This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/intern/COM_NodeOperation.cc
Manuel Castilla ecb8a574c7 Cleanup: remove unused includes in Compositor
And move unneeded includes in frequently used headers
to source files.

Slightly reduces compile time.
2021-10-13 23:41:14 +02:00

575 lines
16 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include <cstdio>
#include "COM_BufferOperation.h"
#include "COM_ExecutionSystem.h"
#include "COM_ReadBufferOperation.h"
#include "COM_NodeOperation.h" /* own include */
namespace blender::compositor {
/*******************
**** NodeOperation ****
*******************/
NodeOperation::NodeOperation()
{
canvas_input_index_ = 0;
canvas_ = COM_AREA_NONE;
this->m_btree = nullptr;
}
/** Get constant value when operation is constant, otherwise return default_value. */
float NodeOperation::get_constant_value_default(float default_value)
{
BLI_assert(m_outputs.size() > 0 && getOutputSocket()->getDataType() == DataType::Value);
return *get_constant_elem_default(&default_value);
}
/** Get constant elem when operation is constant, otherwise return default_elem. */
const float *NodeOperation::get_constant_elem_default(const float *default_elem)
{
BLI_assert(m_outputs.size() > 0);
if (get_flags().is_constant_operation) {
return static_cast<ConstantOperation *>(this)->get_constant_elem();
}
return default_elem;
}
/**
* Generate a hash that identifies the operation result in the current execution.
* Requires `hash_output_params` to be implemented, otherwise `std::nullopt` is returned.
* If the operation parameters or its linked inputs change, the hash must be re-generated.
*/
std::optional<NodeOperationHash> NodeOperation::generate_hash()
{
params_hash_ = get_default_hash_2(canvas_.xmin, canvas_.xmax);
/* Hash subclasses params. */
is_hash_output_params_implemented_ = true;
hash_output_params();
if (!is_hash_output_params_implemented_) {
return std::nullopt;
}
hash_params(canvas_.ymin, canvas_.ymax);
if (m_outputs.size() > 0) {
BLI_assert(m_outputs.size() == 1);
hash_param(this->getOutputSocket()->getDataType());
}
NodeOperationHash hash;
hash.params_hash_ = params_hash_;
hash.parents_hash_ = 0;
for (NodeOperationInput &socket : m_inputs) {
if (!socket.isConnected()) {
continue;
}
NodeOperation &input = socket.getLink()->getOperation();
const bool is_constant = input.get_flags().is_constant_operation;
combine_hashes(hash.parents_hash_, get_default_hash(is_constant));
if (is_constant) {
const float *elem = ((ConstantOperation *)&input)->get_constant_elem();
const int num_channels = COM_data_type_num_channels(socket.getDataType());
for (const int i : IndexRange(num_channels)) {
combine_hashes(hash.parents_hash_, get_default_hash(elem[i]));
}
}
else {
combine_hashes(hash.parents_hash_, get_default_hash(input.get_id()));
}
}
hash.type_hash_ = typeid(*this).hash_code();
hash.operation_ = this;
return hash;
}
NodeOperationOutput *NodeOperation::getOutputSocket(unsigned int index)
{
return &m_outputs[index];
}
NodeOperationInput *NodeOperation::getInputSocket(unsigned int index)
{
return &m_inputs[index];
}
void NodeOperation::addInputSocket(DataType datatype, ResizeMode resize_mode)
{
m_inputs.append(NodeOperationInput(this, datatype, resize_mode));
}
void NodeOperation::addOutputSocket(DataType datatype)
{
m_outputs.append(NodeOperationOutput(this, datatype));
}
void NodeOperation::determine_canvas(const rcti &preferred_area, rcti &r_area)
{
unsigned int used_canvas_index = 0;
if (canvas_input_index_ == RESOLUTION_INPUT_ANY) {
for (NodeOperationInput &input : m_inputs) {
rcti any_area = COM_AREA_NONE;
const bool determined = input.determine_canvas(preferred_area, any_area);
if (determined) {
r_area = any_area;
break;
}
used_canvas_index += 1;
}
}
else if (canvas_input_index_ < m_inputs.size()) {
NodeOperationInput &input = m_inputs[canvas_input_index_];
input.determine_canvas(preferred_area, r_area);
used_canvas_index = canvas_input_index_;
}
if (modify_determined_canvas_fn_) {
modify_determined_canvas_fn_(r_area);
}
rcti unused_area;
const rcti &local_preferred_area = r_area;
for (unsigned int index = 0; index < m_inputs.size(); index++) {
if (index == used_canvas_index) {
continue;
}
NodeOperationInput &input = m_inputs[index];
if (input.isConnected()) {
input.determine_canvas(local_preferred_area, unused_area);
}
}
}
void NodeOperation::set_canvas_input_index(unsigned int index)
{
this->canvas_input_index_ = index;
}
void NodeOperation::init_data()
{
/* Pass. */
}
void NodeOperation::initExecution()
{
/* pass */
}
void NodeOperation::initMutex()
{
BLI_mutex_init(&this->m_mutex);
}
void NodeOperation::lockMutex()
{
BLI_mutex_lock(&this->m_mutex);
}
void NodeOperation::unlockMutex()
{
BLI_mutex_unlock(&this->m_mutex);
}
void NodeOperation::deinitMutex()
{
BLI_mutex_end(&this->m_mutex);
}
void NodeOperation::deinitExecution()
{
/* pass */
}
void NodeOperation::set_canvas(const rcti &canvas_area)
{
canvas_ = canvas_area;
flags.is_canvas_set = true;
}
const rcti &NodeOperation::get_canvas() const
{
return canvas_;
}
/**
* Mainly used for re-determining canvas of constant operations in cases where preferred canvas
* depends on the constant element.
*/
void NodeOperation::unset_canvas()
{
BLI_assert(m_inputs.size() == 0);
flags.is_canvas_set = false;
}
SocketReader *NodeOperation::getInputSocketReader(unsigned int inputSocketIndex)
{
return this->getInputSocket(inputSocketIndex)->getReader();
}
NodeOperation *NodeOperation::getInputOperation(unsigned int inputSocketIndex)
{
NodeOperationInput *input = getInputSocket(inputSocketIndex);
if (input && input->isConnected()) {
return &input->getLink()->getOperation();
}
return nullptr;
}
bool NodeOperation::determineDependingAreaOfInterest(rcti *input,
ReadBufferOperation *readOperation,
rcti *output)
{
if (m_inputs.size() == 0) {
BLI_rcti_init(output, input->xmin, input->xmax, input->ymin, input->ymax);
return false;
}
rcti tempOutput;
bool first = true;
for (int i = 0; i < getNumberOfInputSockets(); i++) {
NodeOperation *inputOperation = this->getInputOperation(i);
if (inputOperation &&
inputOperation->determineDependingAreaOfInterest(input, readOperation, &tempOutput)) {
if (first) {
output->xmin = tempOutput.xmin;
output->ymin = tempOutput.ymin;
output->xmax = tempOutput.xmax;
output->ymax = tempOutput.ymax;
first = false;
}
else {
output->xmin = MIN2(output->xmin, tempOutput.xmin);
output->ymin = MIN2(output->ymin, tempOutput.ymin);
output->xmax = MAX2(output->xmax, tempOutput.xmax);
output->ymax = MAX2(output->ymax, tempOutput.ymax);
}
}
}
return !first;
}
/* -------------------------------------------------------------------- */
/** \name Full Frame Methods
* \{ */
/**
* \brief Get input operation area being read by this operation on rendering given output area.
*
* Implementation don't need to ensure r_input_area is within input operation bounds. The
* caller must clamp it.
* TODO: See if it's possible to use parameter overloading (input_id for example).
*
* \param input_idx: Input operation index for which we want to calculate the area being read.
* \param output_area: Area being rendered by this operation.
* \param r_input_area: Returned input operation area that needs to be read in order to render
* given output area.
*/
void NodeOperation::get_area_of_interest(const int input_idx,
const rcti &output_area,
rcti &r_input_area)
{
if (get_flags().is_fullframe_operation) {
r_input_area = output_area;
}
else {
/* Non full-frame operations never implement this method. To ensure correctness assume
* whole area is used. */
NodeOperation *input_op = getInputOperation(input_idx);
r_input_area = input_op->get_canvas();
}
}
void NodeOperation::get_area_of_interest(NodeOperation *input_op,
const rcti &output_area,
rcti &r_input_area)
{
for (int i = 0; i < getNumberOfInputSockets(); i++) {
if (input_op == getInputOperation(i)) {
get_area_of_interest(i, output_area, r_input_area);
return;
}
}
BLI_assert_msg(0, "input_op is not an input operation.");
}
/**
* Executes operation image manipulation algorithm rendering given areas.
* \param output_buf: Buffer to write result to.
* \param areas: Areas within this operation bounds to render.
* \param inputs_bufs: Inputs operations buffers.
*/
void NodeOperation::render(MemoryBuffer *output_buf,
Span<rcti> areas,
Span<MemoryBuffer *> inputs_bufs)
{
if (get_flags().is_fullframe_operation) {
render_full_frame(output_buf, areas, inputs_bufs);
}
else {
render_full_frame_fallback(output_buf, areas, inputs_bufs);
}
}
/**
* Renders given areas using operations full frame implementation.
*/
void NodeOperation::render_full_frame(MemoryBuffer *output_buf,
Span<rcti> areas,
Span<MemoryBuffer *> inputs_bufs)
{
initExecution();
for (const rcti &area : areas) {
update_memory_buffer(output_buf, area, inputs_bufs);
}
deinitExecution();
}
/**
* Renders given areas using operations tiled implementation.
*/
void NodeOperation::render_full_frame_fallback(MemoryBuffer *output_buf,
Span<rcti> areas,
Span<MemoryBuffer *> inputs_bufs)
{
Vector<NodeOperationOutput *> orig_input_links = replace_inputs_with_buffers(inputs_bufs);
initExecution();
const bool is_output_operation = getNumberOfOutputSockets() == 0;
if (!is_output_operation && output_buf->is_a_single_elem()) {
float *output_elem = output_buf->get_elem(0, 0);
readSampled(output_elem, 0, 0, PixelSampler::Nearest);
}
else {
for (const rcti &rect : areas) {
exec_system_->execute_work(rect, [=](const rcti &split_rect) {
rcti tile_rect = split_rect;
if (is_output_operation) {
executeRegion(&tile_rect, 0);
}
else {
render_tile(output_buf, &tile_rect);
}
});
}
}
deinitExecution();
remove_buffers_and_restore_original_inputs(orig_input_links);
}
void NodeOperation::render_tile(MemoryBuffer *output_buf, rcti *tile_rect)
{
const bool is_complex = get_flags().complex;
void *tile_data = is_complex ? initializeTileData(tile_rect) : nullptr;
const int elem_stride = output_buf->elem_stride;
for (int y = tile_rect->ymin; y < tile_rect->ymax; y++) {
float *output_elem = output_buf->get_elem(tile_rect->xmin, y);
if (is_complex) {
for (int x = tile_rect->xmin; x < tile_rect->xmax; x++) {
read(output_elem, x, y, tile_data);
output_elem += elem_stride;
}
}
else {
for (int x = tile_rect->xmin; x < tile_rect->xmax; x++) {
readSampled(output_elem, x, y, PixelSampler::Nearest);
output_elem += elem_stride;
}
}
}
if (tile_data) {
deinitializeTileData(tile_rect, tile_data);
}
}
/**
* \return Replaced inputs links.
*/
Vector<NodeOperationOutput *> NodeOperation::replace_inputs_with_buffers(
Span<MemoryBuffer *> inputs_bufs)
{
BLI_assert(inputs_bufs.size() == getNumberOfInputSockets());
Vector<NodeOperationOutput *> orig_links(inputs_bufs.size());
for (int i = 0; i < inputs_bufs.size(); i++) {
NodeOperationInput *input_socket = getInputSocket(i);
BufferOperation *buffer_op = new BufferOperation(inputs_bufs[i], input_socket->getDataType());
orig_links[i] = input_socket->getLink();
input_socket->setLink(buffer_op->getOutputSocket());
buffer_op->initExecution();
}
return orig_links;
}
void NodeOperation::remove_buffers_and_restore_original_inputs(
Span<NodeOperationOutput *> original_inputs_links)
{
BLI_assert(original_inputs_links.size() == getNumberOfInputSockets());
for (int i = 0; i < original_inputs_links.size(); i++) {
NodeOperation *buffer_op = get_input_operation(i);
BLI_assert(buffer_op != nullptr);
BLI_assert(typeid(*buffer_op) == typeid(BufferOperation));
buffer_op->deinitExecution();
NodeOperationInput *input_socket = getInputSocket(i);
input_socket->setLink(original_inputs_links[i]);
delete buffer_op;
}
}
/** \} */
/*****************
**** OpInput ****
*****************/
NodeOperationInput::NodeOperationInput(NodeOperation *op, DataType datatype, ResizeMode resizeMode)
: m_operation(op), m_datatype(datatype), m_resizeMode(resizeMode), m_link(nullptr)
{
}
SocketReader *NodeOperationInput::getReader()
{
if (isConnected()) {
return &m_link->getOperation();
}
return nullptr;
}
/**
* \return Whether canvas area could be determined.
*/
bool NodeOperationInput::determine_canvas(const rcti &preferred_area, rcti &r_area)
{
if (m_link) {
m_link->determine_canvas(preferred_area, r_area);
return !BLI_rcti_is_empty(&r_area);
}
return false;
}
/******************
**** OpOutput ****
******************/
NodeOperationOutput::NodeOperationOutput(NodeOperation *op, DataType datatype)
: m_operation(op), m_datatype(datatype)
{
}
void NodeOperationOutput::determine_canvas(const rcti &preferred_area, rcti &r_area)
{
NodeOperation &operation = getOperation();
if (operation.get_flags().is_canvas_set) {
r_area = operation.get_canvas();
}
else {
operation.determine_canvas(preferred_area, r_area);
if (!BLI_rcti_is_empty(&r_area)) {
operation.set_canvas(r_area);
}
}
}
std::ostream &operator<<(std::ostream &os, const NodeOperationFlags &node_operation_flags)
{
if (node_operation_flags.complex) {
os << "complex,";
}
if (node_operation_flags.open_cl) {
os << "open_cl,";
}
if (node_operation_flags.single_threaded) {
os << "single_threaded,";
}
if (node_operation_flags.use_render_border) {
os << "render_border,";
}
if (node_operation_flags.use_viewer_border) {
os << "view_border,";
}
if (node_operation_flags.is_canvas_set) {
os << "canvas_set,";
}
if (node_operation_flags.is_set_operation) {
os << "set_operation,";
}
if (node_operation_flags.is_write_buffer_operation) {
os << "write_buffer,";
}
if (node_operation_flags.is_read_buffer_operation) {
os << "read_buffer,";
}
if (node_operation_flags.is_proxy_operation) {
os << "proxy,";
}
if (node_operation_flags.is_viewer_operation) {
os << "viewer,";
}
if (node_operation_flags.is_preview_operation) {
os << "preview,";
}
if (!node_operation_flags.use_datatype_conversion) {
os << "no_conversion,";
}
if (node_operation_flags.is_fullframe_operation) {
os << "full_frame,";
}
if (node_operation_flags.is_constant_operation) {
os << "contant_operation,";
}
if (node_operation_flags.can_be_constant) {
os << "can_be_constant,";
}
return os;
}
std::ostream &operator<<(std::ostream &os, const NodeOperation &node_operation)
{
NodeOperationFlags flags = node_operation.get_flags();
os << "NodeOperation(";
os << "id=" << node_operation.get_id();
if (!node_operation.get_name().empty()) {
os << ",name=" << node_operation.get_name();
}
os << ",flags={" << flags << "}";
if (flags.is_read_buffer_operation) {
const ReadBufferOperation *read_operation = (const ReadBufferOperation *)&node_operation;
const MemoryProxy *proxy = read_operation->getMemoryProxy();
if (proxy) {
const WriteBufferOperation *write_operation = proxy->getWriteBufferOperation();
if (write_operation) {
os << ",write=" << (NodeOperation &)*write_operation;
}
}
}
os << ")";
return os;
}
} // namespace blender::compositor