- adds a new point class * point/ vector math (p + v = p, p - p = v, etc.) * points can be transformed by matrices/quats * wraps 'place vector' type vectors that have no magnitude - wrapped toXXX() methods work correctly * toXXX() will NOT wrap data (this is due to the fact that wrapped data cannot be converted) * added a 'wrapped' attribute to mathutils classes to determine wether the object is accessing python or blender data - added the ability to negate vectors/points with "-vec" * deprecated vector.negate() - added the ability to shorhand inverse matrices with "~mat" (tilde) - conversion between vector/point with toXXX() methods
691 lines
22 KiB
C
691 lines
22 KiB
C
/*
|
|
* $Id$
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
*
|
|
* Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "Mathutils.h"
|
|
|
|
#include "BLI_blenlib.h"
|
|
#include "BKE_utildefines.h"
|
|
#include "gen_utils.h"
|
|
|
|
|
|
//-------------------------DOC STRINGS ---------------------------
|
|
char Vector_Zero_doc[] = "() - set all values in the vector to 0";
|
|
char Vector_Normalize_doc[] = "() - normalize the vector";
|
|
char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
|
|
char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
|
|
char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
|
|
char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
|
|
char Vector_toPoint_doc[] = "() - create a new Point Object from this vector";
|
|
//-----------------------METHOD DEFINITIONS ----------------------
|
|
struct PyMethodDef Vector_methods[] = {
|
|
{"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
|
|
{"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc},
|
|
{"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc},
|
|
{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
|
|
{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
|
|
{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
|
|
{"toPoint", (PyCFunction) Vector_toPoint, METH_NOARGS, Vector_toPoint_doc},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
//-----------------------------METHODS----------------------------
|
|
//--------------------------Vector.toPoint()----------------------
|
|
//create a new point object to represent this vector
|
|
PyObject *Vector_toPoint(VectorObject * self)
|
|
{
|
|
float coord[3];
|
|
int x;
|
|
|
|
if(self->size < 2 || self->size > 3) {
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector.toPoint(): inappropriate vector size - expects 2d or 3d vector\n");
|
|
}
|
|
for(x = 0; x < self->size; x++){
|
|
coord[x] = self->vec[x];
|
|
}
|
|
|
|
return (PyObject *) newPointObject(coord, self->size, Py_NEW);
|
|
}
|
|
//----------------------------Vector.zero() ----------------------
|
|
//set the vector data to 0,0,0
|
|
PyObject *Vector_Zero(VectorObject * self)
|
|
{
|
|
int x;
|
|
for(x = 0; x < self->size; x++) {
|
|
self->vec[x] = 0.0f;
|
|
}
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Vector.normalize() -----------------
|
|
//normalize the vector data to a unit vector
|
|
PyObject *Vector_Normalize(VectorObject * self)
|
|
{
|
|
int x;
|
|
float norm = 0.0f;
|
|
|
|
for(x = 0; x < self->size; x++) {
|
|
norm += self->vec[x] * self->vec[x];
|
|
}
|
|
norm = (float) sqrt(norm);
|
|
for(x = 0; x < self->size; x++) {
|
|
self->vec[x] /= norm;
|
|
}
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Vector.resize2D() ------------------
|
|
//resize the vector to x,y
|
|
PyObject *Vector_Resize2D(VectorObject * self)
|
|
{
|
|
if(self->data.blend_data){
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"vector.resize2d(): cannot resize wrapped data - only python vectors\n");
|
|
}
|
|
|
|
self->data.py_data =
|
|
PyMem_Realloc(self->data.py_data, (sizeof(float) * 2));
|
|
if(self->data.py_data == NULL) {
|
|
return EXPP_ReturnPyObjError(PyExc_MemoryError,
|
|
"vector.resize2d(): problem allocating pointer space\n\n");
|
|
}
|
|
self->vec = self->data.py_data; //force
|
|
self->size = 2;
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Vector.resize3D() ------------------
|
|
//resize the vector to x,y,z
|
|
PyObject *Vector_Resize3D(VectorObject * self)
|
|
{
|
|
if(self->data.blend_data){
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"vector.resize3d(): cannot resize wrapped data - only python vectors\n");
|
|
}
|
|
|
|
self->data.py_data =
|
|
PyMem_Realloc(self->data.py_data, (sizeof(float) * 3));
|
|
if(self->data.py_data == NULL) {
|
|
return EXPP_ReturnPyObjError(PyExc_MemoryError,
|
|
"vector.resize3d(): problem allocating pointer space\n\n");
|
|
}
|
|
self->vec = self->data.py_data; //force
|
|
if(self->size == 2){
|
|
self->data.py_data[2] = 0.0f;
|
|
}
|
|
self->size = 3;
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------Vector.resize4D() ------------------
|
|
//resize the vector to x,y,z,w
|
|
PyObject *Vector_Resize4D(VectorObject * self)
|
|
{
|
|
if(self->data.blend_data){
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"vector.resize4d(): cannot resize wrapped data - only python vectors\n");
|
|
}
|
|
|
|
self->data.py_data =
|
|
PyMem_Realloc(self->data.py_data, (sizeof(float) * 4));
|
|
if(self->data.py_data == NULL) {
|
|
return EXPP_ReturnPyObjError(PyExc_MemoryError,
|
|
"vector.resize4d(): problem allocating pointer space\n\n");
|
|
}
|
|
self->vec = self->data.py_data; //force
|
|
if(self->size == 2){
|
|
self->data.py_data[2] = 0.0f;
|
|
self->data.py_data[3] = 0.0f;
|
|
}else if(self->size == 3){
|
|
self->data.py_data[3] = 0.0f;
|
|
}
|
|
self->size = 4;
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//----------------------------dealloc()(internal) ----------------
|
|
//free the py_object
|
|
static void Vector_dealloc(VectorObject * self)
|
|
{
|
|
//only free py_data
|
|
if(self->data.py_data){
|
|
PyMem_Free(self->data.py_data);
|
|
}
|
|
PyObject_DEL(self);
|
|
}
|
|
//----------------------------getattr()(internal) ----------------
|
|
//object.attribute access (get)
|
|
static PyObject *Vector_getattr(VectorObject * self, char *name)
|
|
{
|
|
int x;
|
|
double dot = 0.0f;
|
|
|
|
if(STREQ(name,"x")){
|
|
return PyFloat_FromDouble(self->vec[0]);
|
|
}else if(STREQ(name, "y")){
|
|
return PyFloat_FromDouble(self->vec[1]);
|
|
}else if(STREQ(name, "z")){
|
|
if(self->size > 2){
|
|
return PyFloat_FromDouble(self->vec[2]);
|
|
}else{
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"vector.z: illegal attribute access\n");
|
|
}
|
|
}else if(STREQ(name, "w")){
|
|
if(self->size > 3){
|
|
return PyFloat_FromDouble(self->vec[3]);
|
|
}else{
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"vector.w: illegal attribute access\n");
|
|
}
|
|
}else if(STREQ2(name, "length", "magnitude")) {
|
|
for(x = 0; x < self->size; x++){
|
|
dot += (self->vec[x] * self->vec[x]);
|
|
}
|
|
return PyFloat_FromDouble(sqrt(dot));
|
|
}
|
|
if(STREQ(name, "wrapped")){
|
|
if(self->wrapped == Py_WRAP)
|
|
return EXPP_incr_ret((PyObject *)Py_True);
|
|
else
|
|
return EXPP_incr_ret((PyObject *)Py_False);
|
|
}
|
|
return Py_FindMethod(Vector_methods, (PyObject *) self, name);
|
|
}
|
|
//----------------------------setattr()(internal) ----------------
|
|
//object.attribute access (set)
|
|
static int Vector_setattr(VectorObject * self, char *name, PyObject * v)
|
|
{
|
|
PyObject *f = NULL;
|
|
|
|
f = PyNumber_Float(v);
|
|
if(f == NULL) { // parsed item not a number
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"vector.attribute = x: argument not a number\n");
|
|
}
|
|
|
|
if(STREQ(name,"x")){
|
|
self->vec[0] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else if(STREQ(name, "y")){
|
|
self->vec[1] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else if(STREQ(name, "z")){
|
|
if(self->size > 2){
|
|
self->vec[2] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else{
|
|
Py_DECREF(f);
|
|
return EXPP_ReturnIntError(PyExc_AttributeError,
|
|
"vector.z = x: illegal attribute access\n");
|
|
}
|
|
}else if(STREQ(name, "w")){
|
|
if(self->size > 3){
|
|
self->vec[3] = (float)PyFloat_AS_DOUBLE(f);
|
|
}else{
|
|
Py_DECREF(f);
|
|
return EXPP_ReturnIntError(PyExc_AttributeError,
|
|
"vector.w = x: illegal attribute access\n");
|
|
}
|
|
}else{
|
|
Py_DECREF(f);
|
|
return EXPP_ReturnIntError(PyExc_AttributeError,
|
|
"vector.attribute = x: unknown attribute\n");
|
|
}
|
|
|
|
Py_DECREF(f);
|
|
return 0;
|
|
}
|
|
//----------------------------print object (internal)-------------
|
|
//print the object to screen
|
|
static PyObject *Vector_repr(VectorObject * self)
|
|
{
|
|
int i;
|
|
char buffer[48], str[1024];
|
|
|
|
BLI_strncpy(str,"[",1024);
|
|
for(i = 0; i < self->size; i++){
|
|
if(i < (self->size - 1)){
|
|
sprintf(buffer, "%.6f, ", self->vec[i]);
|
|
strcat(str,buffer);
|
|
}else{
|
|
sprintf(buffer, "%.6f", self->vec[i]);
|
|
strcat(str,buffer);
|
|
}
|
|
}
|
|
strcat(str, "](vector)");
|
|
|
|
return EXPP_incr_ret(PyString_FromString(str));
|
|
}
|
|
//---------------------SEQUENCE PROTOCOLS------------------------
|
|
//----------------------------len(object)------------------------
|
|
//sequence length
|
|
static int Vector_len(VectorObject * self)
|
|
{
|
|
return self->size;
|
|
}
|
|
//----------------------------object[]---------------------------
|
|
//sequence accessor (get)
|
|
static PyObject *Vector_item(VectorObject * self, int i)
|
|
{
|
|
if(i < 0 || i >= self->size)
|
|
return EXPP_ReturnPyObjError(PyExc_IndexError,
|
|
"vector[attribute]: array index out of range\n");
|
|
|
|
return Py_BuildValue("f", self->vec[i]);
|
|
|
|
}
|
|
//----------------------------object[]-------------------------
|
|
//sequence accessor (set)
|
|
static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
|
|
{
|
|
PyObject *f = NULL;
|
|
|
|
f = PyNumber_Float(ob);
|
|
if(f == NULL) { // parsed item not a number
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"vector[attribute] = x: argument not a number\n");
|
|
}
|
|
|
|
if(i < 0 || i >= self->size){
|
|
Py_DECREF(f);
|
|
return EXPP_ReturnIntError(PyExc_IndexError,
|
|
"vector[attribute] = x: array assignment index out of range\n");
|
|
}
|
|
self->vec[i] = (float)PyFloat_AS_DOUBLE(f);
|
|
Py_DECREF(f);
|
|
return 0;
|
|
}
|
|
//----------------------------object[z:y]------------------------
|
|
//sequence slice (get)
|
|
static PyObject *Vector_slice(VectorObject * self, int begin, int end)
|
|
{
|
|
PyObject *list = NULL;
|
|
int count;
|
|
|
|
CLAMP(begin, 0, self->size);
|
|
CLAMP(end, 0, self->size);
|
|
begin = MIN2(begin,end);
|
|
|
|
list = PyList_New(end - begin);
|
|
for(count = begin; count < end; count++) {
|
|
PyList_SetItem(list, count - begin,
|
|
PyFloat_FromDouble(self->vec[count]));
|
|
}
|
|
|
|
return list;
|
|
}
|
|
//----------------------------object[z:y]------------------------
|
|
//sequence slice (set)
|
|
static int Vector_ass_slice(VectorObject * self, int begin, int end,
|
|
PyObject * seq)
|
|
{
|
|
int i, y, size = 0;
|
|
float vec[4];
|
|
|
|
CLAMP(begin, 0, self->size);
|
|
CLAMP(end, 0, self->size);
|
|
begin = MIN2(begin,end);
|
|
|
|
size = PySequence_Length(seq);
|
|
if(size != (end - begin)){
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"vector[begin:end] = []: size mismatch in slice assignment\n");
|
|
}
|
|
|
|
for (i = 0; i < size; i++) {
|
|
PyObject *v, *f;
|
|
|
|
v = PySequence_GetItem(seq, i);
|
|
if (v == NULL) { // Failed to read sequence
|
|
return EXPP_ReturnIntError(PyExc_RuntimeError,
|
|
"vector[begin:end] = []: unable to read sequence\n");
|
|
}
|
|
f = PyNumber_Float(v);
|
|
if(f == NULL) { // parsed item not a number
|
|
Py_DECREF(v);
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"vector[begin:end] = []: sequence argument not a number\n");
|
|
}
|
|
vec[i] = (float)PyFloat_AS_DOUBLE(f);
|
|
EXPP_decr2(f,v);
|
|
}
|
|
//parsed well - now set in vector
|
|
for(y = 0; y < size; y++){
|
|
self->vec[begin + y] = vec[y];
|
|
}
|
|
return 0;
|
|
}
|
|
//------------------------NUMERIC PROTOCOLS----------------------
|
|
//------------------------obj + obj------------------------------
|
|
//addition
|
|
static PyObject *Vector_add(PyObject * v1, PyObject * v2)
|
|
{
|
|
int x, size;
|
|
float vec[4];
|
|
VectorObject *vec1 = NULL, *vec2 = NULL;
|
|
PointObject *pt = NULL;
|
|
|
|
EXPP_incr2(v1, v2);
|
|
vec1 = (VectorObject*)v1;
|
|
vec2 = (VectorObject*)v2;
|
|
|
|
if(!vec1->coerced_object){
|
|
if(vec2->coerced_object){
|
|
if(PointObject_Check(vec2->coerced_object)){ //VECTOR + POINT
|
|
//Point translation
|
|
pt = (PointObject*)EXPP_incr_ret(vec2->coerced_object);
|
|
size = vec1->size;
|
|
if(pt->size == size){
|
|
for(x = 0; x < size; x++){
|
|
vec[x] = vec1->vec[x] + pt->coord[x];
|
|
}
|
|
}else{
|
|
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)pt);
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector addition: arguments are the wrong size....\n");
|
|
}
|
|
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)pt);
|
|
return (PyObject *) newPointObject(vec, size, Py_NEW);
|
|
}
|
|
}else{ //VECTOR + VECTOR
|
|
if(vec1->size != vec2->size){
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector addition: vectors must have the same dimensions for this operation\n");
|
|
}
|
|
size = vec1->size;
|
|
for(x = 0; x < size; x++) {
|
|
vec[x] = vec1->vec[x] + vec2->vec[x];
|
|
}
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return (PyObject *) newVectorObject(vec, size, Py_NEW);
|
|
}
|
|
}
|
|
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector addition: arguments not valid for this operation....\n");
|
|
}
|
|
//------------------------obj - obj------------------------------
|
|
//subtraction
|
|
static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
|
|
{
|
|
int x, size;
|
|
float vec[4];
|
|
VectorObject *vec1 = NULL, *vec2 = NULL;
|
|
|
|
EXPP_incr2(v1, v2);
|
|
vec1 = (VectorObject*)v1;
|
|
vec2 = (VectorObject*)v2;
|
|
|
|
if(vec1->coerced_object || vec2->coerced_object){
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector subtraction: arguments not valid for this operation....\n");
|
|
}
|
|
if(vec1->size != vec2->size){
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector subtraction: vectors must have the same dimensions for this operation\n");
|
|
}
|
|
|
|
size = vec1->size;
|
|
for(x = 0; x < size; x++) {
|
|
vec[x] = vec1->vec[x] - vec2->vec[x];
|
|
}
|
|
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return (PyObject *) newVectorObject(vec, size, Py_NEW);
|
|
}
|
|
//------------------------obj * obj------------------------------
|
|
//mulplication
|
|
static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
|
|
{
|
|
int x, size;
|
|
float vec[4], scalar;
|
|
double dot = 0.0f;
|
|
VectorObject *vec1 = NULL, *vec2 = NULL;
|
|
PyObject *f = NULL, *retObj = NULL;
|
|
MatrixObject *mat = NULL;
|
|
QuaternionObject *quat = NULL;
|
|
|
|
EXPP_incr2(v1, v2);
|
|
vec1 = (VectorObject*)v1;
|
|
vec2 = (VectorObject*)v2;
|
|
|
|
if(vec1->coerced_object){
|
|
if (PyFloat_Check(vec1->coerced_object) ||
|
|
PyInt_Check(vec1->coerced_object)){ // FLOAT/INT * VECTOR
|
|
f = PyNumber_Float(vec1->coerced_object);
|
|
if(f == NULL) { // parsed item not a number
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Vector multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
scalar = (float)PyFloat_AS_DOUBLE(f);
|
|
size = vec2->size;
|
|
for(x = 0; x < size; x++) {
|
|
vec[x] = vec2->vec[x] * scalar;
|
|
}
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return (PyObject *) newVectorObject(vec, size, Py_NEW);
|
|
}
|
|
}else{
|
|
if(vec2->coerced_object){
|
|
if(MatrixObject_Check(vec2->coerced_object)){ //VECTOR * MATRIX
|
|
mat = (MatrixObject*)EXPP_incr_ret(vec2->coerced_object);
|
|
retObj = row_vector_multiplication(vec1, mat);
|
|
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)mat);
|
|
return retObj;
|
|
}else if (PyFloat_Check(vec2->coerced_object) ||
|
|
PyInt_Check(vec2->coerced_object)){ // VECTOR * FLOAT/INT
|
|
f = PyNumber_Float(vec2->coerced_object);
|
|
if(f == NULL) { // parsed item not a number
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Vector multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
scalar = (float)PyFloat_AS_DOUBLE(f);
|
|
size = vec1->size;
|
|
for(x = 0; x < size; x++) {
|
|
vec[x] = vec1->vec[x] * scalar;
|
|
}
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return (PyObject *) newVectorObject(vec, size, Py_NEW);
|
|
}else if(QuaternionObject_Check(vec2->coerced_object)){ //VECTOR * QUATERNION
|
|
quat = (QuaternionObject*)EXPP_incr_ret(vec2->coerced_object);
|
|
if(vec1->size != 3){
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
|
|
}
|
|
retObj = quat_rotation((PyObject*)vec1, (PyObject*)quat);
|
|
EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)quat);
|
|
return retObj;
|
|
}
|
|
}else{ //VECTOR * VECTOR
|
|
if(vec1->size != vec2->size){
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return EXPP_ReturnPyObjError(PyExc_AttributeError,
|
|
"Vector multiplication: vectors must have the same dimensions for this operation\n");
|
|
}
|
|
size = vec1->size;
|
|
//dot product
|
|
for(x = 0; x < size; x++) {
|
|
dot += vec1->vec[x] * vec2->vec[x];
|
|
}
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return PyFloat_FromDouble(dot);
|
|
}
|
|
}
|
|
|
|
EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
|
|
return EXPP_ReturnPyObjError(PyExc_TypeError,
|
|
"Vector multiplication: arguments not acceptable for this operation\n");
|
|
}
|
|
//-------------------------- -obj -------------------------------
|
|
//returns the negative of this object
|
|
static PyObject *Vector_neg(VectorObject *self)
|
|
{
|
|
int x;
|
|
for(x = 0; x < self->size; x++){
|
|
self->vec[x] = -self->vec[x];
|
|
}
|
|
|
|
return EXPP_incr_ret((PyObject *)self);
|
|
}
|
|
//------------------------coerce(obj, obj)-----------------------
|
|
//coercion of unknown types to type VectorObject for numeric protocols
|
|
/*Coercion() is called whenever a math operation has 2 operands that
|
|
it doesn't understand how to evaluate. 2+Matrix for example. We want to
|
|
evaluate some of these operations like: (vector * 2), however, for math
|
|
to proceed, the unknown operand must be cast to a type that python math will
|
|
understand. (e.g. in the case above case, 2 must be cast to a vector and
|
|
then call vector.multiply(vector, scalar_cast_as_vector)*/
|
|
static int Vector_coerce(PyObject ** v1, PyObject ** v2)
|
|
{
|
|
PyObject *coerced = NULL;
|
|
|
|
if(!VectorObject_Check(*v2)) {
|
|
if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) ||
|
|
QuaternionObject_Check(*v2) || PointObject_Check(*v2)) {
|
|
coerced = EXPP_incr_ret(*v2);
|
|
*v2 = newVectorObject(NULL,3,Py_NEW);
|
|
((VectorObject*)*v2)->coerced_object = coerced;
|
|
}else{
|
|
return EXPP_ReturnIntError(PyExc_TypeError,
|
|
"vector.coerce(): unknown operand - can't coerce for numeric protocols\n");
|
|
}
|
|
}
|
|
EXPP_incr2(*v1, *v2);
|
|
return 0;
|
|
}
|
|
//-----------------PROTCOL DECLARATIONS--------------------------
|
|
static PySequenceMethods Vector_SeqMethods = {
|
|
(inquiry) Vector_len, /* sq_length */
|
|
(binaryfunc) 0, /* sq_concat */
|
|
(intargfunc) 0, /* sq_repeat */
|
|
(intargfunc) Vector_item, /* sq_item */
|
|
(intintargfunc) Vector_slice, /* sq_slice */
|
|
(intobjargproc) Vector_ass_item, /* sq_ass_item */
|
|
(intintobjargproc) Vector_ass_slice, /* sq_ass_slice */
|
|
};
|
|
static PyNumberMethods Vector_NumMethods = {
|
|
(binaryfunc) Vector_add, /* __add__ */
|
|
(binaryfunc) Vector_sub, /* __sub__ */
|
|
(binaryfunc) Vector_mul, /* __mul__ */
|
|
(binaryfunc) 0, /* __div__ */
|
|
(binaryfunc) 0, /* __mod__ */
|
|
(binaryfunc) 0, /* __divmod__ */
|
|
(ternaryfunc) 0, /* __pow__ */
|
|
(unaryfunc) Vector_neg, /* __neg__ */
|
|
(unaryfunc) 0, /* __pos__ */
|
|
(unaryfunc) 0, /* __abs__ */
|
|
(inquiry) 0, /* __nonzero__ */
|
|
(unaryfunc) 0, /* __invert__ */
|
|
(binaryfunc) 0, /* __lshift__ */
|
|
(binaryfunc) 0, /* __rshift__ */
|
|
(binaryfunc) 0, /* __and__ */
|
|
(binaryfunc) 0, /* __xor__ */
|
|
(binaryfunc) 0, /* __or__ */
|
|
(coercion) Vector_coerce, /* __coerce__ */
|
|
(unaryfunc) 0, /* __int__ */
|
|
(unaryfunc) 0, /* __long__ */
|
|
(unaryfunc) 0, /* __float__ */
|
|
(unaryfunc) 0, /* __oct__ */
|
|
(unaryfunc) 0, /* __hex__ */
|
|
|
|
};
|
|
//------------------PY_OBECT DEFINITION--------------------------
|
|
PyTypeObject vector_Type = {
|
|
PyObject_HEAD_INIT(NULL)
|
|
0, /*ob_size */
|
|
"vector", /*tp_name */
|
|
sizeof(VectorObject), /*tp_basicsize */
|
|
0, /*tp_itemsize */
|
|
(destructor) Vector_dealloc, /*tp_dealloc */
|
|
(printfunc) 0, /*tp_print */
|
|
(getattrfunc) Vector_getattr, /*tp_getattr */
|
|
(setattrfunc) Vector_setattr, /*tp_setattr */
|
|
0, /*tp_compare */
|
|
(reprfunc) Vector_repr, /*tp_repr */
|
|
&Vector_NumMethods, /*tp_as_number */
|
|
&Vector_SeqMethods, /*tp_as_sequence */
|
|
};
|
|
//------------------------newVectorObject (internal)-------------
|
|
//creates a new vector object
|
|
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
|
|
(i.e. it was allocated elsewhere by MEM_mallocN())
|
|
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
|
|
(i.e. it must be created here with PyMEM_malloc())*/
|
|
PyObject *newVectorObject(float *vec, int size, int type)
|
|
{
|
|
VectorObject *self;
|
|
int x;
|
|
|
|
vector_Type.ob_type = &PyType_Type;
|
|
self = PyObject_NEW(VectorObject, &vector_Type);
|
|
self->data.blend_data = NULL;
|
|
self->data.py_data = NULL;
|
|
if(size > 4 || size < 2)
|
|
return NULL;
|
|
self->size = size;
|
|
self->coerced_object = NULL;
|
|
|
|
if(type == Py_WRAP){
|
|
self->data.blend_data = vec;
|
|
self->vec = self->data.blend_data;
|
|
self->wrapped = Py_WRAP;
|
|
}else if (type == Py_NEW){
|
|
self->data.py_data = PyMem_Malloc(size * sizeof(float));
|
|
self->vec = self->data.py_data;
|
|
if(!vec) { //new empty
|
|
for(x = 0; x < size; x++){
|
|
self->vec[x] = 0.0f;
|
|
}
|
|
if(size == 4) /* do the homogenous thing */
|
|
self->vec[3] = 1.0f;
|
|
}else{
|
|
for(x = 0; x < size; x++){
|
|
self->vec[x] = vec[x];
|
|
}
|
|
}
|
|
self->wrapped = Py_NEW;
|
|
}else{ //bad type
|
|
return NULL;
|
|
}
|
|
return (PyObject *) EXPP_incr_ret((PyObject *)self);
|
|
}
|
|
|
|
//#############################DEPRECATED################################
|
|
//#######################################################################
|
|
//----------------------------Vector.negate() --------------------
|
|
//set the vector to it's negative -x, -y, -z
|
|
PyObject *Vector_Negate(VectorObject * self)
|
|
{
|
|
int x;
|
|
for(x = 0; x < self->size; x++) {
|
|
self->vec[x] = -(self->vec[x]);
|
|
}
|
|
printf("Vector.negate(): Deprecated: use -vector instead\n");
|
|
return EXPP_incr_ret((PyObject*)self);
|
|
}
|
|
//#######################################################################
|
|
//#############################DEPRECATED################################
|