This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/pointcache.c
Janne Karhu 979aa4e990 Point cache optimization: only cache particles that are alive.
This reduces point cache sizes dramatically especially if particle
life time is small compared to total simulation length. For example
with the settings: particle amount = 10000, start = 1, end = 200,
life = 10, cache step = 1, the unoptimized blend file size (compressed)
was a little over 22 Mb and with this optimization the file is a little
under 2 Mb (again compressed). In addition to saving memory/disk space
this also probably speeds up reading from cache, since there's less
data to read.

As an additional fix the memory cache size (displayed in cache panel)
is now calculated correctly.
2010-03-09 03:01:18 +00:00

2881 lines
76 KiB
C

/**
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Campbell Barton <ideasman42@gmail.com>
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "MEM_guardedalloc.h"
#include "DNA_ID.h"
#include "DNA_cloth_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DNA_smoke_types.h"
#include "BLI_blenlib.h"
#include "BLI_threads.h"
#include "PIL_time.h"
#include "WM_api.h"
#include "BKE_blender.h"
#include "BKE_cloth.h"
#include "BKE_depsgraph.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_pointcache.h"
#include "BKE_scene.h"
#include "BKE_smoke.h"
#include "BKE_softbody.h"
#include "BKE_utildefines.h"
#include "BIK_api.h"
/* both in intern */
#include "smoke_API.h"
#ifdef WITH_LZO
#include "minilzo.h"
#else
/* used for non-lzo cases */
#define LZO_OUT_LEN(size) ((size) + (size) / 16 + 64 + 3)
#endif
#ifdef WITH_LZMA
#include "LzmaLib.h"
#endif
/* needed for directory lookup */
/* untitled blend's need getpid for a unique name */
#ifndef WIN32
#include <dirent.h>
#include <unistd.h>
#else
#include <process.h>
#include "BLI_winstuff.h"
#endif
#if defined(__APPLE__) && (PARALLEL == 1) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 2)
/* ************** libgomp (Apple gcc 4.2.1) TLS bug workaround *************** */
#include <pthread.h>
extern pthread_key_t gomp_tls_key;
static void *thread_tls_data;
#endif
#define PTCACHE_DATA_FROM(data, type, from) if(data[type]) { memcpy(data[type], from, ptcache_data_size[type]); }
#define PTCACHE_DATA_TO(data, type, index, to) if(data[type]) { memcpy(to, (char*)data[type] + (index ? index * ptcache_data_size[type] : 0), ptcache_data_size[type]); }
int ptcache_data_size[] = {
sizeof(int), // BPHYS_DATA_INDEX
3 * sizeof(float), // BPHYS_DATA_LOCATION:
3 * sizeof(float), // BPHYS_DATA_VELOCITY:
4 * sizeof(float), // BPHYS_DATA_ROTATION:
3 * sizeof(float), // BPHYS_DATA_AVELOCITY: /* also BPHYS_DATA_XCONST */
sizeof(float), // BPHYS_DATA_SIZE:
3 * sizeof(float), // BPHYS_DATA_TIMES:
sizeof(BoidData) // case BPHYS_DATA_BOIDS:
};
/* Common functions */
static int ptcache_read_basic_header(PTCacheFile *pf)
{
int error=0;
/* Custom functions should read these basic elements too! */
if(!error && !fread(&pf->totpoint, sizeof(int), 1, pf->fp))
error = 1;
if(!error && !fread(&pf->data_types, sizeof(int), 1, pf->fp))
error = 1;
return !error;
}
static int ptcache_write_basic_header(PTCacheFile *pf)
{
/* Custom functions should write these basic elements too! */
if(!fwrite(&pf->totpoint, sizeof(int), 1, pf->fp))
return 0;
if(!fwrite(&pf->data_types, sizeof(int), 1, pf->fp))
return 0;
return 1;
}
/* Softbody functions */
static int ptcache_write_softbody(int index, void *soft_v, void **data, int cfra)
{
SoftBody *soft= soft_v;
BodyPoint *bp = soft->bpoint + index;
PTCACHE_DATA_FROM(data, BPHYS_DATA_LOCATION, bp->pos);
PTCACHE_DATA_FROM(data, BPHYS_DATA_VELOCITY, bp->vec);
return 1;
}
static void ptcache_read_softbody(int index, void *soft_v, void **data, float frs_sec, float cfra, float *old_data)
{
SoftBody *soft= soft_v;
BodyPoint *bp = soft->bpoint + index;
if(old_data) {
memcpy(bp->pos, data, 3 * sizeof(float));
memcpy(bp->vec, data + 3, 3 * sizeof(float));
}
else {
PTCACHE_DATA_TO(data, BPHYS_DATA_LOCATION, 0, bp->pos);
PTCACHE_DATA_TO(data, BPHYS_DATA_VELOCITY, 0, bp->vec);
}
}
static void ptcache_interpolate_softbody(int index, void *soft_v, void **data, float frs_sec, float cfra, float cfra1, float cfra2, float *old_data)
{
SoftBody *soft= soft_v;
BodyPoint *bp = soft->bpoint + index;
ParticleKey keys[4];
float dfra;
if(cfra1 == cfra2)
return;
VECCOPY(keys[1].co, bp->pos);
VECCOPY(keys[1].vel, bp->vec);
if(old_data) {
memcpy(keys[2].co, old_data, 3 * sizeof(float));
memcpy(keys[2].vel, old_data + 3, 3 * sizeof(float));
}
else
BKE_ptcache_make_particle_key(keys+2, 0, data, cfra2);
dfra = cfra2 - cfra1;
mul_v3_fl(keys[1].vel, dfra);
mul_v3_fl(keys[2].vel, dfra);
psys_interpolate_particle(-1, keys, (cfra - cfra1) / dfra, keys, 1);
mul_v3_fl(keys->vel, 1.0f / dfra);
VECCOPY(bp->pos, keys->co);
VECCOPY(bp->vec, keys->vel);
}
static int ptcache_totpoint_softbody(void *soft_v, int cfra)
{
SoftBody *soft= soft_v;
return soft->totpoint;
}
/* Particle functions */
static int ptcache_write_particle(int index, void *psys_v, void **data, int cfra)
{
ParticleSystem *psys= psys_v;
ParticleData *pa = psys->particles + index;
BoidParticle *boid = (psys->part->phystype == PART_PHYS_BOIDS) ? pa->boid : NULL;
float times[3] = {pa->time, pa->dietime, pa->lifetime};
int step = psys->pointcache->step;
/* No need to store unborn or died particles outside cache step bounds */
if(data[BPHYS_DATA_INDEX] && (cfra < pa->time - step || cfra > pa->dietime + step))
return 0;
PTCACHE_DATA_FROM(data, BPHYS_DATA_INDEX, &index);
PTCACHE_DATA_FROM(data, BPHYS_DATA_LOCATION, pa->state.co);
PTCACHE_DATA_FROM(data, BPHYS_DATA_VELOCITY, pa->state.vel);
PTCACHE_DATA_FROM(data, BPHYS_DATA_ROTATION, pa->state.rot);
PTCACHE_DATA_FROM(data, BPHYS_DATA_AVELOCITY, pa->state.ave);
PTCACHE_DATA_FROM(data, BPHYS_DATA_SIZE, &pa->size);
PTCACHE_DATA_FROM(data, BPHYS_DATA_TIMES, times);
if(boid)
PTCACHE_DATA_FROM(data, BPHYS_DATA_BOIDS, &boid->data);
/* return flag 1+1=2 for newly born particles to copy exact birth location to previously cached frame */
return 1 + (pa->state.time >= pa->time && pa->prev_state.time <= pa->time);
}
void BKE_ptcache_make_particle_key(ParticleKey *key, int index, void **data, float time)
{
PTCACHE_DATA_TO(data, BPHYS_DATA_LOCATION, index, key->co);
PTCACHE_DATA_TO(data, BPHYS_DATA_VELOCITY, index, key->vel);
PTCACHE_DATA_TO(data, BPHYS_DATA_ROTATION, index, key->rot);
PTCACHE_DATA_TO(data, BPHYS_DATA_AVELOCITY, index, key->ave);
key->time = time;
}
static void ptcache_read_particle(int index, void *psys_v, void **data, float frs_sec, float cfra, float *old_data)
{
ParticleSystem *psys= psys_v;
ParticleData *pa;
BoidParticle *boid;
if(index >= psys->totpart)
return;
pa = psys->particles + index;
boid = (psys->part->phystype == PART_PHYS_BOIDS) ? pa->boid : NULL;
if(cfra > pa->state.time)
memcpy(&pa->prev_state, &pa->state, sizeof(ParticleKey));
if(old_data){
/* old format cache */
memcpy(&pa->state, old_data, sizeof(ParticleKey));
return;
}
BKE_ptcache_make_particle_key(&pa->state, 0, data, cfra);
/* set frames cached before birth to birth time */
if(cfra < pa->time)
pa->state.time = pa->time;
if(data[BPHYS_DATA_SIZE])
PTCACHE_DATA_TO(data, BPHYS_DATA_SIZE, 0, &pa->size);
if(data[BPHYS_DATA_TIMES]) {
float times[3];
PTCACHE_DATA_TO(data, BPHYS_DATA_TIMES, 0, &times);
pa->time = times[0];
pa->dietime = times[1];
pa->lifetime = times[2];
}
if(boid)
PTCACHE_DATA_TO(data, BPHYS_DATA_BOIDS, 0, &boid->data);
/* determine velocity from previous location */
if(data[BPHYS_DATA_LOCATION] && !data[BPHYS_DATA_VELOCITY]) {
if(cfra > pa->prev_state.time) {
sub_v3_v3v3(pa->state.vel, pa->state.co, pa->prev_state.co);
mul_v3_fl(pa->state.vel, (cfra - pa->prev_state.time) / frs_sec);
}
else {
sub_v3_v3v3(pa->state.vel, pa->prev_state.co, pa->state.co);
mul_v3_fl(pa->state.vel, (pa->prev_state.time - cfra) / frs_sec);
}
}
/* determine rotation from velocity */
if(data[BPHYS_DATA_LOCATION] && !data[BPHYS_DATA_ROTATION]) {
vec_to_quat( pa->state.rot,pa->state.vel, OB_NEGX, OB_POSZ);
}
}
static void ptcache_interpolate_particle(int index, void *psys_v, void **data, float frs_sec, float cfra, float cfra1, float cfra2, float *old_data)
{
ParticleSystem *psys= psys_v;
ParticleData *pa;
ParticleKey keys[4];
float dfra;
if(index >= psys->totpart)
return;
pa = psys->particles + index;
/* particle wasn't read from first cache so can't interpolate */
if((int)cfra1 < pa->time - psys->pointcache->step || (int)cfra1 > pa->dietime + psys->pointcache->step)
return;
cfra = MIN2(cfra, pa->dietime);
cfra1 = MIN2(cfra1, pa->dietime);
cfra2 = MIN2(cfra2, pa->dietime);
if(cfra1 == cfra2)
return;
memcpy(keys+1, &pa->state, sizeof(ParticleKey));
if(old_data)
memcpy(keys+2, old_data, sizeof(ParticleKey));
else
BKE_ptcache_make_particle_key(keys+2, 0, data, cfra2);
/* determine velocity from previous location */
if(data[BPHYS_DATA_LOCATION] && !data[BPHYS_DATA_VELOCITY]) {
if(keys[1].time > keys[2].time) {
sub_v3_v3v3(keys[2].vel, keys[1].co, keys[2].co);
mul_v3_fl(keys[2].vel, (keys[1].time - keys[2].time) / frs_sec);
}
else {
sub_v3_v3v3(keys[2].vel, keys[2].co, keys[1].co);
mul_v3_fl(keys[2].vel, (keys[2].time - keys[1].time) / frs_sec);
}
}
/* determine rotation from velocity */
if(data[BPHYS_DATA_LOCATION] && !data[BPHYS_DATA_ROTATION]) {
vec_to_quat( keys[2].rot,keys[2].vel, OB_NEGX, OB_POSZ);
}
if(cfra > pa->time)
cfra1 = MAX2(cfra1, pa->time);
dfra = cfra2 - cfra1;
mul_v3_fl(keys[1].vel, dfra / frs_sec);
mul_v3_fl(keys[2].vel, dfra / frs_sec);
psys_interpolate_particle(-1, keys, (cfra - cfra1) / dfra, &pa->state, 1);
interp_qt_qtqt(pa->state.rot, keys[1].rot, keys[2].rot, (cfra - cfra1) / dfra);
mul_v3_fl(pa->state.vel, frs_sec / dfra);
pa->state.time = cfra;
}
static int ptcache_totpoint_particle(void *psys_v, int cfra)
{
ParticleSystem *psys = psys_v;
return psys->totpart;
}
static int ptcache_totwrite_particle(void *psys_v, int cfra)
{
ParticleSystem *psys = psys_v;
ParticleData *pa= psys->particles;
int p, step = psys->pointcache->step;
int totwrite = 0;
for(p=0; p<psys->totpart; p++,pa++)
totwrite += (cfra >= pa->time - step && cfra <= pa->dietime + step);
return totwrite;
}
//static int ptcache_write_particle_stream(PTCacheFile *pf, PTCacheMem *pm, void *psys_v)
//{
// ParticleSystem *psys= psys_v;
// ParticleData *pa = psys->particles;
// BoidParticle *boid = NULL;
// float times[3];
// int i = 0;
//
// if(!pf && !pm)
// return 0;
//
// for(i=0; i<psys->totpart; i++, pa++) {
//
// if(data[BPHYS_DATA_INDEX]) {
// int step = psys->pointcache->step;
// /* No need to store unborn or died particles */
// if(pa->time - step > pa->state.time || pa->dietime + step < pa->state.time)
// continue;
// }
//
// times[0] = pa->time;
// times[1] = pa->dietime;
// times[2] = pa->lifetime;
//
// PTCACHE_DATA_FROM(data, BPHYS_DATA_INDEX, &index);
// PTCACHE_DATA_FROM(data, BPHYS_DATA_LOCATION, pa->state.co);
// PTCACHE_DATA_FROM(data, BPHYS_DATA_VELOCITY, pa->state.vel);
// PTCACHE_DATA_FROM(data, BPHYS_DATA_ROTATION, pa->state.rot);
// PTCACHE_DATA_FROM(data, BPHYS_DATA_AVELOCITY, pa->state.ave);
// PTCACHE_DATA_FROM(data, BPHYS_DATA_SIZE, &pa->size);
// PTCACHE_DATA_FROM(data, BPHYS_DATA_TIMES, times);
//
// boid = (psys->part->phystype == PART_PHYS_BOIDS) ? pa->boid : NULL;
// if(boid)
// PTCACHE_DATA_FROM(data, BPHYS_DATA_BOIDS, &boid->data);
//
// if(pf && !ptcache_file_write_data(pf))
// return 0;
//
// if(pm)
// BKE_ptcache_mem_incr_pointers(pm);
// }
//
// return 1;
//}
//static void ptcache_read_particle_stream(PTCacheFile *pf, PTCacheMem *pm, void *psys_v, void **data, float frs_sec, float cfra, float *old_data)
//{
// ParticleSystem *psys= psys_v;
// ParticleData *pa = psys->particles + index;
// BoidParticle *boid = (psys->part->phystype == PART_PHYS_BOIDS) ? pa->boid : NULL;
//
// if(cfra > pa->state.time)
// memcpy(&pa->prev_state, &pa->state, sizeof(ParticleKey));
//
// if(old_data){
// /* old format cache */
// memcpy(&pa->state, old_data, sizeof(ParticleKey));
// return;
// }
//
// BKE_ptcache_make_particle_key(&pa->state, 0, data, cfra);
//
// if(data[BPHYS_DATA_SIZE])
// PTCACHE_DATA_TO(data, BPHYS_DATA_SIZE, 0, &pa->size);
//
// if(data[BPHYS_DATA_TIMES]) {
// float times[3];
// PTCACHE_DATA_TO(data, BPHYS_DATA_TIMES, 0, &times);
// pa->time = times[0];
// pa->dietime = times[1];
// pa->lifetime = times[2];
// }
//
// if(boid)
// PTCACHE_DATA_TO(data, BPHYS_DATA_BOIDS, 0, &boid->data);
//
// /* determine velocity from previous location */
// if(data[BPHYS_DATA_LOCATION] && !data[BPHYS_DATA_VELOCITY]) {
// if(cfra > pa->prev_state.time) {
// sub_v3_v3v3(pa->state.vel, pa->state.co, pa->prev_state.co);
// mul_v3_fl(pa->state.vel, (cfra - pa->prev_state.time) / frs_sec);
// }
// else {
// sub_v3_v3v3(pa->state.vel, pa->prev_state.co, pa->state.co);
// mul_v3_fl(pa->state.vel, (pa->prev_state.time - cfra) / frs_sec);
// }
// }
//
// /* determine rotation from velocity */
// if(data[BPHYS_DATA_LOCATION] && !data[BPHYS_DATA_ROTATION]) {
// vec_to_quat( pa->state.rot,pa->state.vel, OB_POSX, OB_POSZ);
// }
//}
//static void ptcache_interpolate_particle_stream(int index, void *psys_v, void **data, float frs_sec, float cfra, float cfra1, float cfra2, float *old_data)
//{
// ParticleSystem *psys= psys_v;
// ParticleData *pa = psys->particles + index;
// ParticleKey keys[4];
// float dfra;
//
// cfra = MIN2(cfra, pa->dietime);
// cfra1 = MIN2(cfra1, pa->dietime);
// cfra2 = MIN2(cfra2, pa->dietime);
//
// if(cfra1 == cfra2)
// return;
//
// memcpy(keys+1, &pa->state, sizeof(ParticleKey));
// if(old_data)
// memcpy(keys+2, old_data, sizeof(ParticleKey));
// else
// BKE_ptcache_make_particle_key(keys+2, 0, data, cfra2);
//
// dfra = cfra2 - cfra1;
//
// mul_v3_fl(keys[1].vel, dfra / frs_sec);
// mul_v3_fl(keys[2].vel, dfra / frs_sec);
//
// psys_interpolate_particle(-1, keys, (cfra - cfra1) / dfra, &pa->state, 1);
// interp_qt_qtqt(pa->state.rot, keys[1].rot,keys[2].rot, (cfra - cfra1) / dfra);
//
// mul_v3_fl(pa->state.vel, frs_sec / dfra);
//
// pa->state.time = cfra;
//}
//
/* Cloth functions */
static int ptcache_write_cloth(int index, void *cloth_v, void **data, int cfra)
{
ClothModifierData *clmd= cloth_v;
Cloth *cloth= clmd->clothObject;
ClothVertex *vert = cloth->verts + index;
PTCACHE_DATA_FROM(data, BPHYS_DATA_LOCATION, vert->x);
PTCACHE_DATA_FROM(data, BPHYS_DATA_VELOCITY, vert->v);
PTCACHE_DATA_FROM(data, BPHYS_DATA_XCONST, vert->xconst);
return 1;
}
static void ptcache_read_cloth(int index, void *cloth_v, void **data, float frs_sec, float cfra, float *old_data)
{
ClothModifierData *clmd= cloth_v;
Cloth *cloth= clmd->clothObject;
ClothVertex *vert = cloth->verts + index;
if(old_data) {
memcpy(vert->x, data, 3 * sizeof(float));
memcpy(vert->xconst, data + 3, 3 * sizeof(float));
memcpy(vert->v, data + 6, 3 * sizeof(float));
}
else {
PTCACHE_DATA_TO(data, BPHYS_DATA_LOCATION, 0, vert->x);
PTCACHE_DATA_TO(data, BPHYS_DATA_VELOCITY, 0, vert->v);
PTCACHE_DATA_TO(data, BPHYS_DATA_XCONST, 0, vert->xconst);
}
}
static void ptcache_interpolate_cloth(int index, void *cloth_v, void **data, float frs_sec, float cfra, float cfra1, float cfra2, float *old_data)
{
ClothModifierData *clmd= cloth_v;
Cloth *cloth= clmd->clothObject;
ClothVertex *vert = cloth->verts + index;
ParticleKey keys[4];
float dfra;
if(cfra1 == cfra2)
return;
VECCOPY(keys[1].co, vert->x);
VECCOPY(keys[1].vel, vert->v);
if(old_data) {
memcpy(keys[2].co, old_data, 3 * sizeof(float));
memcpy(keys[2].vel, old_data + 6, 3 * sizeof(float));
}
else
BKE_ptcache_make_particle_key(keys+2, 0, data, cfra2);
dfra = cfra2 - cfra1;
mul_v3_fl(keys[1].vel, dfra);
mul_v3_fl(keys[2].vel, dfra);
psys_interpolate_particle(-1, keys, (cfra - cfra1) / dfra, keys, 1);
mul_v3_fl(keys->vel, 1.0f / dfra);
VECCOPY(vert->x, keys->co);
VECCOPY(vert->v, keys->vel);
/* should vert->xconst be interpolated somehow too? - jahka */
}
static int ptcache_totpoint_cloth(void *cloth_v, int cfra)
{
ClothModifierData *clmd= cloth_v;
return clmd->clothObject->numverts;
}
/* Creating ID's */
void BKE_ptcache_id_from_softbody(PTCacheID *pid, Object *ob, SoftBody *sb)
{
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= sb;
pid->type= PTCACHE_TYPE_SOFTBODY;
pid->cache= sb->pointcache;
pid->cache_ptr= &sb->pointcache;
pid->ptcaches= &sb->ptcaches;
pid->totpoint= pid->totwrite= ptcache_totpoint_softbody;
pid->write_elem= ptcache_write_softbody;
pid->write_stream = NULL;
pid->read_stream = NULL;
pid->read_elem= ptcache_read_softbody;
pid->interpolate_elem= ptcache_interpolate_softbody;
pid->write_header= ptcache_write_basic_header;
pid->read_header= ptcache_read_basic_header;
pid->data_types= (1<<BPHYS_DATA_LOCATION) | (1<<BPHYS_DATA_VELOCITY);
pid->info_types= 0;
pid->stack_index = pid->cache->index;
}
void BKE_ptcache_id_from_particles(PTCacheID *pid, Object *ob, ParticleSystem *psys)
{
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= psys;
pid->type= PTCACHE_TYPE_PARTICLES;
pid->stack_index= psys->pointcache->index;
pid->cache= psys->pointcache;
pid->cache_ptr= &psys->pointcache;
pid->ptcaches= &psys->ptcaches;
if(psys->part->type != PART_HAIR)
pid->flag |= PTCACHE_VEL_PER_SEC;
pid->write_elem= ptcache_write_particle;
pid->write_stream = NULL;
pid->read_stream = NULL;
pid->read_elem= ptcache_read_particle;
pid->interpolate_elem= ptcache_interpolate_particle;
pid->totpoint= ptcache_totpoint_particle;
pid->totwrite= ptcache_totwrite_particle;
pid->write_header= ptcache_write_basic_header;
pid->read_header= ptcache_read_basic_header;
pid->data_types= (1<<BPHYS_DATA_LOCATION) | (1<<BPHYS_DATA_VELOCITY) | (1<<BPHYS_DATA_INDEX);
if(psys->part->phystype == PART_PHYS_BOIDS)
pid->data_types|= (1<<BPHYS_DATA_AVELOCITY) | (1<<BPHYS_DATA_ROTATION) | (1<<BPHYS_DATA_BOIDS);
if(psys->part->rotmode!=PART_ROT_VEL
|| psys->part->avemode!=PART_AVE_SPIN || psys->part->avefac!=0.0f)
pid->data_types|= (1<<BPHYS_DATA_AVELOCITY) | (1<<BPHYS_DATA_ROTATION);
if(psys->part->flag & PART_ROT_DYN)
pid->data_types|= (1<<BPHYS_DATA_ROTATION);
pid->info_types= (1<<BPHYS_DATA_TIMES);
}
/* Smoke functions */
static int ptcache_totpoint_smoke(void *smoke_v, int cfra)
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
if(sds->fluid) {
return sds->res[0]*sds->res[1]*sds->res[2];
}
else
return 0;
}
/* Smoke functions */
static int ptcache_totpoint_smoke_turbulence(void *smoke_v, int cfra)
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
if(sds->wt) {
return sds->res_wt[0]*sds->res_wt[1]*sds->res_wt[2];
}
else
return 0;
}
// forward decleration
static int ptcache_file_write(PTCacheFile *pf, void *f, size_t tot, int size);
static int ptcache_compress_write(PTCacheFile *pf, unsigned char *in, unsigned int in_len, unsigned char *out, int mode)
{
int r = 0;
unsigned char compressed = 0;
unsigned int out_len= 0;
unsigned char *props = MEM_callocN(16*sizeof(char), "tmp");
size_t sizeOfIt = 5;
#ifdef WITH_LZO
out_len= LZO_OUT_LEN(in_len);
if(mode == 1) {
LZO_HEAP_ALLOC(wrkmem, LZO1X_MEM_COMPRESS);
r = lzo1x_1_compress(in, (lzo_uint)in_len, out, (lzo_uint *)&out_len, wrkmem);
if (!(r == LZO_E_OK) || (out_len >= in_len))
compressed = 0;
else
compressed = 1;
}
#endif
#ifdef WITH_LZMA
if(mode == 2) {
r = LzmaCompress(out, (size_t *)&out_len, in, in_len,//assume sizeof(char)==1....
props, &sizeOfIt, 5, 1 << 24, 3, 0, 2, 32, 2);
if(!(r == SZ_OK) || (out_len >= in_len))
compressed = 0;
else
compressed = 2;
}
#endif
ptcache_file_write(pf, &compressed, 1, sizeof(unsigned char));
if(compressed) {
ptcache_file_write(pf, &out_len, 1, sizeof(unsigned int));
ptcache_file_write(pf, out, out_len, sizeof(unsigned char));
}
else
ptcache_file_write(pf, in, in_len, sizeof(unsigned char));
if(compressed == 2)
{
ptcache_file_write(pf, &sizeOfIt, 1, sizeof(unsigned int));
ptcache_file_write(pf, props, sizeOfIt, sizeof(unsigned char));
}
MEM_freeN(props);
return r;
}
static int ptcache_write_smoke(PTCacheFile *pf, void *smoke_v)
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
if(sds->fluid) {
size_t res = sds->res[0]*sds->res[1]*sds->res[2];
float dt, dx, *dens, *densold, *heat, *heatold, *vx, *vy, *vz, *vxold, *vyold, *vzold;
unsigned char *obstacles;
unsigned int in_len = sizeof(float)*(unsigned int)res;
unsigned char *out = (unsigned char *)MEM_callocN(LZO_OUT_LEN(in_len)*4, "pointcache_lzo_buffer");
//int mode = res >= 1000000 ? 2 : 1;
int mode=1; // light
if (sds->cache_comp == SM_CACHE_HEAVY) mode=2; // heavy
smoke_export(sds->fluid, &dt, &dx, &dens, &densold, &heat, &heatold, &vx, &vy, &vz, &vxold, &vyold, &vzold, &obstacles);
ptcache_compress_write(pf, (unsigned char *)sds->shadow, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)dens, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)densold, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)heat, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)heatold, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)vx, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)vy, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)vz, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)vxold, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)vyold, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)vzold, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)obstacles, (unsigned int)res, out, mode);
ptcache_file_write(pf, &dt, 1, sizeof(float));
ptcache_file_write(pf, &dx, 1, sizeof(float));
MEM_freeN(out);
return 1;
}
return 0;
}
static int ptcache_write_smoke_turbulence(PTCacheFile *pf, void *smoke_v)
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
if(sds->wt) {
int res_big_array[3];
int res_big;
int res = sds->res[0]*sds->res[1]*sds->res[2];
float *dens, *densold, *tcu, *tcv, *tcw;
unsigned int in_len = sizeof(float)*(unsigned int)res;
unsigned int in_len_big;
unsigned char *out;
int mode;
smoke_turbulence_get_res(sds->wt, res_big_array);
res_big = res_big_array[0]*res_big_array[1]*res_big_array[2];
//mode = res_big >= 1000000 ? 2 : 1;
mode = 1; // light
if (sds->cache_high_comp == SM_CACHE_HEAVY) mode=2; // heavy
in_len_big = sizeof(float) * (unsigned int)res_big;
smoke_turbulence_export(sds->wt, &dens, &densold, &tcu, &tcv, &tcw);
out = (unsigned char *)MEM_callocN(LZO_OUT_LEN(in_len_big), "pointcache_lzo_buffer");
ptcache_compress_write(pf, (unsigned char *)dens, in_len_big, out, mode);
ptcache_compress_write(pf, (unsigned char *)densold, in_len_big, out, mode);
MEM_freeN(out);
out = (unsigned char *)MEM_callocN(LZO_OUT_LEN(in_len), "pointcache_lzo_buffer");
ptcache_compress_write(pf, (unsigned char *)tcu, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)tcv, in_len, out, mode);
ptcache_compress_write(pf, (unsigned char *)tcw, in_len, out, mode);
MEM_freeN(out);
return 1;
}
return 0;
}
// forward decleration
static int ptcache_file_read(PTCacheFile *pf, void *f, size_t tot, int size);
static int ptcache_compress_read(PTCacheFile *pf, unsigned char *result, unsigned int len)
{
int r = 0;
unsigned char compressed = 0;
unsigned int in_len;
unsigned int out_len = len;
unsigned char *in;
unsigned char *props = MEM_callocN(16*sizeof(char), "tmp");
size_t sizeOfIt = 5;
ptcache_file_read(pf, &compressed, 1, sizeof(unsigned char));
if(compressed) {
ptcache_file_read(pf, &in_len, 1, sizeof(unsigned int));
in = (unsigned char *)MEM_callocN(sizeof(unsigned char)*in_len, "pointcache_compressed_buffer");
ptcache_file_read(pf, in, in_len, sizeof(unsigned char));
#ifdef WITH_LZO
if(compressed == 1)
r = lzo1x_decompress(in, (lzo_uint)in_len, result, (lzo_uint *)&out_len, NULL);
#endif
#ifdef WITH_LZMA
if(compressed == 2)
{
size_t leni = in_len, leno = out_len;
ptcache_file_read(pf, &sizeOfIt, 1, sizeof(unsigned int));
ptcache_file_read(pf, props, sizeOfIt, sizeof(unsigned char));
r = LzmaUncompress(result, &leno, in, &leni, props, sizeOfIt);
}
#endif
MEM_freeN(in);
}
else {
ptcache_file_read(pf, result, len, sizeof(unsigned char));
}
MEM_freeN(props);
return r;
}
static void ptcache_read_smoke(PTCacheFile *pf, void *smoke_v)
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
if(sds->fluid) {
size_t res = sds->res[0]*sds->res[1]*sds->res[2];
float dt, dx, *dens, *densold, *heat, *heatold, *vx, *vy, *vz, *vxold, *vyold, *vzold;
unsigned char *obstacles;
unsigned int out_len = (unsigned int)res * sizeof(float);
smoke_export(sds->fluid, &dt, &dx, &dens, &densold, &heat, &heatold, &vx, &vy, &vz, &vxold, &vyold, &vzold, &obstacles);
ptcache_compress_read(pf, (unsigned char *)sds->shadow, out_len);
ptcache_compress_read(pf, (unsigned char*)dens, out_len);
ptcache_compress_read(pf, (unsigned char*)densold, out_len);
ptcache_compress_read(pf, (unsigned char*)heat, out_len);
ptcache_compress_read(pf, (unsigned char*)heatold, out_len);
ptcache_compress_read(pf, (unsigned char*)vx, out_len);
ptcache_compress_read(pf, (unsigned char*)vy, out_len);
ptcache_compress_read(pf, (unsigned char*)vz, out_len);
ptcache_compress_read(pf, (unsigned char*)vxold, out_len);
ptcache_compress_read(pf, (unsigned char*)vyold, out_len);
ptcache_compress_read(pf, (unsigned char*)vzold, out_len);
ptcache_compress_read(pf, (unsigned char*)obstacles, (unsigned int)res);
ptcache_file_read(pf, &dt, 1, sizeof(float));
ptcache_file_read(pf, &dx, 1, sizeof(float));
}
}
static void ptcache_read_smoke_turbulence(PTCacheFile *pf, void *smoke_v)
{
SmokeModifierData *smd= (SmokeModifierData *)smoke_v;
SmokeDomainSettings *sds = smd->domain;
if(sds->fluid) {
int res = sds->res[0]*sds->res[1]*sds->res[2];
int res_big, res_big_array[3];
float *dens, *densold, *tcu, *tcv, *tcw;
unsigned int out_len = sizeof(float)*(unsigned int)res;
unsigned int out_len_big;
smoke_turbulence_get_res(sds->wt, res_big_array);
res_big = res_big_array[0]*res_big_array[1]*res_big_array[2];
out_len_big = sizeof(float) * (unsigned int)res_big;
smoke_turbulence_export(sds->wt, &dens, &densold, &tcu, &tcv, &tcw);
ptcache_compress_read(pf, (unsigned char*)dens, out_len_big);
ptcache_compress_read(pf, (unsigned char*)densold, out_len_big);
ptcache_compress_read(pf, (unsigned char*)tcu, out_len);
ptcache_compress_read(pf, (unsigned char*)tcv, out_len);
ptcache_compress_read(pf, (unsigned char*)tcw, out_len);
}
}
void BKE_ptcache_id_from_smoke(PTCacheID *pid, struct Object *ob, struct SmokeModifierData *smd)
{
SmokeDomainSettings *sds = smd->domain;
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= smd;
pid->type= PTCACHE_TYPE_SMOKE_DOMAIN;
pid->stack_index= sds->point_cache[0]->index;
pid->cache= sds->point_cache[0];
pid->cache_ptr= &(sds->point_cache[0]);
pid->ptcaches= &(sds->ptcaches[0]);
pid->totpoint= pid->totwrite= ptcache_totpoint_smoke;
pid->write_elem= NULL;
pid->read_elem= NULL;
pid->read_stream = ptcache_read_smoke;
pid->write_stream = ptcache_write_smoke;
pid->interpolate_elem= NULL;
pid->write_header= ptcache_write_basic_header;
pid->read_header= ptcache_read_basic_header;
pid->data_types= (1<<BPHYS_DATA_LOCATION); // bogus values to make pointcache happy
pid->info_types= 0;
}
void BKE_ptcache_id_from_smoke_turbulence(PTCacheID *pid, struct Object *ob, struct SmokeModifierData *smd)
{
SmokeDomainSettings *sds = smd->domain;
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= smd;
pid->type= PTCACHE_TYPE_SMOKE_HIGHRES;
pid->stack_index= sds->point_cache[1]->index;
pid->cache= sds->point_cache[1];
pid->cache_ptr= &sds->point_cache[1];
pid->ptcaches= &sds->ptcaches[1];
pid->totpoint= pid->totwrite= ptcache_totpoint_smoke_turbulence;
pid->write_elem= NULL;
pid->read_elem= NULL;
pid->read_stream = ptcache_read_smoke_turbulence;
pid->write_stream = ptcache_write_smoke_turbulence;
pid->interpolate_elem= NULL;
pid->write_header= ptcache_write_basic_header;
pid->read_header= ptcache_read_basic_header;
pid->data_types= (1<<BPHYS_DATA_LOCATION); // bogus values tot make pointcache happy
pid->info_types= 0;
}
void BKE_ptcache_id_from_cloth(PTCacheID *pid, Object *ob, ClothModifierData *clmd)
{
memset(pid, 0, sizeof(PTCacheID));
pid->ob= ob;
pid->calldata= clmd;
pid->type= PTCACHE_TYPE_CLOTH;
pid->stack_index= clmd->point_cache->index;
pid->cache= clmd->point_cache;
pid->cache_ptr= &clmd->point_cache;
pid->ptcaches= &clmd->ptcaches;
pid->totpoint= pid->totwrite= ptcache_totpoint_cloth;
pid->write_elem= ptcache_write_cloth;
pid->write_stream = NULL;
pid->read_stream = NULL;
pid->read_elem= ptcache_read_cloth;
pid->interpolate_elem= ptcache_interpolate_cloth;
pid->write_header= ptcache_write_basic_header;
pid->read_header= ptcache_read_basic_header;
pid->data_types= (1<<BPHYS_DATA_LOCATION) | (1<<BPHYS_DATA_VELOCITY) | (1<<BPHYS_DATA_XCONST);
pid->info_types= 0;
}
void BKE_ptcache_ids_from_object(ListBase *lb, Object *ob)
{
PTCacheID *pid;
ParticleSystem *psys;
ModifierData *md;
lb->first= lb->last= NULL;
if(ob->soft) {
pid= MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_softbody(pid, ob, ob->soft);
BLI_addtail(lb, pid);
}
for(psys=ob->particlesystem.first; psys; psys=psys->next) {
if(psys->part) {
pid= MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_particles(pid, ob, psys);
BLI_addtail(lb, pid);
}
}
for(md=ob->modifiers.first; md; md=md->next) {
if(md->type == eModifierType_Cloth) {
pid= MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_cloth(pid, ob, (ClothModifierData*)md);
BLI_addtail(lb, pid);
}
if(md->type == eModifierType_Smoke) {
SmokeModifierData *smd = (SmokeModifierData *)md;
if(smd->type & MOD_SMOKE_TYPE_DOMAIN)
{
pid= MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_smoke(pid, ob, (SmokeModifierData*)md);
BLI_addtail(lb, pid);
pid= MEM_callocN(sizeof(PTCacheID), "PTCacheID");
BKE_ptcache_id_from_smoke_turbulence(pid, ob, (SmokeModifierData*)md);
BLI_addtail(lb, pid);
}
}
}
}
/* File handling */
/* Takes an Object ID and returns a unique name
- id: object id
- cfra: frame for the cache, can be negative
- stack_index: index in the modifier stack. we can have cache for more then one stack_index
*/
#define MAX_PTCACHE_PATH FILE_MAX
#define MAX_PTCACHE_FILE ((FILE_MAXDIR+FILE_MAXFILE)*2)
static int ptcache_path(PTCacheID *pid, char *filename)
{
Library *lib;
size_t i;
lib= (pid)? pid->ob->id.lib: NULL;
if(pid->cache->flag & PTCACHE_EXTERNAL) {
strcpy(filename, pid->cache->path);
return BLI_add_slash(filename); /* new strlen() */
}
else if (G.relbase_valid || lib) {
char file[MAX_PTCACHE_PATH]; /* we dont want the dir, only the file */
char *blendfilename;
blendfilename= (lib)? lib->filename: G.sce;
BLI_split_dirfile(blendfilename, NULL, file);
i = strlen(file);
/* remove .blend */
if (i > 6)
file[i-6] = '\0';
snprintf(filename, MAX_PTCACHE_PATH, "//"PTCACHE_PATH"%s", file); /* add blend file name to pointcache dir */
BLI_convertstringcode(filename, blendfilename);
return BLI_add_slash(filename); /* new strlen() */
}
/* use the temp path. this is weak but better then not using point cache at all */
/* btempdir is assumed to exist and ALWAYS has a trailing slash */
snprintf(filename, MAX_PTCACHE_PATH, "%s"PTCACHE_PATH"%d", btempdir, abs(getpid()));
return BLI_add_slash(filename); /* new strlen() */
}
static int BKE_ptcache_id_filename(PTCacheID *pid, char *filename, int cfra, short do_path, short do_ext)
{
int len=0;
char *idname;
char *newname;
filename[0] = '\0';
newname = filename;
if (!G.relbase_valid && (pid->cache->flag & PTCACHE_EXTERNAL)==0) return 0; /* save blend file before using disk pointcache */
/* start with temp dir */
if (do_path) {
len = ptcache_path(pid, filename);
newname += len;
}
if(strcmp(pid->cache->name, "")==0 && (pid->cache->flag & PTCACHE_EXTERNAL)==0) {
idname = (pid->ob->id.name+2);
/* convert chars to hex so they are always a valid filename */
while('\0' != *idname) {
snprintf(newname, MAX_PTCACHE_FILE, "%02X", (char)(*idname++));
newname+=2;
len += 2;
}
}
else {
int temp = (int)strlen(pid->cache->name);
strcpy(newname, pid->cache->name);
newname+=temp;
len += temp;
}
if (do_ext) {
if(pid->cache->index < 0)
pid->cache->index = pid->stack_index = object_insert_ptcache(pid->ob);
if(pid->cache->flag & PTCACHE_EXTERNAL) {
if(pid->cache->index >= 0)
snprintf(newname, MAX_PTCACHE_FILE, "_%06d_%02d"PTCACHE_EXT, cfra, pid->stack_index); /* always 6 chars */
else
snprintf(newname, MAX_PTCACHE_FILE, "_%06d"PTCACHE_EXT, cfra); /* always 6 chars */
}
else {
snprintf(newname, MAX_PTCACHE_FILE, "_%06d_%02d"PTCACHE_EXT, cfra, pid->stack_index); /* always 6 chars */
}
len += 16;
}
return len; /* make sure the above string is always 16 chars */
}
/* youll need to close yourself after! */
static PTCacheFile *ptcache_file_open(PTCacheID *pid, int mode, int cfra)
{
PTCacheFile *pf;
FILE *fp = NULL;
char filename[(FILE_MAXDIR+FILE_MAXFILE)*2];
/* don't allow writing for linked objects */
if(pid->ob->id.lib && mode == PTCACHE_FILE_WRITE)
return NULL;
if (!G.relbase_valid && (pid->cache->flag & PTCACHE_EXTERNAL)==0) return NULL; /* save blend file before using disk pointcache */
BKE_ptcache_id_filename(pid, filename, cfra, 1, 1);
if (mode==PTCACHE_FILE_READ) {
if (!BLI_exists(filename)) {
return NULL;
}
fp = fopen(filename, "rb");
} else if (mode==PTCACHE_FILE_WRITE) {
BLI_make_existing_file(filename); /* will create the dir if needs be, same as //textures is created */
fp = fopen(filename, "wb");
} else if (mode==PTCACHE_FILE_UPDATE) {
BLI_make_existing_file(filename);
fp = fopen(filename, "rb+");
}
if (!fp)
return NULL;
pf= MEM_mallocN(sizeof(PTCacheFile), "PTCacheFile");
pf->fp= fp;
return pf;
}
static void ptcache_file_close(PTCacheFile *pf)
{
fclose(pf->fp);
MEM_freeN(pf);
}
static int ptcache_file_read(PTCacheFile *pf, void *f, size_t tot, int size)
{
return (fread(f, size, tot, pf->fp) == tot);
}
static int ptcache_file_write(PTCacheFile *pf, void *f, size_t tot, int size)
{
return (fwrite(f, size, tot, pf->fp) == tot);
}
static int ptcache_file_read_data(PTCacheFile *pf)
{
int i;
for(i=0; i<BPHYS_TOT_DATA; i++) {
if(pf->data_types & (1<<i) && !ptcache_file_read(pf, pf->cur[i], 1, ptcache_data_size[i]))
return 0;
}
return 1;
}
static int ptcache_file_write_data(PTCacheFile *pf)
{
int i;
for(i=0; i<BPHYS_TOT_DATA; i++) {
if(pf->data_types & (1<<i) && !ptcache_file_write(pf, pf->cur[i], 1, ptcache_data_size[i]))
return 0;
}
return 1;
}
static int ptcache_file_read_header_begin(PTCacheFile *pf)
{
int error=0;
char bphysics[8];
pf->data_types = 0;
if(fread(bphysics, sizeof(char), 8, pf->fp) != 8)
error = 1;
if(!error && strncmp(bphysics, "BPHYSICS", 8))
error = 1;
if(!error && !fread(&pf->type, sizeof(int), 1, pf->fp))
error = 1;
/* if there was an error set file as it was */
if(error)
fseek(pf->fp, 0, SEEK_SET);
return !error;
}
static int ptcache_file_write_header_begin(PTCacheFile *pf)
{
char *bphysics = "BPHYSICS";
if(fwrite(bphysics, sizeof(char), 8, pf->fp) != 8)
return 0;
if(!fwrite(&pf->type, sizeof(int), 1, pf->fp))
return 0;
return 1;
}
/* Data pointer handling */
int BKE_ptcache_data_size(int data_type)
{
return ptcache_data_size[data_type];
}
static void ptcache_file_init_pointers(PTCacheFile *pf)
{
int data_types = pf->data_types;
pf->cur[BPHYS_DATA_INDEX] = data_types & (1<<BPHYS_DATA_INDEX) ? &pf->data.index : NULL;
pf->cur[BPHYS_DATA_LOCATION] = data_types & (1<<BPHYS_DATA_LOCATION) ? &pf->data.loc : NULL;
pf->cur[BPHYS_DATA_VELOCITY] = data_types & (1<<BPHYS_DATA_VELOCITY) ? &pf->data.vel : NULL;
pf->cur[BPHYS_DATA_ROTATION] = data_types & (1<<BPHYS_DATA_ROTATION) ? &pf->data.rot : NULL;
pf->cur[BPHYS_DATA_AVELOCITY] = data_types & (1<<BPHYS_DATA_AVELOCITY) ? &pf->data.ave : NULL;
pf->cur[BPHYS_DATA_SIZE] = data_types & (1<<BPHYS_DATA_SIZE) ? &pf->data.size : NULL;
pf->cur[BPHYS_DATA_TIMES] = data_types & (1<<BPHYS_DATA_TIMES) ? &pf->data.times : NULL;
pf->cur[BPHYS_DATA_BOIDS] = data_types & (1<<BPHYS_DATA_BOIDS) ? &pf->data.boids : NULL;
}
static void ptcache_file_seek_pointers(int index, PTCacheFile *pf)
{
int i, size=0;
int data_types = pf->data_types;
if(data_types & (1<<BPHYS_DATA_INDEX)) {
int totpoint;
/* The simplest solution is to just write to the very end. This may cause
* some data duplication, but since it's on disk it's not so bad. The correct
* thing would be to search through the file for the correct index and only
* write to the end if it's not found, but this could be quite slow.
*/
fseek(pf->fp, 8 + sizeof(int), SEEK_SET);
fread(&totpoint, sizeof(int), 1, pf->fp);
totpoint++;
fseek(pf->fp, 8 + sizeof(int), SEEK_SET);
fwrite(&totpoint, sizeof(int), 1, pf->fp);
fseek(pf->fp, 0, SEEK_END);
}
else {
for(i=0; i<BPHYS_TOT_DATA; i++)
size += pf->data_types & (1<<i) ? ptcache_data_size[i] : 0;
/* size of default header + data up to index */
fseek(pf->fp, 8 + 3*sizeof(int) + index * size, SEEK_SET);
}
ptcache_file_init_pointers(pf);
}
void BKE_ptcache_mem_init_pointers(PTCacheMem *pm)
{
int data_types = pm->data_types;
int i;
for(i=0; i<BPHYS_TOT_DATA; i++)
pm->cur[i] = data_types & (1<<i) ? pm->data[i] : NULL;
}
void BKE_ptcache_mem_incr_pointers(PTCacheMem *pm)
{
int i;
for(i=0; i<BPHYS_TOT_DATA; i++) {
if(pm->cur[i])
pm->cur[i] = (char*)pm->cur[i] + ptcache_data_size[i];
}
}
static int BKE_ptcache_mem_seek_pointers(int point_index, PTCacheMem *pm)
{
int data_types = pm->data_types;
int i, index = pm->index_array ? pm->index_array[point_index] - 1 : point_index;
if(index < 0) {
/* Can't give proper location without reallocation, so don't give any location.
* Some points will be cached improperly, but this only happens with simulation
* steps bigger than cache->step, so the cache has to be recalculated anyways
* at some point.
*/
return 0;
}
for(i=0; i<BPHYS_TOT_DATA; i++)
pm->cur[i] = data_types & (1<<i) ? (char*)pm->data[i] + index * ptcache_data_size[i] : NULL;
return 1;
}
static void ptcache_alloc_data(PTCacheMem *pm)
{
int data_types = pm->data_types;
int totpoint = pm->totpoint;
int i;
for(i=0; i<BPHYS_TOT_DATA; i++) {
if(data_types & (1<<i))
pm->data[i] = MEM_callocN(totpoint * ptcache_data_size[i], "PTCache Data");
}
}
static void ptcache_free_data(PTCacheMem *pm)
{
void **data = pm->data;
int i;
for(i=0; i<BPHYS_TOT_DATA; i++) {
if(data[i])
MEM_freeN(data[i]);
}
if(pm->index_array) {
MEM_freeN(pm->index_array);
pm->index_array = NULL;
}
}
static void ptcache_copy_data(void *from[], void *to[])
{
int i;
for(i=0; i<BPHYS_TOT_DATA; i++) {
if(from[i])
memcpy(to[i], from[i], ptcache_data_size[i]);
}
}
static int ptcache_pid_old_elemsize(PTCacheID *pid)
{
if(pid->type==PTCACHE_TYPE_SOFTBODY)
return 6 * sizeof(float);
else if(pid->type==PTCACHE_TYPE_PARTICLES)
return sizeof(ParticleKey);
else if(pid->type==PTCACHE_TYPE_CLOTH)
return 9 * sizeof(float);
return 0;
}
/* reads cache from disk or memory */
/* possible to get old or interpolated result */
int BKE_ptcache_read_cache(PTCacheID *pid, float cfra, float frs_sec)
{
PTCacheFile *pf=NULL, *pf2=NULL;
PTCacheMem *pm=NULL, *pm2=NULL;
float old_data1[14], old_data2[14];
int cfrai = (int)cfra;
int old_elemsize = ptcache_pid_old_elemsize(pid);
int i;
int cfra1 = 0, cfra2 = 0;
int totpoint = 0, totpoint2 = 0;
int *index = &i, *index2 = &i;
int use_old = 0, old_frame = 0;
int ret = 0, error = 0;
/* nothing to read to */
if(pid->totpoint(pid->calldata, (int)cfra) == 0)
return 0;
if(pid->cache->flag & PTCACHE_READ_INFO) {
pid->cache->flag &= ~PTCACHE_READ_INFO;
BKE_ptcache_read_cache(pid, 0, frs_sec);
}
/* first check if we have the actual frame cached */
if(cfra == (float)cfrai) {
if(pid->cache->flag & PTCACHE_DISK_CACHE) {
pf= ptcache_file_open(pid, PTCACHE_FILE_READ, cfrai);
}
else {
pm = pid->cache->mem_cache.first;
for(; pm; pm=pm->next) {
if(pm->frame == cfrai)
break;
}
}
}
/* no exact cache frame found so try to find cached frames around cfra */
if(!pm && !pf) {
if(pid->cache->flag & PTCACHE_DISK_CACHE) {
pf=NULL;
while(cfrai > pid->cache->startframe && !pf) {
cfrai--;
pf= ptcache_file_open(pid, PTCACHE_FILE_READ, cfrai);
cfra1 = cfrai;
}
old_frame = cfrai;
cfrai = (int)cfra;
while(cfrai < pid->cache->endframe && !pf2) {
cfrai++;
pf2= ptcache_file_open(pid, PTCACHE_FILE_READ, cfrai);
cfra2 = cfrai;
}
if(pf && !pf2) {
pf2 = pf;
pf = NULL;
}
}
else if(pid->cache->mem_cache.first){
pm = pid->cache->mem_cache.first;
while(pm->next && pm->next->frame < cfra)
pm= pm->next;
if(pm) {
old_frame = pm->frame;
cfra1 = pm->frame;
}
pm2 = pid->cache->mem_cache.last;
if(pm2 && pm2->frame < cfra)
pm2 = NULL;
else {
while(pm2->prev && pm2->prev->frame > cfra)
pm2= pm2->prev;
if(pm2)
cfra2 = pm2->frame;
}
if(pm && !pm2) {
pm2 = pm;
pm = NULL;
}
}
}
if(!pm && !pm2 && !pf && !pf2)
return 0;
if(pm) {
BKE_ptcache_mem_init_pointers(pm);
totpoint = pm->totpoint;
index = pm->data_types & (1<<BPHYS_DATA_INDEX) ? pm->cur[BPHYS_DATA_INDEX] : &i;
}
if(pm2) {
BKE_ptcache_mem_init_pointers(pm2);
totpoint2 = pm2->totpoint;
index2 = pm2->data_types & (1<<BPHYS_DATA_INDEX) ? pm2->cur[BPHYS_DATA_INDEX] : &i;
}
if(pf) {
if(ptcache_file_read_header_begin(pf)) {
if(pf->type != pid->type) {
/* todo report error */
ptcache_file_close(pf);
pf = NULL;
}
else if(pid->read_header(pf)) {
ptcache_file_init_pointers(pf);
totpoint = pf->totpoint;
index = pf->data_types & (1<<BPHYS_DATA_INDEX) ? &pf->data.index : &i;
}
}
else {
/* fall back to old cache file format */
use_old = 1;
totpoint = pid->totpoint(pid->calldata, (int) cfra);
}
}
if(pf2) {
if(ptcache_file_read_header_begin(pf2)) {
if(pf2->type != pid->type) {
/* todo report error */
ptcache_file_close(pf2);
pf2 = NULL;
}
else if(pid->read_header(pf2)) {
ptcache_file_init_pointers(pf2);
totpoint2 = pf2->totpoint;
index2 = pf2->data_types & (1<<BPHYS_DATA_INDEX) ? &pf2->data.index : &i;
}
}
else {
/* fall back to old cache file format */
use_old = 1;
totpoint2 = pid->totpoint(pid->calldata, (int) cfra);
}
}
/* don't read old cache if already simulated past cached frame */
if(!pm && !pf && cfra1 && cfra1 <= pid->cache->simframe)
error = 1;
if(cfra1 && cfra1==cfra2)
error = 1;
if(!error)
{
if(pf && pid->read_stream) {
if(totpoint != pid->totpoint(pid->calldata, (int) cfra))
error = 1;
else
{
// we have stream writing here
pid->read_stream(pf, pid->calldata);
}
}
}
if((pid->data_types & (1<<BPHYS_DATA_INDEX)) == 0)
totpoint = MIN2(totpoint, pid->totpoint(pid->calldata, (int) cfra));
if(!error)
{
for(i=0; i<totpoint; i++) {
/* read old cache file format */
if(use_old) {
if(pid->read_elem && ptcache_file_read(pf, (void*)old_data1, 1, old_elemsize))
pid->read_elem(i, pid->calldata, NULL, frs_sec, cfra, old_data1);
else if(pid->read_elem)
{ error = 1; break; }
}
else {
if(pid->read_elem && (pm || ptcache_file_read_data(pf)))
pid->read_elem(*index, pid->calldata, pm ? pm->cur : pf->cur, frs_sec, cfra1 ? (float)cfra1 : (float)cfrai, NULL);
else if(pid->read_elem)
{ error = 1; break; }
}
if(pm) {
BKE_ptcache_mem_incr_pointers(pm);
index = pm->data_types & (1<<BPHYS_DATA_INDEX) ? pm->cur[BPHYS_DATA_INDEX] : &i;
}
}
}
if(!error)
{
if(pf2 && pid->read_stream) {
if(totpoint2 != pid->totpoint(pid->calldata, (int) cfra))
error = 1;
else
{
// we have stream writing here
pid->read_stream(pf2, pid->calldata);
}
}
}
if((pid->data_types & (1<<BPHYS_DATA_INDEX)) == 0)
totpoint2 = MIN2(totpoint2, pid->totpoint(pid->calldata, (int) cfra));
if(!error)
{
for(i=0; i<totpoint2; i++) {
/* read old cache file format */
if(use_old) {
if(pid->read_elem && ptcache_file_read(pf2, (void*)old_data2, 1, old_elemsize)) {
if(!pf && pf2)
pid->read_elem(i, pid->calldata, NULL, frs_sec, (float)cfra2, old_data2);
else if(pid->interpolate_elem)
pid->interpolate_elem(i, pid->calldata, NULL, frs_sec, cfra, (float)cfra1, (float)cfra2, old_data2);
else
{ error = 1; break; }
}
else if(pid->read_elem)
{ error = 1; break; }
}
else {
if(pid->read_elem && (pm2 || ptcache_file_read_data(pf2))) {
if((!pf && pf2) || (!pm && pm2))
pid->read_elem(*index2, pid->calldata, pm2 ? pm2->cur : pf2->cur, frs_sec, (float)cfra2, NULL);
else if(pid->interpolate_elem)
pid->interpolate_elem(*index2, pid->calldata, pm2 ? pm2->cur : pf2->cur, frs_sec, cfra, (float)cfra1, (float)cfra2, NULL);
else
{ error = 1; break; }
}
else if(pid->read_elem)
{ error = 1; break; }
}
if(pm2) {
BKE_ptcache_mem_incr_pointers(pm2);
index2 = pm2->data_types & (1<<BPHYS_DATA_INDEX) ? pm2->cur[BPHYS_DATA_INDEX] : &i;
}
}
}
if(pm || pf)
ret = (pm2 || pf2) ? PTCACHE_READ_INTERPOLATED : PTCACHE_READ_EXACT;
else if(pm2 || pf2) {
ret = PTCACHE_READ_OLD;
pid->cache->simframe = old_frame;
}
if(pf) {
ptcache_file_close(pf);
pf = NULL;
}
if(pf2) {
ptcache_file_close(pf2);
pf = NULL;
}
if((pid->cache->flag & PTCACHE_QUICK_CACHE)==0) {
cfrai = (int)cfra;
/* clear invalid cache frames so that better stuff can be simulated */
if(pid->cache->flag & PTCACHE_OUTDATED) {
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, cfrai);
}
else if(pid->cache->flag & PTCACHE_FRAMES_SKIPPED) {
if(cfra <= pid->cache->last_exact)
pid->cache->flag &= ~PTCACHE_FRAMES_SKIPPED;
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, MAX2(cfrai,pid->cache->last_exact));
}
}
return (error ? 0 : ret);
}
/* TODO for later */
static void ptcache_make_index_array(PTCacheMem *pm, int totpoint)
{
int i, *index;
if(pm->index_array) {
MEM_freeN(pm->index_array);
pm->index_array = NULL;
}
if(!pm->data[BPHYS_DATA_INDEX])
return;
pm->index_array = MEM_callocN(totpoint * sizeof(int), "PTCacheMem index_array");
index = pm->data[BPHYS_DATA_INDEX];
for(i=0; i<pm->totpoint; i++, index++)
pm->index_array[*index] = i + 1;
}
/* writes cache to disk or memory */
int BKE_ptcache_write_cache(PTCacheID *pid, int cfra)
{
PointCache *cache = pid->cache;
PTCacheFile *pf= NULL, *pf2= NULL;
int i;
int totpoint = pid->totpoint(pid->calldata, cfra);
int add = 0, overwrite = 0;
if(totpoint == 0 || cfra < 0
|| (cfra ? pid->data_types == 0 : pid->info_types == 0))
return 0;
if(cache->flag & PTCACHE_DISK_CACHE) {
int ofra, efra = cache->endframe;
if(cfra==0)
add = 1;
/* allways start from scratch on the first frame */
else if(cfra == cache->startframe) {
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, cfra);
cache->flag &= ~PTCACHE_REDO_NEEDED;
add = 1;
}
else {
/* find last cached frame */
while(efra > cache->startframe && !BKE_ptcache_id_exist(pid, efra))
efra--;
/* find second last cached frame */
ofra = efra-1;
while(ofra > cache->startframe && !BKE_ptcache_id_exist(pid, ofra))
ofra--;
if(efra >= cache->startframe && cfra > efra) {
if(ofra >= cache->startframe && efra - ofra < cache->step)
overwrite = 1;
else
add = 1;
}
}
if(add || overwrite) {
if(overwrite)
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_FRAME, efra);
pf = ptcache_file_open(pid, PTCACHE_FILE_WRITE, cfra);
if(!pf)
return 0;
pf->type = pid->type;
pf->totpoint = cfra ? pid->totwrite(pid->calldata, cfra) : totpoint;
pf->data_types = cfra ? pid->data_types : pid->info_types;
if(!ptcache_file_write_header_begin(pf) || !pid->write_header(pf)) {
ptcache_file_close(pf);
return 0;
}
ptcache_file_init_pointers(pf);
if(pf && pid->write_stream) {
// we have stream writing here
pid->write_stream(pf, pid->calldata);
}
else
for(i=0; i<totpoint; i++) {
if(pid->write_elem) {
int write = pid->write_elem(i, pid->calldata, pf->cur, cfra);
if(write) {
if(!ptcache_file_write_data(pf)) {
ptcache_file_close(pf);
if(pf2) ptcache_file_close(pf2);
return 0;
}
/* newly born particles have to be copied to previous cached frame */
else if(overwrite && write == 2) {
if(!pf2) {
pf2 = ptcache_file_open(pid, PTCACHE_FILE_UPDATE, ofra);
if(!pf2) {
ptcache_file_close(pf);
return 0;
}
pf2->type = pid->type;
pf2->totpoint = totpoint;
pf2->data_types = pid->data_types;
}
ptcache_file_seek_pointers(i, pf2);
pid->write_elem(i, pid->calldata, pf2->cur, cfra);
if(!ptcache_file_write_data(pf2)) {
ptcache_file_close(pf);
ptcache_file_close(pf2);
return 0;
}
}
}
}
}
}
}
else {
PTCacheMem *pm;
PTCacheMem *pm2;
pm2 = cache->mem_cache.first;
/* don't write info file in memory */
if(cfra==0)
return 1;
/* allways start from scratch on the first frame */
if(cfra == cache->startframe) {
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, cfra);
cache->flag &= ~PTCACHE_REDO_NEEDED;
add = 1;
}
else if (cache->mem_cache.last) {
pm2 = cache->mem_cache.last;
if(pm2 && cfra > pm2->frame) {
if(pm2->prev && pm2->frame - pm2->prev->frame < cache->step)
overwrite = 1;
else
add = 1;
}
}
else
add = 1;
if(add || overwrite) {
if(overwrite)
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_FRAME, pm2->frame);
pm = MEM_callocN(sizeof(PTCacheMem), "Pointcache mem");
pm->totpoint = pid->totwrite(pid->calldata, cfra);
pm->data_types = cfra ? pid->data_types : pid->info_types;
ptcache_alloc_data(pm);
BKE_ptcache_mem_init_pointers(pm);
for(i=0; i<totpoint; i++) {
if(pid->write_elem) {
int write = pid->write_elem(i, pid->calldata, pm->cur, cfra);
if(write) {
BKE_ptcache_mem_incr_pointers(pm);
/* newly born particles have to be copied to previous cached frame */
if(overwrite && write == 2) {
pm2 = cache->mem_cache.last;
if(BKE_ptcache_mem_seek_pointers(i, pm2))
pid->write_elem(i, pid->calldata, pm2->cur, cfra);
}
}
}
}
ptcache_make_index_array(pm, pid->totpoint(pid->calldata, cfra));
pm->frame = cfra;
BLI_addtail(&cache->mem_cache, pm);
}
}
if(add || overwrite) {
if(cfra - cache->last_exact == 1
|| cfra == cache->startframe) {
cache->last_exact = cfra;
cache->flag &= ~PTCACHE_FRAMES_SKIPPED;
}
else
cache->flag |= PTCACHE_FRAMES_SKIPPED;
}
if(pf) ptcache_file_close(pf);
if(pf2) ptcache_file_close(pf2);
BKE_ptcache_update_info(pid);
return 1;
}
/* youll need to close yourself after!
* mode - PTCACHE_CLEAR_ALL,
*/
/* Clears & resets */
void BKE_ptcache_id_clear(PTCacheID *pid, int mode, int cfra)
{
int len; /* store the length of the string */
/* mode is same as fopen's modes */
DIR *dir;
struct dirent *de;
char path[MAX_PTCACHE_PATH];
char filename[MAX_PTCACHE_FILE];
char path_full[MAX_PTCACHE_FILE];
char ext[MAX_PTCACHE_PATH];
if(!pid->cache || pid->cache->flag & PTCACHE_BAKED)
return;
/* don't allow clearing for linked objects */
if(pid->ob->id.lib)
return;
/*if (!G.relbase_valid) return; *//* save blend file before using pointcache */
/* clear all files in the temp dir with the prefix of the ID and the ".bphys" suffix */
switch (mode) {
case PTCACHE_CLEAR_ALL:
case PTCACHE_CLEAR_BEFORE:
case PTCACHE_CLEAR_AFTER:
if(pid->cache->flag & PTCACHE_DISK_CACHE) {
ptcache_path(pid, path);
len = BKE_ptcache_id_filename(pid, filename, cfra, 0, 0); /* no path */
dir = opendir(path);
if (dir==NULL)
return;
snprintf(ext, sizeof(ext), "_%02d"PTCACHE_EXT, pid->stack_index);
while ((de = readdir(dir)) != NULL) {
if (strstr(de->d_name, ext)) { /* do we have the right extension?*/
if (strncmp(filename, de->d_name, len ) == 0) { /* do we have the right prefix */
if (mode == PTCACHE_CLEAR_ALL) {
pid->cache->last_exact = 0;
BLI_join_dirfile(path_full, path, de->d_name);
BLI_delete(path_full, 0, 0);
} else {
/* read the number of the file */
int frame, len2 = (int)strlen(de->d_name);
char num[7];
if (len2 > 15) { /* could crash if trying to copy a string out of this range*/
BLI_strncpy(num, de->d_name + (strlen(de->d_name) - 15), sizeof(num));
frame = atoi(num);
if((mode==PTCACHE_CLEAR_BEFORE && frame < cfra) ||
(mode==PTCACHE_CLEAR_AFTER && frame > cfra) ) {
BLI_join_dirfile(path_full, path, de->d_name);
BLI_delete(path_full, 0, 0);
}
}
}
}
}
}
closedir(dir);
}
else {
PTCacheMem *pm= pid->cache->mem_cache.first;
PTCacheMem *link= NULL;
pm= pid->cache->mem_cache.first;
if(mode == PTCACHE_CLEAR_ALL) {
pid->cache->last_exact = 0;
for(; pm; pm=pm->next)
ptcache_free_data(pm);
BLI_freelistN(&pid->cache->mem_cache);
} else {
while(pm) {
if((mode==PTCACHE_CLEAR_BEFORE && pm->frame < cfra) ||
(mode==PTCACHE_CLEAR_AFTER && pm->frame > cfra) ) {
link = pm;
ptcache_free_data(pm);
pm = pm->next;
BLI_freelinkN(&pid->cache->mem_cache, link);
}
else
pm = pm->next;
}
}
}
break;
case PTCACHE_CLEAR_FRAME:
if(pid->cache->flag & PTCACHE_DISK_CACHE) {
if(BKE_ptcache_id_exist(pid, cfra)) {
BKE_ptcache_id_filename(pid, filename, cfra, 1, 1); /* no path */
BLI_delete(filename, 0, 0);
}
}
else {
PTCacheMem *pm = pid->cache->mem_cache.first;
for(; pm; pm=pm->next) {
if(pm->frame == cfra) {
ptcache_free_data(pm);
BLI_freelinkN(&pid->cache->mem_cache, pm);
break;
}
}
}
break;
}
BKE_ptcache_update_info(pid);
}
int BKE_ptcache_id_exist(PTCacheID *pid, int cfra)
{
if(!pid->cache)
return 0;
if(pid->cache->flag & PTCACHE_DISK_CACHE) {
char filename[MAX_PTCACHE_FILE];
BKE_ptcache_id_filename(pid, filename, cfra, 1, 1);
return BLI_exists(filename);
}
else {
PTCacheMem *pm = pid->cache->mem_cache.first;
for(; pm; pm=pm->next) {
if(pm->frame==cfra)
return 1;
}
return 0;
}
}
void BKE_ptcache_id_time(PTCacheID *pid, Scene *scene, float cfra, int *startframe, int *endframe, float *timescale)
{
Object *ob;
PointCache *cache;
float offset, time, nexttime;
/* TODO: this has to be sorter out once bsystem_time gets redone, */
/* now caches can handle interpolating etc. too - jahka */
/* time handling for point cache:
* - simulation time is scaled by result of bsystem_time
* - for offsetting time only time offset is taken into account, since
* that's always the same and can't be animated. a timeoffset which
* varies over time is not simpe to support.
* - field and motion blur offsets are currently ignored, proper solution
* is probably to interpolate results from two frames for that ..
*/
ob= pid->ob;
cache= pid->cache;
if(timescale) {
time= bsystem_time(scene, ob, cfra, 0.0f);
nexttime= bsystem_time(scene, ob, cfra+1.0f, 0.0f);
*timescale= MAX2(nexttime - time, 0.0f);
}
if(startframe && endframe) {
*startframe= cache->startframe;
*endframe= cache->endframe;
// XXX ipoflag is depreceated - old animation system stuff
if (/*(ob->ipoflag & OB_OFFS_PARENT) &&*/ (ob->partype & PARSLOW)==0) {
offset= give_timeoffset(ob);
*startframe += (int)(offset+0.5f);
*endframe += (int)(offset+0.5f);
}
}
}
int BKE_ptcache_id_reset(Scene *scene, PTCacheID *pid, int mode)
{
PointCache *cache;
int reset, clear, after;
if(!pid->cache)
return 0;
cache= pid->cache;
reset= 0;
clear= 0;
after= 0;
if(mode == PTCACHE_RESET_DEPSGRAPH) {
if(!(cache->flag & PTCACHE_BAKED) && !BKE_ptcache_get_continue_physics()) {
if(cache->flag & PTCACHE_QUICK_CACHE)
clear= 1;
after= 1;
}
cache->flag |= PTCACHE_OUTDATED;
}
else if(mode == PTCACHE_RESET_BAKED) {
if(!BKE_ptcache_get_continue_physics()) {
reset= 1;
clear= 1;
}
else
cache->flag |= PTCACHE_OUTDATED;
}
else if(mode == PTCACHE_RESET_OUTDATED) {
reset = 1;
if(cache->flag & PTCACHE_OUTDATED && !(cache->flag & PTCACHE_BAKED)) {
clear= 1;
cache->flag &= ~PTCACHE_OUTDATED;
}
}
if(reset) {
cache->flag &= ~(PTCACHE_REDO_NEEDED|PTCACHE_SIMULATION_VALID);
cache->simframe= 0;
cache->last_exact= 0;
if(pid->type == PTCACHE_TYPE_CLOTH)
cloth_free_modifier(pid->ob, pid->calldata);
else if(pid->type == PTCACHE_TYPE_SOFTBODY)
sbFreeSimulation(pid->calldata);
else if(pid->type == PTCACHE_TYPE_PARTICLES)
psys_reset(pid->calldata, PSYS_RESET_DEPSGRAPH);
else if(pid->type == PTCACHE_TYPE_SMOKE_DOMAIN)
smokeModifier_reset(pid->calldata);
else if(pid->type == PTCACHE_TYPE_SMOKE_HIGHRES)
smokeModifier_reset_turbulence(pid->calldata);
}
if(clear)
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
else if(after)
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, CFRA);
return (reset || clear || after);
}
int BKE_ptcache_object_reset(Scene *scene, Object *ob, int mode)
{
PTCacheID pid;
ParticleSystem *psys;
ModifierData *md;
int reset, skip;
reset= 0;
skip= 0;
if(ob->soft) {
BKE_ptcache_id_from_softbody(&pid, ob, ob->soft);
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
}
for(psys=ob->particlesystem.first; psys; psys=psys->next) {
/* Baked cloth hair has to be checked first, because we don't want to reset */
/* particles or cloth in that case -jahka */
if(psys->clmd) {
BKE_ptcache_id_from_cloth(&pid, ob, psys->clmd);
if(mode == PSYS_RESET_ALL || !(psys->part->type == PART_HAIR && (pid.cache->flag & PTCACHE_BAKED)))
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
else
skip = 1;
}
else if(psys->recalc & PSYS_RECALC_REDO || psys->recalc & PSYS_RECALC_CHILD)
skip = 1;
if(skip == 0 && psys->part) {
BKE_ptcache_id_from_particles(&pid, ob, psys);
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
}
}
for(md=ob->modifiers.first; md; md=md->next) {
if(md->type == eModifierType_Cloth) {
BKE_ptcache_id_from_cloth(&pid, ob, (ClothModifierData*)md);
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
}
if(md->type == eModifierType_Smoke) {
SmokeModifierData *smd = (SmokeModifierData *)md;
if(smd->type & MOD_SMOKE_TYPE_DOMAIN)
{
BKE_ptcache_id_from_smoke(&pid, ob, (SmokeModifierData*)md);
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
BKE_ptcache_id_from_smoke_turbulence(&pid, ob, (SmokeModifierData*)md);
reset |= BKE_ptcache_id_reset(scene, &pid, mode);
}
}
}
if (ob->type == OB_ARMATURE)
BIK_clear_cache(ob->pose);
return reset;
}
/* Use this when quitting blender, with unsaved files */
void BKE_ptcache_remove(void)
{
char path[MAX_PTCACHE_PATH];
char path_full[MAX_PTCACHE_PATH];
int rmdir = 1;
ptcache_path(NULL, path);
if (BLI_exist(path)) {
/* The pointcache dir exists? - remove all pointcache */
DIR *dir;
struct dirent *de;
dir = opendir(path);
if (dir==NULL)
return;
while ((de = readdir(dir)) != NULL) {
if( strcmp(de->d_name, ".")==0 || strcmp(de->d_name, "..")==0) {
/* do nothing */
} else if (strstr(de->d_name, PTCACHE_EXT)) { /* do we have the right extension?*/
BLI_join_dirfile(path_full, path, de->d_name);
BLI_delete(path_full, 0, 0);
} else {
rmdir = 0; /* unknown file, dont remove the dir */
}
}
closedir(dir);
} else {
rmdir = 0; /* path dosnt exist */
}
if (rmdir) {
BLI_delete(path, 1, 0);
}
}
/* Continuous Interaction */
static int CONTINUE_PHYSICS = 0;
void BKE_ptcache_set_continue_physics(Scene *scene, int enable)
{
Object *ob;
if(CONTINUE_PHYSICS != enable) {
CONTINUE_PHYSICS = enable;
if(CONTINUE_PHYSICS == 0) {
for(ob=G.main->object.first; ob; ob=ob->id.next)
if(BKE_ptcache_object_reset(scene, ob, PTCACHE_RESET_OUTDATED))
DAG_id_flush_update(&ob->id, OB_RECALC_DATA);
}
}
}
int BKE_ptcache_get_continue_physics()
{
return CONTINUE_PHYSICS;
}
/* Point Cache handling */
PointCache *BKE_ptcache_add(ListBase *ptcaches)
{
PointCache *cache;
cache= MEM_callocN(sizeof(PointCache), "PointCache");
cache->startframe= 1;
cache->endframe= 250;
cache->step= 10;
cache->index = -1;
BLI_addtail(ptcaches, cache);
return cache;
}
void BKE_ptcache_free_mem(ListBase *mem_cache)
{
PTCacheMem *pm = mem_cache->first;
if(pm) {
for(; pm; pm=pm->next)
ptcache_free_data(pm);
BLI_freelistN(mem_cache);
}
}
void BKE_ptcache_free(PointCache *cache)
{
BKE_ptcache_free_mem(&cache->mem_cache);
if(cache->edit && cache->free_edit)
cache->free_edit(cache->edit);
MEM_freeN(cache);
}
void BKE_ptcache_free_list(ListBase *ptcaches)
{
PointCache *cache = ptcaches->first;
while(cache) {
BLI_remlink(ptcaches, cache);
BKE_ptcache_free(cache);
cache = ptcaches->first;
}
}
static PointCache *ptcache_copy(PointCache *cache)
{
PointCache *ncache;
ncache= MEM_dupallocN(cache);
/* hmm, should these be copied over instead? */
ncache->mem_cache.first = NULL;
ncache->mem_cache.last = NULL;
ncache->flag= 0;
ncache->simframe= 0;
return ncache;
}
/* returns first point cache */
PointCache *BKE_ptcache_copy_list(ListBase *ptcaches_new, ListBase *ptcaches_old)
{
PointCache *cache = ptcaches_old->first;
ptcaches_new->first = ptcaches_new->last = NULL;
for(; cache; cache=cache->next)
BLI_addtail(ptcaches_new, ptcache_copy(cache));
return ptcaches_new->first;
}
/* Baking */
static int count_quick_cache(Scene *scene, int *quick_step)
{
Base *base = scene->base.first;
PTCacheID *pid;
ListBase pidlist;
int autocache_count= 0;
for(base = scene->base.first; base; base = base->next) {
if(base->object) {
BKE_ptcache_ids_from_object(&pidlist, base->object);
for(pid=pidlist.first; pid; pid=pid->next) {
if((pid->cache->flag & PTCACHE_BAKED)
|| (pid->cache->flag & PTCACHE_QUICK_CACHE)==0)
continue;
if(pid->cache->flag & PTCACHE_OUTDATED || (pid->cache->flag & PTCACHE_SIMULATION_VALID)==0) {
if(!autocache_count)
*quick_step = pid->cache->step;
else
*quick_step = MIN2(*quick_step, pid->cache->step);
autocache_count++;
}
}
BLI_freelistN(&pidlist);
}
}
return autocache_count;
}
void BKE_ptcache_quick_cache_all(Scene *scene)
{
PTCacheBaker baker;
baker.bake=0;
baker.break_data=NULL;
baker.break_test=NULL;
baker.pid=NULL;
baker.progressbar=NULL;
baker.progressend=NULL;
baker.progresscontext=NULL;
baker.render=0;
baker.anim_init = 0;
baker.scene=scene;
if(count_quick_cache(scene, &baker.quick_step))
BKE_ptcache_make_cache(&baker);
}
/* Simulation thread, no need for interlocks as data written in both threads
are only unitary integers (I/O assumed to be atomic for them) */
typedef struct {
int break_operation;
int thread_ended;
int endframe;
int step;
int *cfra_ptr;
Scene *scene;
} ptcache_make_cache_data;
static void *ptcache_make_cache_thread(void *ptr) {
ptcache_make_cache_data *data = (ptcache_make_cache_data*)ptr;
#if defined(__APPLE__) && (PARALLEL == 1) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 2)
// Workaround for Apple gcc 4.2.1 omp vs background thread bug
pthread_setspecific (gomp_tls_key, thread_tls_data);
#endif
for(; (*data->cfra_ptr <= data->endframe) && !data->break_operation; *data->cfra_ptr+=data->step)
scene_update_for_newframe(data->scene, data->scene->lay);
data->thread_ended = TRUE;
return NULL;
}
/* if bake is not given run simulations to current frame */
void BKE_ptcache_make_cache(PTCacheBaker* baker)
{
Scene *scene = baker->scene;
Base *base;
ListBase pidlist;
PTCacheID *pid = baker->pid;
PointCache *cache = NULL;
float frameleno = scene->r.framelen;
int cfrao = CFRA;
int startframe = MAXFRAME;
int bake = baker->bake;
int render = baker->render;
ListBase threads;
ptcache_make_cache_data thread_data;
int progress, old_progress;
thread_data.endframe = baker->anim_init ? scene->r.sfra : CFRA;
thread_data.step = baker->quick_step;
thread_data.cfra_ptr = &CFRA;
thread_data.scene = baker->scene;
G.afbreek = 0;
/* set caches to baking mode and figure out start frame */
if(pid) {
/* cache/bake a single object */
cache = pid->cache;
if((cache->flag & PTCACHE_BAKED)==0) {
if(pid->type==PTCACHE_TYPE_PARTICLES)
psys_get_pointcache_start_end(scene, pid->calldata, &cache->startframe, &cache->endframe);
else if(pid->type == PTCACHE_TYPE_SMOKE_HIGHRES) {
/* get all pids from the object and search for smoke low res */
ListBase pidlist2;
PTCacheID *pid2;
BKE_ptcache_ids_from_object(&pidlist2, pid->ob);
for(pid2=pidlist2.first; pid2; pid2=pid2->next) {
if(pid2->type == PTCACHE_TYPE_SMOKE_DOMAIN)
{
if(pid2->cache && !(pid2->cache->flag & PTCACHE_BAKED)) {
if(bake || pid2->cache->flag & PTCACHE_REDO_NEEDED)
BKE_ptcache_id_clear(pid2, PTCACHE_CLEAR_ALL, 0);
if(bake) {
pid2->cache->flag |= PTCACHE_BAKING;
pid2->cache->flag &= ~PTCACHE_BAKED;
}
}
}
}
BLI_freelistN(&pidlist2);
}
if(bake || cache->flag & PTCACHE_REDO_NEEDED)
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
startframe = MAX2(cache->last_exact, cache->startframe);
if(bake) {
thread_data.endframe = cache->endframe;
cache->flag |= PTCACHE_BAKING;
}
else {
thread_data.endframe = MIN2(thread_data.endframe, cache->endframe);
}
cache->flag &= ~PTCACHE_BAKED;
}
}
else for(base=scene->base.first; base; base= base->next) {
/* cache/bake everything in the scene */
BKE_ptcache_ids_from_object(&pidlist, base->object);
for(pid=pidlist.first; pid; pid=pid->next) {
cache = pid->cache;
if((cache->flag & PTCACHE_BAKED)==0) {
if(pid->type==PTCACHE_TYPE_PARTICLES) {
ParticleSystem *psys = (ParticleSystem*)pid->calldata;
/* skip hair & keyed particles */
if(psys->part->type == PART_HAIR || psys->part->phystype == PART_PHYS_KEYED)
continue;
psys_get_pointcache_start_end(scene, pid->calldata, &cache->startframe, &cache->endframe);
}
if((cache->flag & PTCACHE_REDO_NEEDED || (cache->flag & PTCACHE_SIMULATION_VALID)==0)
&& ((cache->flag & PTCACHE_QUICK_CACHE)==0 || render || bake))
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
startframe = MIN2(startframe, cache->startframe);
if(bake || render) {
cache->flag |= PTCACHE_BAKING;
if(bake)
thread_data.endframe = MAX2(thread_data.endframe, cache->endframe);
}
cache->flag &= ~PTCACHE_BAKED;
}
}
BLI_freelistN(&pidlist);
}
CFRA = startframe;
scene->r.framelen = 1.0;
thread_data.break_operation = FALSE;
thread_data.thread_ended = FALSE;
old_progress = -1;
#if defined(__APPLE__) && (PARALLEL == 1) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 2)
// Workaround for Apple gcc 4.2.1 omp vs background thread bug
thread_tls_data = pthread_getspecific(gomp_tls_key);
#endif
BLI_init_threads(&threads, ptcache_make_cache_thread, 1);
BLI_insert_thread(&threads, (void*)&thread_data);
while (thread_data.thread_ended == FALSE) {
if(bake)
progress = (int)(100.0f * (float)(CFRA - startframe)/(float)(thread_data.endframe-startframe));
else
progress = CFRA;
/* NOTE: baking should not redraw whole ui as this slows things down */
if ((baker->progressbar) && (progress != old_progress)) {
baker->progressbar(baker->progresscontext, progress);
old_progress = progress;
}
/* Delay to lessen CPU load from UI thread */
PIL_sleep_ms(200);
/* NOTE: breaking baking should leave calculated frames in cache, not clear it */
if(blender_test_break() && !thread_data.break_operation) {
thread_data.break_operation = TRUE;
if (baker->progressend)
baker->progressend(baker->progresscontext);
WM_cursor_wait(1);
}
}
BLI_end_threads(&threads);
/* clear baking flag */
if(pid) {
cache->flag &= ~(PTCACHE_BAKING|PTCACHE_REDO_NEEDED);
cache->flag |= PTCACHE_SIMULATION_VALID;
if(bake) {
cache->flag |= PTCACHE_BAKED;
/* write info file */
if(cache->flag & PTCACHE_DISK_CACHE)
BKE_ptcache_write_cache(pid, 0);
}
}
else for(base=scene->base.first; base; base= base->next) {
BKE_ptcache_ids_from_object(&pidlist, base->object);
for(pid=pidlist.first; pid; pid=pid->next) {
/* skip hair particles */
if(pid->type==PTCACHE_TYPE_PARTICLES && ((ParticleSystem*)pid->calldata)->part->type == PART_HAIR)
continue;
cache = pid->cache;
if(thread_data.step > 1)
cache->flag &= ~(PTCACHE_BAKING|PTCACHE_OUTDATED);
else
cache->flag &= ~(PTCACHE_BAKING|PTCACHE_REDO_NEEDED);
cache->flag |= PTCACHE_SIMULATION_VALID;
if(bake) {
cache->flag |= PTCACHE_BAKED;
if(cache->flag & PTCACHE_DISK_CACHE)
BKE_ptcache_write_cache(pid, 0);
}
}
BLI_freelistN(&pidlist);
}
scene->r.framelen = frameleno;
CFRA = cfrao;
if(bake) /* already on cfra unless baking */
scene_update_for_newframe(scene, scene->lay);
if (thread_data.break_operation)
WM_cursor_wait(0);
else if (baker->progressend)
baker->progressend(baker->progresscontext);
/* TODO: call redraw all windows somehow */
}
/* Helpers */
void BKE_ptcache_disk_to_mem(PTCacheID *pid)
{
PointCache *cache = pid->cache;
PTCacheFile *pf;
PTCacheMem *pm;
int cfra, sfra = cache->startframe, efra = cache->endframe;
int i;
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
for(cfra=sfra; cfra <= efra; cfra++) {
pf = ptcache_file_open(pid, PTCACHE_FILE_READ, cfra);
if(pf) {
if(!ptcache_file_read_header_begin(pf)) {
printf("Can't yet convert old cache format\n");
cache->flag |= PTCACHE_DISK_CACHE;
ptcache_file_close(pf);
return;
}
if(pf->type != pid->type || !pid->read_header(pf)) {
cache->flag |= PTCACHE_DISK_CACHE;
ptcache_file_close(pf);
return;
}
pm = MEM_callocN(sizeof(PTCacheMem), "Pointcache mem");
pm->totpoint = pf->totpoint;
pm->data_types = pf->data_types;
pm->frame = cfra;
ptcache_alloc_data(pm);
BKE_ptcache_mem_init_pointers(pm);
ptcache_file_init_pointers(pf);
for(i=0; i<pm->totpoint; i++) {
if(!ptcache_file_read_data(pf)) {
printf("Error reading from disk cache\n");
cache->flag |= PTCACHE_DISK_CACHE;
ptcache_free_data(pm);
MEM_freeN(pm);
ptcache_file_close(pf);
return;
}
ptcache_copy_data(pf->cur, pm->cur);
BKE_ptcache_mem_incr_pointers(pm);
}
ptcache_make_index_array(pm, pid->totpoint(pid->calldata, cfra));
BLI_addtail(&pid->cache->mem_cache, pm);
ptcache_file_close(pf);
}
}
}
void BKE_ptcache_mem_to_disk(PTCacheID *pid)
{
PointCache *cache = pid->cache;
PTCacheFile *pf;
PTCacheMem *pm;
int i;
pm = cache->mem_cache.first;
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
for(; pm; pm=pm->next) {
pf = ptcache_file_open(pid, PTCACHE_FILE_WRITE, pm->frame);
if(pf) {
pf->data_types = pm->data_types;
pf->totpoint = pm->totpoint;
pf->type = pid->type;
BKE_ptcache_mem_init_pointers(pm);
ptcache_file_init_pointers(pf);
if(!ptcache_file_write_header_begin(pf) || !pid->write_header(pf)) {
printf("Error writing to disk cache\n");
cache->flag &= ~PTCACHE_DISK_CACHE;
ptcache_file_close(pf);
return;
}
for(i=0; i<pm->totpoint; i++) {
ptcache_copy_data(pm->cur, pf->cur);
if(!ptcache_file_write_data(pf)) {
printf("Error writing to disk cache\n");
cache->flag &= ~PTCACHE_DISK_CACHE;
ptcache_file_close(pf);
return;
}
BKE_ptcache_mem_incr_pointers(pm);
}
ptcache_file_close(pf);
/* write info file */
if(cache->flag & PTCACHE_BAKED)
BKE_ptcache_write_cache(pid, 0);
}
else
printf("Error creating disk cache file\n");
}
}
void BKE_ptcache_toggle_disk_cache(PTCacheID *pid)
{
PointCache *cache = pid->cache;
int last_exact = cache->last_exact;
if (!G.relbase_valid){
cache->flag &= ~PTCACHE_DISK_CACHE;
printf("File must be saved before using disk cache!\n");
return;
}
if(cache->flag & PTCACHE_DISK_CACHE)
BKE_ptcache_mem_to_disk(pid);
else
BKE_ptcache_disk_to_mem(pid);
cache->flag ^= PTCACHE_DISK_CACHE;
BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_ALL, 0);
cache->flag ^= PTCACHE_DISK_CACHE;
cache->last_exact = last_exact;
BKE_ptcache_update_info(pid);
}
void BKE_ptcache_load_external(PTCacheID *pid)
{
/*todo*/
PointCache *cache = pid->cache;
int len; /* store the length of the string */
int info = 0;
/* mode is same as fopen's modes */
DIR *dir;
struct dirent *de;
char path[MAX_PTCACHE_PATH];
char filename[MAX_PTCACHE_FILE];
char ext[MAX_PTCACHE_PATH];
if(!cache)
return;
cache->startframe = MAXFRAME;
cache->endframe = -1;
cache->totpoint = 0;
ptcache_path(pid, path);
len = BKE_ptcache_id_filename(pid, filename, 1, 0, 0); /* no path */
dir = opendir(path);
if (dir==NULL)
return;
if(cache->index >= 0)
snprintf(ext, sizeof(ext), "_%02d"PTCACHE_EXT, cache->index);
else
strcpy(ext, PTCACHE_EXT);
while ((de = readdir(dir)) != NULL) {
if (strstr(de->d_name, ext)) { /* do we have the right extension?*/
if (strncmp(filename, de->d_name, len ) == 0) { /* do we have the right prefix */
/* read the number of the file */
int frame, len2 = (int)strlen(de->d_name);
char num[7];
if (len2 > 15) { /* could crash if trying to copy a string out of this range*/
BLI_strncpy(num, de->d_name + (strlen(de->d_name) - 15), sizeof(num));
frame = atoi(num);
if(frame) {
cache->startframe = MIN2(cache->startframe, frame);
cache->endframe = MAX2(cache->endframe, frame);
}
else
info = 1;
}
}
}
}
closedir(dir);
if(cache->startframe != MAXFRAME) {
PTCacheFile *pf;
/* read totpoint from info file (frame 0) */
if(info) {
pf= ptcache_file_open(pid, PTCACHE_FILE_READ, 0);
if(pf) {
if(ptcache_file_read_header_begin(pf)) {
if(pf->type == pid->type && pid->read_header(pf)) {
cache->totpoint = pf->totpoint;
cache->flag |= PTCACHE_READ_INFO;
}
else {
cache->totpoint = 0;
}
}
ptcache_file_close(pf);
}
}
/* or from any old format cache file */
else {
float old_data[14];
int elemsize = ptcache_pid_old_elemsize(pid);
pf= ptcache_file_open(pid, PTCACHE_FILE_READ, cache->startframe);
if(pf) {
while(ptcache_file_read(pf, old_data, 1, elemsize))
cache->totpoint++;
ptcache_file_close(pf);
}
}
}
cache->flag &= ~(PTCACHE_OUTDATED|PTCACHE_FRAMES_SKIPPED);
BKE_ptcache_update_info(pid);
}
void BKE_ptcache_update_info(PTCacheID *pid)
{
PointCache *cache = pid->cache;
int totframes = 0;
char mem_info[64];
if(cache->flag & PTCACHE_EXTERNAL) {
int cfra = cache->startframe;
for(; cfra<=cache->endframe; cfra++) {
if(BKE_ptcache_id_exist(pid, cfra))
totframes++;
}
if(totframes && cache->totpoint)
sprintf(cache->info, "%i points found!", cache->totpoint);
else
sprintf(cache->info, "No valid data to read!");
return;
}
if(cache->flag & PTCACHE_DISK_CACHE) {
int cfra = cache->startframe;
for(; cfra<=cache->endframe; cfra++) {
if(BKE_ptcache_id_exist(pid, cfra))
totframes++;
}
sprintf(mem_info, "%i frames on disk", totframes);
}
else {
PTCacheMem *pm = cache->mem_cache.first;
float bytes = 0.0f;
int i, mb;
for(; pm; pm=pm->next) {
for(i=0; i<BPHYS_TOT_DATA; i++)
bytes += pm->data[i] ? MEM_allocN_len(pm->data[i]) : 0.0f;
totframes++;
}
mb = (bytes > 1024.0f * 1024.0f);
sprintf(mem_info, "%i frames in memory (%.1f %s)",
totframes,
bytes / (mb ? 1024.0f * 1024.0f : 1024.0f),
mb ? "Mb" : "kb");
}
if(cache->flag & PTCACHE_OUTDATED) {
sprintf(cache->info, "%s, cache is outdated!", mem_info);
}
else if(cache->flag & PTCACHE_FRAMES_SKIPPED) {
sprintf(cache->info, "%s, not exact since frame %i.", mem_info, cache->last_exact);
}
else
sprintf(cache->info, "%s.", mem_info);
}