | 
						|
typedef struct edgepairkey {
 | 
						|
	int a1, a2, b1, b2;
 | 
						|
} edgepairkey;
 | 
						|
 | 
						|
unsigned int edgepair_hash(void *vkey)
 | 
						|
{
 | 
						|
	edgepairkey *key = vkey;
 | 
						|
	int keys[4] = {key->a1, key->a2, key->b1, key->b2};
 | 
						|
	int i, j;
 | 
						|
	
 | 
						|
	for (i=0; i<4; i++) {
 | 
						|
		for (j=0; j<3; j++) {
 | 
						|
			if (keys[j] >= keys[j+1]) {
 | 
						|
				SWAP(int, keys[j], keys[j+1]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	return keys[0]*101 + keys[1]*72 + keys[2]*53 + keys[3]*34;
 | 
						|
}
 | 
						|
 | 
						|
int edgepair_cmp(const void *va, const void *vb)
 | 
						|
{
 | 
						|
	edgepairkey *a = va, *b = vb;
 | 
						|
	int keysa[4] = {a->a1, a->a2, a->b1, a->b2};
 | 
						|
	int keysb[4] = {b->a1, b->a2, b->b1, b->b2};
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	for (i=0; i<4; i++) {
 | 
						|
		int j, ok=0;
 | 
						|
		for (j=0; j<4; j++) {
 | 
						|
			if (keysa[i] == keysa[j]) {
 | 
						|
				ok = 1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!ok)
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
	
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void get_edgepairkey(edgepairkey *key, int a1, int a2, int b1, int b2)
 | 
						|
{
 | 
						|
	key->a1 = a1;
 | 
						|
	key->a2 = a2;
 | 
						|
	key->b1 = b1;
 | 
						|
	key->b2 = b2;
 | 
						|
}
 | 
						|
 | 
						|
/*an immense amount of duplication goes on here. . .a major performance hit, I'm sure*/
 | 
						|
static CollPair* cloth_edge_collision ( ModifierData *md1, ModifierData *md2, 
 | 
						|
										BVHTreeOverlap *overlap, CollPair *collpair,
 | 
						|
										GHash *visithash, MemArena *arena)
 | 
						|
{
 | 
						|
	ClothModifierData *clmd = ( ClothModifierData * ) md1;
 | 
						|
	CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
 | 
						|
	MFace *face1=NULL, *face2 = NULL;
 | 
						|
	ClothVertex *verts1 = clmd->clothObject->verts;
 | 
						|
	double distance = 0;
 | 
						|
	edgepairkey *key, tstkey;
 | 
						|
	float epsilon1 = clmd->coll_parms->epsilon;
 | 
						|
	float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
 | 
						|
	float no[3], uv[3], t, relnor;
 | 
						|
	int i, i1, i2, i3, i4, i5, i6;
 | 
						|
	Cloth *cloth = clmd->clothObject;
 | 
						|
	float n1[3], n2[3], off[3], v1[2][3], v2[2][3], v3[2][3], v4[2][3], v5[2][3], v6[2][3];
 | 
						|
	void **verts[] = {v1, v2, v3, v4, v5, v6};
 | 
						|
	int j, ret, bp1, bp2, bp3, ap1, ap2, ap3, table[6];
 | 
						|
	
 | 
						|
	face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
 | 
						|
	face2 = & ( collmd->mfaces[overlap->indexB] );
 | 
						|
 | 
						|
	// check all 4 possible collisions
 | 
						|
	for ( i = 0; i < 4; i++ )
 | 
						|
	{
 | 
						|
		if ( i == 0 )
 | 
						|
		{
 | 
						|
			// fill faceA
 | 
						|
			ap1 = face1->v1;
 | 
						|
			ap2 = face1->v2;
 | 
						|
			ap3 = face1->v3;
 | 
						|
 | 
						|
			// fill faceB
 | 
						|
			bp1 = face2->v1;
 | 
						|
			bp2 = face2->v2;
 | 
						|
			bp3 = face2->v3;
 | 
						|
		}
 | 
						|
		else if ( i == 1 )
 | 
						|
		{
 | 
						|
			if ( face1->v4 )
 | 
						|
			{
 | 
						|
				// fill faceA
 | 
						|
				ap1 = face1->v1;
 | 
						|
				ap2 = face1->v3;
 | 
						|
				ap3 = face1->v4;
 | 
						|
 | 
						|
				// fill faceB
 | 
						|
				bp1 = face2->v1;
 | 
						|
				bp2 = face2->v2;
 | 
						|
				bp3 = face2->v3;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if ( i == 2 )
 | 
						|
		{
 | 
						|
			if ( face2->v4 )
 | 
						|
			{
 | 
						|
				// fill faceA
 | 
						|
				ap1 = face1->v1;
 | 
						|
				ap2 = face1->v2;
 | 
						|
				ap3 = face1->v3;
 | 
						|
 | 
						|
				// fill faceB
 | 
						|
				bp1 = face2->v1;
 | 
						|
				bp2 = face2->v3;
 | 
						|
				bp3 = face2->v4;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if ( i == 3 )
 | 
						|
		{
 | 
						|
			if ( face1->v4 && face2->v4 )
 | 
						|
			{
 | 
						|
				// fill faceA
 | 
						|
				ap1 = face1->v1;
 | 
						|
				ap2 = face1->v3;
 | 
						|
				ap3 = face1->v4;
 | 
						|
 | 
						|
				// fill faceB
 | 
						|
				bp1 = face2->v1;
 | 
						|
				bp2 = face2->v3;
 | 
						|
				bp3 = face2->v4;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		
 | 
						|
		copy_v3_v3(v1[0], cloth->verts[ap1].txold); 
 | 
						|
		copy_v3_v3(v1[1], cloth->verts[ap1].tx);
 | 
						|
		copy_v3_v3(v2[0], cloth->verts[ap2].txold);
 | 
						|
		copy_v3_v3(v2[1], cloth->verts[ap2].tx);
 | 
						|
		copy_v3_v3(v3[0], cloth->verts[ap3].txold);
 | 
						|
		copy_v3_v3(v3[1], cloth->verts[ap3].tx);
 | 
						|
		
 | 
						|
		copy_v3_v3(v4[0], collmd->current_x[bp1].co);
 | 
						|
		copy_v3_v3(v4[1], collmd->current_xnew[bp1].co);
 | 
						|
		copy_v3_v3(v5[0], collmd->current_x[bp2].co);
 | 
						|
		copy_v3_v3(v5[1], collmd->current_xnew[bp2].co);
 | 
						|
		copy_v3_v3(v6[0], collmd->current_x[bp3].co);
 | 
						|
		copy_v3_v3(v6[1], collmd->current_xnew[bp3].co);
 | 
						|
		
 | 
						|
		normal_tri_v3(n2, v4[1], v5[1], v6[1]);
 | 
						|
 | 
						|
		/*offset new positions a bit, to account for margins*/
 | 
						|
		i1 = ap1; i2 = ap2; i3 = ap3;
 | 
						|
		i4 = bp1; i5 = bp2; i6 = bp3;
 | 
						|
 | 
						|
		for (j=0; j<3; j++) {
 | 
						|
			int collp1, collp2, k, j2 = (j+1)%3;
 | 
						|
			
 | 
						|
			table[0] = ap1; table[1] = ap2; table[2] = ap3;
 | 
						|
			table[3] = bp1; table[4] = bp2; table[5] = bp3;
 | 
						|
			for (k=0; k<3; k++) {
 | 
						|
				float p1[3], p2[3];
 | 
						|
				int k2 = (k+1)%3;
 | 
						|
				
 | 
						|
				get_edgepairkey(&tstkey, table[j], table[j2], table[k+3], table[k2+3]);
 | 
						|
				//if (BLI_ghash_haskey(visithash, &tstkey))
 | 
						|
				//	continue;
 | 
						|
				
 | 
						|
				key = BLI_memarena_alloc(arena, sizeof(edgepairkey));
 | 
						|
				*key = tstkey;
 | 
						|
				BLI_ghash_insert(visithash, key, NULL);
 | 
						|
 | 
						|
				sub_v3_v3v3(p1, verts[j], verts[j2]);
 | 
						|
				sub_v3_v3v3(p2, verts[k+3], verts[k2+3]);
 | 
						|
				
 | 
						|
				cross_v3_v3v3(off, p1, p2);
 | 
						|
				normalize_v3(off);
 | 
						|
 | 
						|
				if (dot_v3v3(n2, off) < 0.0)
 | 
						|
					negate_v3(off);
 | 
						|
				
 | 
						|
				mul_v3_fl(off,  epsilon1 + epsilon2 + ALMOST_ZERO);
 | 
						|
				copy_v3_v3(p1, verts[k+3]);
 | 
						|
				copy_v3_v3(p2, verts[k2+3]);
 | 
						|
				add_v3_v3(p1, off);
 | 
						|
				add_v3_v3(p2, off);
 | 
						|
				
 | 
						|
				ret = eltopo_line_line_moving_isect_v3v3_f(verts[j], table[j], verts[j2], table[j2], 
 | 
						|
														   p1, table[k+3], p2, table[k2+3], 
 | 
						|
														   no, uv, &t, &relnor);
 | 
						|
				/*cloth vert versus coll face*/
 | 
						|
				if (ret) {
 | 
						|
					collpair->ap1 = table[j]; collpair->ap2 = table[j2]; 
 | 
						|
					collpair->bp1 = table[k+3]; collpair->bp2 = table[k2+3];
 | 
						|
					
 | 
						|
					/*I'm not sure if this is correct, but hopefully it's 
 | 
						|
					  better then simply ignoring back edges*/
 | 
						|
					if (dot_v3v3(n2, no) < 0.0) {
 | 
						|
						negate_v3(no);
 | 
						|
					}
 | 
						|
					
 | 
						|
					copy_v3_v3(collpair->normal, no);
 | 
						|
					mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
 | 
						|
					collpair->distance = relnor;
 | 
						|
					collpair->time = t;
 | 
						|
					
 | 
						|
					copy_v2_v2(collpair->bary, uv);
 | 
						|
					
 | 
						|
					collpair->flag = COLLISION_IS_EDGES;
 | 
						|
					collpair++;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	return collpair;
 | 
						|
}
 | 
						|
 | 
						|
static int cloth_edge_collision_response_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
 | 
						|
{
 | 
						|
	int result = 0;
 | 
						|
	Cloth *cloth1;
 | 
						|
	float w1, w2;
 | 
						|
	float v1[3], v2[3], relativeVelocity[3];
 | 
						|
	float magrelVel, pimpulse[3];
 | 
						|
 | 
						|
	cloth1 = clmd->clothObject;
 | 
						|
 | 
						|
	for ( ; collpair != collision_end; collpair++ )
 | 
						|
	{
 | 
						|
		if (!(collpair->flag & COLLISION_IS_EDGES))
 | 
						|
			continue;
 | 
						|
		
 | 
						|
		// was: txold
 | 
						|
		w1 = collpair->bary[0]; w2 = collpair->bary[1];			
 | 
						|
		
 | 
						|
		// Calculate relative "velocity".
 | 
						|
		VECADDFAC(v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, w1);
 | 
						|
		VECADDFAC(v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, w2);
 | 
						|
		
 | 
						|
		VECSUB ( relativeVelocity, v2, v1);
 | 
						|
		
 | 
						|
		// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
 | 
						|
		magrelVel = INPR ( relativeVelocity, collpair->normal );
 | 
						|
 | 
						|
		// If v_n_mag < 0 the edges are approaching each other.
 | 
						|
		if ( magrelVel > ALMOST_ZERO )
 | 
						|
		{
 | 
						|
			// Calculate Impulse magnitude to stop all motion in normal direction.
 | 
						|
			float magtangent = 0, repulse = 0, d = 0;
 | 
						|
			double impulse = 0.0;
 | 
						|
			float vrel_t_pre[3];
 | 
						|
			float temp[3], spf;
 | 
						|
			
 | 
						|
			zero_v3(pimpulse);
 | 
						|
			
 | 
						|
			// calculate tangential velocity
 | 
						|
			VECCOPY ( temp, collpair->normal );
 | 
						|
			mul_v3_fl( temp, magrelVel );
 | 
						|
			VECSUB ( vrel_t_pre, relativeVelocity, temp );
 | 
						|
 | 
						|
			// Decrease in magnitude of relative tangential velocity due to coulomb friction
 | 
						|
			// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
 | 
						|
			magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
 | 
						|
 | 
						|
			// Apply friction impulse.
 | 
						|
			if ( magtangent > ALMOST_ZERO )
 | 
						|
			{
 | 
						|
				normalize_v3( vrel_t_pre );
 | 
						|
 | 
						|
				impulse = magtangent; 
 | 
						|
				VECADDMUL ( pimpulse, vrel_t_pre, impulse);
 | 
						|
			}
 | 
						|
 | 
						|
			// Apply velocity stopping impulse
 | 
						|
			// I_c = m * v_N / 2.0
 | 
						|
			// no 2.0 * magrelVel normally, but looks nicer DG
 | 
						|
			impulse =  magrelVel;
 | 
						|
			
 | 
						|
			mul_v3_fl(collpair->normal, 0.5);
 | 
						|
			VECADDMUL ( pimpulse, collpair->normal, impulse);
 | 
						|
 | 
						|
			// Apply repulse impulse if distance too short
 | 
						|
			// I_r = -min(dt*kd, m(0,1d/dt - v_n))
 | 
						|
			spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
 | 
						|
 | 
						|
			d = collpair->distance;
 | 
						|
			if ( ( magrelVel < 0.1*d*spf && ( d > ALMOST_ZERO ) ) )
 | 
						|
			{
 | 
						|
				repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
 | 
						|
 | 
						|
				// stay on the safe side and clamp repulse
 | 
						|
				if ( impulse > ALMOST_ZERO )
 | 
						|
					repulse = MIN2 ( repulse, 5.0*impulse );
 | 
						|
				repulse = MAX2 ( impulse, repulse );
 | 
						|
 | 
						|
				impulse = repulse / ( 5.0 ); // original 2.0 / 0.25
 | 
						|
				VECADDMUL ( pimpulse, collpair->normal, impulse);
 | 
						|
			}
 | 
						|
			
 | 
						|
			w2 = 1.0f-w1;
 | 
						|
			if (w1 < 0.5)
 | 
						|
				w1 *= 2.0;
 | 
						|
			else
 | 
						|
				w2 *= 2.0;
 | 
						|
			
 | 
						|
			VECADDFAC(cloth1->verts[collpair->ap1].impulse, cloth1->verts[collpair->ap1].impulse, pimpulse, w1*2.0);
 | 
						|
			VECADDFAC(cloth1->verts[collpair->ap2].impulse, cloth1->verts[collpair->ap2].impulse, pimpulse, w2*2.0);
 | 
						|
			
 | 
						|
			cloth1->verts[collpair->ap1].impulse_count++;
 | 
						|
			cloth1->verts[collpair->ap2].impulse_count++;
 | 
						|
			
 | 
						|
			result = 1;
 | 
						|
		}
 | 
						|
	} 
 | 
						|
	
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static int cloth_collision_response_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
 | 
						|
{
 | 
						|
	int result = 0;
 | 
						|
	Cloth *cloth1;
 | 
						|
	float w1, w2, w3, u1, u2, u3;
 | 
						|
	float v1[3], v2[3], relativeVelocity[3];
 | 
						|
	float magrelVel;
 | 
						|
	float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
 | 
						|
	
 | 
						|
	cloth1 = clmd->clothObject;
 | 
						|
 | 
						|
	for ( ; collpair != collision_end; collpair++ )
 | 
						|
	{
 | 
						|
		if (collpair->flag & COLLISION_IS_EDGES)
 | 
						|
			continue;
 | 
						|
		
 | 
						|
		if ( collpair->flag & COLLISION_USE_COLLFACE ) {
 | 
						|
			// was: txold
 | 
						|
			w1 = collpair->bary[0]; w2 = collpair->bary[1]; w3 = collpair->bary[2];			
 | 
						|
 | 
						|
			// Calculate relative "velocity".
 | 
						|
			collision_interpolateOnTriangle ( v1, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, w1, w2, w3);
 | 
						|
			
 | 
						|
			VECSUB ( relativeVelocity, v1, cloth1->verts[collpair->collp].tv);
 | 
						|
			
 | 
						|
			// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
 | 
						|
			magrelVel = INPR ( relativeVelocity, collpair->normal );
 | 
						|
	
 | 
						|
			// If v_n_mag < 0 the edges are approaching each other.
 | 
						|
			if ( magrelVel > ALMOST_ZERO )
 | 
						|
			{
 | 
						|
				// Calculate Impulse magnitude to stop all motion in normal direction.
 | 
						|
				float magtangent = 0, repulse = 0, d = 0;
 | 
						|
				double impulse = 0.0;
 | 
						|
				float vrel_t_pre[3];
 | 
						|
				float temp[3], spf;
 | 
						|
	
 | 
						|
				// calculate tangential velocity
 | 
						|
				VECCOPY ( temp, collpair->normal );
 | 
						|
				mul_v3_fl( temp, magrelVel );
 | 
						|
				VECSUB ( vrel_t_pre, relativeVelocity, temp );
 | 
						|
	
 | 
						|
				// Decrease in magnitude of relative tangential velocity due to coulomb friction
 | 
						|
				// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
 | 
						|
				magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
 | 
						|
	
 | 
						|
				// Apply friction impulse.
 | 
						|
				if ( magtangent > ALMOST_ZERO )
 | 
						|
				{
 | 
						|
					normalize_v3( vrel_t_pre );
 | 
						|
	
 | 
						|
					impulse = magtangent; // 2.0 * 
 | 
						|
					VECADDMUL ( cloth1->verts[collpair->collp].impulse, vrel_t_pre, impulse);
 | 
						|
				}
 | 
						|
	
 | 
						|
				// Apply velocity stopping impulse
 | 
						|
				// I_c = m * v_N / 2.0
 | 
						|
				// no 2.0 * magrelVel normally, but looks nicer DG
 | 
						|
				impulse =  magrelVel/2.0;
 | 
						|
	
 | 
						|
				VECADDMUL ( cloth1->verts[collpair->collp].impulse, collpair->normal, impulse);
 | 
						|
				cloth1->verts[collpair->collp].impulse_count++;
 | 
						|
	
 | 
						|
				// Apply repulse impulse if distance too short
 | 
						|
				// I_r = -min(dt*kd, m(0,1d/dt - v_n))
 | 
						|
				spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
 | 
						|
	
 | 
						|
				d = -collpair->distance;
 | 
						|
				if ( ( magrelVel < 0.1*d*spf ) && ( d > ALMOST_ZERO ) )
 | 
						|
				{
 | 
						|
					repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
 | 
						|
	
 | 
						|
					// stay on the safe side and clamp repulse
 | 
						|
					if ( impulse > ALMOST_ZERO )
 | 
						|
						repulse = MIN2 ( repulse, 5.0*impulse );
 | 
						|
					repulse = MAX2 ( impulse, repulse );
 | 
						|
	
 | 
						|
					impulse = repulse / ( 5.0 ); // original 2.0 / 0.25
 | 
						|
					VECADDMUL ( cloth1->verts[collpair->collp].impulse, collpair->normal, impulse);
 | 
						|
				}
 | 
						|
	
 | 
						|
				result = 1;
 | 
						|
			}
 | 
						|
		} else {	
 | 
						|
			w1 = collpair->bary[0]; w2 = collpair->bary[1]; w3 = collpair->bary[2];			
 | 
						|
 | 
						|
			// Calculate relative "velocity".
 | 
						|
			collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
 | 
						|
	
 | 
						|
			VECSUB ( relativeVelocity, collmd->current_v[collpair->collp].co, v1);
 | 
						|
			
 | 
						|
			// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
 | 
						|
			magrelVel = INPR ( relativeVelocity, collpair->normal );
 | 
						|
	
 | 
						|
			// If v_n_mag < 0 the edges are approaching each other.
 | 
						|
			if ( magrelVel > ALMOST_ZERO )
 | 
						|
			{
 | 
						|
				// Calculate Impulse magnitude to stop all motion in normal direction.
 | 
						|
				float magtangent = 0, repulse = 0, d = 0;
 | 
						|
				double impulse = 0.0;
 | 
						|
				float vrel_t_pre[3], pimpulse[3] = {0.0f, 0.0f, 0.0f};
 | 
						|
				float temp[3], spf;
 | 
						|
	
 | 
						|
				// calculate tangential velocity
 | 
						|
				VECCOPY ( temp, collpair->normal );
 | 
						|
				mul_v3_fl( temp, magrelVel );
 | 
						|
				VECSUB ( vrel_t_pre, relativeVelocity, temp );
 | 
						|
	
 | 
						|
				// Decrease in magnitude of relative tangential velocity due to coulomb friction
 | 
						|
				// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
 | 
						|
				magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
 | 
						|
	
 | 
						|
				// Apply friction impulse.
 | 
						|
				if ( magtangent > ALMOST_ZERO )
 | 
						|
				{
 | 
						|
					normalize_v3( vrel_t_pre );
 | 
						|
	
 | 
						|
					impulse = magtangent; // 2.0 * 
 | 
						|
					VECADDMUL ( pimpulse, vrel_t_pre, impulse);
 | 
						|
				}
 | 
						|
	
 | 
						|
				// Apply velocity stopping impulse
 | 
						|
				// I_c = m * v_N / 2.0
 | 
						|
				// no 2.0 * magrelVel normally, but looks nicer DG
 | 
						|
				impulse =  magrelVel/2.0;
 | 
						|
	
 | 
						|
				VECADDMUL ( pimpulse, collpair->normal, impulse);
 | 
						|
	
 | 
						|
				// Apply repulse impulse if distance too short
 | 
						|
				// I_r = -min(dt*kd, m(0,1d/dt - v_n))
 | 
						|
				spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
 | 
						|
	
 | 
						|
				d = -collpair->distance;
 | 
						|
				if ( ( magrelVel < 0.1*d*spf ) && ( d > ALMOST_ZERO ) )
 | 
						|
				{
 | 
						|
					repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
 | 
						|
	
 | 
						|
					// stay on the safe side and clamp repulse
 | 
						|
					if ( impulse > ALMOST_ZERO )
 | 
						|
						repulse = MIN2 ( repulse, 5.0*impulse );
 | 
						|
					repulse = MAX2 ( impulse, repulse );
 | 
						|
	
 | 
						|
					impulse = repulse / ( 2.0 ); // original 2.0 / 0.25
 | 
						|
					VECADDMUL ( pimpulse, collpair->normal, impulse);
 | 
						|
				}
 | 
						|
				
 | 
						|
				if (w1 < 0.5) w1 *= 2.0;
 | 
						|
				if (w2 < 0.5) w2 *= 2.0;
 | 
						|
				if (w3 < 0.5) w3 *= 2.0;
 | 
						|
				
 | 
						|
				VECADDMUL(cloth1->verts[collpair->ap1].impulse, pimpulse, w1*2.0);
 | 
						|
				VECADDMUL(cloth1->verts[collpair->ap2].impulse, pimpulse, w2*2.0);
 | 
						|
				VECADDMUL(cloth1->verts[collpair->ap3].impulse, pimpulse, w3*2.0);
 | 
						|
				cloth1->verts[collpair->ap1].impulse_count++;
 | 
						|
				cloth1->verts[collpair->ap2].impulse_count++;
 | 
						|
				cloth1->verts[collpair->ap3].impulse_count++;
 | 
						|
				
 | 
						|
				result = 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} 
 | 
						|
	
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
typedef struct tripairkey {
 | 
						|
	int p, a1, a2, a3;
 | 
						|
} tripairkey;
 | 
						|
 | 
						|
unsigned int tripair_hash(void *vkey)
 | 
						|
{
 | 
						|
	tripairkey *key = vkey;
 | 
						|
	int keys[4] = {key->p, key->a1, key->a2, key->a3};
 | 
						|
	int i, j;
 | 
						|
	
 | 
						|
	for (i=0; i<4; i++) {
 | 
						|
		for (j=0; j<3; j++) {
 | 
						|
			if (keys[j] >= keys[j+1]) {
 | 
						|
				SWAP(int, keys[j], keys[j+1]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	return keys[0]*101 + keys[1]*72 + keys[2]*53 + keys[3]*34;
 | 
						|
}
 | 
						|
 | 
						|
int tripair_cmp(const void *va, const void *vb)
 | 
						|
{
 | 
						|
	tripairkey *a = va, *b = vb;
 | 
						|
	int keysa[4] = {a->p, a->a1, a->a2, a->a3};
 | 
						|
	int keysb[4] = {b->p, b->a1, b->a2, b->a3};
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	for (i=0; i<4; i++) {
 | 
						|
		int j, ok=0;
 | 
						|
		for (j=0; j<4; j++) {
 | 
						|
			if (keysa[i] == keysa[j]) {
 | 
						|
				ok = 1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!ok)
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
	
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void get_tripairkey(tripairkey *key, int p, int a1, int a2, int a3)
 | 
						|
{
 | 
						|
	key->a1 = a1;
 | 
						|
	key->a2 = a2;
 | 
						|
	key->a3 = a3;
 | 
						|
	key->p = p;
 | 
						|
}
 | 
						|
 | 
						|
static int checkvisit(MemArena *arena, GHash *gh, int p, int a1, int a2, int a3)
 | 
						|
{
 | 
						|
	tripairkey key, *key2;
 | 
						|
	
 | 
						|
	get_tripairkey(&key, p, a1, a2, a3);
 | 
						|
	if (BLI_ghash_haskey(gh, &key))
 | 
						|
		return 1;
 | 
						|
	
 | 
						|
	key2 = BLI_memarena_alloc(arena, sizeof(*key2));
 | 
						|
	*key2 = key;
 | 
						|
	BLI_ghash_insert(gh, key2, NULL);
 | 
						|
	
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int cloth_point_tri_moving_v3v3_f(float v1[2][3], int i1, float v2[2][3], int i2,
 | 
						|
                                   float v3[2][3],  int i3, float v4[2][3], int i4,
 | 
						|
                                   float normal[3], float bary[3], float *t, 
 | 
						|
								   float *relnor, GHash *gh, MemArena *arena)
 | 
						|
{
 | 
						|
	if (checkvisit(arena, gh, i1, i2, i3, i4))
 | 
						|
		return 0;
 | 
						|
	
 | 
						|
	return eltopo_point_tri_moving_v3v3_f(v1, i1, v2, i2, v3, i3, v4, i4, normal, bary, t, relnor);
 | 
						|
}
 | 
						|
 | 
						|
static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap *overlap, 
 | 
						|
								   CollPair *collpair, double dt, GHash *gh, MemArena *arena)
 | 
						|
{
 | 
						|
	ClothModifierData *clmd = ( ClothModifierData * ) md1;
 | 
						|
	CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
 | 
						|
	MFace *face1=NULL, *face2 = NULL;
 | 
						|
	ClothVertex *verts1 = clmd->clothObject->verts;
 | 
						|
	double distance = 0;
 | 
						|
	float epsilon1 = clmd->coll_parms->epsilon;
 | 
						|
	float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
 | 
						|
	float no[3], uv[3], t, relnor;
 | 
						|
	int i, i1, i2, i3, i4, i5, i6;
 | 
						|
	Cloth *cloth = clmd->clothObject;
 | 
						|
	float n1[3], sdis, p[3], l, n2[3], off[3], v1[2][3], v2[2][3], v3[2][3], v4[2][3], v5[2][3], v6[2][3];
 | 
						|
	int j, ret, bp1, bp2, bp3, ap1, ap2, ap3;
 | 
						|
	
 | 
						|
	face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
 | 
						|
	face2 = & ( collmd->mfaces[overlap->indexB] );
 | 
						|
 | 
						|
	// check all 4 possible collisions
 | 
						|
	for ( i = 0; i < 4; i++ )
 | 
						|
	{
 | 
						|
		if ( i == 0 )
 | 
						|
		{
 | 
						|
			// fill faceA
 | 
						|
			ap1 = face1->v1;
 | 
						|
			ap2 = face1->v2;
 | 
						|
			ap3 = face1->v3;
 | 
						|
 | 
						|
			// fill faceB
 | 
						|
			bp1 = face2->v1;
 | 
						|
			bp2 = face2->v2;
 | 
						|
			bp3 = face2->v3;
 | 
						|
		}
 | 
						|
		else if ( i == 1 )
 | 
						|
		{
 | 
						|
			if ( face1->v4 )
 | 
						|
			{
 | 
						|
				// fill faceA
 | 
						|
				ap1 = face1->v1;
 | 
						|
				ap2 = face1->v3;
 | 
						|
				ap3 = face1->v4;
 | 
						|
 | 
						|
				// fill faceB
 | 
						|
				bp1 = face2->v1;
 | 
						|
				bp2 = face2->v2;
 | 
						|
				bp3 = face2->v3;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if ( i == 2 )
 | 
						|
		{
 | 
						|
			if ( face2->v4 )
 | 
						|
			{
 | 
						|
				// fill faceA
 | 
						|
				ap1 = face1->v1;
 | 
						|
				ap2 = face1->v2;
 | 
						|
				ap3 = face1->v3;
 | 
						|
 | 
						|
				// fill faceB
 | 
						|
				bp1 = face2->v1;
 | 
						|
				bp2 = face2->v3;
 | 
						|
				bp3 = face2->v4;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if ( i == 3 )
 | 
						|
		{
 | 
						|
			if ( face1->v4 && face2->v4 )
 | 
						|
			{
 | 
						|
				// fill faceA
 | 
						|
				ap1 = face1->v1;
 | 
						|
				ap2 = face1->v3;
 | 
						|
				ap3 = face1->v4;
 | 
						|
 | 
						|
				// fill faceB
 | 
						|
				bp1 = face2->v1;
 | 
						|
				bp2 = face2->v3;
 | 
						|
				bp3 = face2->v4;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		
 | 
						|
		copy_v3_v3(v1[0], cloth->verts[ap1].txold); 
 | 
						|
		copy_v3_v3(v1[1], cloth->verts[ap1].tx);
 | 
						|
		copy_v3_v3(v2[0], cloth->verts[ap2].txold);
 | 
						|
		copy_v3_v3(v2[1], cloth->verts[ap2].tx);
 | 
						|
		copy_v3_v3(v3[0], cloth->verts[ap3].txold);
 | 
						|
		copy_v3_v3(v3[1], cloth->verts[ap3].tx);
 | 
						|
		
 | 
						|
		copy_v3_v3(v4[0], collmd->current_x[bp1].co);
 | 
						|
		copy_v3_v3(v4[1], collmd->current_xnew[bp1].co);
 | 
						|
		copy_v3_v3(v5[0], collmd->current_x[bp2].co);
 | 
						|
		copy_v3_v3(v5[1], collmd->current_xnew[bp2].co);
 | 
						|
		copy_v3_v3(v6[0], collmd->current_x[bp3].co);
 | 
						|
		copy_v3_v3(v6[1], collmd->current_xnew[bp3].co);
 | 
						|
		
 | 
						|
		normal_tri_v3(n2, v4[1], v5[1], v6[1]);
 | 
						|
		
 | 
						|
		sdis = clmd->coll_parms->distance_repel + epsilon2 + FLT_EPSILON;
 | 
						|
 | 
						|
		/*apply a repulsion force, to help the solver along*/
 | 
						|
		copy_v3_v3(off, n2);
 | 
						|
		negate_v3(off);
 | 
						|
		if (isect_ray_plane_v3(v1[1], off, v4[1], v5[1], v6[1], &l, 0)) {
 | 
						|
			if (l >= 0.0 && l < sdis) {
 | 
						|
				mul_v3_fl(off, (l-sdis)*cloth->verts[ap1].mass*dt*clmd->coll_parms->repel_force*0.1);
 | 
						|
 | 
						|
				add_v3_v3(cloth->verts[ap1].tv, off);
 | 
						|
				add_v3_v3(cloth->verts[ap2].tv, off);
 | 
						|
				add_v3_v3(cloth->verts[ap3].tv, off);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/*offset new positions a bit, to account for margins*/
 | 
						|
		copy_v3_v3(off, n2);
 | 
						|
		mul_v3_fl(off,  epsilon1 + epsilon2 + ALMOST_ZERO);
 | 
						|
		add_v3_v3(v4[1], off); add_v3_v3(v5[1], off); add_v3_v3(v6[1], off);
 | 
						|
		
 | 
						|
		i1 = ap1; i2 = ap2; i3 = ap3;
 | 
						|
		i4 = bp1+cloth->numverts; i5 = bp2+cloth->numverts; i6 = bp3+cloth->numverts;
 | 
						|
		
 | 
						|
		for (j=0; j<6; j++) {
 | 
						|
			int collp;
 | 
						|
 | 
						|
			switch (j) {
 | 
						|
			case 0:
 | 
						|
				ret = cloth_point_tri_moving_v3v3_f(v1, i1, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
 | 
						|
				collp = ap1;
 | 
						|
				break;
 | 
						|
			case 1:
 | 
						|
				collp = ap2;
 | 
						|
				ret = cloth_point_tri_moving_v3v3_f(v2, i2, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
 | 
						|
				break;
 | 
						|
			case 2:
 | 
						|
				collp = ap3;
 | 
						|
				ret = cloth_point_tri_moving_v3v3_f(v3, i3, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
 | 
						|
				break;
 | 
						|
			case 3:
 | 
						|
				collp = bp1;
 | 
						|
				ret = cloth_point_tri_moving_v3v3_f(v4, i4, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
 | 
						|
				break;
 | 
						|
			case 4:
 | 
						|
				collp = bp2;				
 | 
						|
				ret = cloth_point_tri_moving_v3v3_f(v5, i5, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
 | 
						|
				break;
 | 
						|
			case 5:
 | 
						|
				collp = bp3;
 | 
						|
				ret = cloth_point_tri_moving_v3v3_f(v6, i6, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			
 | 
						|
			/*cloth vert versus coll face*/
 | 
						|
			if (ret && j < 3) {
 | 
						|
				collpair->bp1 = bp1; collpair->bp2 = bp2; collpair->bp3 = bp3;
 | 
						|
				collpair->collp = collp;
 | 
						|
				
 | 
						|
				copy_v3_v3(collpair->normal, no);
 | 
						|
				mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
 | 
						|
				collpair->distance = relnor;
 | 
						|
				collpair->time = t;
 | 
						|
				
 | 
						|
				copy_v3_v3(collpair->bary, uv);
 | 
						|
				
 | 
						|
				collpair->flag = COLLISION_USE_COLLFACE;
 | 
						|
				collpair++;
 | 
						|
			} else if (ret && j >= 3) { /*coll vert versus cloth face*/
 | 
						|
				collpair->ap1 = ap1; collpair->ap2 = ap2; collpair->ap3 = ap3;
 | 
						|
				collpair->collp = collp;
 | 
						|
				
 | 
						|
				copy_v3_v3(collpair->normal, no);
 | 
						|
				mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
 | 
						|
				collpair->distance = relnor;
 | 
						|
				collpair->time = t;
 | 
						|
				
 | 
						|
				copy_v3_v3(collpair->bary, uv);
 | 
						|
 | 
						|
				collpair->flag = 0;
 | 
						|
				collpair++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	return collpair;
 | 
						|
}
 | 
						|
 | 
						|
static void machine_epsilon_offset(Cloth *cloth)
 | 
						|
{
 | 
						|
	ClothVertex *cv;
 | 
						|
	int i, j;
 | 
						|
	
 | 
						|
	cv = cloth->verts;
 | 
						|
	for (i=0; i<cloth->numverts; i++, cv++) {
 | 
						|
		/*aggrevatingly enough, it's necessary to offset the coordinates
 | 
						|
		 by a multiple of the 32-bit floating point epsilon when switching
 | 
						|
		 into doubles*/
 | 
						|
		#define RNDSIGN (float)(-1*(BLI_rand()%2==0)|1)
 | 
						|
		for (j=0; j<3; j++) {
 | 
						|
			cv->tx[j] += FLT_EPSILON*30.0f*RNDSIGN;
 | 
						|
			cv->txold[j] += FLT_EPSILON*30.0f*RNDSIGN;
 | 
						|
			cv->tv[j] += FLT_EPSILON*30.0f*RNDSIGN;
 | 
						|
		}		
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#else /* !WITH_ELTOPO */
 | 
						|
 | 
						|
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
 | 
						|
static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, 
 | 
						|
	BVHTreeOverlap *overlap, CollPair *collpair, float dt )
 | 
						|
{
 | 
						|
	ClothModifierData *clmd = ( ClothModifierData * ) md1;
 | 
						|
	CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
 | 
						|
	Cloth *cloth = clmd->clothObject;
 | 
						|
	MFace *face1=NULL, *face2 = NULL;
 | 
						|
#ifdef USE_BULLET
 | 
						|
	ClothVertex *verts1 = clmd->clothObject->verts;
 | 
						|
#endif
 | 
						|
	double distance = 0;
 | 
						|
	float epsilon1 = clmd->coll_parms->epsilon;
 | 
						|
	float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
 | 
						|
	float n2[3], sdis, l;
 | 
						|
	int i;
 | 
						|
 | 
						|
	face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
 | 
						|
	face2 = & ( collmd->mfaces[overlap->indexB] );
 | 
						|
 | 
						|
	// check all 4 possible collisions
 | 
						|
	for ( i = 0; i < 4; i++ )
 | 
						|
	{
 | 
						|
		if ( i == 0 )
 | 
						|
		{
 | 
						|
			// fill faceA
 | 
						|
			collpair->ap1 = face1->v1;
 | 
						|
			collpair->ap2 = face1->v2;
 | 
						|
			collpair->ap3 = face1->v3;
 | 
						|
 | 
						|
			// fill faceB
 | 
						|
			collpair->bp1 = face2->v1;
 | 
						|
			collpair->bp2 = face2->v2;
 | 
						|
			collpair->bp3 = face2->v3;
 | 
						|
		}
 | 
						|
		else if ( i == 1 )
 | 
						|
		{
 | 
						|
			if ( face1->v4 )
 | 
						|
			{
 | 
						|
				// fill faceA
 | 
						|
				collpair->ap1 = face1->v1;
 | 
						|
				collpair->ap2 = face1->v4;
 | 
						|
				collpair->ap3 = face1->v3;
 | 
						|
 | 
						|
				// fill faceB
 | 
						|
				collpair->bp1 = face2->v1;
 | 
						|
				collpair->bp2 = face2->v2;
 | 
						|
				collpair->bp3 = face2->v3;
 | 
						|
			}
 | 
						|
			else
 | 
						|
				i++;
 | 
						|
		}
 | 
						|
		if ( i == 2 )
 | 
						|
		{
 | 
						|
			if ( face2->v4 )
 | 
						|
			{
 | 
						|
				// fill faceA
 | 
						|
				collpair->ap1 = face1->v1;
 | 
						|
				collpair->ap2 = face1->v2;
 | 
						|
				collpair->ap3 = face1->v3;
 | 
						|
 | 
						|
				// fill faceB
 | 
						|
				collpair->bp1 = face2->v1;
 | 
						|
				collpair->bp2 = face2->v4;
 | 
						|
				collpair->bp3 = face2->v3;
 | 
						|
			}
 | 
						|
			else
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		else if ( i == 3 )
 | 
						|
		{
 | 
						|
			if ( face1->v4 && face2->v4 )
 | 
						|
			{
 | 
						|
				// fill faceA
 | 
						|
				collpair->ap1 = face1->v1;
 | 
						|
				collpair->ap2 = face1->v4;
 | 
						|
				collpair->ap3 = face1->v3;
 | 
						|
 | 
						|
				// fill faceB
 | 
						|
				collpair->bp1 = face2->v1;
 | 
						|
				collpair->bp2 = face2->v4;
 | 
						|
				collpair->bp3 = face2->v3;
 | 
						|
			}
 | 
						|
			else
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		
 | 
						|
		normal_tri_v3(n2, collmd->current_xnew[collpair->bp1].co, 
 | 
						|
			collmd->current_xnew[collpair->bp2].co, 
 | 
						|
			collmd->current_xnew[collpair->bp3].co);
 | 
						|
		
 | 
						|
		sdis = clmd->coll_parms->distance_repel + epsilon2 + FLT_EPSILON;
 | 
						|
		
 | 
						|
		/* apply a repulsion force, to help the solver along.
 | 
						|
		 * this is kindof crude, it only tests one vert of the triangle */
 | 
						|
		if (isect_ray_plane_v3(cloth->verts[collpair->ap1].tx, n2, collmd->current_xnew[collpair->bp1].co, 
 | 
						|
			collmd->current_xnew[collpair->bp2].co,
 | 
						|
			collmd->current_xnew[collpair->bp3].co, &l, 0))
 | 
						|
		{
 | 
						|
			if (l >= 0.0f && l < sdis) {
 | 
						|
				mul_v3_fl(n2, (l-sdis)*cloth->verts[collpair->ap1].mass*dt*clmd->coll_parms->repel_force*0.1f);
 | 
						|
 | 
						|
				add_v3_v3(cloth->verts[collpair->ap1].tv, n2);
 | 
						|
				add_v3_v3(cloth->verts[collpair->ap2].tv, n2);
 | 
						|
				add_v3_v3(cloth->verts[collpair->ap3].tv, n2);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		
 | 
						|
#ifdef USE_BULLET
 | 
						|
		// calc distance + normal
 | 
						|
		distance = plNearestPoints (
 | 
						|
			verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
 | 
						|
#else
 | 
						|
		// just be sure that we don't add anything
 | 
						|
		distance = 2.0 * (double)( epsilon1 + epsilon2 + ALMOST_ZERO );
 | 
						|
#endif
 | 
						|
 | 
						|
		if ( distance <= ( epsilon1 + epsilon2 + ALMOST_ZERO ) )
 | 
						|
		{
 | 
						|
			normalize_v3_v3( collpair->normal, collpair->vector );
 | 
						|
 | 
						|
			collpair->distance = distance;
 | 
						|
			collpair->flag = 0;
 | 
						|
			collpair++;
 | 
						|
		}/*
 | 
						|
		else
 | 
						|
		{
 | 
						|
			float w1, w2, w3, u1, u2, u3;
 | 
						|
			float v1[3], v2[3], relativeVelocity[3];
 | 
						|
 | 
						|
			// calc relative velocity
 | 
						|
			
 | 
						|
			// compute barycentric coordinates for both collision points
 | 
						|
			collision_compute_barycentric ( collpair->pa,
 | 
						|
			verts1[collpair->ap1].txold,
 | 
						|
			verts1[collpair->ap2].txold,
 | 
						|
			verts1[collpair->ap3].txold,
 | 
						|
			&w1, &w2, &w3 );
 | 
						|
 | 
						|
			// was: txold
 | 
						|
			collision_compute_barycentric ( collpair->pb,
 | 
						|
			collmd->current_x[collpair->bp1].co,
 | 
						|
			collmd->current_x[collpair->bp2].co,
 | 
						|
			collmd->current_x[collpair->bp3].co,
 | 
						|
			&u1, &u2, &u3 );
 | 
						|
 | 
						|
			// Calculate relative "velocity".
 | 
						|
			collision_interpolateOnTriangle ( v1, verts1[collpair->ap1].tv, verts1[collpair->ap2].tv, verts1[collpair->ap3].tv, w1, w2, w3 );
 | 
						|
 | 
						|
			collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
 | 
						|
 | 
						|
			VECSUB ( relativeVelocity, v2, v1 );
 | 
						|
 | 
						|
			if(sqrt(INPR(relativeVelocity, relativeVelocity)) >= distance)
 | 
						|
			{
 | 
						|
				// check for collision in the future
 | 
						|
				collpair->flag |= COLLISION_IN_FUTURE;
 | 
						|
				collpair++;
 | 
						|
			}
 | 
						|
		}*/
 | 
						|
	}
 | 
						|
	return collpair;
 | 
						|
}
 | 
						|
#endif /* WITH_ELTOPO */
 | 
						|
 | 
						|
 | 
						|
#if 0
 | 
						|
static int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
 | 
						|
{
 | 
						|
	int result = 0;
 | 
						|
	Cloth *cloth1;
 | 
						|
	float w1, w2, w3, u1, u2, u3;
 | 
						|
	float v1[3], v2[3], relativeVelocity[3];
 | 
						|
	float magrelVel;
 | 
						|
 | 
						|
	cloth1 = clmd->clothObject;
 | 
						|
 | 
						|
	for ( ; collpair != collision_end; collpair++ )
 | 
						|
	{
 | 
						|
		// compute barycentric coordinates for both collision points
 | 
						|
		collision_compute_barycentric ( collpair->pa,
 | 
						|
			cloth1->verts[collpair->ap1].txold,
 | 
						|
			cloth1->verts[collpair->ap2].txold,
 | 
						|
			cloth1->verts[collpair->ap3].txold,
 | 
						|
			&w1, &w2, &w3 );
 | 
						|
 | 
						|
		// was: txold
 | 
						|
		collision_compute_barycentric ( collpair->pb,
 | 
						|
			collmd->current_x[collpair->bp1].co,
 | 
						|
			collmd->current_x[collpair->bp2].co,
 | 
						|
			collmd->current_x[collpair->bp3].co,
 | 
						|
			&u1, &u2, &u3 );
 | 
						|
 | 
						|
		// Calculate relative "velocity".
 | 
						|
		collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
 | 
						|
 | 
						|
		collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
 | 
						|
 | 
						|
		VECSUB ( relativeVelocity, v2, v1 );
 | 
						|
 | 
						|
		// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
 | 
						|
		magrelVel = INPR ( relativeVelocity, collpair->normal );
 | 
						|
 | 
						|
		// printf("magrelVel: %f\n", magrelVel);
 | 
						|
 | 
						|
		// Calculate masses of points.
 | 
						|
		// TODO
 | 
						|
 | 
						|
		// If v_n_mag < 0 the edges are approaching each other.
 | 
						|
		if ( magrelVel > ALMOST_ZERO )
 | 
						|
		{
 | 
						|
			// Calculate Impulse magnitude to stop all motion in normal direction.
 | 
						|
			float magtangent = 0;
 | 
						|
			double impulse = 0.0;
 | 
						|
			float vrel_t_pre[3];
 | 
						|
			float temp[3];
 | 
						|
 | 
						|
			// calculate tangential velocity
 | 
						|
			VECCOPY ( temp, collpair->normal );
 | 
						|
			mul_v3_fl( temp, magrelVel );
 | 
						|
			VECSUB ( vrel_t_pre, relativeVelocity, temp );
 | 
						|
 | 
						|
			// Decrease in magnitude of relative tangential velocity due to coulomb friction
 | 
						|
			// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
 | 
						|
			magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
 | 
						|
 | 
						|
			// Apply friction impulse.
 | 
						|
			if ( magtangent > ALMOST_ZERO )
 | 
						|
			{
 | 
						|
				normalize_v3( vrel_t_pre );
 | 
						|
 | 
						|
				impulse = 2.0 * magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
 | 
						|
				VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
 | 
						|
				VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
 | 
						|
				VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
 | 
						|
			}
 | 
						|
 | 
						|
			// Apply velocity stopping impulse
 | 
						|
			// I_c = m * v_N / 2.0
 | 
						|
			// no 2.0 * magrelVel normally, but looks nicer DG
 | 
						|
			impulse =  magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
 | 
						|
 | 
						|
			VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
 | 
						|
			cloth1->verts[collpair->ap1].impulse_count++;
 | 
						|
 | 
						|
			VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
 | 
						|
			cloth1->verts[collpair->ap2].impulse_count++;
 | 
						|
 | 
						|
			VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
 | 
						|
			cloth1->verts[collpair->ap3].impulse_count++;
 | 
						|
 | 
						|
			// Apply repulse impulse if distance too short
 | 
						|
			// I_r = -min(dt*kd, m(0,1d/dt - v_n))
 | 
						|
			/*
 | 
						|
			d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
 | 
						|
			if ( ( magrelVel < 0.1*d*clmd->sim_parms->stepsPerFrame ) && ( d > ALMOST_ZERO ) )
 | 
						|
			{
 | 
						|
			repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
 | 
						|
 | 
						|
			// stay on the safe side and clamp repulse
 | 
						|
			if ( impulse > ALMOST_ZERO )
 | 
						|
			repulse = MIN2 ( repulse, 5.0*impulse );
 | 
						|
			repulse = MAX2 ( impulse, repulse );
 | 
						|
 | 
						|
			impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
 | 
						|
			VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal,  impulse );
 | 
						|
			VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal,  impulse );
 | 
						|
			VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal,  impulse );
 | 
						|
			}
 | 
						|
			*/
 | 
						|
			result = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0
 | 
						|
static float projectPointOntoLine(float *p, float *a, float *b) 
 | 
						|
{
 | 
						|
	float ba[3], pa[3];
 | 
						|
	VECSUB(ba, b, a);
 | 
						|
	VECSUB(pa, p, a);
 | 
						|
	return INPR(pa, ba) / INPR(ba, ba);
 | 
						|
}
 | 
						|
 | 
						|
static void calculateEENormal(float *np1, float *np2, float *np3, float *np4,float *out_normal) 
 | 
						|
{
 | 
						|
	float line1[3], line2[3];
 | 
						|
	float length;
 | 
						|
 | 
						|
	VECSUB(line1, np2, np1);
 | 
						|
	VECSUB(line2, np3, np1);
 | 
						|
 | 
						|
	// printf("l1: %f, l1: %f, l2: %f, l2: %f\n", line1[0], line1[1], line2[0], line2[1]);
 | 
						|
 | 
						|
	cross_v3_v3v3(out_normal, line1, line2);
 | 
						|
 | 
						|
	
 | 
						|
 | 
						|
	length = normalize_v3(out_normal);
 | 
						|
	if (length <= FLT_EPSILON)
 | 
						|
	{ // lines are collinear
 | 
						|
		VECSUB(out_normal, np2, np1);
 | 
						|
		normalize_v3(out_normal);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void findClosestPointsEE(float *x1, float *x2, float *x3, float *x4, float *w1, float *w2)
 | 
						|
{
 | 
						|
	float temp[3], temp2[3];
 | 
						|
	
 | 
						|
	double a, b, c, e, f; 
 | 
						|
 | 
						|
	VECSUB(temp, x2, x1);
 | 
						|
	a = INPR(temp, temp);
 | 
						|
 | 
						|
	VECSUB(temp2, x4, x3);
 | 
						|
	b = -INPR(temp, temp2);
 | 
						|
 | 
						|
	c = INPR(temp2, temp2);
 | 
						|
 | 
						|
	VECSUB(temp2, x3, x1);
 | 
						|
	e = INPR(temp, temp2);
 | 
						|
 | 
						|
	VECSUB(temp, x4, x3);
 | 
						|
	f = -INPR(temp, temp2);
 | 
						|
 | 
						|
	*w1 = (e * c - b * f) / (a * c - b * b);
 | 
						|
	*w2 = (f - b * *w1) / c;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
// calculates the distance of 2 edges
 | 
						|
static float edgedge_distance(float np11[3], float np12[3], float np21[3], float np22[3], float *out_a1, float *out_a2, float *out_normal)
 | 
						|
{
 | 
						|
	float line1[3], line2[3], cross[3];
 | 
						|
	float length;
 | 
						|
	float temp[3], temp2[3];
 | 
						|
	float dist_a1, dist_a2;
 | 
						|
	
 | 
						|
	VECSUB(line1, np12, np11);
 | 
						|
	VECSUB(line2, np22, np21);
 | 
						|
 | 
						|
	cross_v3_v3v3(cross, line1, line2);
 | 
						|
	length = INPR(cross, cross);
 | 
						|
 | 
						|
	if (length < FLT_EPSILON) 
 | 
						|
	{
 | 
						|
		*out_a2 = projectPointOntoLine(np11, np21, np22);
 | 
						|
		if ((*out_a2 >= -FLT_EPSILON) && (*out_a2 <= 1.0 + FLT_EPSILON)) 
 | 
						|
		{
 | 
						|
			*out_a1 = 0;
 | 
						|
			calculateEENormal(np11, np12, np21, np22, out_normal);
 | 
						|
			VECSUB(temp, np22, np21);
 | 
						|
			mul_v3_fl(temp, *out_a2);
 | 
						|
			VECADD(temp2, temp, np21);
 | 
						|
			VECADD(temp2, temp2, np11);
 | 
						|
			return INPR(temp2, temp2);
 | 
						|
		}
 | 
						|
 | 
						|
		CLAMP(*out_a2, 0.0, 1.0);
 | 
						|
		if (*out_a2 > .5) 
 | 
						|
		{ // == 1.0
 | 
						|
			*out_a1 = projectPointOntoLine(np22, np11, np12);
 | 
						|
			if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON)) 
 | 
						|
			{
 | 
						|
				calculateEENormal(np11, np12, np21, np22, out_normal);
 | 
						|
 | 
						|
				// return (np22 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
 | 
						|
				VECSUB(temp, np12, np11);
 | 
						|
				mul_v3_fl(temp, *out_a1);
 | 
						|
				VECADD(temp2, temp, np11);
 | 
						|
				VECSUB(temp2, np22, temp2);
 | 
						|
				return INPR(temp2, temp2);
 | 
						|
			}
 | 
						|
		} 
 | 
						|
		else 
 | 
						|
		{ // == 0.0
 | 
						|
			*out_a1 = projectPointOntoLine(np21, np11, np12);
 | 
						|
			if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON)) 
 | 
						|
			{
 | 
						|
				calculateEENormal(np11, np11, np21, np22, out_normal);
 | 
						|
 | 
						|
				// return (np21 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
 | 
						|
				VECSUB(temp, np12, np11);
 | 
						|
				mul_v3_fl(temp, *out_a1);
 | 
						|
				VECADD(temp2, temp, np11);
 | 
						|
				VECSUB(temp2, np21, temp2);
 | 
						|
				return INPR(temp2, temp2);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		CLAMP(*out_a1, 0.0, 1.0);
 | 
						|
		calculateEENormal(np11, np12, np21, np22, out_normal);
 | 
						|
		if(*out_a1 > .5)
 | 
						|
		{
 | 
						|
			if(*out_a2 > .5)
 | 
						|
			{
 | 
						|
				VECSUB(temp, np12, np22);
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				VECSUB(temp, np12, np21);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			if(*out_a2 > .5)
 | 
						|
			{
 | 
						|
				VECSUB(temp, np11, np22);
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				VECSUB(temp, np11, np21);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		return INPR(temp, temp);
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		
 | 
						|
		// If the lines aren't parallel (but coplanar) they have to intersect
 | 
						|
 | 
						|
		findClosestPointsEE(np11, np12, np21, np22, out_a1, out_a2);
 | 
						|
 | 
						|
		// If both points are on the finite edges, we're done.
 | 
						|
		if (*out_a1 >= 0.0 && *out_a1 <= 1.0 && *out_a2 >= 0.0 && *out_a2 <= 1.0) 
 | 
						|
		{
 | 
						|
			float p1[3], p2[3];
 | 
						|
			
 | 
						|
			// p1= np11 + (np12 - np11) * out_a1;
 | 
						|
			VECSUB(temp, np12, np11);
 | 
						|
			mul_v3_fl(temp, *out_a1);
 | 
						|
			VECADD(p1, np11, temp);
 | 
						|
			
 | 
						|
			// p2 = np21 + (np22 - np21) * out_a2;
 | 
						|
			VECSUB(temp, np22, np21);
 | 
						|
			mul_v3_fl(temp, *out_a2);
 | 
						|
			VECADD(p2, np21, temp);
 | 
						|
 | 
						|
			calculateEENormal(np11, np12, np21, np22, out_normal);
 | 
						|
			VECSUB(temp, p1, p2);
 | 
						|
			return INPR(temp, temp);
 | 
						|
		}
 | 
						|
 | 
						|
		
 | 
						|
		/*
 | 
						|
		* Clamp both points to the finite edges.
 | 
						|
		* The one that moves most during clamping is one part of the solution.
 | 
						|
		*/
 | 
						|
		dist_a1 = *out_a1;
 | 
						|
		CLAMP(dist_a1, 0.0, 1.0);
 | 
						|
		dist_a2 = *out_a2;
 | 
						|
		CLAMP(dist_a2, 0.0, 1.0);
 | 
						|
 | 
						|
		// Now project the "most clamped" point on the other line.
 | 
						|
		if (dist_a1 > dist_a2) 
 | 
						|
		{ 
 | 
						|
			/* keep out_a1 */
 | 
						|
			float p1[3];
 | 
						|
 | 
						|
			// p1 = np11 + (np12 - np11) * out_a1;
 | 
						|
			VECSUB(temp, np12, np11);
 | 
						|
			mul_v3_fl(temp, *out_a1);
 | 
						|
			VECADD(p1, np11, temp);
 | 
						|
 | 
						|
			*out_a2 = projectPointOntoLine(p1, np21, np22);
 | 
						|
			CLAMP(*out_a2, 0.0, 1.0);
 | 
						|
 | 
						|
			calculateEENormal(np11, np12, np21, np22, out_normal);
 | 
						|
 | 
						|
			// return (p1 - (np21 + (np22 - np21) * out_a2)).lengthSquared();
 | 
						|
			VECSUB(temp, np22, np21);
 | 
						|
			mul_v3_fl(temp, *out_a2);
 | 
						|
			VECADD(temp, temp, np21);
 | 
						|
			VECSUB(temp, p1, temp);
 | 
						|
			return INPR(temp, temp);
 | 
						|
		} 
 | 
						|
		else 
 | 
						|
		{	
 | 
						|
			/* keep out_a2 */
 | 
						|
			float p2[3];
 | 
						|
			
 | 
						|
			// p2 = np21 + (np22 - np21) * out_a2;
 | 
						|
			VECSUB(temp, np22, np21);
 | 
						|
			mul_v3_fl(temp, *out_a2);
 | 
						|
			VECADD(p2, np21, temp);
 | 
						|
 | 
						|
			*out_a1 = projectPointOntoLine(p2, np11, np12);
 | 
						|
			CLAMP(*out_a1, 0.0, 1.0);
 | 
						|
 | 
						|
			calculateEENormal(np11, np12, np21, np22, out_normal);
 | 
						|
			
 | 
						|
			// return ((np11 + (np12 - np11) * out_a1) - p2).lengthSquared();
 | 
						|
			VECSUB(temp, np12, np11);
 | 
						|
			mul_v3_fl(temp, *out_a1);
 | 
						|
			VECADD(temp, temp, np11);
 | 
						|
			VECSUB(temp, temp, p2);
 | 
						|
			return INPR(temp, temp);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	printf("Error in edgedge_distance: end of function\n");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair )
 | 
						|
{
 | 
						|
	EdgeCollPair edgecollpair;
 | 
						|
	Cloth *cloth1=NULL;
 | 
						|
	ClothVertex *verts1=NULL;
 | 
						|
	unsigned int i = 0, k = 0;
 | 
						|
	int numsolutions = 0;
 | 
						|
	double x1[3], v1[3], x2[3], v2[3], x3[3], v3[3];
 | 
						|
	double solution[3], solution2[3];
 | 
						|
	MVert *verts2 = collmd->current_x; // old x
 | 
						|
	MVert *velocity2 = collmd->current_v; // velocity
 | 
						|
	float distance = 0;
 | 
						|
	float triA[3][3], triB[3][3];
 | 
						|
	int result = 0;
 | 
						|
 | 
						|
	cloth1 = clmd->clothObject;
 | 
						|
	verts1 = cloth1->verts;
 | 
						|
 | 
						|
	for(i = 0; i < 9; i++)
 | 
						|
	{
 | 
						|
		// 9 edge - edge possibilities
 | 
						|
 | 
						|
		if(i == 0) // cloth edge: 1-2; coll edge: 1-2
 | 
						|
		{
 | 
						|
			edgecollpair.p11 = collpair->ap1;
 | 
						|
			edgecollpair.p12 = collpair->ap2;
 | 
						|
 | 
						|
			edgecollpair.p21 = collpair->bp1;
 | 
						|
			edgecollpair.p22 = collpair->bp2;
 | 
						|
		}
 | 
						|
		else if(i == 1) // cloth edge: 1-2; coll edge: 2-3
 | 
						|
		{
 | 
						|
			edgecollpair.p11 = collpair->ap1;
 | 
						|
			edgecollpair.p12 = collpair->ap2;
 | 
						|
 | 
						|
			edgecollpair.p21 = collpair->bp2;
 | 
						|
			edgecollpair.p22 = collpair->bp3;
 | 
						|
		}
 | 
						|
		else if(i == 2) // cloth edge: 1-2; coll edge: 1-3
 | 
						|
		{
 | 
						|
			edgecollpair.p11 = collpair->ap1;
 | 
						|
			edgecollpair.p12 = collpair->ap2;
 | 
						|
 | 
						|
			edgecollpair.p21 = collpair->bp1;
 | 
						|
			edgecollpair.p22 = collpair->bp3;
 | 
						|
		}
 | 
						|
		else if(i == 3) // cloth edge: 2-3; coll edge: 1-2
 | 
						|
		{
 | 
						|
			edgecollpair.p11 = collpair->ap2;
 | 
						|
			edgecollpair.p12 = collpair->ap3;
 | 
						|
 | 
						|
			edgecollpair.p21 = collpair->bp1;
 | 
						|
			edgecollpair.p22 = collpair->bp2;
 | 
						|
		}
 | 
						|
		else if(i == 4) // cloth edge: 2-3; coll edge: 2-3
 | 
						|
		{
 | 
						|
			edgecollpair.p11 = collpair->ap2;
 | 
						|
			edgecollpair.p12 = collpair->ap3;
 | 
						|
 | 
						|
			edgecollpair.p21 = collpair->bp2;
 | 
						|
			edgecollpair.p22 = collpair->bp3;
 | 
						|
		}
 | 
						|
		else if(i == 5) // cloth edge: 2-3; coll edge: 1-3
 | 
						|
		{
 | 
						|
			edgecollpair.p11 = collpair->ap2;
 | 
						|
			edgecollpair.p12 = collpair->ap3;
 | 
						|
 | 
						|
			edgecollpair.p21 = collpair->bp1;
 | 
						|
			edgecollpair.p22 = collpair->bp3;
 | 
						|
		}
 | 
						|
		else if(i ==6) // cloth edge: 1-3; coll edge: 1-2
 | 
						|
		{
 | 
						|
			edgecollpair.p11 = collpair->ap1;
 | 
						|
			edgecollpair.p12 = collpair->ap3;
 | 
						|
 | 
						|
			edgecollpair.p21 = collpair->bp1;
 | 
						|
			edgecollpair.p22 = collpair->bp2;
 | 
						|
		}
 | 
						|
		else if(i ==7) // cloth edge: 1-3; coll edge: 2-3
 | 
						|
		{
 | 
						|
			edgecollpair.p11 = collpair->ap1;
 | 
						|
			edgecollpair.p12 = collpair->ap3;
 | 
						|
 | 
						|
			edgecollpair.p21 = collpair->bp2;
 | 
						|
			edgecollpair.p22 = collpair->bp3;
 | 
						|
		}
 | 
						|
		else if(i == 8) // cloth edge: 1-3; coll edge: 1-3
 | 
						|
		{
 | 
						|
			edgecollpair.p11 = collpair->ap1;
 | 
						|
			edgecollpair.p12 = collpair->ap3;
 | 
						|
 | 
						|
			edgecollpair.p21 = collpair->bp1;
 | 
						|
			edgecollpair.p22 = collpair->bp3;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		if((edgecollpair.p11 == 3) && (edgecollpair.p12 == 16))
 | 
						|
			printf("Ahier!\n");
 | 
						|
		if((edgecollpair.p11 == 16) && (edgecollpair.p12 == 3))
 | 
						|
			printf("Ahier!\n");
 | 
						|
		*/
 | 
						|
 | 
						|
		// if ( !cloth_are_edges_adjacent ( clmd, collmd, &edgecollpair ) )
 | 
						|
		{
 | 
						|
			// always put coll points in p21/p22
 | 
						|
			VECSUB ( x1, verts1[edgecollpair.p12].txold, verts1[edgecollpair.p11].txold );
 | 
						|
			VECSUB ( v1, verts1[edgecollpair.p12].tv, verts1[edgecollpair.p11].tv );
 | 
						|
 | 
						|
			VECSUB ( x2, verts2[edgecollpair.p21].co, verts1[edgecollpair.p11].txold );
 | 
						|
			VECSUB ( v2, velocity2[edgecollpair.p21].co, verts1[edgecollpair.p11].tv );
 | 
						|
 | 
						|
			VECSUB ( x3, verts2[edgecollpair.p22].co, verts1[edgecollpair.p11].txold );
 | 
						|
			VECSUB ( v3, velocity2[edgecollpair.p22].co, verts1[edgecollpair.p11].tv );
 | 
						|
 | 
						|
			numsolutions = cloth_get_collision_time ( x1, v1, x2, v2, x3, v3, solution );
 | 
						|
 | 
						|
			if((edgecollpair.p11 == 3 && edgecollpair.p12==16)|| (edgecollpair.p11==16 && edgecollpair.p12==3))
 | 
						|
			{
 | 
						|
				if(edgecollpair.p21==6 || edgecollpair.p22 == 6)
 | 
						|
				{
 | 
						|
					printf("dist: %f, sol[k]: %f, sol2[k]: %f\n", distance, solution[k], solution2[k]);
 | 
						|
					printf("a1: %f, a2: %f, b1: %f, b2: %f\n", x1[0], x2[0], x3[0], v1[0]);
 | 
						|
					printf("b21: %d, b22: %d\n", edgecollpair.p21, edgecollpair.p22);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			for ( k = 0; k < numsolutions; k++ )
 | 
						|
			{
 | 
						|
				// printf("sol %d: %lf\n", k, solution[k]);
 | 
						|
				if ( ( solution[k] >= ALMOST_ZERO ) && ( solution[k] <= 1.0 ) && ( solution[k] >  ALMOST_ZERO))
 | 
						|
				{
 | 
						|
					float a,b;
 | 
						|
					float out_normal[3];
 | 
						|
					float distance;
 | 
						|
					float impulse = 0;
 | 
						|
					float I_mag;
 | 
						|
 | 
						|
					// move verts
 | 
						|
					VECADDS(triA[0], verts1[edgecollpair.p11].txold, verts1[edgecollpair.p11].tv, solution[k]);
 | 
						|
					VECADDS(triA[1], verts1[edgecollpair.p12].txold, verts1[edgecollpair.p12].tv, solution[k]);
 | 
						|
 | 
						|
					VECADDS(triB[0], collmd->current_x[edgecollpair.p21].co, collmd->current_v[edgecollpair.p21].co, solution[k]);
 | 
						|
					VECADDS(triB[1], collmd->current_x[edgecollpair.p22].co, collmd->current_v[edgecollpair.p22].co, solution[k]);
 | 
						|
 | 
						|
					// TODO: check for collisions
 | 
						|
					distance = edgedge_distance(triA[0], triA[1], triB[0], triB[1], &a, &b, out_normal);
 | 
						|
					
 | 
						|
					if ((distance <= clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree ) + ALMOST_ZERO) && (INPR(out_normal, out_normal) > 0))
 | 
						|
					{
 | 
						|
						float vrel_1_to_2[3], temp[3], temp2[3], out_normalVelocity;
 | 
						|
						float desiredVn;
 | 
						|
 | 
						|
						VECCOPY(vrel_1_to_2, verts1[edgecollpair.p11].tv);
 | 
						|
						mul_v3_fl(vrel_1_to_2, 1.0 - a);
 | 
						|
						VECCOPY(temp, verts1[edgecollpair.p12].tv);
 | 
						|
						mul_v3_fl(temp, a);
 | 
						|
 | 
						|
						VECADD(vrel_1_to_2, vrel_1_to_2, temp);
 | 
						|
 | 
						|
						VECCOPY(temp, verts1[edgecollpair.p21].tv);
 | 
						|
						mul_v3_fl(temp, 1.0 - b);
 | 
						|
						VECCOPY(temp2, verts1[edgecollpair.p22].tv);
 | 
						|
						mul_v3_fl(temp2, b);
 | 
						|
						VECADD(temp, temp, temp2);
 | 
						|
 | 
						|
						VECSUB(vrel_1_to_2, vrel_1_to_2, temp);
 | 
						|
 | 
						|
						out_normalVelocity = INPR(vrel_1_to_2, out_normal);
 | 
						|
/*
 | 
						|
						// this correction results in wrong normals sometimes?
 | 
						|
						if(out_normalVelocity < 0.0)
 | 
						|
						{
 | 
						|
							out_normalVelocity*= -1.0;
 | 
						|
							negate_v3(out_normal);
 | 
						|
						}
 | 
						|
*/
 | 
						|
						/* Inelastic repulsion impulse. */
 | 
						|
 | 
						|
						// Calculate which normal velocity we need. 
 | 
						|
						desiredVn = (out_normalVelocity * (float)solution[k] - (.1 * (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree )) - sqrt(distance)) - ALMOST_ZERO);
 | 
						|
 | 
						|
						// Now calculate what impulse we need to reach that velocity. 
 | 
						|
						I_mag = (out_normalVelocity - desiredVn) / 2.0; // / (1/m1 + 1/m2);
 | 
						|
 | 
						|
						// Finally apply that impulse. 
 | 
						|
						impulse = (2.0 * -I_mag) / (a*a + (1.0-a)*(1.0-a) + b*b + (1.0-b)*(1.0-b));
 | 
						|
 | 
						|
						VECADDMUL ( verts1[edgecollpair.p11].impulse, out_normal, (1.0-a) * impulse );
 | 
						|
						verts1[edgecollpair.p11].impulse_count++;
 | 
						|
 | 
						|
						VECADDMUL ( verts1[edgecollpair.p12].impulse, out_normal, a * impulse );
 | 
						|
						verts1[edgecollpair.p12].impulse_count++;
 | 
						|
 | 
						|
						// return true;
 | 
						|
						result = 1;
 | 
						|
						break;
 | 
						|
					}
 | 
						|
					else
 | 
						|
					{
 | 
						|
						// missing from collision.hpp
 | 
						|
					}
 | 
						|
					// mintime = MIN2(mintime, (float)solution[k]);
 | 
						|
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
static int cloth_collision_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
 | 
						|
{
 | 
						|
	Cloth *cloth1;
 | 
						|
	cloth1 = clmd->clothObject;
 | 
						|
 | 
						|
	for ( ; collpair != collision_end; collpair++ )
 | 
						|
	{
 | 
						|
		// only handle moving collisions here
 | 
						|
		if (!( collpair->flag & COLLISION_IN_FUTURE ))
 | 
						|
			continue;
 | 
						|
 | 
						|
		cloth_collision_moving_edges ( clmd, collmd, collpair);
 | 
						|
		// cloth_collision_moving_tris ( clmd, collmd, collpair);
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void add_collision_object(Object ***objs, unsigned int *numobj, unsigned int *maxobj, Object *ob, Object *self, int level)
 | 
						|
{
 | 
						|
	CollisionModifierData *cmd= NULL;
 | 
						|
 | 
						|
	if(ob == self)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* only get objects with collision modifier */
 | 
						|
	if(ob->pd && ob->pd->deflect)
 | 
						|
		cmd= (CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
 | 
						|
	
 | 
						|
	if(cmd) {	
 | 
						|
		/* extend array */
 | 
						|
		if(*numobj >= *maxobj) {
 | 
						|
			*maxobj *= 2;
 | 
						|
			*objs= MEM_reallocN(*objs, sizeof(Object*)*(*maxobj));
 | 
						|
		}
 | 
						|
		
 | 
						|
		(*objs)[*numobj] = ob;
 | 
						|
		(*numobj)++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* objects in dupli groups, one level only for now */
 | 
						|
	if(ob->dup_group && level == 0) {
 | 
						|
		GroupObject *go;
 | 
						|
		Group *group= ob->dup_group;
 | 
						|
 | 
						|
		/* add objects */
 | 
						|
		for(go= group->gobject.first; go; go= go->next)
 | 
						|
			add_collision_object(objs, numobj, maxobj, go->ob, self, level+1);
 | 
						|
	}	
 | 
						|
}
 | 
						|
 | 
						|
// return all collision objects in scene
 | 
						|
// collision object will exclude self 
 | 
						|
Object **get_collisionobjects(Scene *scene, Object *self, Group *group, unsigned int *numcollobj)
 | 
						|
{
 | 
						|
	Base *base;
 | 
						|
	Object **objs;
 | 
						|
	GroupObject *go;
 | 
						|
	unsigned int numobj= 0, maxobj= 100;
 | 
						|
	
 | 
						|
	objs= MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
 | 
						|
 | 
						|
	/* gather all collision objects */
 | 
						|
	if(group) {
 | 
						|
		/* use specified group */
 | 
						|
		for(go= group->gobject.first; go; go= go->next)
 | 
						|
			add_collision_object(&objs, &numobj, &maxobj, go->ob, self, 0);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		Scene *sce_iter;
 | 
						|
		/* add objects in same layer in scene */
 | 
						|
		for(SETLOOPER(scene, sce_iter, base)) {
 | 
						|
			if(base->lay & self->lay)
 | 
						|
				add_collision_object(&objs, &numobj, &maxobj, base->object, self, 0);
 | 
						|
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	*numcollobj= numobj;
 | 
						|
 | 
						|
	return objs;
 | 
						|
}
 | 
						|
 | 
						|
static void add_collider_cache_object(ListBase **objs, Object *ob, Object *self, int level)
 | 
						|
{
 | 
						|
	CollisionModifierData *cmd= NULL;
 | 
						|
	ColliderCache *col;
 | 
						|
 | 
						|
	if(ob == self)
 | 
						|
		return;
 | 
						|
 | 
						|
	if(ob->pd && ob->pd->deflect)
 | 
						|
		cmd =(CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
 | 
						|
	
 | 
						|
	if(cmd && cmd->bvhtree) {	
 | 
						|
		if(*objs == NULL)
 | 
						|
			*objs = MEM_callocN(sizeof(ListBase), "ColliderCache array");
 | 
						|
 | 
						|
		col = MEM_callocN(sizeof(ColliderCache), "ColliderCache");
 | 
						|
		col->ob = ob;
 | 
						|
		col->collmd = cmd;
 | 
						|
		/* make sure collider is properly set up */
 | 
						|
		collision_move_object(cmd, 1.0, 0.0);
 | 
						|
		BLI_addtail(*objs, col);
 | 
						|
	}
 | 
						|
 | 
						|
	/* objects in dupli groups, one level only for now */
 | 
						|
	if(ob->dup_group && level == 0) {
 | 
						|
		GroupObject *go;
 | 
						|
		Group *group= ob->dup_group;
 | 
						|
 | 
						|
		/* add objects */
 | 
						|
		for(go= group->gobject.first; go; go= go->next)
 | 
						|
			add_collider_cache_object(objs, go->ob, self, level+1);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
ListBase *get_collider_cache(Scene *scene, Object *self, Group *group)
 | 
						|
{
 | 
						|
	GroupObject *go;
 | 
						|
	ListBase *objs= NULL;
 | 
						|
	
 | 
						|
	/* add object in same layer in scene */
 | 
						|
	if(group) {
 | 
						|
		for(go= group->gobject.first; go; go= go->next)
 | 
						|
			add_collider_cache_object(&objs, go->ob, self, 0);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		Scene *sce_iter;
 | 
						|
		Base *base;
 | 
						|
 | 
						|
		/* add objects in same layer in scene */
 | 
						|
		for(SETLOOPER(scene, sce_iter, base)) {
 | 
						|
			if(!self || (base->lay & self->lay))
 | 
						|
				add_collider_cache_object(&objs, base->object, self, 0);
 | 
						|
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return objs;
 | 
						|
}
 | 
						|
 | 
						|
void free_collider_cache(ListBase **colliders)
 | 
						|
{
 | 
						|
	if(*colliders) {
 | 
						|
		BLI_freelistN(*colliders);
 | 
						|
		MEM_freeN(*colliders);
 | 
						|
		*colliders = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd,
 | 
						|
	CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap, double dt)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
#ifdef WITH_ELTOPO
 | 
						|
	GHash *visithash = BLI_ghash_new(edgepair_hash, edgepair_cmp, "visthash, collision.c");
 | 
						|
	GHash *tri_visithash = BLI_ghash_new(tripair_hash, tripair_cmp, "tri_visthash, collision.c");
 | 
						|
	MemArena *arena = BLI_memarena_new(1<<16, "edge hash arena, collision.c");
 | 
						|
#endif
 | 
						|
	
 | 
						|
	*collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * numresult * 64, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
 | 
						|
	*collisions_index = *collisions;
 | 
						|
	
 | 
						|
#ifdef WITH_ELTOPO
 | 
						|
	machine_epsilon_offset(clmd->clothObject);
 | 
						|
 | 
						|
	for ( i = 0; i < numresult; i++ )
 | 
						|
	{
 | 
						|
		*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
 | 
						|
											  overlap+i, *collisions_index, dt, tri_visithash, arena );
 | 
						|
	}
 | 
						|
 | 
						|
	for ( i = 0; i < numresult; i++ )
 | 
						|
	{
 | 
						|
		*collisions_index = cloth_edge_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
 | 
						|
												   overlap+i, *collisions_index, visithash, arena );
 | 
						|
	}
 | 
						|
	BLI_ghash_free(visithash, NULL, NULL);
 | 
						|
	BLI_ghash_free(tri_visithash, NULL, NULL);
 | 
						|
	BLI_memarena_free(arena);
 | 
						|
#else /* WITH_ELTOPO */
 | 
						|
	for ( i = 0; i < numresult; i++ )
 | 
						|
	{
 | 
						|
		*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
 | 
						|
											  overlap+i, *collisions_index, dt );
 | 
						|
	}
 | 
						|
#endif /* WITH_ELTOPO */
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
 | 
						|
{
 | 
						|
	Cloth *cloth = clmd->clothObject;
 | 
						|
	int i=0, j = 0, /*numfaces = 0,*/ numverts = 0;
 | 
						|
	ClothVertex *verts = NULL;
 | 
						|
	int ret = 0;
 | 
						|
	int result = 0;
 | 
						|
	float tnull[3] = {0,0,0};
 | 
						|
	
 | 
						|
	/*numfaces = clmd->clothObject->numfaces;*/ /*UNUSED*/
 | 
						|
	numverts = clmd->clothObject->numverts;
 | 
						|
 
 | 
						|
	verts = cloth->verts;
 | 
						|
	
 | 
						|
	// process all collisions (calculate impulses, TODO: also repulses if distance too short)
 | 
						|
	result = 1;
 | 
						|
	for ( j = 0; j < 5; j++ ) // 5 is just a value that ensures convergence
 | 
						|
	{
 | 
						|
		result = 0;
 | 
						|
 | 
						|
		if ( collmd->bvhtree )
 | 
						|
		{
 | 
						|
#ifdef WITH_ELTOPO
 | 
						|
			result += cloth_collision_response_moving(clmd, collmd, collisions, collisions_index);
 | 
						|
			result += cloth_edge_collision_response_moving(clmd, collmd, collisions, collisions_index);
 | 
						|
#else
 | 
						|
			result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
 | 
						|
#endif
 | 
						|
#ifdef WITH_ELTOPO
 | 
						|
			{
 | 
						|
#else
 | 
						|
			// apply impulses in parallel
 | 
						|
			if ( result )
 | 
						|
			{
 | 
						|
#endif
 | 
						|
				for ( i = 0; i < numverts; i++ )
 | 
						|
				{
 | 
						|
					// calculate "velocities" (just xnew = xold + v; no dt in v)
 | 
						|
					if ( verts[i].impulse_count )
 | 
						|
					{
 | 
						|
						VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
 | 
						|
						copy_v3_v3 ( verts[i].impulse, tnull );
 | 
						|
						verts[i].impulse_count = 0;
 | 
						|
 | 
						|
						ret++;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
// cloth - object collisions
 | 
						|
int cloth_bvh_objcollision (Object *ob, ClothModifierData * clmd, float step, float dt )
 | 
						|
{
 | 
						|
	Cloth *cloth= clmd->clothObject;
 | 
						|
	BVHTree *cloth_bvh= cloth->bvhtree;
 | 
						|
	unsigned int i=0, /* numfaces = 0, */ /* UNUSED */ numverts = 0, k, l, j;
 | 
						|
	int rounds = 0; // result counts applied collisions; ic is for debug output;
 | 
						|
	ClothVertex *verts = NULL;
 | 
						|
	int ret = 0, ret2 = 0;
 | 
						|
	Object **collobjs = NULL;
 | 
						|
	unsigned int numcollobj = 0;
 | 
						|
 | 
						|
	if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh==NULL)
 | 
						|
		return 0;
 | 
						|
	
 | 
						|
	verts = cloth->verts;
 | 
						|
	/* numfaces = cloth->numfaces; */ /* UNUSED */
 | 
						|
	numverts = cloth->numverts;
 | 
						|
 | 
						|
	////////////////////////////////////////////////////////////
 | 
						|
	// static collisions
 | 
						|
	////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
	// update cloth bvh
 | 
						|
	bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
 | 
						|
	bvhselftree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
 | 
						|
	
 | 
						|
	collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj);
 | 
						|
	
 | 
						|
	if(!collobjs)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	do
 | 
						|
	{
 | 
						|
		CollPair **collisions, **collisions_index;
 | 
						|
		
 | 
						|
		ret2 = 0;
 | 
						|
 | 
						|
		collisions = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
 | 
						|
		collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
 | 
						|
		
 | 
						|
		// check all collision objects
 | 
						|
		for(i = 0; i < numcollobj; i++)
 | 
						|
		{
 | 
						|
			Object *collob= collobjs[i];
 | 
						|
			CollisionModifierData *collmd = (CollisionModifierData*)modifiers_findByType(collob, eModifierType_Collision);
 | 
						|
			BVHTreeOverlap *overlap = NULL;
 | 
						|
			unsigned int result = 0;
 | 
						|
			
 | 
						|
			if(!collmd->bvhtree)
 | 
						|
				continue;
 | 
						|
			
 | 
						|
			/* move object to position (step) in time */
 | 
						|
			
 | 
						|
			collision_move_object ( collmd, step + dt, step );
 | 
						|
			
 | 
						|
			/* search for overlapping collision pairs */
 | 
						|
			overlap = BLI_bvhtree_overlap ( cloth_bvh, collmd->bvhtree, &result );
 | 
						|
				
 | 
						|
			// go to next object if no overlap is there
 | 
						|
			if( result && overlap ) {
 | 
						|
				/* check if collisions really happen (costly near check) */
 | 
						|
				cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i], 
 | 
						|
					&collisions_index[i], result, overlap, dt/(float)clmd->coll_parms->loop_count);
 | 
						|
			
 | 
						|
				// resolve nearby collisions
 | 
						|
				ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i],  collisions_index[i]);
 | 
						|
				ret2 += ret;
 | 
						|
			}
 | 
						|
 | 
						|
			if ( overlap )
 | 
						|
				MEM_freeN ( overlap );
 | 
						|
		}
 | 
						|
		rounds++;
 | 
						|
		
 | 
						|
		for(i = 0; i < numcollobj; i++)
 | 
						|
		{
 | 
						|
			if ( collisions[i] ) MEM_freeN ( collisions[i] );
 | 
						|
		}
 | 
						|
			
 | 
						|
		MEM_freeN(collisions);
 | 
						|
		MEM_freeN(collisions_index);
 | 
						|
 | 
						|
		////////////////////////////////////////////////////////////
 | 
						|
		// update positions
 | 
						|
		// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
 | 
						|
		////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
		// verts come from clmd
 | 
						|
		for ( i = 0; i < numverts; i++ )
 | 
						|
		{
 | 
						|
			if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
 | 
						|
			{
 | 
						|
				if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED )
 | 
						|
				{
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
 | 
						|
		}
 | 
						|
		////////////////////////////////////////////////////////////
 | 
						|
		
 | 
						|
		
 | 
						|
		////////////////////////////////////////////////////////////
 | 
						|
		// Test on *simple* selfcollisions
 | 
						|
		////////////////////////////////////////////////////////////
 | 
						|
		if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF )
 | 
						|
		{
 | 
						|
			for(l = 0; l < (unsigned int)clmd->coll_parms->self_loop_count; l++)
 | 
						|
			{
 | 
						|
				// TODO: add coll quality rounds again
 | 
						|
				BVHTreeOverlap *overlap = NULL;
 | 
						|
				unsigned int result = 0;
 | 
						|
	
 | 
						|
				// collisions = 1;
 | 
						|
				verts = cloth->verts; // needed for openMP
 | 
						|
	
 | 
						|
				/* numfaces = cloth->numfaces; */ /* UNUSED */
 | 
						|
				numverts = cloth->numverts;
 | 
						|
	
 | 
						|
				verts = cloth->verts;
 | 
						|
	
 | 
						|
				if ( cloth->bvhselftree )
 | 
						|
				{
 | 
						|
					// search for overlapping collision pairs 
 | 
						|
					overlap = BLI_bvhtree_overlap ( cloth->bvhselftree, cloth->bvhselftree, &result );
 | 
						|
	
 | 
						|
	// #pragma omp parallel for private(k, i, j) schedule(static)
 | 
						|
					for ( k = 0; k < result; k++ )
 | 
						|
					{
 | 
						|
						float temp[3];
 | 
						|
						float length = 0;
 | 
						|
						float mindistance;
 | 
						|
	
 | 
						|
						i = overlap[k].indexA;
 | 
						|
						j = overlap[k].indexB;
 | 
						|
	
 | 
						|
						mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
 | 
						|
	
 | 
						|
						if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
 | 
						|
						{
 | 
						|
							if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
 | 
						|
										&& ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
 | 
						|
							{
 | 
						|
								continue;
 | 
						|
							}
 | 
						|
						}
 | 
						|
	
 | 
						|
						VECSUB ( temp, verts[i].tx, verts[j].tx );
 | 
						|
	
 | 
						|
						if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
 | 
						|
	
 | 
						|
						// check for adjacent points (i must be smaller j)
 | 
						|
						if ( BLI_edgehash_haskey ( cloth->edgehash, MIN2(i, j), MAX2(i, j) ) )
 | 
						|
						{
 | 
						|
							continue;
 | 
						|
						}
 | 
						|
	
 | 
						|
						length = normalize_v3( temp );
 | 
						|
	
 | 
						|
						if ( length < mindistance )
 | 
						|
						{
 | 
						|
							float correction = mindistance - length;
 | 
						|
	
 | 
						|
							if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
 | 
						|
							{
 | 
						|
								mul_v3_fl( temp, -correction );
 | 
						|
								VECADD ( verts[j].tx, verts[j].tx, temp );
 | 
						|
							}
 | 
						|
							else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
 | 
						|
							{
 | 
						|
								mul_v3_fl( temp, correction );
 | 
						|
								VECADD ( verts[i].tx, verts[i].tx, temp );
 | 
						|
							}
 | 
						|
							else
 | 
						|
							{
 | 
						|
								mul_v3_fl( temp, correction * -0.5 );
 | 
						|
								VECADD ( verts[j].tx, verts[j].tx, temp );
 | 
						|
	
 | 
						|
								VECSUB ( verts[i].tx, verts[i].tx, temp );
 | 
						|
							}
 | 
						|
							ret = 1;
 | 
						|
							ret2 += ret;
 | 
						|
						}
 | 
						|
						else
 | 
						|
						{
 | 
						|
							// check for approximated time collisions
 | 
						|
						}
 | 
						|
					}
 | 
						|
	
 | 
						|
					if ( overlap )
 | 
						|
						MEM_freeN ( overlap );
 | 
						|
	
 | 
						|
				}
 | 
						|
			}
 | 
						|
			////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
			////////////////////////////////////////////////////////////
 | 
						|
			// SELFCOLLISIONS: update velocities
 | 
						|
			////////////////////////////////////////////////////////////
 | 
						|
			if ( ret2 )
 | 
						|
			{
 | 
						|
				for ( i = 0; i < cloth->numverts; i++ )
 | 
						|
				{
 | 
						|
					if ( ! ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) )
 | 
						|
					{
 | 
						|
						VECSUB ( verts[i].tv, verts[i].tx, verts[i].txold );
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			////////////////////////////////////////////////////////////
 | 
						|
		}
 | 
						|
	}
 | 
						|
	while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
 | 
						|
	
 | 
						|
	if(collobjs)
 | 
						|
		MEM_freeN(collobjs);
 | 
						|
 | 
						|
	return 1|MIN2 ( ret, 1 );
 | 
						|
}
 |