562 lines
20 KiB
C++
562 lines
20 KiB
C++
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright 2011, Blender Foundation.
|
|
*/
|
|
|
|
#include "COM_ScaleOperation.h"
|
|
#include "COM_ConstantOperation.h"
|
|
|
|
namespace blender::compositor {
|
|
|
|
#define USE_FORCE_BILINEAR
|
|
/* XXX(campbell): ignore input and use default from old compositor,
|
|
* could become an option like the transform node.
|
|
*
|
|
* NOTE: use bilinear because bicubic makes fuzzy even when not scaling at all (1:1)
|
|
*/
|
|
|
|
BaseScaleOperation::BaseScaleOperation()
|
|
{
|
|
#ifdef USE_FORCE_BILINEAR
|
|
m_sampler = (int)PixelSampler::Bilinear;
|
|
#else
|
|
m_sampler = -1;
|
|
#endif
|
|
m_variable_size = false;
|
|
}
|
|
|
|
void BaseScaleOperation::set_scale_canvas_max_size(Size2f size)
|
|
{
|
|
max_scale_canvas_size_ = size;
|
|
}
|
|
|
|
ScaleOperation::ScaleOperation() : ScaleOperation(DataType::Color)
|
|
{
|
|
}
|
|
|
|
ScaleOperation::ScaleOperation(DataType data_type) : BaseScaleOperation()
|
|
{
|
|
this->addInputSocket(data_type, ResizeMode::None);
|
|
this->addInputSocket(DataType::Value);
|
|
this->addInputSocket(DataType::Value);
|
|
this->addOutputSocket(data_type);
|
|
m_inputOperation = nullptr;
|
|
m_inputXOperation = nullptr;
|
|
m_inputYOperation = nullptr;
|
|
}
|
|
|
|
float ScaleOperation::get_constant_scale(const int input_op_idx, const float factor)
|
|
{
|
|
const bool is_constant = getInputOperation(input_op_idx)->get_flags().is_constant_operation;
|
|
if (is_constant) {
|
|
return ((ConstantOperation *)getInputOperation(input_op_idx))->get_constant_elem()[0] * factor;
|
|
}
|
|
|
|
return 1.0f;
|
|
}
|
|
|
|
float ScaleOperation::get_constant_scale_x(const float width)
|
|
{
|
|
return get_constant_scale(X_INPUT_INDEX, get_relative_scale_x_factor(width));
|
|
}
|
|
|
|
float ScaleOperation::get_constant_scale_y(const float height)
|
|
{
|
|
return get_constant_scale(Y_INPUT_INDEX, get_relative_scale_y_factor(height));
|
|
}
|
|
|
|
bool ScaleOperation::is_scaling_variable()
|
|
{
|
|
return !get_input_operation(X_INPUT_INDEX)->get_flags().is_constant_operation ||
|
|
!get_input_operation(Y_INPUT_INDEX)->get_flags().is_constant_operation;
|
|
}
|
|
|
|
void ScaleOperation::scale_area(rcti &area, float relative_scale_x, float relative_scale_y)
|
|
{
|
|
const rcti src_area = area;
|
|
const float center_x = BLI_rcti_size_x(&area) / 2.0f;
|
|
const float center_y = BLI_rcti_size_y(&area) / 2.0f;
|
|
area.xmin = floorf(scale_coord(area.xmin, center_x, relative_scale_x));
|
|
area.xmax = ceilf(scale_coord(area.xmax, center_x, relative_scale_x));
|
|
area.ymin = floorf(scale_coord(area.ymin, center_y, relative_scale_y));
|
|
area.ymax = ceilf(scale_coord(area.ymax, center_y, relative_scale_y));
|
|
|
|
float scale_offset_x, scale_offset_y;
|
|
ScaleOperation::get_scale_offset(src_area, area, scale_offset_x, scale_offset_y);
|
|
BLI_rcti_translate(&area, -scale_offset_x, -scale_offset_y);
|
|
}
|
|
|
|
void ScaleOperation::clamp_area_size_max(rcti &area, Size2f max_size)
|
|
{
|
|
|
|
if (BLI_rcti_size_x(&area) > max_size.x) {
|
|
area.xmax = area.xmin + max_size.x;
|
|
}
|
|
if (BLI_rcti_size_y(&area) > max_size.y) {
|
|
area.ymax = area.ymin + max_size.y;
|
|
}
|
|
}
|
|
|
|
void ScaleOperation::init_data()
|
|
{
|
|
canvas_center_x_ = canvas_.xmin + getWidth() / 2.0f;
|
|
canvas_center_y_ = canvas_.ymin + getHeight() / 2.0f;
|
|
}
|
|
|
|
void ScaleOperation::initExecution()
|
|
{
|
|
m_inputOperation = this->getInputSocketReader(0);
|
|
m_inputXOperation = this->getInputSocketReader(1);
|
|
m_inputYOperation = this->getInputSocketReader(2);
|
|
}
|
|
|
|
void ScaleOperation::deinitExecution()
|
|
{
|
|
m_inputOperation = nullptr;
|
|
m_inputXOperation = nullptr;
|
|
m_inputYOperation = nullptr;
|
|
}
|
|
|
|
void ScaleOperation::get_scale_offset(const rcti &input_canvas,
|
|
const rcti &scale_canvas,
|
|
float &r_scale_offset_x,
|
|
float &r_scale_offset_y)
|
|
{
|
|
r_scale_offset_x = (BLI_rcti_size_x(&input_canvas) - BLI_rcti_size_x(&scale_canvas)) / 2.0f;
|
|
r_scale_offset_y = (BLI_rcti_size_y(&input_canvas) - BLI_rcti_size_y(&scale_canvas)) / 2.0f;
|
|
}
|
|
|
|
void ScaleOperation::get_scale_area_of_interest(const rcti &input_canvas,
|
|
const rcti &scale_canvas,
|
|
const float relative_scale_x,
|
|
const float relative_scale_y,
|
|
const rcti &output_area,
|
|
rcti &r_input_area)
|
|
{
|
|
const float scale_center_x = BLI_rcti_size_x(&input_canvas) / 2.0f;
|
|
const float scale_center_y = BLI_rcti_size_y(&input_canvas) / 2.0f;
|
|
float scale_offset_x, scale_offset_y;
|
|
ScaleOperation::get_scale_offset(input_canvas, scale_canvas, scale_offset_x, scale_offset_y);
|
|
|
|
r_input_area.xmin = floorf(
|
|
scale_coord_inverted(output_area.xmin + scale_offset_x, scale_center_x, relative_scale_x));
|
|
r_input_area.xmax = ceilf(
|
|
scale_coord_inverted(output_area.xmax + scale_offset_x, scale_center_x, relative_scale_x));
|
|
r_input_area.ymin = floorf(
|
|
scale_coord_inverted(output_area.ymin + scale_offset_y, scale_center_y, relative_scale_y));
|
|
r_input_area.ymax = ceilf(
|
|
scale_coord_inverted(output_area.ymax + scale_offset_y, scale_center_y, relative_scale_y));
|
|
}
|
|
|
|
void ScaleOperation::get_area_of_interest(const int input_idx,
|
|
const rcti &output_area,
|
|
rcti &r_input_area)
|
|
{
|
|
r_input_area = output_area;
|
|
if (input_idx != 0 || is_scaling_variable()) {
|
|
return;
|
|
}
|
|
|
|
NodeOperation *image_op = get_input_operation(IMAGE_INPUT_INDEX);
|
|
const float scale_x = get_constant_scale_x(image_op->getWidth());
|
|
const float scale_y = get_constant_scale_y(image_op->getHeight());
|
|
|
|
get_scale_area_of_interest(
|
|
image_op->get_canvas(), this->get_canvas(), scale_x, scale_y, output_area, r_input_area);
|
|
expand_area_for_sampler(r_input_area, (PixelSampler)m_sampler);
|
|
}
|
|
|
|
void ScaleOperation::update_memory_buffer_partial(MemoryBuffer *output,
|
|
const rcti &area,
|
|
Span<MemoryBuffer *> inputs)
|
|
{
|
|
NodeOperation *input_image_op = get_input_operation(IMAGE_INPUT_INDEX);
|
|
const int input_image_width = input_image_op->getWidth();
|
|
const int input_image_height = input_image_op->getHeight();
|
|
const float scale_x_factor = get_relative_scale_x_factor(input_image_width);
|
|
const float scale_y_factor = get_relative_scale_y_factor(input_image_height);
|
|
const float scale_center_x = input_image_width / 2.0f;
|
|
const float scale_center_y = input_image_height / 2.0f;
|
|
float from_scale_offset_x, from_scale_offset_y;
|
|
ScaleOperation::get_scale_offset(
|
|
input_image_op->get_canvas(), this->get_canvas(), from_scale_offset_x, from_scale_offset_y);
|
|
|
|
const MemoryBuffer *input_image = inputs[IMAGE_INPUT_INDEX];
|
|
MemoryBuffer *input_x = inputs[X_INPUT_INDEX];
|
|
MemoryBuffer *input_y = inputs[Y_INPUT_INDEX];
|
|
BuffersIterator<float> it = output->iterate_with({input_x, input_y}, area);
|
|
for (; !it.is_end(); ++it) {
|
|
const float rel_scale_x = *it.in(0) * scale_x_factor;
|
|
const float rel_scale_y = *it.in(1) * scale_y_factor;
|
|
const float scaled_x = scale_coord_inverted(
|
|
from_scale_offset_x + canvas_.xmin + it.x, scale_center_x, rel_scale_x);
|
|
const float scaled_y = scale_coord_inverted(
|
|
from_scale_offset_y + canvas_.ymin + it.y, scale_center_y, rel_scale_y);
|
|
|
|
input_image->read_elem_sampled(
|
|
scaled_x - canvas_.xmin, scaled_y - canvas_.ymin, (PixelSampler)m_sampler, it.out);
|
|
}
|
|
}
|
|
|
|
void ScaleOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
|
|
{
|
|
if (execution_model_ == eExecutionModel::Tiled) {
|
|
NodeOperation::determine_canvas(preferred_area, r_area);
|
|
return;
|
|
}
|
|
|
|
const bool image_determined =
|
|
getInputSocket(IMAGE_INPUT_INDEX)->determine_canvas(preferred_area, r_area);
|
|
if (image_determined) {
|
|
rcti image_canvas = r_area;
|
|
rcti unused;
|
|
NodeOperationInput *x_socket = getInputSocket(X_INPUT_INDEX);
|
|
NodeOperationInput *y_socket = getInputSocket(Y_INPUT_INDEX);
|
|
x_socket->determine_canvas(image_canvas, unused);
|
|
y_socket->determine_canvas(image_canvas, unused);
|
|
if (is_scaling_variable()) {
|
|
/* Do not scale canvas. */
|
|
return;
|
|
}
|
|
|
|
/* Determine scaled canvas. */
|
|
const float input_width = BLI_rcti_size_x(&r_area);
|
|
const float input_height = BLI_rcti_size_y(&r_area);
|
|
const float scale_x = get_constant_scale_x(input_width);
|
|
const float scale_y = get_constant_scale_y(input_height);
|
|
scale_area(r_area, scale_x, scale_y);
|
|
const Size2f max_scale_size = {MAX2(input_width, max_scale_canvas_size_.x),
|
|
MAX2(input_height, max_scale_canvas_size_.y)};
|
|
clamp_area_size_max(r_area, max_scale_size);
|
|
|
|
/* Re-determine canvases of x and y constant inputs with scaled canvas as preferred. */
|
|
get_input_operation(X_INPUT_INDEX)->unset_canvas();
|
|
get_input_operation(Y_INPUT_INDEX)->unset_canvas();
|
|
x_socket->determine_canvas(r_area, unused);
|
|
y_socket->determine_canvas(r_area, unused);
|
|
}
|
|
}
|
|
|
|
ScaleRelativeOperation::ScaleRelativeOperation() : ScaleOperation()
|
|
{
|
|
}
|
|
|
|
ScaleRelativeOperation::ScaleRelativeOperation(DataType data_type) : ScaleOperation(data_type)
|
|
{
|
|
}
|
|
|
|
void ScaleRelativeOperation::executePixelSampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
PixelSampler effective_sampler = getEffectiveSampler(sampler);
|
|
|
|
float scaleX[4];
|
|
float scaleY[4];
|
|
|
|
m_inputXOperation->readSampled(scaleX, x, y, effective_sampler);
|
|
m_inputYOperation->readSampled(scaleY, x, y, effective_sampler);
|
|
|
|
const float scx = scaleX[0];
|
|
const float scy = scaleY[0];
|
|
|
|
float nx = this->canvas_center_x_ + (x - this->canvas_center_x_) / scx;
|
|
float ny = this->canvas_center_y_ + (y - this->canvas_center_y_) / scy;
|
|
m_inputOperation->readSampled(output, nx, ny, effective_sampler);
|
|
}
|
|
|
|
bool ScaleRelativeOperation::determineDependingAreaOfInterest(rcti *input,
|
|
ReadBufferOperation *readOperation,
|
|
rcti *output)
|
|
{
|
|
rcti newInput;
|
|
if (!m_variable_size) {
|
|
float scaleX[4];
|
|
float scaleY[4];
|
|
|
|
m_inputXOperation->readSampled(scaleX, 0, 0, PixelSampler::Nearest);
|
|
m_inputYOperation->readSampled(scaleY, 0, 0, PixelSampler::Nearest);
|
|
|
|
const float scx = scaleX[0];
|
|
const float scy = scaleY[0];
|
|
|
|
newInput.xmax = this->canvas_center_x_ + (input->xmax - this->canvas_center_x_) / scx + 1;
|
|
newInput.xmin = this->canvas_center_x_ + (input->xmin - this->canvas_center_x_) / scx - 1;
|
|
newInput.ymax = this->canvas_center_y_ + (input->ymax - this->canvas_center_y_) / scy + 1;
|
|
newInput.ymin = this->canvas_center_y_ + (input->ymin - this->canvas_center_y_) / scy - 1;
|
|
}
|
|
else {
|
|
newInput.xmax = this->getWidth();
|
|
newInput.xmin = 0;
|
|
newInput.ymax = this->getHeight();
|
|
newInput.ymin = 0;
|
|
}
|
|
return BaseScaleOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
|
|
}
|
|
|
|
void ScaleAbsoluteOperation::executePixelSampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
PixelSampler effective_sampler = getEffectiveSampler(sampler);
|
|
|
|
float scaleX[4];
|
|
float scaleY[4];
|
|
|
|
m_inputXOperation->readSampled(scaleX, x, y, effective_sampler);
|
|
m_inputYOperation->readSampled(scaleY, x, y, effective_sampler);
|
|
|
|
const float scx = scaleX[0]; /* Target absolute scale. */
|
|
const float scy = scaleY[0]; /* Target absolute scale. */
|
|
|
|
const float width = this->getWidth();
|
|
const float height = this->getHeight();
|
|
/* Divide. */
|
|
float relativeXScale = scx / width;
|
|
float relativeYScale = scy / height;
|
|
|
|
float nx = this->canvas_center_x_ + (x - this->canvas_center_x_) / relativeXScale;
|
|
float ny = this->canvas_center_y_ + (y - this->canvas_center_y_) / relativeYScale;
|
|
|
|
m_inputOperation->readSampled(output, nx, ny, effective_sampler);
|
|
}
|
|
|
|
bool ScaleAbsoluteOperation::determineDependingAreaOfInterest(rcti *input,
|
|
ReadBufferOperation *readOperation,
|
|
rcti *output)
|
|
{
|
|
rcti newInput;
|
|
if (!m_variable_size) {
|
|
float scaleX[4];
|
|
float scaleY[4];
|
|
|
|
m_inputXOperation->readSampled(scaleX, 0, 0, PixelSampler::Nearest);
|
|
m_inputYOperation->readSampled(scaleY, 0, 0, PixelSampler::Nearest);
|
|
|
|
const float scx = scaleX[0];
|
|
const float scy = scaleY[0];
|
|
const float width = this->getWidth();
|
|
const float height = this->getHeight();
|
|
/* Divide. */
|
|
float relateveXScale = scx / width;
|
|
float relateveYScale = scy / height;
|
|
|
|
newInput.xmax = this->canvas_center_x_ +
|
|
(input->xmax - this->canvas_center_x_) / relateveXScale;
|
|
newInput.xmin = this->canvas_center_x_ +
|
|
(input->xmin - this->canvas_center_x_) / relateveXScale;
|
|
newInput.ymax = this->canvas_center_y_ +
|
|
(input->ymax - this->canvas_center_y_) / relateveYScale;
|
|
newInput.ymin = this->canvas_center_y_ +
|
|
(input->ymin - this->canvas_center_y_) / relateveYScale;
|
|
}
|
|
else {
|
|
newInput.xmax = this->getWidth();
|
|
newInput.xmin = 0;
|
|
newInput.ymax = this->getHeight();
|
|
newInput.ymin = 0;
|
|
}
|
|
return ScaleOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
|
|
}
|
|
|
|
/* Absolute fixed size. */
|
|
ScaleFixedSizeOperation::ScaleFixedSizeOperation() : BaseScaleOperation()
|
|
{
|
|
this->addInputSocket(DataType::Color, ResizeMode::None);
|
|
this->addOutputSocket(DataType::Color);
|
|
this->set_canvas_input_index(0);
|
|
m_inputOperation = nullptr;
|
|
m_is_offset = false;
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::init_data(const rcti &input_canvas)
|
|
{
|
|
const int input_width = BLI_rcti_size_x(&input_canvas);
|
|
const int input_height = BLI_rcti_size_y(&input_canvas);
|
|
m_relX = input_width / (float)m_newWidth;
|
|
m_relY = input_height / (float)m_newHeight;
|
|
|
|
/* *** all the options below are for a fairly special case - camera framing *** */
|
|
if (m_offsetX != 0.0f || m_offsetY != 0.0f) {
|
|
m_is_offset = true;
|
|
|
|
if (m_newWidth > m_newHeight) {
|
|
m_offsetX *= m_newWidth;
|
|
m_offsetY *= m_newWidth;
|
|
}
|
|
else {
|
|
m_offsetX *= m_newHeight;
|
|
m_offsetY *= m_newHeight;
|
|
}
|
|
}
|
|
|
|
if (m_is_aspect) {
|
|
/* apply aspect from clip */
|
|
const float w_src = input_width;
|
|
const float h_src = input_height;
|
|
|
|
/* destination aspect is already applied from the camera frame */
|
|
const float w_dst = m_newWidth;
|
|
const float h_dst = m_newHeight;
|
|
|
|
const float asp_src = w_src / h_src;
|
|
const float asp_dst = w_dst / h_dst;
|
|
|
|
if (fabsf(asp_src - asp_dst) >= FLT_EPSILON) {
|
|
if ((asp_src > asp_dst) == (m_is_crop == true)) {
|
|
/* fit X */
|
|
const float div = asp_src / asp_dst;
|
|
m_relX /= div;
|
|
m_offsetX += ((w_src - (w_src * div)) / (w_src / w_dst)) / 2.0f;
|
|
if (m_is_crop && execution_model_ == eExecutionModel::FullFrame) {
|
|
int fit_width = m_newWidth * div;
|
|
if (fit_width > max_scale_canvas_size_.x) {
|
|
fit_width = max_scale_canvas_size_.x;
|
|
}
|
|
|
|
const int added_width = fit_width - m_newWidth;
|
|
m_newWidth += added_width;
|
|
m_offsetX += added_width / 2.0f;
|
|
}
|
|
}
|
|
else {
|
|
/* fit Y */
|
|
const float div = asp_dst / asp_src;
|
|
m_relY /= div;
|
|
m_offsetY += ((h_src - (h_src * div)) / (h_src / h_dst)) / 2.0f;
|
|
if (m_is_crop && execution_model_ == eExecutionModel::FullFrame) {
|
|
int fit_height = m_newHeight * div;
|
|
if (fit_height > max_scale_canvas_size_.y) {
|
|
fit_height = max_scale_canvas_size_.y;
|
|
}
|
|
|
|
const int added_height = fit_height - m_newHeight;
|
|
m_newHeight += added_height;
|
|
m_offsetY += added_height / 2.0f;
|
|
}
|
|
}
|
|
|
|
m_is_offset = true;
|
|
}
|
|
}
|
|
/* *** end framing options *** */
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::initExecution()
|
|
{
|
|
m_inputOperation = this->getInputSocketReader(0);
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::deinitExecution()
|
|
{
|
|
m_inputOperation = nullptr;
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::executePixelSampled(float output[4],
|
|
float x,
|
|
float y,
|
|
PixelSampler sampler)
|
|
{
|
|
PixelSampler effective_sampler = getEffectiveSampler(sampler);
|
|
|
|
if (m_is_offset) {
|
|
float nx = ((x - m_offsetX) * m_relX);
|
|
float ny = ((y - m_offsetY) * m_relY);
|
|
m_inputOperation->readSampled(output, nx, ny, effective_sampler);
|
|
}
|
|
else {
|
|
m_inputOperation->readSampled(output, x * m_relX, y * m_relY, effective_sampler);
|
|
}
|
|
}
|
|
|
|
bool ScaleFixedSizeOperation::determineDependingAreaOfInterest(rcti *input,
|
|
ReadBufferOperation *readOperation,
|
|
rcti *output)
|
|
{
|
|
rcti newInput;
|
|
|
|
newInput.xmax = (input->xmax - m_offsetX) * m_relX + 1;
|
|
newInput.xmin = (input->xmin - m_offsetX) * m_relX;
|
|
newInput.ymax = (input->ymax - m_offsetY) * m_relY + 1;
|
|
newInput.ymin = (input->ymin - m_offsetY) * m_relY;
|
|
|
|
return BaseScaleOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
|
|
{
|
|
rcti local_preferred = preferred_area;
|
|
local_preferred.xmax = local_preferred.xmin + m_newWidth;
|
|
local_preferred.ymax = local_preferred.ymin + m_newHeight;
|
|
rcti input_canvas;
|
|
const bool input_determined = getInputSocket(0)->determine_canvas(local_preferred, input_canvas);
|
|
if (input_determined) {
|
|
init_data(input_canvas);
|
|
r_area = input_canvas;
|
|
if (execution_model_ == eExecutionModel::FullFrame) {
|
|
r_area.xmin /= m_relX;
|
|
r_area.ymin /= m_relY;
|
|
r_area.xmin += m_offsetX;
|
|
r_area.ymin += m_offsetY;
|
|
}
|
|
|
|
r_area.xmax = r_area.xmin + m_newWidth;
|
|
r_area.ymax = r_area.ymin + m_newHeight;
|
|
}
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::get_area_of_interest(const int input_idx,
|
|
const rcti &output_area,
|
|
rcti &r_input_area)
|
|
{
|
|
BLI_assert(input_idx == 0);
|
|
UNUSED_VARS_NDEBUG(input_idx);
|
|
|
|
r_input_area.xmax = ceilf((output_area.xmax - m_offsetX) * m_relX);
|
|
r_input_area.xmin = floorf((output_area.xmin - m_offsetX) * m_relX);
|
|
r_input_area.ymax = ceilf((output_area.ymax - m_offsetY) * m_relY);
|
|
r_input_area.ymin = floorf((output_area.ymin - m_offsetY) * m_relY);
|
|
expand_area_for_sampler(r_input_area, (PixelSampler)m_sampler);
|
|
}
|
|
|
|
void ScaleFixedSizeOperation::update_memory_buffer_partial(MemoryBuffer *output,
|
|
const rcti &area,
|
|
Span<MemoryBuffer *> inputs)
|
|
{
|
|
const MemoryBuffer *input_img = inputs[0];
|
|
PixelSampler sampler = (PixelSampler)m_sampler;
|
|
BuffersIterator<float> it = output->iterate_with({}, area);
|
|
if (m_is_offset) {
|
|
for (; !it.is_end(); ++it) {
|
|
const float nx = (canvas_.xmin + it.x - m_offsetX) * m_relX;
|
|
const float ny = (canvas_.ymin + it.y - m_offsetY) * m_relY;
|
|
input_img->read_elem_sampled(nx - canvas_.xmin, ny - canvas_.ymin, sampler, it.out);
|
|
}
|
|
}
|
|
else {
|
|
for (; !it.is_end(); ++it) {
|
|
input_img->read_elem_sampled((canvas_.xmin + it.x) * m_relX - canvas_.xmin,
|
|
(canvas_.ymin + it.y) * m_relY - canvas_.ymin,
|
|
sampler,
|
|
it.out);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace blender::compositor
|