This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_ScaleOperation.cc
Manuel Castilla ea79efef70 Cleanup: remove this-> for m_ prefixed members in Compositor
For cleaning old code style as new code usually omit it.
2021-10-13 23:41:14 +02:00

562 lines
20 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include "COM_ScaleOperation.h"
#include "COM_ConstantOperation.h"
namespace blender::compositor {
#define USE_FORCE_BILINEAR
/* XXX(campbell): ignore input and use default from old compositor,
* could become an option like the transform node.
*
* NOTE: use bilinear because bicubic makes fuzzy even when not scaling at all (1:1)
*/
BaseScaleOperation::BaseScaleOperation()
{
#ifdef USE_FORCE_BILINEAR
m_sampler = (int)PixelSampler::Bilinear;
#else
m_sampler = -1;
#endif
m_variable_size = false;
}
void BaseScaleOperation::set_scale_canvas_max_size(Size2f size)
{
max_scale_canvas_size_ = size;
}
ScaleOperation::ScaleOperation() : ScaleOperation(DataType::Color)
{
}
ScaleOperation::ScaleOperation(DataType data_type) : BaseScaleOperation()
{
this->addInputSocket(data_type, ResizeMode::None);
this->addInputSocket(DataType::Value);
this->addInputSocket(DataType::Value);
this->addOutputSocket(data_type);
m_inputOperation = nullptr;
m_inputXOperation = nullptr;
m_inputYOperation = nullptr;
}
float ScaleOperation::get_constant_scale(const int input_op_idx, const float factor)
{
const bool is_constant = getInputOperation(input_op_idx)->get_flags().is_constant_operation;
if (is_constant) {
return ((ConstantOperation *)getInputOperation(input_op_idx))->get_constant_elem()[0] * factor;
}
return 1.0f;
}
float ScaleOperation::get_constant_scale_x(const float width)
{
return get_constant_scale(X_INPUT_INDEX, get_relative_scale_x_factor(width));
}
float ScaleOperation::get_constant_scale_y(const float height)
{
return get_constant_scale(Y_INPUT_INDEX, get_relative_scale_y_factor(height));
}
bool ScaleOperation::is_scaling_variable()
{
return !get_input_operation(X_INPUT_INDEX)->get_flags().is_constant_operation ||
!get_input_operation(Y_INPUT_INDEX)->get_flags().is_constant_operation;
}
void ScaleOperation::scale_area(rcti &area, float relative_scale_x, float relative_scale_y)
{
const rcti src_area = area;
const float center_x = BLI_rcti_size_x(&area) / 2.0f;
const float center_y = BLI_rcti_size_y(&area) / 2.0f;
area.xmin = floorf(scale_coord(area.xmin, center_x, relative_scale_x));
area.xmax = ceilf(scale_coord(area.xmax, center_x, relative_scale_x));
area.ymin = floorf(scale_coord(area.ymin, center_y, relative_scale_y));
area.ymax = ceilf(scale_coord(area.ymax, center_y, relative_scale_y));
float scale_offset_x, scale_offset_y;
ScaleOperation::get_scale_offset(src_area, area, scale_offset_x, scale_offset_y);
BLI_rcti_translate(&area, -scale_offset_x, -scale_offset_y);
}
void ScaleOperation::clamp_area_size_max(rcti &area, Size2f max_size)
{
if (BLI_rcti_size_x(&area) > max_size.x) {
area.xmax = area.xmin + max_size.x;
}
if (BLI_rcti_size_y(&area) > max_size.y) {
area.ymax = area.ymin + max_size.y;
}
}
void ScaleOperation::init_data()
{
canvas_center_x_ = canvas_.xmin + getWidth() / 2.0f;
canvas_center_y_ = canvas_.ymin + getHeight() / 2.0f;
}
void ScaleOperation::initExecution()
{
m_inputOperation = this->getInputSocketReader(0);
m_inputXOperation = this->getInputSocketReader(1);
m_inputYOperation = this->getInputSocketReader(2);
}
void ScaleOperation::deinitExecution()
{
m_inputOperation = nullptr;
m_inputXOperation = nullptr;
m_inputYOperation = nullptr;
}
void ScaleOperation::get_scale_offset(const rcti &input_canvas,
const rcti &scale_canvas,
float &r_scale_offset_x,
float &r_scale_offset_y)
{
r_scale_offset_x = (BLI_rcti_size_x(&input_canvas) - BLI_rcti_size_x(&scale_canvas)) / 2.0f;
r_scale_offset_y = (BLI_rcti_size_y(&input_canvas) - BLI_rcti_size_y(&scale_canvas)) / 2.0f;
}
void ScaleOperation::get_scale_area_of_interest(const rcti &input_canvas,
const rcti &scale_canvas,
const float relative_scale_x,
const float relative_scale_y,
const rcti &output_area,
rcti &r_input_area)
{
const float scale_center_x = BLI_rcti_size_x(&input_canvas) / 2.0f;
const float scale_center_y = BLI_rcti_size_y(&input_canvas) / 2.0f;
float scale_offset_x, scale_offset_y;
ScaleOperation::get_scale_offset(input_canvas, scale_canvas, scale_offset_x, scale_offset_y);
r_input_area.xmin = floorf(
scale_coord_inverted(output_area.xmin + scale_offset_x, scale_center_x, relative_scale_x));
r_input_area.xmax = ceilf(
scale_coord_inverted(output_area.xmax + scale_offset_x, scale_center_x, relative_scale_x));
r_input_area.ymin = floorf(
scale_coord_inverted(output_area.ymin + scale_offset_y, scale_center_y, relative_scale_y));
r_input_area.ymax = ceilf(
scale_coord_inverted(output_area.ymax + scale_offset_y, scale_center_y, relative_scale_y));
}
void ScaleOperation::get_area_of_interest(const int input_idx,
const rcti &output_area,
rcti &r_input_area)
{
r_input_area = output_area;
if (input_idx != 0 || is_scaling_variable()) {
return;
}
NodeOperation *image_op = get_input_operation(IMAGE_INPUT_INDEX);
const float scale_x = get_constant_scale_x(image_op->getWidth());
const float scale_y = get_constant_scale_y(image_op->getHeight());
get_scale_area_of_interest(
image_op->get_canvas(), this->get_canvas(), scale_x, scale_y, output_area, r_input_area);
expand_area_for_sampler(r_input_area, (PixelSampler)m_sampler);
}
void ScaleOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
NodeOperation *input_image_op = get_input_operation(IMAGE_INPUT_INDEX);
const int input_image_width = input_image_op->getWidth();
const int input_image_height = input_image_op->getHeight();
const float scale_x_factor = get_relative_scale_x_factor(input_image_width);
const float scale_y_factor = get_relative_scale_y_factor(input_image_height);
const float scale_center_x = input_image_width / 2.0f;
const float scale_center_y = input_image_height / 2.0f;
float from_scale_offset_x, from_scale_offset_y;
ScaleOperation::get_scale_offset(
input_image_op->get_canvas(), this->get_canvas(), from_scale_offset_x, from_scale_offset_y);
const MemoryBuffer *input_image = inputs[IMAGE_INPUT_INDEX];
MemoryBuffer *input_x = inputs[X_INPUT_INDEX];
MemoryBuffer *input_y = inputs[Y_INPUT_INDEX];
BuffersIterator<float> it = output->iterate_with({input_x, input_y}, area);
for (; !it.is_end(); ++it) {
const float rel_scale_x = *it.in(0) * scale_x_factor;
const float rel_scale_y = *it.in(1) * scale_y_factor;
const float scaled_x = scale_coord_inverted(
from_scale_offset_x + canvas_.xmin + it.x, scale_center_x, rel_scale_x);
const float scaled_y = scale_coord_inverted(
from_scale_offset_y + canvas_.ymin + it.y, scale_center_y, rel_scale_y);
input_image->read_elem_sampled(
scaled_x - canvas_.xmin, scaled_y - canvas_.ymin, (PixelSampler)m_sampler, it.out);
}
}
void ScaleOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
{
if (execution_model_ == eExecutionModel::Tiled) {
NodeOperation::determine_canvas(preferred_area, r_area);
return;
}
const bool image_determined =
getInputSocket(IMAGE_INPUT_INDEX)->determine_canvas(preferred_area, r_area);
if (image_determined) {
rcti image_canvas = r_area;
rcti unused;
NodeOperationInput *x_socket = getInputSocket(X_INPUT_INDEX);
NodeOperationInput *y_socket = getInputSocket(Y_INPUT_INDEX);
x_socket->determine_canvas(image_canvas, unused);
y_socket->determine_canvas(image_canvas, unused);
if (is_scaling_variable()) {
/* Do not scale canvas. */
return;
}
/* Determine scaled canvas. */
const float input_width = BLI_rcti_size_x(&r_area);
const float input_height = BLI_rcti_size_y(&r_area);
const float scale_x = get_constant_scale_x(input_width);
const float scale_y = get_constant_scale_y(input_height);
scale_area(r_area, scale_x, scale_y);
const Size2f max_scale_size = {MAX2(input_width, max_scale_canvas_size_.x),
MAX2(input_height, max_scale_canvas_size_.y)};
clamp_area_size_max(r_area, max_scale_size);
/* Re-determine canvases of x and y constant inputs with scaled canvas as preferred. */
get_input_operation(X_INPUT_INDEX)->unset_canvas();
get_input_operation(Y_INPUT_INDEX)->unset_canvas();
x_socket->determine_canvas(r_area, unused);
y_socket->determine_canvas(r_area, unused);
}
}
ScaleRelativeOperation::ScaleRelativeOperation() : ScaleOperation()
{
}
ScaleRelativeOperation::ScaleRelativeOperation(DataType data_type) : ScaleOperation(data_type)
{
}
void ScaleRelativeOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
PixelSampler effective_sampler = getEffectiveSampler(sampler);
float scaleX[4];
float scaleY[4];
m_inputXOperation->readSampled(scaleX, x, y, effective_sampler);
m_inputYOperation->readSampled(scaleY, x, y, effective_sampler);
const float scx = scaleX[0];
const float scy = scaleY[0];
float nx = this->canvas_center_x_ + (x - this->canvas_center_x_) / scx;
float ny = this->canvas_center_y_ + (y - this->canvas_center_y_) / scy;
m_inputOperation->readSampled(output, nx, ny, effective_sampler);
}
bool ScaleRelativeOperation::determineDependingAreaOfInterest(rcti *input,
ReadBufferOperation *readOperation,
rcti *output)
{
rcti newInput;
if (!m_variable_size) {
float scaleX[4];
float scaleY[4];
m_inputXOperation->readSampled(scaleX, 0, 0, PixelSampler::Nearest);
m_inputYOperation->readSampled(scaleY, 0, 0, PixelSampler::Nearest);
const float scx = scaleX[0];
const float scy = scaleY[0];
newInput.xmax = this->canvas_center_x_ + (input->xmax - this->canvas_center_x_) / scx + 1;
newInput.xmin = this->canvas_center_x_ + (input->xmin - this->canvas_center_x_) / scx - 1;
newInput.ymax = this->canvas_center_y_ + (input->ymax - this->canvas_center_y_) / scy + 1;
newInput.ymin = this->canvas_center_y_ + (input->ymin - this->canvas_center_y_) / scy - 1;
}
else {
newInput.xmax = this->getWidth();
newInput.xmin = 0;
newInput.ymax = this->getHeight();
newInput.ymin = 0;
}
return BaseScaleOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
void ScaleAbsoluteOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
PixelSampler effective_sampler = getEffectiveSampler(sampler);
float scaleX[4];
float scaleY[4];
m_inputXOperation->readSampled(scaleX, x, y, effective_sampler);
m_inputYOperation->readSampled(scaleY, x, y, effective_sampler);
const float scx = scaleX[0]; /* Target absolute scale. */
const float scy = scaleY[0]; /* Target absolute scale. */
const float width = this->getWidth();
const float height = this->getHeight();
/* Divide. */
float relativeXScale = scx / width;
float relativeYScale = scy / height;
float nx = this->canvas_center_x_ + (x - this->canvas_center_x_) / relativeXScale;
float ny = this->canvas_center_y_ + (y - this->canvas_center_y_) / relativeYScale;
m_inputOperation->readSampled(output, nx, ny, effective_sampler);
}
bool ScaleAbsoluteOperation::determineDependingAreaOfInterest(rcti *input,
ReadBufferOperation *readOperation,
rcti *output)
{
rcti newInput;
if (!m_variable_size) {
float scaleX[4];
float scaleY[4];
m_inputXOperation->readSampled(scaleX, 0, 0, PixelSampler::Nearest);
m_inputYOperation->readSampled(scaleY, 0, 0, PixelSampler::Nearest);
const float scx = scaleX[0];
const float scy = scaleY[0];
const float width = this->getWidth();
const float height = this->getHeight();
/* Divide. */
float relateveXScale = scx / width;
float relateveYScale = scy / height;
newInput.xmax = this->canvas_center_x_ +
(input->xmax - this->canvas_center_x_) / relateveXScale;
newInput.xmin = this->canvas_center_x_ +
(input->xmin - this->canvas_center_x_) / relateveXScale;
newInput.ymax = this->canvas_center_y_ +
(input->ymax - this->canvas_center_y_) / relateveYScale;
newInput.ymin = this->canvas_center_y_ +
(input->ymin - this->canvas_center_y_) / relateveYScale;
}
else {
newInput.xmax = this->getWidth();
newInput.xmin = 0;
newInput.ymax = this->getHeight();
newInput.ymin = 0;
}
return ScaleOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
/* Absolute fixed size. */
ScaleFixedSizeOperation::ScaleFixedSizeOperation() : BaseScaleOperation()
{
this->addInputSocket(DataType::Color, ResizeMode::None);
this->addOutputSocket(DataType::Color);
this->set_canvas_input_index(0);
m_inputOperation = nullptr;
m_is_offset = false;
}
void ScaleFixedSizeOperation::init_data(const rcti &input_canvas)
{
const int input_width = BLI_rcti_size_x(&input_canvas);
const int input_height = BLI_rcti_size_y(&input_canvas);
m_relX = input_width / (float)m_newWidth;
m_relY = input_height / (float)m_newHeight;
/* *** all the options below are for a fairly special case - camera framing *** */
if (m_offsetX != 0.0f || m_offsetY != 0.0f) {
m_is_offset = true;
if (m_newWidth > m_newHeight) {
m_offsetX *= m_newWidth;
m_offsetY *= m_newWidth;
}
else {
m_offsetX *= m_newHeight;
m_offsetY *= m_newHeight;
}
}
if (m_is_aspect) {
/* apply aspect from clip */
const float w_src = input_width;
const float h_src = input_height;
/* destination aspect is already applied from the camera frame */
const float w_dst = m_newWidth;
const float h_dst = m_newHeight;
const float asp_src = w_src / h_src;
const float asp_dst = w_dst / h_dst;
if (fabsf(asp_src - asp_dst) >= FLT_EPSILON) {
if ((asp_src > asp_dst) == (m_is_crop == true)) {
/* fit X */
const float div = asp_src / asp_dst;
m_relX /= div;
m_offsetX += ((w_src - (w_src * div)) / (w_src / w_dst)) / 2.0f;
if (m_is_crop && execution_model_ == eExecutionModel::FullFrame) {
int fit_width = m_newWidth * div;
if (fit_width > max_scale_canvas_size_.x) {
fit_width = max_scale_canvas_size_.x;
}
const int added_width = fit_width - m_newWidth;
m_newWidth += added_width;
m_offsetX += added_width / 2.0f;
}
}
else {
/* fit Y */
const float div = asp_dst / asp_src;
m_relY /= div;
m_offsetY += ((h_src - (h_src * div)) / (h_src / h_dst)) / 2.0f;
if (m_is_crop && execution_model_ == eExecutionModel::FullFrame) {
int fit_height = m_newHeight * div;
if (fit_height > max_scale_canvas_size_.y) {
fit_height = max_scale_canvas_size_.y;
}
const int added_height = fit_height - m_newHeight;
m_newHeight += added_height;
m_offsetY += added_height / 2.0f;
}
}
m_is_offset = true;
}
}
/* *** end framing options *** */
}
void ScaleFixedSizeOperation::initExecution()
{
m_inputOperation = this->getInputSocketReader(0);
}
void ScaleFixedSizeOperation::deinitExecution()
{
m_inputOperation = nullptr;
}
void ScaleFixedSizeOperation::executePixelSampled(float output[4],
float x,
float y,
PixelSampler sampler)
{
PixelSampler effective_sampler = getEffectiveSampler(sampler);
if (m_is_offset) {
float nx = ((x - m_offsetX) * m_relX);
float ny = ((y - m_offsetY) * m_relY);
m_inputOperation->readSampled(output, nx, ny, effective_sampler);
}
else {
m_inputOperation->readSampled(output, x * m_relX, y * m_relY, effective_sampler);
}
}
bool ScaleFixedSizeOperation::determineDependingAreaOfInterest(rcti *input,
ReadBufferOperation *readOperation,
rcti *output)
{
rcti newInput;
newInput.xmax = (input->xmax - m_offsetX) * m_relX + 1;
newInput.xmin = (input->xmin - m_offsetX) * m_relX;
newInput.ymax = (input->ymax - m_offsetY) * m_relY + 1;
newInput.ymin = (input->ymin - m_offsetY) * m_relY;
return BaseScaleOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
void ScaleFixedSizeOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
{
rcti local_preferred = preferred_area;
local_preferred.xmax = local_preferred.xmin + m_newWidth;
local_preferred.ymax = local_preferred.ymin + m_newHeight;
rcti input_canvas;
const bool input_determined = getInputSocket(0)->determine_canvas(local_preferred, input_canvas);
if (input_determined) {
init_data(input_canvas);
r_area = input_canvas;
if (execution_model_ == eExecutionModel::FullFrame) {
r_area.xmin /= m_relX;
r_area.ymin /= m_relY;
r_area.xmin += m_offsetX;
r_area.ymin += m_offsetY;
}
r_area.xmax = r_area.xmin + m_newWidth;
r_area.ymax = r_area.ymin + m_newHeight;
}
}
void ScaleFixedSizeOperation::get_area_of_interest(const int input_idx,
const rcti &output_area,
rcti &r_input_area)
{
BLI_assert(input_idx == 0);
UNUSED_VARS_NDEBUG(input_idx);
r_input_area.xmax = ceilf((output_area.xmax - m_offsetX) * m_relX);
r_input_area.xmin = floorf((output_area.xmin - m_offsetX) * m_relX);
r_input_area.ymax = ceilf((output_area.ymax - m_offsetY) * m_relY);
r_input_area.ymin = floorf((output_area.ymin - m_offsetY) * m_relY);
expand_area_for_sampler(r_input_area, (PixelSampler)m_sampler);
}
void ScaleFixedSizeOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> inputs)
{
const MemoryBuffer *input_img = inputs[0];
PixelSampler sampler = (PixelSampler)m_sampler;
BuffersIterator<float> it = output->iterate_with({}, area);
if (m_is_offset) {
for (; !it.is_end(); ++it) {
const float nx = (canvas_.xmin + it.x - m_offsetX) * m_relX;
const float ny = (canvas_.ymin + it.y - m_offsetY) * m_relY;
input_img->read_elem_sampled(nx - canvas_.xmin, ny - canvas_.ymin, sampler, it.out);
}
}
else {
for (; !it.is_end(); ++it) {
input_img->read_elem_sampled((canvas_.xmin + it.x) * m_relX - canvas_.xmin,
(canvas_.ymin + it.y) * m_relY - canvas_.ymin,
sampler,
it.out);
}
}
}
} // namespace blender::compositor