Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
533 lines
15 KiB
C++
533 lines
15 KiB
C++
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <mutex>
|
|
|
|
#include "FN_cpp_type.hh"
|
|
#include "FN_generic_span.hh"
|
|
#include "FN_generic_virtual_array.hh"
|
|
|
|
#include "BKE_anonymous_attribute.hh"
|
|
#include "BKE_attribute.h"
|
|
|
|
#include "BLI_color.hh"
|
|
#include "BLI_float2.hh"
|
|
#include "BLI_float3.hh"
|
|
#include "BLI_function_ref.hh"
|
|
|
|
namespace blender::bke {
|
|
|
|
/**
|
|
* Identifies an attribute that is either named or anonymous.
|
|
* It does not own the identifier, so it is just a reference.
|
|
*/
|
|
class AttributeIDRef {
|
|
private:
|
|
StringRef name_;
|
|
const AnonymousAttributeID *anonymous_id_ = nullptr;
|
|
|
|
public:
|
|
AttributeIDRef();
|
|
AttributeIDRef(StringRef name);
|
|
AttributeIDRef(StringRefNull name);
|
|
AttributeIDRef(const char *name);
|
|
AttributeIDRef(const std::string &name);
|
|
AttributeIDRef(const AnonymousAttributeID *anonymous_id);
|
|
|
|
operator bool() const;
|
|
uint64_t hash() const;
|
|
bool is_named() const;
|
|
bool is_anonymous() const;
|
|
StringRef name() const;
|
|
const AnonymousAttributeID &anonymous_id() const;
|
|
bool should_be_kept() const;
|
|
|
|
friend bool operator==(const AttributeIDRef &a, const AttributeIDRef &b);
|
|
friend std::ostream &operator<<(std::ostream &stream, const AttributeIDRef &attribute_id);
|
|
};
|
|
|
|
} // namespace blender::bke
|
|
|
|
/**
|
|
* Contains information about an attribute in a geometry component.
|
|
* More information can be added in the future. E.g. whether the attribute is builtin and how it is
|
|
* stored (uv map, vertex group, ...).
|
|
*/
|
|
struct AttributeMetaData {
|
|
AttributeDomain domain;
|
|
CustomDataType data_type;
|
|
|
|
constexpr friend bool operator==(AttributeMetaData a, AttributeMetaData b)
|
|
{
|
|
return (a.domain == b.domain) && (a.data_type == b.data_type);
|
|
}
|
|
};
|
|
|
|
struct AttributeKind {
|
|
AttributeDomain domain;
|
|
CustomDataType data_type;
|
|
};
|
|
|
|
/**
|
|
* Base class for the attribute initializer types described below.
|
|
*/
|
|
struct AttributeInit {
|
|
enum class Type {
|
|
Default,
|
|
VArray,
|
|
MoveArray,
|
|
};
|
|
Type type;
|
|
AttributeInit(const Type type) : type(type)
|
|
{
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Create an attribute using the default value for the data type.
|
|
* The default values may depend on the attribute provider implementation.
|
|
*/
|
|
struct AttributeInitDefault : public AttributeInit {
|
|
AttributeInitDefault() : AttributeInit(Type::Default)
|
|
{
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Create an attribute by copying data from an existing virtual array. The virtual array
|
|
* must have the same type as the newly created attribute.
|
|
*
|
|
* Note that this can be used to fill the new attribute with the default
|
|
*/
|
|
struct AttributeInitVArray : public AttributeInit {
|
|
blender::fn::GVArray varray;
|
|
|
|
AttributeInitVArray(blender::fn::GVArray varray)
|
|
: AttributeInit(Type::VArray), varray(std::move(varray))
|
|
{
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Create an attribute with a by passing ownership of a pre-allocated contiguous array of data.
|
|
* Sometimes data is created before a geometry component is available. In that case, it's
|
|
* preferable to move data directly to the created attribute to avoid a new allocation and a copy.
|
|
*
|
|
* Note that this will only have a benefit for attributes that are stored directly as contiguous
|
|
* arrays, so not for some built-in attributes.
|
|
*
|
|
* The array must be allocated with MEM_*, since `attribute_try_create` will free the array if it
|
|
* can't be used directly, and that is generally how Blender expects custom data to be allocated.
|
|
*/
|
|
struct AttributeInitMove : public AttributeInit {
|
|
void *data = nullptr;
|
|
|
|
AttributeInitMove(void *data) : AttributeInit(Type::MoveArray), data(data)
|
|
{
|
|
}
|
|
};
|
|
|
|
/* Returns false when the iteration should be stopped. */
|
|
using AttributeForeachCallback = blender::FunctionRef<bool(
|
|
const blender::bke::AttributeIDRef &attribute_id, const AttributeMetaData &meta_data)>;
|
|
|
|
namespace blender::bke {
|
|
|
|
using fn::CPPType;
|
|
using fn::GVArray;
|
|
using fn::GVMutableArray;
|
|
|
|
const CPPType *custom_data_type_to_cpp_type(const CustomDataType type);
|
|
CustomDataType cpp_type_to_custom_data_type(const CPPType &type);
|
|
CustomDataType attribute_data_type_highest_complexity(Span<CustomDataType> data_types);
|
|
AttributeDomain attribute_domain_highest_priority(Span<AttributeDomain> domains);
|
|
|
|
/**
|
|
* Used when looking up a "plain attribute" based on a name for reading from it.
|
|
*/
|
|
struct ReadAttributeLookup {
|
|
/* The virtual array that is used to read from this attribute. */
|
|
GVArray varray;
|
|
/* Domain the attribute lives on in the geometry. */
|
|
AttributeDomain domain;
|
|
|
|
/* Convenience function to check if the attribute has been found. */
|
|
operator bool() const
|
|
{
|
|
return this->varray;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Used when looking up a "plain attribute" based on a name for reading from it and writing to it.
|
|
*/
|
|
struct WriteAttributeLookup {
|
|
/* The virtual array that is used to read from and write to the attribute. */
|
|
GVMutableArray varray;
|
|
/* Domain the attributes lives on in the geometry. */
|
|
AttributeDomain domain;
|
|
/* Call this after changing the attribute to invalidate caches that depend on this attribute. */
|
|
std::function<void()> tag_modified_fn;
|
|
|
|
/* Convenience function to check if the attribute has been found. */
|
|
operator bool() const
|
|
{
|
|
return this->varray;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* An output attribute allows writing to an attribute (and optionally reading as well). It adds
|
|
* some convenience features on top of `GVMutableArray` that are very commonly used.
|
|
*
|
|
* Supported convenience features:
|
|
* - Implicit type conversion when writing to builtin attributes.
|
|
* - Supports simple access to a span containing the attribute values (that avoids the use of
|
|
* VMutableArray_Span in many cases).
|
|
* - An output attribute can live side by side with an existing attribute with a different domain
|
|
* or data type. The old attribute will only be overwritten when the #save function is called.
|
|
*/
|
|
class OutputAttribute {
|
|
public:
|
|
using SaveFn = std::function<void(OutputAttribute &)>;
|
|
|
|
private:
|
|
GVMutableArray varray_;
|
|
AttributeDomain domain_ = ATTR_DOMAIN_AUTO;
|
|
SaveFn save_;
|
|
std::unique_ptr<fn::GVMutableArray_GSpan> optional_span_varray_;
|
|
bool ignore_old_values_ = false;
|
|
bool save_has_been_called_ = false;
|
|
|
|
public:
|
|
OutputAttribute();
|
|
OutputAttribute(OutputAttribute &&other);
|
|
OutputAttribute(GVMutableArray varray,
|
|
AttributeDomain domain,
|
|
SaveFn save,
|
|
const bool ignore_old_values);
|
|
|
|
~OutputAttribute();
|
|
|
|
operator bool() const;
|
|
|
|
GVMutableArray &operator*();
|
|
fn::GVMutableArray *operator->();
|
|
GVMutableArray &varray();
|
|
AttributeDomain domain() const;
|
|
const CPPType &cpp_type() const;
|
|
CustomDataType custom_data_type() const;
|
|
|
|
fn::GMutableSpan as_span();
|
|
template<typename T> MutableSpan<T> as_span();
|
|
|
|
void save();
|
|
};
|
|
|
|
/**
|
|
* Same as OutputAttribute, but should be used when the data type is known at compile time.
|
|
*/
|
|
template<typename T> class OutputAttribute_Typed {
|
|
private:
|
|
OutputAttribute attribute_;
|
|
VMutableArray<T> varray_;
|
|
|
|
public:
|
|
OutputAttribute_Typed();
|
|
OutputAttribute_Typed(OutputAttribute attribute) : attribute_(std::move(attribute))
|
|
{
|
|
if (attribute_) {
|
|
varray_ = attribute_.varray().template typed<T>();
|
|
}
|
|
}
|
|
|
|
OutputAttribute_Typed(OutputAttribute_Typed &&other);
|
|
~OutputAttribute_Typed();
|
|
|
|
OutputAttribute_Typed &operator=(OutputAttribute_Typed &&other)
|
|
{
|
|
if (this == &other) {
|
|
return *this;
|
|
}
|
|
this->~OutputAttribute_Typed();
|
|
new (this) OutputAttribute_Typed(std::move(other));
|
|
return *this;
|
|
}
|
|
|
|
operator bool() const
|
|
{
|
|
return varray_;
|
|
}
|
|
|
|
VMutableArray<T> &operator*()
|
|
{
|
|
return varray_;
|
|
}
|
|
|
|
VMutableArray<T> *operator->()
|
|
{
|
|
return &varray_;
|
|
}
|
|
|
|
VMutableArray<T> &varray()
|
|
{
|
|
return varray_;
|
|
}
|
|
|
|
AttributeDomain domain() const
|
|
{
|
|
return attribute_.domain();
|
|
}
|
|
|
|
const CPPType &cpp_type() const
|
|
{
|
|
return CPPType::get<T>();
|
|
}
|
|
|
|
CustomDataType custom_data_type() const
|
|
{
|
|
return cpp_type_to_custom_data_type(this->cpp_type());
|
|
}
|
|
|
|
MutableSpan<T> as_span()
|
|
{
|
|
return attribute_.as_span<T>();
|
|
}
|
|
|
|
void save()
|
|
{
|
|
attribute_.save();
|
|
}
|
|
};
|
|
|
|
/* These are not defined in the class directly, because when defining them there, the external
|
|
* template instantiation does not work, resulting in longer compile times. */
|
|
template<typename T> inline OutputAttribute_Typed<T>::OutputAttribute_Typed() = default;
|
|
template<typename T>
|
|
inline OutputAttribute_Typed<T>::OutputAttribute_Typed(OutputAttribute_Typed &&other) = default;
|
|
template<typename T> inline OutputAttribute_Typed<T>::~OutputAttribute_Typed() = default;
|
|
|
|
/**
|
|
* A basic container around DNA CustomData so that its users
|
|
* don't have to implement special copy and move constructors.
|
|
*/
|
|
class CustomDataAttributes {
|
|
/**
|
|
* #CustomData needs a size to be freed, and unfortunately it isn't stored in the struct
|
|
* itself, so keep track of the size here so this class can implement its own destructor.
|
|
* If the implementation of the attribute storage changes, this could be removed.
|
|
*/
|
|
int size_;
|
|
|
|
public:
|
|
CustomData data;
|
|
|
|
CustomDataAttributes();
|
|
~CustomDataAttributes();
|
|
CustomDataAttributes(const CustomDataAttributes &other);
|
|
CustomDataAttributes(CustomDataAttributes &&other);
|
|
CustomDataAttributes &operator=(const CustomDataAttributes &other);
|
|
|
|
void reallocate(const int size);
|
|
|
|
std::optional<blender::fn::GSpan> get_for_read(const AttributeIDRef &attribute_id) const;
|
|
|
|
blender::fn::GVArray get_for_read(const AttributeIDRef &attribute_id,
|
|
const CustomDataType data_type,
|
|
const void *default_value) const;
|
|
|
|
template<typename T>
|
|
blender::VArray<T> get_for_read(const AttributeIDRef &attribute_id, const T &default_value) const
|
|
{
|
|
const blender::fn::CPPType &cpp_type = blender::fn::CPPType::get<T>();
|
|
const CustomDataType type = blender::bke::cpp_type_to_custom_data_type(cpp_type);
|
|
GVArray varray = this->get_for_read(attribute_id, type, &default_value);
|
|
return varray.typed<T>();
|
|
}
|
|
|
|
std::optional<blender::fn::GMutableSpan> get_for_write(const AttributeIDRef &attribute_id);
|
|
bool create(const AttributeIDRef &attribute_id, const CustomDataType data_type);
|
|
bool create_by_move(const AttributeIDRef &attribute_id,
|
|
const CustomDataType data_type,
|
|
void *buffer);
|
|
bool remove(const AttributeIDRef &attribute_id);
|
|
|
|
/**
|
|
* Change the order of the attributes to match the order of IDs in the argument.
|
|
*/
|
|
void reorder(Span<AttributeIDRef> new_order);
|
|
|
|
bool foreach_attribute(const AttributeForeachCallback callback,
|
|
const AttributeDomain domain) const;
|
|
};
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name #AttributeIDRef Inline Methods
|
|
* \{ */
|
|
|
|
inline AttributeIDRef::AttributeIDRef() = default;
|
|
|
|
inline AttributeIDRef::AttributeIDRef(StringRef name) : name_(name)
|
|
{
|
|
}
|
|
|
|
inline AttributeIDRef::AttributeIDRef(StringRefNull name) : name_(name)
|
|
{
|
|
}
|
|
|
|
inline AttributeIDRef::AttributeIDRef(const char *name) : name_(name)
|
|
{
|
|
}
|
|
|
|
inline AttributeIDRef::AttributeIDRef(const std::string &name) : name_(name)
|
|
{
|
|
}
|
|
|
|
/* The anonymous id is only borrowed, the caller has to keep a reference to it. */
|
|
inline AttributeIDRef::AttributeIDRef(const AnonymousAttributeID *anonymous_id)
|
|
: anonymous_id_(anonymous_id)
|
|
{
|
|
}
|
|
|
|
inline bool operator==(const AttributeIDRef &a, const AttributeIDRef &b)
|
|
{
|
|
return a.anonymous_id_ == b.anonymous_id_ && a.name_ == b.name_;
|
|
}
|
|
|
|
inline AttributeIDRef::operator bool() const
|
|
{
|
|
return this->is_named() || this->is_anonymous();
|
|
}
|
|
|
|
inline uint64_t AttributeIDRef::hash() const
|
|
{
|
|
return get_default_hash_2(name_, anonymous_id_);
|
|
}
|
|
|
|
inline bool AttributeIDRef::is_named() const
|
|
{
|
|
return !name_.is_empty();
|
|
}
|
|
|
|
inline bool AttributeIDRef::is_anonymous() const
|
|
{
|
|
return anonymous_id_ != nullptr;
|
|
}
|
|
|
|
inline StringRef AttributeIDRef::name() const
|
|
{
|
|
BLI_assert(this->is_named());
|
|
return name_;
|
|
}
|
|
|
|
inline const AnonymousAttributeID &AttributeIDRef::anonymous_id() const
|
|
{
|
|
BLI_assert(this->is_anonymous());
|
|
return *anonymous_id_;
|
|
}
|
|
|
|
/**
|
|
* \return True if the attribute should not be removed automatically as an optimization during
|
|
* processing or copying. Anonymous attributes can be removed when they no longer have any
|
|
* references.
|
|
*/
|
|
inline bool AttributeIDRef::should_be_kept() const
|
|
{
|
|
return this->is_named() || BKE_anonymous_attribute_id_has_strong_references(anonymous_id_);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name #OutputAttribute Inline Methods
|
|
* \{ */
|
|
|
|
inline OutputAttribute::OutputAttribute() = default;
|
|
inline OutputAttribute::OutputAttribute(OutputAttribute &&other) = default;
|
|
|
|
inline OutputAttribute::OutputAttribute(GVMutableArray varray,
|
|
AttributeDomain domain,
|
|
SaveFn save,
|
|
const bool ignore_old_values)
|
|
: varray_(std::move(varray)),
|
|
domain_(domain),
|
|
save_(std::move(save)),
|
|
ignore_old_values_(ignore_old_values)
|
|
{
|
|
}
|
|
|
|
inline OutputAttribute::operator bool() const
|
|
{
|
|
return varray_;
|
|
}
|
|
|
|
inline GVMutableArray &OutputAttribute::operator*()
|
|
{
|
|
return varray_;
|
|
}
|
|
|
|
inline fn::GVMutableArray *OutputAttribute::operator->()
|
|
{
|
|
return &varray_;
|
|
}
|
|
|
|
inline GVMutableArray &OutputAttribute::varray()
|
|
{
|
|
return varray_;
|
|
}
|
|
|
|
inline AttributeDomain OutputAttribute::domain() const
|
|
{
|
|
return domain_;
|
|
}
|
|
|
|
inline const CPPType &OutputAttribute::cpp_type() const
|
|
{
|
|
return varray_.type();
|
|
}
|
|
|
|
inline CustomDataType OutputAttribute::custom_data_type() const
|
|
{
|
|
return cpp_type_to_custom_data_type(this->cpp_type());
|
|
}
|
|
|
|
template<typename T> inline MutableSpan<T> OutputAttribute::as_span()
|
|
{
|
|
return this->as_span().typed<T>();
|
|
}
|
|
|
|
/** \} */
|
|
|
|
} // namespace blender::bke
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name External Template Instantiations
|
|
*
|
|
* Defined in `intern/extern_implementations.cc`.
|
|
* \{ */
|
|
|
|
namespace blender::bke {
|
|
extern template class OutputAttribute_Typed<float>;
|
|
extern template class OutputAttribute_Typed<int>;
|
|
extern template class OutputAttribute_Typed<float3>;
|
|
extern template class OutputAttribute_Typed<bool>;
|
|
extern template class OutputAttribute_Typed<ColorGeometry4f>;
|
|
} // namespace blender::bke
|
|
|
|
/** \} */
|