This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/yafray/intern/export_Plugin.cpp
Alfredo de Greef ec45bfc5b1 Second and final commit for this version of the yafray export code (probably, you never know
of course...)

Not quite complete, but due to lack of time as good as it will get for now.

From the previous commit, forgot to report that basic fog is supported as well. Though because I had not much time to complete the code, it is sort of unfinished, and you will have
to tweak parameters specifically for yafray again. It uses only the world horizon color, and
only uses the Blender mist distance setting.

Textures now support checker clip mode.

Fixed possibly all 'duplilist non-empty' errors, though it could hide the real cause of the
error.

AA is no longer enabled automatically for certain GI quality settings, I thought it best to
leave it to the user to decide.

SkyDome GI mode now supports cache as well. There is a new option in the GI quality menu 'Use
Blender AO settings', which will as it says use the most important AO settings for the
skydome parameters. The only AO parameters used are 'Samples', 'Dist' and the random sampling
switch, which unlike in Blender you might want to use more often, since the QMC sampling used
in yafray can result in visible patterns or a dithering type look. 'Random' is not completely
random in yafray however, it is actually jittered (stratified) sampling.
Using an occlusion cache, doesn't necessarily mean that you will always get much shorter
render times. As with 'full' GI and cache, one problem is bumpmaps, when using bump (or
normal) maps, the sampling will be much more dense, using lots more rendertime.
As a temporary fix there is a button 'NoBump', but this also has the side effect that in
areas of total indirect light (or when used with SkyDome cache) no bumpmapping will be
visible. It is therefor best used with some direct light as well.
For SkyDome with cache, and strong bumpmapping it might actually not make much difference,
since for low distance values you can usually get away with low sample values as well.

The entire material panel is now replaced by another panel to show only the parameters
important to yafray and add some new ones as well.

Since lots of users (especially yafray beginners) have had problems getting certain material
aspects right, there is now a material preset menu available to hopefully solve some of the
most common "How do I do this? It doesn't work!" questions seen in various forums.
Choosing an option from this menu will set the required parameters to default
values for yafray, and you can work your way from there to tweak it something you want.

Most buttons are copies of the same Blender parameters, with some variations. Just like
Blender 'Ray Mirror' enables reflection, 'Ray Transp' enables refraction. You can use
'ZTransp' for materials that have texture maps with alpha channels.
Again, same as Blender 'rayMir' sets the amount of reflection. Next button 'frsOfs' however
controls fresnel offset, meaning that when this is set to 1, you will get no fresnel effect
and when set to 5, reflection is totally determined by fresnel, which is important for
realistic glass/metals/etc.
IOR is self-explanatory (...), same as Blender.
When you have 'Ray Transp' enabled, the blender 'filter' button will appear next to the IOR
button. This has the same effect as in Blender.

Below that there are some new parameters, 'Ext.Color' sets the extinction color for
transparent materials. Usually, in real transparent materials, light loses some of it's
energy the further it has to travel through the object. This effect can be simulated with
this parameter. Thing to look out for is that it specifies the color which will be
REMOVED after traveling through the object. What this means is that say you have a clear
white glass sphere, and set the extinction color to a strong blue, the result will be a
very yellow object when rendered.

Next to the color sliders, there is another set of three parameters, with which you can
enable color dispersion for transparent objects. 'Pwr' sets the amount of dispersion,
the higher, the more dispersion (the more colorful the result).
(For real world materials, this number can be found or derived from data in various glass catalogues)
The 'Samples' button below that sets the number of samples used, minimum values are around
7-10, and for very strong dispersion you might need a lot more.
As usual, this also means an increase in render time of course, but to simulate
realistic materials, you shouldn't really need more than 25 samples.
In addition to that, when using low sample numbers, but to still get a good spread of colors,
you can enable the jitter button, but this will also add noise.

Point/soft(point with shadowbuffer) or sphere lights (light with radius), have a new option
to add a simple glow effect, so that lights can be made visible.
NOTE: just like spotlight halo's, glow is not visible against the background, there must be
another object behind it. Simplest solution is to use a large black shadeless plane behind
your scene.
The glow intensity can be set with the 'GlowInt' parameter (use very low values around 0.01
even lower), and you can choose from two different types with the 'GlowType' button (which
don't look much different, but type 1 is probably better, type 0 faster).

And that's it, with apologies for the still missing features and
full support in general, but this will have to do for now.
2005-05-22 22:46:17 +00:00

1936 lines
66 KiB
C++

#include "export_Plugin.h"
#include <math.h>
using namespace std;
#ifdef WIN32
#define WIN32_SKIP_HKEY_PROTECTION
#include "BLI_winstuff.h"
#ifndef FILE_MAXDIR
#define FILE_MAXDIR 160
#endif
#ifndef FILE_MAXFILE
#define FILE_MAXFILE 80
#endif
static string find_path()
{
HKEY hkey;
DWORD dwType, dwSize;
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,"Software\\YafRay Team\\YafRay",0,KEY_READ,&hkey)==ERROR_SUCCESS)
{
dwType = REG_EXPAND_SZ;
dwSize = MAX_PATH;
DWORD dwStat;
char *pInstallDir=new char[MAX_PATH];
dwStat=RegQueryValueEx(hkey, TEXT("InstallDir"),
NULL, NULL,(LPBYTE)pInstallDir, &dwSize);
if (dwStat == NO_ERROR)
{
string res=pInstallDir;
delete [] pInstallDir;
return res;
}
else
cout << "Couldn't READ \'InstallDir\' value. Is yafray correctly installed?\n";
delete [] pInstallDir;
RegCloseKey(hkey);
}
else
cout << "Couldn't FIND registry key for yafray, is it installed?\n";
return string("");
}
static int createDir(char* name)
{
if (BLI_exists(name))
return 2; //exists
if (CreateDirectory((LPCTSTR)(name), NULL)) {
cout << "Directory: " << name << " created\n";
return 1; // created
}
else {
cout << "Could not create directory: " << name << endl;
return 0; // fail
}
}
extern "C" { extern char bprogname[]; }
// add drive character if not in path string, using blender executable location as reference
static void addDrive(string &path)
{
int sp = path.find_first_of(":");
if (sp==-1) {
string blpath = bprogname;
sp = blpath.find_first_of(":");
if (sp!=-1) path = blpath.substr(0, sp+1) + path;
}
}
#else
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#endif
static string YafrayPath()
{
#ifdef WIN32
string path=find_path();
return path;
#else
static char *alternative[]=
{
"/usr/local/lib/",
"/usr/lib/",
NULL
};
for(int i=0;alternative[i]!=NULL;++i)
{
string fp = string(alternative[i]) + "libyafrayplugin.so";
struct stat st;
if (stat(fp.c_str(), &st)<0) continue;
if (st.st_mode & S_IROTH) return fp;
}
return "";
#endif
}
static string YafrayPluginPath()
{
#ifdef WIN32
return find_path()+"\\plugins";
#else
static char *alternative[]=
{
"/usr/local/lib/yafray",
"/usr/lib/yafray",
NULL
};
for(int i=0;alternative[i]!=NULL;++i)
{
struct stat st;
if (stat(alternative[i], &st)<0) continue;
if (S_ISDIR(st.st_mode) && (st.st_mode & S_IXOTH)) return alternative[i];
}
return "";
#endif
}
yafrayPluginRender_t::~yafrayPluginRender_t()
{
if (yafrayGate!=NULL) delete yafrayGate;
if (handle!=NULL) PIL_dynlib_close(handle);
#ifdef WIN32
if (corehandle!=NULL) PIL_dynlib_close(corehandle);
#endif
}
bool yafrayPluginRender_t::initExport()
{
// bug #1897: when forcing render without yafray present, handle can be valid,
// but find_symbol might have failed, trying second time will crash.
// So make sure plugin loaded correctly and only get handle once.
if ((!plugin_loaded) || (handle==NULL))
{
string location = YafrayPath();
#ifdef WIN32
/* Win 32 loader cannot find needed libs in yafray dir, so we have to load them
* by hand. This could be fixed using setdlldirectory function, but it is not
* available in all win32 versions
*/
corehandle = PIL_dynlib_open((char *)(location + "\\yafraycore.dll").c_str());
if (corehandle==NULL)
{
cerr << "Error loading yafray plugin: " << PIL_dynlib_get_error_as_string(corehandle) << endl;
return false;
}
location += "\\yafrayplugin.dll";
#endif
if (handle==NULL) {
handle = PIL_dynlib_open((char *)location.c_str());
if (handle==NULL)
{
cerr << "Error loading yafray plugin: " << PIL_dynlib_get_error_as_string(handle) << endl;
return false;
}
}
yafray::yafrayConstructor *constructor;
constructor = (yafray::yafrayConstructor *)PIL_dynlib_find_symbol(handle, YAFRAY_SYMBOL);
if (constructor==NULL)
{
cerr << "Error loading yafray plugin: " << PIL_dynlib_get_error_as_string(handle) << endl;
return false;
}
yafrayGate = constructor(R.r.YF_numprocs, YafrayPluginPath());
cout << "YafRay plugin loaded" << endl;
plugin_loaded = true;
}
// all buffers allocated in initrender.c
unsigned int *bpt=R.rectot, count=R.rectx*R.recty;
while (--count) bpt[count] = 0xff800000;
cout << "Image initialized" << endl;
int *zbuf=R.rectz;
count = R.rectx*R.recty;
while (--count) zbuf[count] = 0x7fffffff;
cout << "Zbuffer initialized" << endl;
// no need to fill ftot
return true;
}
bool yafrayPluginRender_t::writeRender()
{
yafray::paramMap_t params;
params["camera_name"]=yafray::parameter_t("MAINCAM");
params["raydepth"]=yafray::parameter_t((float)R.r.YF_raydepth);
params["gamma"]=yafray::parameter_t(R.r.YF_gamma);
params["exposure"]=yafray::parameter_t(R.r.YF_exposure);
if (R.r.YF_AA)
{
params["AA_passes"] = yafray::parameter_t((int)R.r.YF_AApasses);
params["AA_minsamples"] = yafray::parameter_t(R.r.YF_AAsamples);
params["AA_pixelwidth"] = yafray::parameter_t(R.r.YF_AApixelsize);
params["AA_threshold"] = yafray::parameter_t(R.r.YF_AAthreshold);
}
else
{
// removed the default AA settings for midquality GI, better leave it to user
if ((R.r.mode & R_OSA) && (R.r.osa))
{
params["AA_passes"] = yafray::parameter_t((R.r.osa%4)==0 ? R.r.osa/4 : 1);
params["AA_minsamples"] = yafray::parameter_t((R.r.osa%4)==0 ? 4 : R.r.osa);
}
else
{
params["AA_passes"] = yafray::parameter_t(0);
params["AA_minsamples"] = yafray::parameter_t(1);
}
params["AA_pixelwidth"] = yafray::parameter_t(1.5);
params["AA_threshold"] = yafray::parameter_t(0.05f);
}
if(R.r.mode & R_BORDER)
{
params["border_xmin"] = yafray::parameter_t( R.r.border.xmin*2.0-1.0 );
params["border_xmax"] = yafray::parameter_t( R.r.border.xmax*2.0-1.0 );
params["border_ymin"] = yafray::parameter_t( R.r.border.ymin*2.0-1.0 );
params["border_ymax"] = yafray::parameter_t( R.r.border.ymax*2.0-1.0 );
}
if (hasworld) {
World *world = G.scene->world;
if (world->mode & WO_MIST) {
// basic fog
float fd = world->mistdist;
if (fd>0) fd=1.f/fd; else fd=1;
params["fog_density"] = yafray::parameter_t(fd);
params["fog_color"] = yafray::parameter_t(yafray::color_t(world->horr, world->horg, world->horb));
}
params["background_name"] = yafray::parameter_t("world_background");
}
params["bias"]=yafray::parameter_t(R.r.YF_raybias);
//params["outfile"]=yafray::parameter_t(imgout);
blenderYafrayOutput_t output;
yafrayGate->render(params,output);
cout<<"render finished"<<endl;
yafrayGate->clear();
return true;
}
bool yafrayPluginRender_t::finishExport()
{
//displayImage();
return true;
}
// displays the image rendered with xml export
// Now loads rendered image into blender renderbuf.
void yafrayPluginRender_t::displayImage()
{
// although it is possible to load the image using blender,
// maybe it is best to just do a read here, for now the yafray output is always a raw tga anyway
// rectot already freed in initrender
R.rectot = (unsigned int *)MEM_callocN(sizeof(int)*R.rectx*R.recty, "rectot");
FILE* fp = fopen(imgout.c_str(), "rb");
if (fp==NULL) {
cout << "YAF_displayImage(): Could not open image file\n";
return;
}
unsigned char header[18];
fread(&header, 1, 18, fp);
unsigned short width = (unsigned short)(header[12] + (header[13]<<8));
unsigned short height = (unsigned short)(header[14] + (header[15]<<8));
unsigned char byte_per_pix = (unsigned char)(header[16]>>3);
// read past any id (none in this case though)
unsigned int idlen = (unsigned int)header[0];
if (idlen) fseek(fp, idlen, SEEK_CUR);
// read data directly into buffer, picture is upside down
for (unsigned short y=0;y<height;y++) {
unsigned char* bpt = (unsigned char*)R.rectot + ((((height-1)-y)*width)<<2);
for (unsigned short x=0;x<width;x++) {
bpt[2] = (unsigned char)fgetc(fp);
bpt[1] = (unsigned char)fgetc(fp);
bpt[0] = (unsigned char)fgetc(fp);
if (byte_per_pix==4)
bpt[3] = (unsigned char)fgetc(fp);
else
bpt[3] = 255;
bpt += 4;
}
}
fclose(fp);
fp = NULL;
}
#ifdef WIN32
#define MAXPATHLEN MAX_PATH
#else
#include <sys/param.h>
#endif
static void adjustPath(string &path)
{
// if relative, expand to full path
char cpath[MAXPATHLEN];
strcpy(cpath, path.c_str());
BLI_convertstringcode(cpath, G.sce, 0);
path = cpath;
#ifdef WIN32
// add drive char if not there
addDrive(path);
#endif
}
static string noise2string(short nbtype)
{
switch (nbtype) {
case TEX_BLENDER:
return "blender";
case TEX_STDPERLIN:
return "stdperlin";
case TEX_VORONOI_F1:
return "voronoi_f1";
case TEX_VORONOI_F2:
return "voronoi_f2";
case TEX_VORONOI_F3:
return "voronoi_f3";
case TEX_VORONOI_F4:
return "voronoi_f4";
case TEX_VORONOI_F2F1:
return "voronoi_f2f1";
case TEX_VORONOI_CRACKLE:
return "voronoi_crackle";
case TEX_CELLNOISE:
return "cellnoise";
default:
case TEX_NEWPERLIN:
return "newperlin";
}
}
void yafrayPluginRender_t::writeTextures()
{
// used to keep track of images already written
// (to avoid duplicates if also in imagetex for material TexFace texture)
set<Image*> dupimg;
yafray::paramMap_t params;
list<yafray::paramMap_t> lparams;
for (map<string, MTex*>::const_iterator blendtex=used_textures.begin();
blendtex!=used_textures.end();++blendtex)
{
lparams.clear();
params.clear();
MTex* mtex = blendtex->second;
Tex* tex = mtex->tex;
// name is image name instead of texture name when type is image (see TEX_IMAGE case below)
// (done because of possible combinations of 'TexFace' images and regular image textures, to avoid duplicates)
if (tex->type!=TEX_IMAGE) params["name"] = yafray::parameter_t(blendtex->first);
float nsz = tex->noisesize;
if (nsz!=0.f) nsz=1.f/nsz;
// noisebasis type
string ntype = noise2string(tex->noisebasis);
string ts, hardnoise=(tex->noisetype==TEX_NOISESOFT) ? "off" : "on";
switch (tex->type) {
case TEX_STUCCI:
// stucci is clouds as bump, only difference is an extra parameter to handle wall in/out
// turbulence value is not used, so for large values will not match well
case TEX_CLOUDS: {
params["type"] = yafray::parameter_t("clouds");
params["size"] = yafray::parameter_t(nsz);
params["hard"] = yafray::parameter_t(hardnoise);
if (tex->type==TEX_STUCCI) {
if (tex->stype==1)
ts = "positive";
else if (tex->stype==2)
ts = "negative";
else ts = "none";
params["bias"] = yafray::parameter_t(ts);
params["depth"] = yafray::parameter_t(0); // for stucci always 0
}
else params["depth"] = yafray::parameter_t(tex->noisedepth);
params["color_type"] = yafray::parameter_t(tex->stype);
params["noise_type"] = yafray::parameter_t(ntype);
break;
}
case TEX_WOOD:
{
params["type"] = yafray::parameter_t("wood");
// blender does not use depth value for wood, always 0
params["depth"] = yafray::parameter_t(0);
float turb = (tex->stype<2) ? 0.0 : tex->turbul;
params["turbulence"] = yafray::parameter_t(turb);
params["size"] = yafray::parameter_t(nsz);
params["hard"] = yafray::parameter_t(hardnoise);
ts = (tex->stype & 1) ? "rings" : "bands"; //stype 1&3 ringtype
params["wood_type"] = yafray::parameter_t(ts);
params["noise_type"] = yafray::parameter_t(ntype);
// shape parameter, for some reason noisebasis2 is used...
ts = "sin";
if (tex->noisebasis2==1) ts="saw"; else if (tex->noisebasis2==2) ts="tri";
params["shape"] = yafray::parameter_t(ts);
break;
}
case TEX_MARBLE:
{
params["type"] = yafray::parameter_t("marble");
params["depth"] = yafray::parameter_t(tex->noisedepth);
params["turbulence"] = yafray::parameter_t(tex->turbul);
params["size"] = yafray::parameter_t(nsz);
params["hard"] = yafray::parameter_t(hardnoise);
params["sharpness"] = yafray::parameter_t((float)(1<<tex->stype));
params["noise_type"] = yafray::parameter_t(ntype);
ts = "sin";
if (tex->noisebasis2==1) ts="saw"; else if (tex->noisebasis2==2) ts="tri";
params["shape"] = yafray::parameter_t(ts);
break;
}
case TEX_VORONOI:
{
params["type"] = yafray::parameter_t("voronoi");
ts = "int";
if (tex->vn_coltype==1)
ts = "col1";
else if (tex->vn_coltype==2)
ts = "col2";
else if (tex->vn_coltype==3)
ts = "col3";
params["color_type"] = yafray::parameter_t(ts);
params["weight1"] = yafray::parameter_t(tex->vn_w1);
params["weight2"] = yafray::parameter_t(tex->vn_w2);
params["weight3"] = yafray::parameter_t(tex->vn_w3);
params["weight4"] = yafray::parameter_t(tex->vn_w4);
params["mk_exponent"] = yafray::parameter_t(tex->vn_mexp);
params["intensity"] = yafray::parameter_t(tex->ns_outscale);
params["size"] = yafray::parameter_t(nsz);
ts = "actual";
if (tex->vn_distm==TEX_DISTANCE_SQUARED)
ts = "squared";
else if (tex->vn_distm==TEX_MANHATTAN)
ts = "manhattan";
else if (tex->vn_distm==TEX_CHEBYCHEV)
ts = "chebychev";
else if (tex->vn_distm==TEX_MINKOVSKY_HALF)
ts = "minkovsky_half";
else if (tex->vn_distm==TEX_MINKOVSKY_FOUR)
ts = "minkovsky_four";
else if (tex->vn_distm==TEX_MINKOVSKY)
ts = "minkovsky";
params["distance_metric"] = yafray::parameter_t(ts);
break;
}
case TEX_MUSGRAVE:
{
params["type"] = yafray::parameter_t("musgrave");
switch (tex->stype) {
case TEX_MFRACTAL:
ts = "multifractal";
break;
case TEX_RIDGEDMF:
ts = "ridgedmf";
break;
case TEX_HYBRIDMF:
ts = "hybridmf";
break;
case TEX_HTERRAIN:
ts = "heteroterrain";
break;
default:
case TEX_FBM:
ts = "fBm";
}
params["musgrave_type"] = yafray::parameter_t(ts);
params["noise_type"] = yafray::parameter_t(ntype);
params["H"] = yafray::parameter_t(tex->mg_H);
params["lacunarity"] = yafray::parameter_t(tex->mg_lacunarity);
params["octaves"] = yafray::parameter_t(tex->mg_octaves);
if ((tex->stype==TEX_HTERRAIN) || (tex->stype==TEX_RIDGEDMF) || (tex->stype==TEX_HYBRIDMF)) {
params["offset"] = yafray::parameter_t(tex->mg_offset);
if ((tex->stype==TEX_RIDGEDMF) || (tex->stype==TEX_HYBRIDMF))
params["gain"] = yafray::parameter_t(tex->mg_gain);
}
params["size"] = yafray::parameter_t(nsz);
params["intensity"] = yafray::parameter_t(tex->ns_outscale);
break;
}
case TEX_DISTNOISE:
{
params["type"] = yafray::parameter_t("distorted_noise");
params["distort"] = yafray::parameter_t(tex->dist_amount);
params["size"] = yafray::parameter_t(nsz);
params["noise_type1"] = yafray::parameter_t(ntype);
params["noise_type2"] = yafray::parameter_t(noise2string(tex->noisebasis2));
break;
}
case TEX_BLEND:
{
params["type"] = yafray::parameter_t("gradient");
switch (tex->stype) {
case 1: ts="quadratic"; break;
case 2: ts="cubic"; break;
case 3: ts="diagonal"; break;
case 4: ts="sphere"; break;
case 5: ts="halo"; break;
default:
case 0: ts="linear"; break;
}
params["gradient_type"] = yafray::parameter_t(ts);
if (tex->flag & TEX_FLIPBLEND) ts="on"; else ts="off";
params["flip_xy"] = yafray::parameter_t(ts);
break;
}
case TEX_NOISE:
{
params["type"] = yafray::parameter_t("random_noise");
params["depth"] = yafray::parameter_t(tex->noisedepth);
break;
}
case TEX_IMAGE:
{
Image* ima = tex->ima;
if (ima) {
// remember image to avoid duplicates later if also in imagetex
// (formerly done by removing from imagetex, but need image/material link)
dupimg.insert(ima);
params["type"] = yafray::parameter_t("image");
params["name"] = yafray::parameter_t(ima->id.name);
string texpath = ima->name;
adjustPath(texpath);
params["filename"] = yafray::parameter_t(texpath);
params["interpolate"] = yafray::parameter_t((tex->imaflag & TEX_INTERPOL) ? "bilinear" : "none");
}
break;
}
default:
cout << "Unsupported texture type\n";
}
yafrayGate->addShader(params, lparams);
// colorbands
if (tex->flag & TEX_COLORBAND)
{
ColorBand* cb = tex->coba;
if (cb)
{
lparams.clear();
params.clear();
params["type"] = yafray::parameter_t("colorband");
params["name"] = yafray::parameter_t(blendtex->first + "_coba");
params["input"] = yafray::parameter_t(blendtex->first);
for (int i=0;i<cb->tot;i++)
{
yafray::paramMap_t mparams;
mparams["value"] = yafray::parameter_t(cb->data[i].pos);
mparams["color"] = yafray::parameter_t(yafray::colorA_t(cb->data[i].r,
cb->data[i].g,
cb->data[i].b,
cb->data[i].a));
lparams.push_back(mparams);
}
yafrayGate->addShader(params, lparams);
}
}
}
// If used, textures for the material 'TexFace' case
if (!imagetex.empty()) {
for (map<Image*, set<Material*> >::const_iterator imgtex=imagetex.begin();
imgtex!=imagetex.end();++imgtex)
{
// skip if already written above
if (dupimg.find(imgtex->first)==dupimg.end()) {
lparams.clear();
params.clear();
params["name"] = yafray::parameter_t(imgtex->first->id.name);
params["type"] = yafray::parameter_t("image");
string texpath(imgtex->first->name);
adjustPath(texpath);
params["filename"] = yafray::parameter_t(texpath);
yafrayGate->addShader(params, lparams);
}
}
}
}
void yafrayPluginRender_t::writeShader(const string &shader_name, Material* matr, const string &facetexname)
{
yafray::paramMap_t params;
list<yafray::paramMap_t> lparams;
// if material has ramps, export colorbands first
if (matr->mode & (MA_RAMP_COL|MA_RAMP_SPEC))
{
// both colorbands without input shader
ColorBand* cb = matr->ramp_col;
if ((matr->mode & MA_RAMP_COL) && (cb!=NULL))
{
params["type"] = yafray::parameter_t("colorband");
params["name"] = yafray::parameter_t(shader_name+"_difframp");
for (int i=0;i<cb->tot;i++) {
yafray::paramMap_t mparams;
mparams["value"] = yafray::parameter_t(cb->data[i].pos);
mparams["color"] = yafray::parameter_t(yafray::colorA_t(cb->data[i].r, cb->data[i].g, cb->data[i].b, cb->data[i].a));
lparams.push_back(mparams);
}
yafrayGate->addShader(params, lparams);
}
cb = matr->ramp_spec;
if ((matr->mode & MA_RAMP_SPEC) && (cb!=NULL))
{
lparams.clear();
params.clear();
params["type"] = yafray::parameter_t("colorband");
params["name"] = yafray::parameter_t(shader_name+"_specramp");
for (int i=0;i<cb->tot;i++) {
yafray::paramMap_t mparams;
mparams["value"] = yafray::parameter_t(cb->data[i].pos);
mparams["color"] = yafray::parameter_t(yafray::colorA_t(cb->data[i].r, cb->data[i].g, cb->data[i].b, cb->data[i].a));
lparams.push_back(mparams);
}
yafrayGate->addShader(params, lparams);
}
lparams.clear();
params.clear();
}
params["type"] = yafray::parameter_t("blendershader");
params["name"] = yafray::parameter_t(shader_name);
params["color"] = yafray::parameter_t(yafray::color_t(matr->r, matr->g, matr->b));
params["specular_color"] = yafray::parameter_t(yafray::color_t(matr->specr, matr->specg, matr->specb));
params["mirror_color"] = yafray::parameter_t(yafray::color_t(matr->mirr, matr->mirg, matr->mirb));
params["diffuse_reflect"] = yafray::parameter_t(matr->ref);
params["specular_amount"] = yafray::parameter_t(matr->spec);
params["alpha"] = yafray::parameter_t(matr->alpha);
// if no GI used, the GIpower parameter is not always initialized, so in that case ignore it
float bg_mult = (R.r.GImethod==0) ? 1 : R.r.GIpower;
params["emit"]=yafray::parameter_t(matr->emit*bg_mult);
// reflection/refraction
if ( (matr->mode & MA_RAYMIRROR) || (matr->mode & MA_RAYTRANSP) )
params["IOR"] = yafray::parameter_t(matr->ang);
if (matr->mode & MA_RAYMIRROR)
{
// Sofar yafray's min_refle parameter (which misleadingly actually controls fresnel reflection offset)
// has been mapped to Blender's ray_mirror parameter.
// This causes it be be misinterpreted and misused as a reflection amount control however.
// Besides that, it also causes extra complications for the yafray Blendershader.
// So added an actual amount of reflection parameter instead, and another
// extra parameter 'frsOfs' to actually control fresnel offset (re-uses Blender fresnel_mir_i param).
params["reflect"] = yafray::parameter_t("on");
params["reflect_amount"] = yafray::parameter_t(matr->ray_mirror);
float fo = 1.f-(matr->fresnel_mir_i-1.f)*0.25f; // blender param range [1,5], also here reversed (1 in Blender -> no fresnel)
params["fresnel_offset"] = yafray::parameter_t(fo);
// transmit extinction color
params["extinction"] = yafray::parameter_t(yafray::color_t(matr->YF_er, matr->YF_eg, matr->YF_eb));
// dispersion
params["dispersion_power"] = yafray::parameter_t(matr->YF_dpwr);
params["dispersion_samples"] = yafray::parameter_t(matr->YF_dsmp);
params["dispersion_jitter"] = yafray::parameter_t(matr->YF_djit ? "on" : "off");
}
if (matr->mode & MA_RAYTRANSP)
{
params["refract"] = yafray::parameter_t("on");
params["transmit_filter"] = yafray::parameter_t(matr->filter);
// tir on by default
params["tir"] = yafray::parameter_t("on");
}
string Mmode = "";
if (matr->mode & MA_TRACEBLE) Mmode += "traceable";
if (matr->mode & MA_SHADOW) Mmode += " shadow";
if (matr->mode & MA_SHLESS) Mmode += " shadeless";
if (matr->mode & MA_VERTEXCOL) Mmode += " vcol_light";
if (matr->mode & MA_VERTEXCOLP) Mmode += " vcol_paint";
if (matr->mode & MA_ZTRA) Mmode += " ztransp";
if (matr->mode & MA_ONLYSHADOW) Mmode += " onlyshadow";
if (Mmode!="") params["matmodes"] = yafray::parameter_t(Mmode);
// diffuse & specular brdf, lambert/cooktorr defaults
// diffuse
if (matr->diff_shader==MA_DIFF_ORENNAYAR) {
params["diffuse_brdf"] = yafray::parameter_t("oren_nayar");
params["roughness"] = yafray::parameter_t(matr->roughness);
}
else if (matr->diff_shader==MA_DIFF_TOON) {
params["diffuse_brdf"] = yafray::parameter_t("toon");
params["toondiffuse_size"] = yafray::parameter_t(matr->param[0]);
params["toondiffuse_smooth"] = yafray::parameter_t(matr->param[1]);
}
else if (matr->diff_shader==MA_DIFF_MINNAERT) {
params["diffuse_brdf"] = yafray::parameter_t("minnaert");
params["darkening"] = yafray::parameter_t(matr->darkness);
}
else params["diffuse_brdf"] = yafray::parameter_t("lambert");
// specular
if (matr->spec_shader==MA_SPEC_PHONG) {
params["specular_brdf"] = yafray::parameter_t("phong");
params["hard"] = yafray::parameter_t(matr->har);
}
else if (matr->spec_shader==MA_SPEC_BLINN) {
params["specular_brdf"] = yafray::parameter_t("blinn");
params["blinn_ior"] = yafray::parameter_t(matr->refrac);
params["hard"] = yafray::parameter_t(matr->har);
}
else if (matr->spec_shader==MA_SPEC_TOON) {
params["specular_brdf"] = yafray::parameter_t("toon");
params["toonspecular_size"] = yafray::parameter_t(matr->param[2]);
params["toonspecular_smooth"] = yafray::parameter_t(matr->param[3]);
}
else if (matr->spec_shader==MA_SPEC_WARDISO) {
params["specular_brdf"] = yafray::parameter_t("ward");
params["u_roughness"] = yafray::parameter_t(matr->rms);
params["v_roughness"] = yafray::parameter_t(matr->rms);
}
else {
params["specular_brdf"] = yafray::parameter_t("blender_cooktorr");
params["hard"] = yafray::parameter_t(matr->har);
}
// ramps, if used
if (matr->mode & (MA_RAMP_COL|MA_RAMP_SPEC))
{
const string rm_blend[9] = {"mix", "add", "mul", "sub", "screen", "divide", "difference", "darken", "lighten"};
const string rm_mode[4] = {"shader", "energy", "normal", "result"};
// diffuse
if ((matr->mode & MA_RAMP_COL) && (matr->ramp_col!=NULL))
{
params["diffuse_ramp"] = yafray::parameter_t(shader_name+"_difframp");
params["diffuse_ramp_mode"] = yafray::parameter_t(rm_mode[(int)matr->rampin_col]);
params["diffuse_ramp_blend"] = yafray::parameter_t(rm_blend[(int)matr->rampblend_col]);
params["diffuse_ramp_factor"] = yafray::parameter_t(matr->rampfac_col);
}
// specular
if ((matr->mode & MA_RAMP_SPEC) && (matr->ramp_spec!=NULL)) {
params["specular_ramp"] = yafray::parameter_t(shader_name+"_specramp");
params["specular_ramp_mode"] = yafray::parameter_t(rm_mode[(int)matr->rampin_spec]);
params["specular_ramp_blend"] = yafray::parameter_t(rm_blend[(int)matr->rampblend_spec]);
params["specular_ramp_factor"] = yafray::parameter_t(matr->rampfac_spec);
}
}
// modulators
// first modulator is the texture of the face, if used (TexFace mode)
if (facetexname.length()!=0) {
yafray::paramMap_t mparams;
mparams["input"] = yafray::parameter_t(facetexname);
mparams["color"] = yafray::parameter_t(1);
lparams.push_back(mparams);
}
for (int m2=0;m2<MAX_MTEX;m2++)
{
if (matr->septex & (1<<m2)) continue;// all active channels
// ignore null mtex
MTex* mtex = matr->mtex[m2];
if (mtex==NULL) continue;
// ignore null tex
Tex* tex = mtex->tex;
if (tex==NULL) continue;
map<string, MTex*>::const_iterator mtexL = used_textures.find(string(tex->id.name));
if (mtexL!=used_textures.end())
{
yafray::paramMap_t mparams;
// when no facetex used, shader_name is created from original material name
char temp[32];
sprintf(temp,"_map%d", m2);
if (facetexname.length()!=0)
mparams["input"] = yafray::parameter_t(string(matr->id.name) + string(temp));
else
mparams["input"] = yafray::parameter_t(shader_name + temp);
// blendtype, would have been nice if the order would have been the same as for ramps...
const string blendtype[9] = {"mix", "mul", "add", "sub", "divide", "darken", "difference", "lighten", "screen"};
mparams["mode"] = yafray::parameter_t(blendtype[(int)mtex->blendtype]);
// texture color (for use with MUL and/or no_rgb etc..)
mparams["texcol"]=yafray::parameter_t(yafray::color_t(mtex->r,mtex->g,mtex->b));
// texture contrast, brightness & color adjustment
mparams["filtercolor"]=yafray::parameter_t(yafray::color_t(tex->rfac,tex->gfac,tex->bfac));
mparams["contrast"]=yafray::parameter_t(tex->contrast);
mparams["brightness"]=yafray::parameter_t(tex->bright);
// all texture flags now are switches, having the value 1 or -1 (negative option)
// the negative option only used for the intensity modulation options.
// material (diffuse) color, amount controlled by colfac (see below)
if (mtex->mapto & MAP_COL)
mparams["color"]=yafray::parameter_t(1.0);
// bumpmapping
if ((mtex->mapto & MAP_NORM) || (mtex->maptoneg & MAP_NORM))
{
// for yafray, bump factor is negated (unless tex is stucci, not affected by 'Neg')
// scaled down quite a bit
float nf = mtex->norfac;
if (tex->type!=TEX_STUCCI) nf *= -1.f;
if (mtex->maptoneg & MAP_NORM) nf *= -1.f;
mparams["normal"] = yafray::parameter_t(nf/60.f);
}
// all blender texture modulation as switches, either 1 or -1 (negative state of button)
// Csp, specular color modulation
if (mtex->mapto & MAP_COLSPEC)
mparams["colspec"] = yafray::parameter_t(1.0);
// CMir, mirror color modulation
if (mtex->mapto & MAP_COLMIR)
mparams["colmir"] = yafray::parameter_t(1.0);
// Ref, diffuse reflection amount modulation
if ((mtex->mapto & MAP_REF) || (mtex->maptoneg & MAP_REF))
{
int t = 1;
if (mtex->maptoneg & MAP_REF) t = -1;
mparams["difref"] = yafray::parameter_t(t);
}
// Spec, specular amount mod
if ((mtex->mapto & MAP_SPEC) || (mtex->maptoneg & MAP_SPEC))
{
int t = 1;
if (mtex->maptoneg & MAP_SPEC) t = -1;
mparams["specular"] = yafray::parameter_t(t);
}
// hardness modulation
if ((mtex->mapto & MAP_HAR) || (mtex->maptoneg & MAP_HAR))
{
int t = 1;
if (mtex->maptoneg & MAP_HAR) t = -1;
mparams["hard"] = yafray::parameter_t(t);
}
// alpha modulation
if ((mtex->mapto & MAP_ALPHA) || (mtex->maptoneg & MAP_ALPHA))
{
int t = 1;
if (mtex->maptoneg & MAP_ALPHA) t = -1;
mparams["alpha"] = yafray::parameter_t(t);
}
// emit modulation
if ((mtex->mapto & MAP_EMIT) || (mtex->maptoneg & MAP_EMIT)) {
int t = 1;
if (mtex->maptoneg & MAP_EMIT) t = -1;
mparams["emit"] = yafray::parameter_t(t);
}
// raymir modulation
if ((mtex->mapto & MAP_RAYMIRR) || (mtex->maptoneg & MAP_RAYMIRR)) {
int t = 1;
if (mtex->maptoneg & MAP_RAYMIRR) t = -1;
mparams["raymir"] = yafray::parameter_t(t);
}
// texture flag, combination of strings
string ts;
if (mtex->texflag & (MTEX_RGBTOINT | MTEX_STENCIL | MTEX_NEGATIVE)) {
ts = "";
if (mtex->texflag & MTEX_RGBTOINT) ts += "no_rgb ";
if (mtex->texflag & MTEX_STENCIL) ts += "stencil ";
if (mtex->texflag & MTEX_NEGATIVE) ts += "negative";
mparams["texflag"]=yafray::parameter_t(ts);
}
// colfac, controls amount of color modulation
mparams["colfac"]=yafray::parameter_t(mtex->colfac);
// def_var
mparams["def_var"]=yafray::parameter_t(mtex->def_var);
//varfac
mparams["varfac"]=yafray::parameter_t(mtex->varfac);
if ((tex->imaflag & (TEX_CALCALPHA | TEX_USEALPHA)) || (tex->flag & TEX_NEGALPHA))
{
ts = "";
if (tex->imaflag & TEX_CALCALPHA) ts += "calc_alpha ";
if (tex->imaflag & TEX_USEALPHA) ts += "use_alpha ";
if (tex->flag & TEX_NEGALPHA) ts += "neg_alpha";
mparams["alpha_flag"] = yafray::parameter_t(ts);
}
// image as normalmap flag
if (tex->imaflag & TEX_NORMALMAP) mparams["normalmap"] = yafray::parameter_t("on");
lparams.push_back(mparams);
}
}
yafrayGate->addShader(params, lparams);
}
// write all materials & modulators
void yafrayPluginRender_t::writeMaterialsAndModulators()
{
// shaders/mappers for regular texture (or non-texture) mode
// In case material has texface mode, and all faces have an image texture,
// this shader will not be used, but still be written
yafray::paramMap_t params;
list<yafray::paramMap_t> lparams;
for (map<string, Material*>::const_iterator blendmat=used_materials.begin();
blendmat!=used_materials.end();++blendmat)
{
Material* matr = blendmat->second;
// mapper(s)
for (int m=0;m<MAX_MTEX;m++)
{
if (matr->septex & (1<<m)) continue;// all active channels
// ignore null mtex
MTex* mtex = matr->mtex[m];
if (mtex==NULL) continue;
// ignore null tex
Tex* tex = mtex->tex;
if (tex==NULL) continue;
map<string, MTex*>::const_iterator mtexL = used_textures.find(string(tex->id.name));
if (mtexL!=used_textures.end())
{
params.clear(); //!!!
lparams.clear();
char temp[32];
sprintf(temp, "_map%d", m);
params["type"] = yafray::parameter_t("blendermapper");
params["name"] = yafray::parameter_t(blendmat->first + string(temp));
if ((mtex->texco & TEXCO_OBJECT) || (mtex->texco & TEXCO_REFL) || (mtex->texco & TEXCO_NORM))
{
// For object, reflection & normal mapping, add the object matrix to the modulator,
// as in LF script, use camera matrix if no object specified.
// In this case this means the inverse of that matrix
float texmat[4][4], itexmat[4][4];
if ((mtex->texco & TEXCO_OBJECT) && (mtex->object))
MTC_Mat4CpyMat4(texmat, mtex->object->obmat);
else // also for refl. map
MTC_Mat4CpyMat4(texmat, maincam_obj->obmat);
MTC_Mat4Invert(itexmat, texmat);
#define flp yafray::parameter_t
params["m00"]=flp(itexmat[0][0]); params["m01"]=flp(itexmat[1][0]);
params["m02"]=flp(itexmat[2][0]); params["m03"]=flp(itexmat[3][0]);
params["m10"]=flp(itexmat[0][1]); params["m11"]=flp(itexmat[1][1]);
params["m12"]=flp(itexmat[2][1]); params["m13"]=flp(itexmat[3][1]);
params["m20"]=flp(itexmat[0][2]); params["m21"]=flp(itexmat[1][2]);
params["m22"]=flp(itexmat[2][2]); params["m23"]=flp(itexmat[3][2]);
params["m30"]=flp(itexmat[0][3]); params["m31"]=flp(itexmat[1][3]);
params["m32"]=flp(itexmat[2][3]); params["m33"]=flp(itexmat[3][3]);
#undef flp
}
// use image name instead of texname when texture is image
if ((tex->type==TEX_IMAGE) && tex->ima)
params["input"] = yafray::parameter_t(tex->ima->id.name);
else if ((tex->flag & TEX_COLORBAND) & (tex->coba!=NULL))
params["input"] = yafray::parameter_t(mtexL->first + "_coba");
else
params["input"] = yafray::parameter_t(mtexL->first);
// texture size
params["sizex"] = yafray::parameter_t(mtex->size[0]);
params["sizey"] = yafray::parameter_t(mtex->size[1]);
params["sizez"] = yafray::parameter_t(mtex->size[2]);
// texture offset
params["ofsx"] = yafray::parameter_t(mtex->ofs[0]);
params["ofsy"] = yafray::parameter_t(mtex->ofs[1]);
params["ofsz"] = yafray::parameter_t(mtex->ofs[2]);
// texture coordinates, have to disable 'sticky' in Blender
if (mtex->texco & TEXCO_UV)
params["texco"] = yafray::parameter_t("uv");
else if ((mtex->texco & TEXCO_GLOB) || (mtex->texco & TEXCO_OBJECT))
// object mode is also set as global, but the object matrix
// was specified above with <modulator..>
params["texco"] = yafray::parameter_t("global");
else if (mtex->texco & TEXCO_ORCO)
params["texco"] = yafray::parameter_t("orco");
else if (mtex->texco & TEXCO_WINDOW)
params["texco"] = yafray::parameter_t("window");
else if (mtex->texco & TEXCO_NORM)
params["texco"] = yafray::parameter_t("normal");
else if (mtex->texco & TEXCO_REFL)
params["texco"] = yafray::parameter_t("reflect");
// texture projection axes, both image & procedural
string proj = "nxyz"; // 'n' for 'none'
params["proj_x"] = yafray::parameter_t(string(1,proj[mtex->projx]));
params["proj_y"] = yafray::parameter_t(string(1,proj[mtex->projy]));
params["proj_z"] = yafray::parameter_t(string(1,proj[mtex->projz]));
// texture mapping parameters only relevant to image type
if (tex->type==TEX_IMAGE)
{
if (mtex->mapping==MTEX_FLAT)
params["mapping"] = yafray::parameter_t("flat");
else if (mtex->mapping==MTEX_CUBE)
params["mapping"] = yafray::parameter_t("cube");
else if (mtex->mapping==MTEX_TUBE)
params["mapping"] = yafray::parameter_t("tube");
else if (mtex->mapping==MTEX_SPHERE)
params["mapping"] = yafray::parameter_t("sphere");
// repeat
params["xrepeat"] = yafray::parameter_t(tex->xrepeat);
params["yrepeat"] = yafray::parameter_t(tex->yrepeat);
// clipping
if (tex->extend==TEX_EXTEND)
params["clipping"] = yafray::parameter_t("extend");
else if (tex->extend==TEX_CLIP)
params["clipping"] = yafray::parameter_t("clip");
else if (tex->extend==TEX_CLIPCUBE)
params["clipping"] = yafray::parameter_t("clipcube");
else if (tex->extend==TEX_CHECKER) {
params["clipping"] = yafray::parameter_t("checker");
string ts = "";
if (tex->flag & TEX_CHECKER_ODD) ts += "odd";
if (tex->flag & TEX_CHECKER_EVEN) ts += " even";
params["checker_mode"] = yafray::parameter_t(ts);
params["checker_dist"] = yafray::parameter_t(tex->checkerdist);
}
else
params["clipping"] = yafray::parameter_t("repeat");
// crop min/max
params["cropmin_x"] = yafray::parameter_t(tex->cropxmin);
params["cropmin_y"] = yafray::parameter_t(tex->cropymin);
params["cropmax_x"] = yafray::parameter_t(tex->cropxmax);
params["cropmax_y"] = yafray::parameter_t(tex->cropymax);
// rot90 flag
if (tex->imaflag & TEX_IMAROT)
params["rot90"] = yafray::parameter_t("on");
else
params["rot90"] = yafray::parameter_t("off");
}
yafrayGate->addShader(params, lparams);
}
}
// shader + modulators
writeShader(blendmat->first, matr);
}
// write the mappers & shaders for the TexFace case
if (!imagetex.empty()) {
// Yafray doesn't have per-face-textures, only per-face-shaders,
// so create as many mappers/shaders as the images used by the object
params.clear();
lparams.clear();
int snum = 0;
for (map<Image*, set<Material*> >::const_iterator imgtex=imagetex.begin();
imgtex!=imagetex.end();++imgtex)
{
for (set<Material*>::const_iterator imgmat=imgtex->second.begin();
imgmat!=imgtex->second.end();++imgmat)
{
Material* matr = *imgmat;
// mapper
params["type"] = yafray::parameter_t("blendermapper");
char temp[32];
sprintf(temp, "_ftmap%d", snum);
params["name"] = yafray::parameter_t(string(matr->id.name) + string(temp));
params["input"] = yafray::parameter_t(imgtex->first->id.name);
// all yafray default settings, except for texco, so no need to set others
params["texco"] = yafray::parameter_t("uv");
yafrayGate->addShader(params, lparams);
// shader, remember name, used later when writing per-face-shaders
sprintf(temp, "_ftsha%d", snum);
string shader_name = string(matr->id.name) + string(temp);
imgtex_shader[string(matr->id.name) + string(imgtex->first->id.name)] = shader_name;
sprintf(temp, "_ftmap%d", snum++);
string facetexname = string(matr->id.name) + string(temp);
writeShader(shader_name, matr, facetexname);
}
}
}
}
void yafrayPluginRender_t::genUVcoords(vector<yafray::GFLOAT> &uvcoords, VlakRen *vlr, TFace* uvc, bool comple)
{
if (uvc)
{
// tri uv split indices
int ui1=0, ui2=1, ui3=2;
if (vlr->flag & R_DIVIDE_24) {
ui3++;
if (vlr->flag & R_FACE_SPLIT) { ui1++; ui2++; }
}
else if (vlr->flag & R_FACE_SPLIT) { ui2++; ui3++; }
if (comple) {
ui1 = (ui1+2) & 3;
ui2 = (ui2+2) & 3;
ui3 = (ui3+2) & 3;
}
uvcoords.push_back(uvc->uv[ui1][0]); uvcoords.push_back(1-uvc->uv[ui1][1]);
uvcoords.push_back(uvc->uv[ui2][0]); uvcoords.push_back(1-uvc->uv[ui2][1]);
uvcoords.push_back(uvc->uv[ui3][0]); uvcoords.push_back(1-uvc->uv[ui3][1]);
}
else
{
uvcoords.push_back(0); uvcoords.push_back(0);
uvcoords.push_back(0); uvcoords.push_back(0);
uvcoords.push_back(0); uvcoords.push_back(0);
}
}
void yafrayPluginRender_t::genVcol(vector<yafray::CFLOAT> &vcol, VlakRen *vlr, bool comple)
{
if (vlr->vcol)
{
// tri vcol split indices
int ui1=0, ui2=1, ui3=2;
if (vlr->flag & R_DIVIDE_24) {
ui3++;
if (vlr->flag & R_FACE_SPLIT) { ui1++; ui2++; }
}
else if (vlr->flag & R_FACE_SPLIT) { ui2++; ui3++; }
if (comple) {
ui1 = (ui1+2) & 3;
ui2 = (ui2+2) & 3;
ui3 = (ui3+2) & 3;
}
unsigned char* pt = reinterpret_cast<unsigned char*>(&vlr->vcol[ui1]);
vcol.push_back((float)pt[3]/255.f); vcol.push_back((float)pt[2]/255.f); vcol.push_back((float)pt[1]/255.f);
pt = reinterpret_cast<unsigned char*>(&vlr->vcol[ui2]);
vcol.push_back((float)pt[3]/255.f); vcol.push_back((float)pt[2]/255.f); vcol.push_back((float)pt[1]/255.f);
pt = reinterpret_cast<unsigned char*>(&vlr->vcol[ui3]);
vcol.push_back((float)pt[3]/255.f); vcol.push_back((float)pt[2]/255.f); vcol.push_back((float)pt[1]/255.f);
}
else
{
vcol.push_back(0); vcol.push_back(0); vcol.push_back(0);
vcol.push_back(0); vcol.push_back(0); vcol.push_back(0);
vcol.push_back(0); vcol.push_back(0); vcol.push_back(0);
}
}
void yafrayPluginRender_t::genFace(vector<int> &faces,vector<string> &shaders,vector<int> &faceshader,
vector<yafray::GFLOAT> &uvcoords,vector<yafray::CFLOAT> &vcol,
map<VertRen*, int> &vert_idx,VlakRen *vlr,
bool has_orco,bool has_uv)
{
Material* fmat = vlr->mat;
bool EXPORT_VCOL = ((fmat->mode & (MA_VERTEXCOL|MA_VERTEXCOLP))!=0);
string fmatname(fmat->id.name);
// use name in imgtex_shader list if 'TexFace' enabled for this face material
if (fmat->mode & MA_FACETEXTURE) {
TFace* tface = vlr->tface;
if (tface) {
Image* fimg = (Image*)tface->tpage;
if (fimg) fmatname = imgtex_shader[fmatname + string(fimg->id.name)];
}
}
else if (fmatname.length()==0) fmatname = "blender_default";
bool newmat=true;
for(unsigned int i=0;i<shaders.size();++i)
if(shaders[i]==fmatname)
{
newmat=false;
faceshader.push_back(i);
break;
}
if(newmat)
{
shaders.push_back(fmatname);
faceshader.push_back(shaders.size()-1);
}
TFace* uvc = vlr->tface; // possible uvcoords (v upside down)
int idx1, idx2, idx3;
idx1 = vert_idx.find(vlr->v1)->second;
idx2 = vert_idx.find(vlr->v2)->second;
idx3 = vert_idx.find(vlr->v3)->second;
// make sure the indices point to the vertices when orco coords exported
if (has_orco) { idx1*=2; idx2*=2; idx3*=2; }
faces.push_back(idx1); faces.push_back(idx2); faces.push_back(idx3);
if(has_uv) genUVcoords(uvcoords, vlr, uvc);
if (EXPORT_VCOL) genVcol(vcol, vlr);
}
void yafrayPluginRender_t::genCompleFace(vector<int> &faces,/*vector<string> &shaders,*/vector<int> &faceshader,
vector<yafray::GFLOAT> &uvcoords,vector<yafray::CFLOAT> &vcol,
map<VertRen*, int> &vert_idx,VlakRen *vlr,
bool has_orco,bool has_uv)
{
Material* fmat = vlr->mat;
bool EXPORT_VCOL = ((fmat->mode & (MA_VERTEXCOL|MA_VERTEXCOLP))!=0);
faceshader.push_back(faceshader.back());
TFace* uvc = vlr->tface; // possible uvcoords (v upside down)
int idx1, idx2, idx3;
idx1 = vert_idx.find(vlr->v3)->second;
idx2 = vert_idx.find(vlr->v4)->second;
idx3 = vert_idx.find(vlr->v1)->second;
// make sure the indices point to the vertices when orco coords exported
if (has_orco) { idx1*=2; idx2*=2; idx3*=2; }
faces.push_back(idx1); faces.push_back(idx2); faces.push_back(idx3);
if (has_uv) genUVcoords(uvcoords, vlr, uvc, true);
if (EXPORT_VCOL) genVcol(vcol, vlr, true);
}
void yafrayPluginRender_t::genVertices(vector<yafray::point3d_t> &verts, int &vidx,
map<VertRen*, int> &vert_idx, VlakRen* vlr, bool has_orco, Object* obj)
{
VertRen* ver;
float tvec[3]; // for back2world transform
// for deformed objects, object->imat is no longer valid,
// so have to create inverse render matrix ourselves here
float mat[4][4], imat[4][4];
MTC_Mat4MulMat4(mat, obj->obmat, R.viewmat);
MTC_Mat4Invert(imat, mat);
if (vert_idx.find(vlr->v1)==vert_idx.end())
{
vert_idx[vlr->v1] = vidx++;
ver = vlr->v1;
MTC_cp3Float(ver->co, tvec);
MTC_Mat4MulVecfl(imat, tvec);
verts.push_back(yafray::point3d_t(tvec[0], tvec[1], tvec[2]));
if (has_orco)
verts.push_back(yafray::point3d_t(ver->orco[0],ver->orco[1],ver->orco[2]));
}
if (vert_idx.find(vlr->v2)==vert_idx.end())
{
vert_idx[vlr->v2] = vidx++;
ver = vlr->v2;
MTC_cp3Float(ver->co, tvec);
MTC_Mat4MulVecfl(imat, tvec);
verts.push_back(yafray::point3d_t(tvec[0], tvec[1], tvec[2]));
if (has_orco)
verts.push_back(yafray::point3d_t(ver->orco[0],ver->orco[1],ver->orco[2]));
}
if (vert_idx.find(vlr->v3)==vert_idx.end())
{
vert_idx[vlr->v3] = vidx++;
ver = vlr->v3;
MTC_cp3Float(ver->co, tvec);
MTC_Mat4MulVecfl(imat, tvec);
verts.push_back(yafray::point3d_t(tvec[0], tvec[1], tvec[2]));
if (has_orco)
verts.push_back(yafray::point3d_t(ver->orco[0],ver->orco[1],ver->orco[2]));
}
if ((vlr->v4) && (vert_idx.find(vlr->v4)==vert_idx.end()))
{
vert_idx[vlr->v4] = vidx++;
ver = vlr->v4;
MTC_cp3Float(ver->co, tvec);
MTC_Mat4MulVecfl(imat, tvec);
verts.push_back(yafray::point3d_t(tvec[0], tvec[1], tvec[2]));
if (has_orco)
verts.push_back(yafray::point3d_t(ver->orco[0],ver->orco[1],ver->orco[2]));
}
}
void yafrayPluginRender_t::writeObject(Object* obj, const vector<VlakRen*> &VLR_list, const float obmat[4][4])
{
float mtr[4*4];
mtr[0*4+0]=obmat[0][0]; mtr[0*4+1]=obmat[1][0]; mtr[0*4+2]=obmat[2][0]; mtr[0*4+3]=obmat[3][0];
mtr[1*4+0]=obmat[0][1]; mtr[1*4+1]=obmat[1][1]; mtr[1*4+2]=obmat[2][1]; mtr[1*4+3]=obmat[3][1];
mtr[2*4+0]=obmat[0][2]; mtr[2*4+1]=obmat[1][2]; mtr[2*4+2]=obmat[2][2]; mtr[2*4+3]=obmat[3][2];
mtr[3*4+0]=obmat[0][3]; mtr[3*4+1]=obmat[1][3]; mtr[3*4+2]=obmat[2][3]; mtr[3*4+3]=obmat[3][3];
yafrayGate->transformPush(mtr);
VlakRen* face0 = VLR_list[0];
Material* face0mat = face0->mat;
bool castShadows = face0mat->mode & MA_TRACEBLE;
float caus_IOR=1.0;
yafray::color_t caus_tcolor(0.0, 0.0, 0.0), caus_rcolor(0.0, 0.0, 0.0);
bool caus = (((face0->mat->mode & MA_RAYTRANSP) | (face0->mat->mode & MA_RAYMIRROR))!=0);
if (caus) {
caus_IOR = face0mat->ang;
float tr = 1.0-face0mat->alpha;
caus_tcolor.set(face0mat->r*tr, face0mat->g*tr, face0mat->b*tr);
tr = face0mat->ray_mirror;
caus_rcolor.set(face0mat->mirr*tr, face0mat->mirg*tr, face0mat->mirb*tr);
}
// Export orco coords test.
// Previously was done by checking orco pointer, however this can be non-null but still not initialized.
// Test the rendermaterial texco flag instead.
bool has_orco = ((face0mat->texco & TEXCO_ORCO)!=0);
bool no_auto = true; //in case non-mesh, or mesh has no autosmooth
float sm_angle = 0.1f;
if (obj->type==OB_MESH)
{
Mesh* mesh = (Mesh*)obj->data;
if (mesh->flag & ME_AUTOSMOOTH) {
sm_angle = mesh->smoothresh;
no_auto = false;
}
}
// this for non-mesh as well
if (no_auto) {
// no per face smooth flag in yafray, if AutoSmooth not used,
// use smooth flag of the first face instead
if (face0->flag & ME_SMOOTH) sm_angle=180;
}
vector<yafray::point3d_t> verts;
vector<yafray::CFLOAT> vcol;
// now all vertices
map<VertRen*, int> vert_idx; // for removing duplicate verts and creating an index list
int vidx = 0; // vertex index counter
bool has_uv=false;
for (vector<VlakRen*>::const_iterator fci=VLR_list.begin();
fci!=VLR_list.end();++fci)
{
VlakRen* vlr = *fci;
genVertices(verts, vidx, vert_idx, vlr, has_orco, obj);
if(vlr->tface) has_uv=true;
}
// all faces using the index list created above
vector<int> faces;
vector<string> shaders;
vector<int> faceshader;
vector<yafray::GFLOAT> uvcoords;
for (vector<VlakRen*>::const_iterator fci2=VLR_list.begin();
fci2!=VLR_list.end();++fci2)
{
VlakRen* vlr = *fci2;
genFace(faces, shaders, faceshader, uvcoords, vcol, vert_idx, vlr, has_orco, has_uv);
if (vlr->v4)
genCompleFace(faces, faceshader, uvcoords, vcol, vert_idx, vlr, has_orco, has_uv);
}
yafrayGate->addObject_trimesh(string(obj->id.name), verts, faces, uvcoords, vcol,
shaders, faceshader, sm_angle, castShadows, true, true, caus, has_orco,
caus_rcolor, caus_tcolor, caus_IOR);
yafrayGate->transformPop();
}
// write all objects
void yafrayPluginRender_t::writeAllObjects()
{
// first all objects except dupliverts (and main instance object for dups)
for (map<Object*, vector<VlakRen*> >::const_iterator obi=all_objects.begin();
obi!=all_objects.end(); ++obi)
{
// skip main duplivert object if in dupliMtx_list, written later
Object* obj = obi->first;
if (dupliMtx_list.find(string(obj->id.name))!=dupliMtx_list.end()) continue;
writeObject(obj, obi->second, obj->obmat);
}
// Now all duplivert objects (if any) as instances of main object
// The original object has been included in the VlakRen renderlist above (see convertBlenderScene.c)
// but is written here which all other duplis are instances of.
float obmat[4][4], cmat[4][4], imat[4][4], nmat[4][4];
for (map<string, vector<float> >::const_iterator dupMtx=dupliMtx_list.begin();
dupMtx!=dupliMtx_list.end();++dupMtx) {
// original inverse matrix, not actual matrix of object, but first duplivert.
for (int i=0;i<4;i++)
for (int j=0;j<4;j++)
obmat[i][j] = dupMtx->second[(i<<2)+j];
MTC_Mat4Invert(imat, obmat);
// first object written as normal (but with transform of first duplivert)
Object* obj = dup_srcob[dupMtx->first];
writeObject(obj, all_objects[obj], obmat);
// all others instances of first
for (unsigned int curmtx=16;curmtx<dupMtx->second.size();curmtx+=16)
{ // number of 4x4 matrices
// new mtx
for (int i=0;i<4;i++)
for (int j=0;j<4;j++)
nmat[i][j] = dupMtx->second[curmtx+(i<<2)+j];
MTC_Mat4MulMat4(cmat, imat, nmat); // transform with respect to original = inverse_original * new
float mtr[4*4];
mtr[0*4+0]=cmat[0][0]; mtr[0*4+1]=cmat[1][0]; mtr[0*4+2]=cmat[2][0]; mtr[0*4+3]=cmat[3][0];
mtr[1*4+0]=cmat[0][1]; mtr[1*4+1]=cmat[1][1]; mtr[1*4+2]=cmat[2][1]; mtr[1*4+3]=cmat[3][1];
mtr[2*4+0]=cmat[0][2]; mtr[2*4+1]=cmat[1][2]; mtr[2*4+2]=cmat[2][2]; mtr[2*4+3]=cmat[3][2];
mtr[3*4+0]=cmat[0][3]; mtr[3*4+1]=cmat[1][3]; mtr[3*4+2]=cmat[2][3]; mtr[3*4+3]=cmat[3][3];
yafrayGate->transformPush(mtr);
// new name from original
string name=(obj->id.name);
char temp[16];
sprintf(temp,"_dup%d",(curmtx>>4));
name+=temp;
yafrayGate->addObject_reference(name,obj->id.name);
yafrayGate->transformPop();
}
}
}
void yafrayPluginRender_t::writeAreaLamp(LampRen* lamp, int num, float iview[4][4])
{
yafray::paramMap_t params;
if (lamp->area_shape!=LA_AREA_SQUARE) return;
float *a=lamp->area[0], *b=lamp->area[1], *c=lamp->area[2], *d=lamp->area[3];
float power=lamp->energy;
string md = "off";
// if no GI used, the GIphotons flag can still be set, so only use when 'full' selected
if ((R.r.GImethod==2) && (R.r.GIphotons)) { md="on"; power*=R.r.GIpower; }
params["type"]=yafray::parameter_t("arealight");
char temp[16];
sprintf(temp,"LAMP%d",num+1);
params["name"]=yafray::parameter_t(temp);
params["dummy"]=yafray::parameter_t(md);
params["power"]=yafray::parameter_t(power);
// samples not used for GI with photons, can still be exported, is ignored
int psm=0, sm = lamp->ray_totsamp;
if (sm>=25) psm = sm/5;
params["samples"]=yafray::parameter_t(sm);
params["psamples"]=yafray::parameter_t(psm);
// transform area lamp coords back to world
float lpco[4][3];
MTC_cp3Float(a, lpco[0]);
MTC_Mat4MulVecfl(iview, lpco[0]);
MTC_cp3Float(b, lpco[1]);
MTC_Mat4MulVecfl(iview, lpco[1]);
MTC_cp3Float(c, lpco[2]);
MTC_Mat4MulVecfl(iview, lpco[2]);
MTC_cp3Float(d, lpco[3]);
MTC_Mat4MulVecfl(iview, lpco[3]);
params["a"] = yafray::parameter_t(yafray::point3d_t(lpco[0][0], lpco[0][1], lpco[0][2]));
params["b"] = yafray::parameter_t(yafray::point3d_t(lpco[1][0], lpco[1][1], lpco[1][2]));
params["c"] = yafray::parameter_t(yafray::point3d_t(lpco[2][0], lpco[2][1], lpco[2][2]));
params["d"] = yafray::parameter_t(yafray::point3d_t(lpco[3][0], lpco[3][1], lpco[3][2]));
params["color"]=yafray::parameter_t(yafray::color_t(lamp->r,lamp->g,lamp->b));
yafrayGate->addLight(params);
}
void yafrayPluginRender_t::writeLamps()
{
// inver viewmatrix needed for back2world transform
float iview[4][4];
// R.viewinv != inv.R.viewmat because of possible ortho mode (see convertBlenderScene.c)
// have to invert it here
MTC_Mat4Invert(iview, R.viewmat);
// all lamps
for (int i=0;i<R.totlamp;i++)
{
yafray::paramMap_t params;
string type="";
LampRen* lamp = R.la[i];
if (lamp->type==LA_AREA) { writeAreaLamp(lamp, i, iview); continue; }
// TODO: add decay setting in yafray
bool is_softL=false, is_sphereL=false;
if (lamp->type==LA_LOCAL) {
if (lamp->mode & LA_YF_SOFT) {
// shadowmapped omnidirectional light
params["type"] = yafray::parameter_t("softlight");
is_softL = true;
}
else if ((lamp->mode & LA_SHAD_RAY) && (lamp->YF_ltradius>0.0)) {
// area sphere, only when ray shadows enabled and radius>0.0
params["type"] = yafray::parameter_t("spherelight");
is_sphereL = true;
}
else params["type"] = yafray::parameter_t("pointlight");
params["glow_intensity"] = yafray::parameter_t(lamp->YF_glowint);
params["glow_type"] = yafray::parameter_t(lamp->YF_glowtype);
}
else if (lamp->type==LA_SPOT)
params["type"] = yafray::parameter_t("spotlight");
else if ((lamp->type==LA_SUN) || (lamp->type==LA_HEMI)) // hemi exported as sun
params["type"] = yafray::parameter_t("sunlight");
else if (lamp->type==LA_YF_PHOTON)
params["type"] = yafray::parameter_t("photonlight");
else {
// possibly unknown type, ignore
cout << "Unknown Blender lamp type: " << lamp->type << endl;
continue;
}
//no name available here, create one
char temp[16];
sprintf(temp,"LAMP%d",i+1);
params["name"] = yafray::parameter_t(temp);
// color already premultiplied by energy, so only need distance here
float pwr = 1; // default for sun/hemi, distance irrelevant
if ((lamp->type!=LA_SUN) && (lamp->type!=LA_HEMI)) {
if (lamp->mode & LA_SPHERE) {
// best approx. as used in LFexport script (LF d.f.m. 4pi?)
pwr = lamp->dist*(lamp->dist+1)*(0.25/M_PI);
//decay = 2;
}
else {
pwr = lamp->dist;
//decay = 1;
}
}
if (is_sphereL) {
// 'dummy' mode for spherelight when used with gpm
string md = "off";
// if no GI used, the GIphotons flag can still be set, so only use when 'full' selected
if ((R.r.GImethod==2) && (R.r.GIphotons)) { md="on"; pwr*=R.r.GIpower; }
params["power"] = yafray::parameter_t(pwr);
params["dummy"] = yafray::parameter_t(md);
}
else params["power"] = yafray::parameter_t(pwr);
// cast_shadows flag not used with softlight, spherelight or photonlight
if ((!is_softL) && (!is_sphereL) && (lamp->type!=LA_YF_PHOTON)) {
string lpmode="off";
// Shadows only when Blender has shadow button enabled, only spots use LA_SHAD flag.
// Also blender hemilights exported as sunlights which might have shadow flag set
// should have cast_shadows set to off (reported by varuag)
if (lamp->type!=LA_HEMI) {
if (R.r.mode & R_SHADOW)
if (((lamp->type==LA_SPOT) && (lamp->mode & LA_SHAD)) || (lamp->mode & LA_SHAD_RAY)) lpmode="on";
}
params["cast_shadows"] = yafray::parameter_t(lpmode);
}
// spot specific stuff
bool has_halo = ((lamp->type==LA_SPOT) && (lamp->mode & LA_HALO) && (lamp->haint>0.0));
if (lamp->type==LA_SPOT) {
// conversion already changed spotsize to cosine of half angle
float ld = 1-lamp->spotsi; //convert back to blender slider setting
if (ld!=0) ld = 1.f/ld;
params["size"] = yafray::parameter_t(acos(lamp->spotsi)*180.0/M_PI);
params["blend"] = yafray::parameter_t(lamp->spotbl*ld);
params["beam_falloff"] = yafray::parameter_t(2.0);
// halo params
if (has_halo) {
params["halo"] = yafray::parameter_t("on");
params["res"] = yafray::parameter_t(lamp->YF_bufsize);
int hsmp = ((12-lamp->shadhalostep)*16)/12;
hsmp = (hsmp+1)*16; // makes range (16, 272) for halostep(12, 0), good enough?
params["samples"] = yafray::parameter_t(hsmp);
params["shadow_samples"] = yafray::parameter_t(lamp->samp*lamp->samp);
params["halo_blur"] = yafray::parameter_t(0.0);
params["shadow_blur"] = yafray::parameter_t(lamp->soft*0.01f);
params["fog_density"] = yafray::parameter_t(lamp->haint*0.2f);
}
}
else if (is_softL) {
// softlight
params["res"] = yafray::parameter_t(lamp->YF_bufsize);
params["radius"] = yafray::parameter_t(lamp->soft);
params["bias"] = yafray::parameter_t(lamp->bias);
}
else if (is_sphereL) {
// spherelight
int psm=0, sm = lamp->ray_samp*lamp->ray_samp;
if (sm>=25) psm = sm/5;
params["radius"] = yafray::parameter_t(lamp->YF_ltradius);
params["samples"] = yafray::parameter_t(sm);
params["psamples"] = yafray::parameter_t(psm);
params["qmc_method"] = yafray::parameter_t(1);
}
else if (lamp->type==LA_YF_PHOTON) {
string qmc="off";
if (lamp->YF_useqmc) qmc="on";
params["photons"] = yafray::parameter_t(lamp->YF_numphotons);
params["search"] = yafray::parameter_t(lamp->YF_numsearch);
params["depth"] = yafray::parameter_t(lamp->YF_phdepth);
params["use_QMC"] = yafray::parameter_t(qmc);
params["angle"] = yafray::parameter_t(acos(lamp->spotsi)*180.0/M_PI);
float cl = lamp->YF_causticblur/sqrt((float)lamp->YF_numsearch);
params["fixedradius"] = yafray::parameter_t(lamp->YF_causticblur);
params["cluster"] = yafray::parameter_t(cl);
}
// transform lamp co & vec back to world
float lpco[3], lpvec[3];
MTC_cp3Float(lamp->co, lpco);
MTC_Mat4MulVecfl(iview, lpco);
MTC_cp3Float(lamp->vec, lpvec);
MTC_Mat4Mul3Vecfl(iview, lpvec);
// position, (==-blendir for sun/hemi)
if ((lamp->type==LA_SUN) || (lamp->type==LA_HEMI))
params["from"] = yafray::parameter_t(yafray::point3d_t(-lpvec[0], -lpvec[1], -lpvec[2]));
else
params["from"] = yafray::parameter_t(yafray::point3d_t(lpco[0], lpco[1], lpco[2]));
// 'to' for spot/photonlight, already calculated by Blender
if ((lamp->type==LA_SPOT) || (lamp->type==LA_YF_PHOTON)) {
params["to"] = yafray::parameter_t(yafray::point3d_t(lpco[0] + lpvec[0],
lpco[1] + lpvec[1],
lpco[2] + lpvec[2]));
if (has_halo) params["fog"] = yafray::parameter_t(yafray::color_t(1.0, 1.0, 1.0));
}
// color
// rgb in LampRen is premultiplied by energy, power is compensated for that above
params["color"] = yafray::parameter_t(yafray::color_t(lamp->r, lamp->g, lamp->b));
yafrayGate->addLight(params);
}
}
// write main camera
void yafrayPluginRender_t::writeCamera()
{
yafray::paramMap_t params;
params["name"]=yafray::parameter_t("MAINCAM");
if (R.r.mode & R_ORTHO)
params["type"] = yafray::parameter_t("ortho");
else
params["type"] = yafray::parameter_t("perspective");
params["resx"]=yafray::parameter_t(R.r.xsch);
params["resy"]=yafray::parameter_t(R.r.ysch);
float f_aspect = 1;
if ((R.r.xsch*R.r.xasp)<=(R.r.ysch*R.r.yasp)) f_aspect = float(R.r.xsch*R.r.xasp)/float(R.r.ysch*R.r.yasp);
params["focal"] = yafray::parameter_t(mainCamLens/(f_aspect*32.f));
params["aspect_ratio"] = yafray::parameter_t(R.ycor);
// dof params, only valid for real camera
float fdist = 1; // only changes for ortho
if (maincam_obj->type==OB_CAMERA) {
Camera* cam = (Camera*)maincam_obj->data;
if (R.r.mode & R_ORTHO) fdist = cam->ortho_scale*(mainCamLens/32.f);
params["dof_distance"] = yafray::parameter_t(cam->YF_dofdist);
params["aperture"] = yafray::parameter_t(cam->YF_aperture);
if (cam->flag & CAM_YF_NO_QMC)
params["use_qmc"] = yafray::parameter_t("off");
else
params["use_qmc"] = yafray::parameter_t("on");
// bokeh params
string st = "disk1";
if (cam->YF_bkhtype==1)
st = "disk2";
else if (cam->YF_bkhtype==2)
st = "triangle";
else if (cam->YF_bkhtype==3)
st = "square";
else if (cam->YF_bkhtype==4)
st = "pentagon";
else if (cam->YF_bkhtype==5)
st = "hexagon";
else if (cam->YF_bkhtype==6)
st = "ring";
params["bokeh_type"] = yafray::parameter_t(st);
st = "uniform";
if (cam->YF_bkhbias==1)
st = "center";
else if (cam->YF_bkhbias==2)
st = "edge";
params["bokeh_bias"] = yafray::parameter_t(st);
params["bokeh_rotation"] = yafray::parameter_t(cam->YF_bkhrot);
}
params["from"]=yafray::parameter_t(
yafray::point3d_t(maincam_obj->obmat[3][0], maincam_obj->obmat[3][1], maincam_obj->obmat[3][2]));
params["to"]=yafray::parameter_t(
yafray::point3d_t(maincam_obj->obmat[3][0] - fdist * R.viewmat[0][2],
maincam_obj->obmat[3][1] - fdist * R.viewmat[1][2],
maincam_obj->obmat[3][2] - fdist * R.viewmat[2][2]));
params["up"]=yafray::parameter_t(
yafray::point3d_t(maincam_obj->obmat[3][0] + R.viewmat[0][1],
maincam_obj->obmat[3][1] + R.viewmat[1][1],
maincam_obj->obmat[3][2] + R.viewmat[2][1]));
yafrayGate->addCamera(params);
}
void yafrayPluginRender_t::writeHemilight()
{
yafray::paramMap_t params;
World *world = G.scene->world;
bool fromAO = false;
if (R.r.GIquality==6){
// use Blender AO params is possible
if (world==NULL) return;
if ((world->mode & WO_AMB_OCC)==0) {
// no AO, use default GIquality
cout << "[Warning]: Can't use AO parameters\nNo ambient occlusion enabled, using default values instead" << endl;
}
else fromAO = true;
}
if (R.r.GIcache) {
params["type"] = yafray::parameter_t("pathlight");
params["name"] = yafray::parameter_t("path_LT");
params["power"] = yafray::parameter_t(R.r.GIpower);
params["mode"] = yafray::parameter_t("occlusion");
params["ignore_bumpnormals"] = yafray::parameter_t(R.r.YF_nobump ? "on" : "off");
if (fromAO) {
// for AO, with cache, using range of 32*1 to 32*16 seems good enough
params["samples"] = yafray::parameter_t(32*world->aosamp);
params["maxdistance"] = yafray::parameter_t(world->aodist);
}
else {
switch (R.r.GIquality)
{
case 1 : params["samples"] = yafray::parameter_t(128); break;
case 2 : params["samples"] = yafray::parameter_t(256); break;
case 3 : params["samples"] = yafray::parameter_t(512); break;
case 4 : params["samples"] = yafray::parameter_t(1024); break;
case 5 : params["samples"] = yafray::parameter_t(2048); break;
default: params["samples"] = yafray::parameter_t(256);
}
}
params["cache"] = yafray::parameter_t("on");
params["use_QMC"] = yafray::parameter_t("on");
params["threshold"] = yafray::parameter_t(R.r.GIrefinement);
params["cache_size"] = yafray::parameter_t((2.0/float(R.r.xsch))*R.r.GIpixelspersample);
params["shadow_threshold"] = yafray::parameter_t(1.0 - R.r.GIshadowquality);
params["grid"] = yafray::parameter_t(82);
params["search"] = yafray::parameter_t(35);
}
else {
params["type"] = yafray::parameter_t("hemilight");
params["name"] = yafray::parameter_t("hemi_LT");
params["power"] = yafray::parameter_t(R.r.GIpower);
if (fromAO) {
params["samples"] = yafray::parameter_t(world->aosamp*world->aosamp);
params["maxdistance"] = yafray::parameter_t(world->aodist);
params["use_QMC"] = yafray::parameter_t((world->aomode & WO_AORNDSMP) ? "off" : "on");
}
else {
switch (R.r.GIquality)
{
case 1 :
case 2 : params["samples"]=yafray::parameter_t(16); break;
case 3 : params["samples"]=yafray::parameter_t(36); break;
case 4 : params["samples"]=yafray::parameter_t(64); break;
case 5 : params["samples"]=yafray::parameter_t(128); break;
default: params["samples"]=yafray::parameter_t(25);
}
}
}
yafrayGate->addLight(params);
}
void yafrayPluginRender_t::writePathlight()
{
if (R.r.GIphotons)
{
yafray::paramMap_t params;
params["type"] = yafray::parameter_t("globalphotonlight");
params["name"] = yafray::parameter_t("gpm");
params["photons"] = yafray::parameter_t(R.r.GIphotoncount);
params["radius"] = yafray::parameter_t(R.r.GIphotonradius);
params["depth"] = yafray::parameter_t(((R.r.GIdepth>2) ? (R.r.GIdepth-1) : 1));
params["caus_depth"] = yafray::parameter_t(R.r.GIcausdepth);
params["search"] = yafray::parameter_t(R.r.GImixphotons);
yafrayGate->addLight(params);
}
yafray::paramMap_t params;
params["type"] = yafray::parameter_t("pathlight");
params["name"] = yafray::parameter_t("path_LT");
params["power"] = yafray::parameter_t(R.r.GIindirpower);
params["depth"] = yafray::parameter_t(((R.r.GIphotons) ? 1 : R.r.GIdepth));
params["caus_depth"] = yafray::parameter_t(R.r.GIcausdepth);
if (R.r.GIdirect && R.r.GIphotons) params["direct"] = yafray::parameter_t("on");
if (R.r.GIcache && !(R.r.GIdirect && R.r.GIphotons))
{
switch (R.r.GIquality)
{
case 1 : params["samples"] = yafray::parameter_t(128); break;
case 2 : params["samples"] = yafray::parameter_t(256); break;
case 3 : params["samples"] = yafray::parameter_t(512); break;
case 4 : params["samples"] = yafray::parameter_t(1024); break;
case 5 : params["samples"] = yafray::parameter_t(2048); break;
default: params["samples"] = yafray::parameter_t(256);
}
params["cache"] = yafray::parameter_t("on");
params["use_QMC"] = yafray::parameter_t("on");
params["threshold"] = yafray::parameter_t(R.r.GIrefinement);
params["cache_size"] = yafray::parameter_t((2.0/float(R.r.xsch))*R.r.GIpixelspersample);
params["shadow_threshold"] = yafray::parameter_t(1.0 - R.r.GIshadowquality);
params["grid"] = yafray::parameter_t(82);
params["search"] = yafray::parameter_t(35);
params["ignore_bumpnormals"] = yafray::parameter_t(R.r.YF_nobump ? "on" : "off");
}
else
{
switch (R.r.GIquality)
{
case 1 : params["samples"] = yafray::parameter_t(16); break;
case 2 : params["samples"] = yafray::parameter_t(36); break;
case 3 : params["samples"] = yafray::parameter_t(64); break;
case 4 : params["samples"] = yafray::parameter_t(128); break;
case 5 : params["samples"] = yafray::parameter_t(256); break;
default: params["samples"] = yafray::parameter_t(25);
}
}
yafrayGate->addLight(params);
}
bool yafrayPluginRender_t::writeWorld()
{
World *world = G.scene->world;
if (R.r.GIquality!=0) {
if (R.r.GImethod==1) {
if (world==NULL) cout << "WARNING: need world background for skydome!\n";
writeHemilight();
}
else if (R.r.GImethod==2) writePathlight();
}
if (world==NULL) return false;
yafray::paramMap_t params;
for (int i=0;i<MAX_MTEX;i++) {
MTex* wtex = world->mtex[i];
if (!wtex) continue;
Image* wimg = wtex->tex->ima;
if ((wtex->tex->type==TEX_IMAGE) && (wimg!=NULL)) {
string wt_path = wimg->name;
adjustPath(wt_path);
if (BLI_testextensie(wimg->name, ".hdr")) {
params["type"] = yafray::parameter_t("image");
params["name"] = yafray::parameter_t("world_background");
// exposure_adjust not restricted to integer range anymore
params["exposure_adjust"] = yafray::parameter_t(wtex->tex->bright-1.f);
params["mapping"] = yafray::parameter_t("probe");
params["filename"] = yafray::parameter_t(wt_path);
params["interpolate"] = yafray::parameter_t((wtex->tex->imaflag & TEX_INTERPOL) ? "bilinear" : "none");
yafrayGate->addBackground(params);
return true;
}
else if (BLI_testextensie(wimg->name, ".jpg") || BLI_testextensie(wimg->name, ".jpeg") || BLI_testextensie(wimg->name, ".tga")) {
params["type"] = yafray::parameter_t("image");
params["name"] = yafray::parameter_t("world_background");
/*
// not yet in yafray, always assumes spheremap for now, not the same as in Blender,
// which for some reason is scaled by 2 in Blender???
if (wtex->texco & TEXCO_ANGMAP)
params["mapping"] = yafray::parameter_t("probe");
else
params["mapping"] = yafray::parameter_t("sphere");
*/
params["filename"] = yafray::parameter_t(wt_path);
yafrayGate->addBackground(params);
return true;
}
}
}
params.clear();
params["type"] = yafray::parameter_t("constant");
params["name"] = yafray::parameter_t("world_background");
// if no GI used, the GIpower parameter is not always initialized, so in that case ignore it
// (have to change method to init yafray vars in Blender)
float bg_mult = (R.r.GImethod==0) ? 1 : R.r.GIpower;
params["color"]=yafray::parameter_t(yafray::color_t(world->horr * bg_mult,
world->horg * bg_mult,
world->horb * bg_mult));
yafrayGate->addBackground(params);
return true;
}
#include "RE_callbacks.h"
bool blenderYafrayOutput_t::putPixel(int x, int y, const yafray::color_t &c,
yafray::CFLOAT alpha, yafray::PFLOAT depth)
{
unsigned int px = ((R.recty-1)-y)*R.rectx;
unsigned char* bpt = (unsigned char*)R.rectot + (px<<2);
int x4 = x<<2;
int temp = (int)(c.R*255.f+0.5f);
if (temp>255) temp=255;
bpt[x4] = temp;
temp=(int)(c.G*255.f+0.5f);
if (temp>255) temp=255;
bpt[x4+1] = temp;
temp=(int)(c.B*255.f+0.5f);
if (temp>255) temp=255;
bpt[x4+2] = temp;
temp=(int)(alpha*255.f+0.5f);
if (temp>255) temp=255;
bpt[x4+3] = temp;
// float buffer
if ((R.r.mode & R_FBUF) && R.rectftot) {
float* fpt = R.rectftot + (px<<2);
fpt[x4] = c.R;
fpt[x4+1] = c.G;
fpt[x4+2] = c.B;
fpt[x4+3] = alpha;
}
// depth values
int* zbuf = R.rectz + px;
depth -= R.near;
float mz = R.far - R.near;
if (depth<0) depth=0; else if (depth>mz) depth=mz;
if (mz!=0.f) mz = 2147483647.f/mz;
zbuf[x] = (int)(depth*mz);
out++;
if (out==4096)
{
RE_local_render_display(0,R.recty-1, R.rectx, R.recty, R.rectot);
out = 0;
}
if (RE_local_test_break())
return false;
return true;
}