This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/noise.c
2021-04-01 22:20:53 +11:00

1763 lines
71 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup bli
*/
#include <math.h>
#include "BLI_compiler_compat.h"
#include "BLI_sys_types.h"
#include "BLI_noise.h" /* Own include. */
/* local */
static float noise3_perlin(const float vec[3]);
// static float turbulence_perlin(const float point[3], float lofreq, float hifreq);
// static float turbulencep(float noisesize, float x, float y, float z, int nr);
/* UNUSED */
// #define HASHVEC(x, y, z) hashvectf + 3 * hash[(hash[(hash[(z) & 255] + (y)) & 255] + (x)) & 255]
/* -------------------------------------------------------------------- */
/** \name Static Data
* \{ */
/* needed for voronoi */
#define HASHPNT(x, y, z) hashpntf + 3 * hash[(hash[(hash[(z)&255] + (y)) & 255] + (x)) & 255]
static const float hashpntf[768] = {
0.536902, 0.020915, 0.501445, 0.216316, 0.517036, 0.822466, 0.965315, 0.377313, 0.678764,
0.744545, 0.097731, 0.396357, 0.247202, 0.520897, 0.613396, 0.542124, 0.146813, 0.255489,
0.810868, 0.638641, 0.980742, 0.292316, 0.357948, 0.114382, 0.861377, 0.629634, 0.722530,
0.714103, 0.048549, 0.075668, 0.564920, 0.162026, 0.054466, 0.411738, 0.156897, 0.887657,
0.599368, 0.074249, 0.170277, 0.225799, 0.393154, 0.301348, 0.057434, 0.293849, 0.442745,
0.150002, 0.398732, 0.184582, 0.915200, 0.630984, 0.974040, 0.117228, 0.795520, 0.763238,
0.158982, 0.616211, 0.250825, 0.906539, 0.316874, 0.676205, 0.234720, 0.667673, 0.792225,
0.273671, 0.119363, 0.199131, 0.856716, 0.828554, 0.900718, 0.705960, 0.635923, 0.989433,
0.027261, 0.283507, 0.113426, 0.388115, 0.900176, 0.637741, 0.438802, 0.715490, 0.043692,
0.202640, 0.378325, 0.450325, 0.471832, 0.147803, 0.906899, 0.524178, 0.784981, 0.051483,
0.893369, 0.596895, 0.275635, 0.391483, 0.844673, 0.103061, 0.257322, 0.708390, 0.504091,
0.199517, 0.660339, 0.376071, 0.038880, 0.531293, 0.216116, 0.138672, 0.907737, 0.807994,
0.659582, 0.915264, 0.449075, 0.627128, 0.480173, 0.380942, 0.018843, 0.211808, 0.569701,
0.082294, 0.689488, 0.573060, 0.593859, 0.216080, 0.373159, 0.108117, 0.595539, 0.021768,
0.380297, 0.948125, 0.377833, 0.319699, 0.315249, 0.972805, 0.792270, 0.445396, 0.845323,
0.372186, 0.096147, 0.689405, 0.423958, 0.055675, 0.117940, 0.328456, 0.605808, 0.631768,
0.372170, 0.213723, 0.032700, 0.447257, 0.440661, 0.728488, 0.299853, 0.148599, 0.649212,
0.498381, 0.049921, 0.496112, 0.607142, 0.562595, 0.990246, 0.739659, 0.108633, 0.978156,
0.209814, 0.258436, 0.876021, 0.309260, 0.600673, 0.713597, 0.576967, 0.641402, 0.853930,
0.029173, 0.418111, 0.581593, 0.008394, 0.589904, 0.661574, 0.979326, 0.275724, 0.111109,
0.440472, 0.120839, 0.521602, 0.648308, 0.284575, 0.204501, 0.153286, 0.822444, 0.300786,
0.303906, 0.364717, 0.209038, 0.916831, 0.900245, 0.600685, 0.890002, 0.581660, 0.431154,
0.705569, 0.551250, 0.417075, 0.403749, 0.696652, 0.292652, 0.911372, 0.690922, 0.323718,
0.036773, 0.258976, 0.274265, 0.225076, 0.628965, 0.351644, 0.065158, 0.080340, 0.467271,
0.130643, 0.385914, 0.919315, 0.253821, 0.966163, 0.017439, 0.392610, 0.478792, 0.978185,
0.072691, 0.982009, 0.097987, 0.731533, 0.401233, 0.107570, 0.349587, 0.479122, 0.700598,
0.481751, 0.788429, 0.706864, 0.120086, 0.562691, 0.981797, 0.001223, 0.192120, 0.451543,
0.173092, 0.108960, 0.549594, 0.587892, 0.657534, 0.396365, 0.125153, 0.666420, 0.385823,
0.890916, 0.436729, 0.128114, 0.369598, 0.759096, 0.044677, 0.904752, 0.088052, 0.621148,
0.005047, 0.452331, 0.162032, 0.494238, 0.523349, 0.741829, 0.698450, 0.452316, 0.563487,
0.819776, 0.492160, 0.004210, 0.647158, 0.551475, 0.362995, 0.177937, 0.814722, 0.727729,
0.867126, 0.997157, 0.108149, 0.085726, 0.796024, 0.665075, 0.362462, 0.323124, 0.043718,
0.042357, 0.315030, 0.328954, 0.870845, 0.683186, 0.467922, 0.514894, 0.809971, 0.631979,
0.176571, 0.366320, 0.850621, 0.505555, 0.749551, 0.750830, 0.401714, 0.481216, 0.438393,
0.508832, 0.867971, 0.654581, 0.058204, 0.566454, 0.084124, 0.548539, 0.902690, 0.779571,
0.562058, 0.048082, 0.863109, 0.079290, 0.713559, 0.783496, 0.265266, 0.672089, 0.786939,
0.143048, 0.086196, 0.876129, 0.408708, 0.229312, 0.629995, 0.206665, 0.207308, 0.710079,
0.341704, 0.264921, 0.028748, 0.629222, 0.470173, 0.726228, 0.125243, 0.328249, 0.794187,
0.741340, 0.489895, 0.189396, 0.724654, 0.092841, 0.039809, 0.860126, 0.247701, 0.655331,
0.964121, 0.672536, 0.044522, 0.690567, 0.837238, 0.631520, 0.953734, 0.352484, 0.289026,
0.034152, 0.852575, 0.098454, 0.795529, 0.452181, 0.826159, 0.186993, 0.820725, 0.440328,
0.922137, 0.704592, 0.915437, 0.738183, 0.733461, 0.193798, 0.929213, 0.161390, 0.318547,
0.888751, 0.430968, 0.740837, 0.193544, 0.872253, 0.563074, 0.274598, 0.347805, 0.666176,
0.449831, 0.800991, 0.588727, 0.052296, 0.714761, 0.420620, 0.570325, 0.057550, 0.210888,
0.407312, 0.662848, 0.924382, 0.895958, 0.775198, 0.688605, 0.025721, 0.301913, 0.791408,
0.500602, 0.831984, 0.828509, 0.642093, 0.494174, 0.525880, 0.446365, 0.440063, 0.763114,
0.630358, 0.223943, 0.333806, 0.906033, 0.498306, 0.241278, 0.427640, 0.772683, 0.198082,
0.225379, 0.503894, 0.436599, 0.016503, 0.803725, 0.189878, 0.291095, 0.499114, 0.151573,
0.079031, 0.904618, 0.708535, 0.273900, 0.067419, 0.317124, 0.936499, 0.716511, 0.543845,
0.939909, 0.826574, 0.715090, 0.154864, 0.750150, 0.845808, 0.648108, 0.556564, 0.644757,
0.140873, 0.799167, 0.632989, 0.444245, 0.471978, 0.435910, 0.359793, 0.216241, 0.007633,
0.337236, 0.857863, 0.380247, 0.092517, 0.799973, 0.919000, 0.296798, 0.096989, 0.854831,
0.165369, 0.568475, 0.216855, 0.020457, 0.835511, 0.538039, 0.999742, 0.620226, 0.244053,
0.060399, 0.323007, 0.294874, 0.988899, 0.384919, 0.735655, 0.773428, 0.549776, 0.292882,
0.660611, 0.593507, 0.621118, 0.175269, 0.682119, 0.794493, 0.868197, 0.632150, 0.807823,
0.509656, 0.482035, 0.001780, 0.259126, 0.358002, 0.280263, 0.192985, 0.290367, 0.208111,
0.917633, 0.114422, 0.925491, 0.981110, 0.255570, 0.974862, 0.016629, 0.552599, 0.575741,
0.612978, 0.615965, 0.803615, 0.772334, 0.089745, 0.838812, 0.634542, 0.113709, 0.755832,
0.577589, 0.667489, 0.529834, 0.325660, 0.817597, 0.316557, 0.335093, 0.737363, 0.260951,
0.737073, 0.049540, 0.735541, 0.988891, 0.299116, 0.147695, 0.417271, 0.940811, 0.524160,
0.857968, 0.176403, 0.244835, 0.485759, 0.033353, 0.280319, 0.750688, 0.755809, 0.924208,
0.095956, 0.962504, 0.275584, 0.173715, 0.942716, 0.706721, 0.078464, 0.576716, 0.804667,
0.559249, 0.900611, 0.646904, 0.432111, 0.927885, 0.383277, 0.269973, 0.114244, 0.574867,
0.150703, 0.241855, 0.272871, 0.199950, 0.079719, 0.868566, 0.962833, 0.789122, 0.320025,
0.905554, 0.234876, 0.991356, 0.061913, 0.732911, 0.785960, 0.874074, 0.069035, 0.658632,
0.309901, 0.023676, 0.791603, 0.764661, 0.661278, 0.319583, 0.829650, 0.117091, 0.903124,
0.982098, 0.161631, 0.193576, 0.670428, 0.857390, 0.003760, 0.572578, 0.222162, 0.114551,
0.420118, 0.530404, 0.470682, 0.525527, 0.764281, 0.040596, 0.443275, 0.501124, 0.816161,
0.417467, 0.332172, 0.447565, 0.614591, 0.559246, 0.805295, 0.226342, 0.155065, 0.714630,
0.160925, 0.760001, 0.453456, 0.093869, 0.406092, 0.264801, 0.720370, 0.743388, 0.373269,
0.403098, 0.911923, 0.897249, 0.147038, 0.753037, 0.516093, 0.739257, 0.175018, 0.045768,
0.735857, 0.801330, 0.927708, 0.240977, 0.591870, 0.921831, 0.540733, 0.149100, 0.423152,
0.806876, 0.397081, 0.061100, 0.811630, 0.044899, 0.460915, 0.961202, 0.822098, 0.971524,
0.867608, 0.773604, 0.226616, 0.686286, 0.926972, 0.411613, 0.267873, 0.081937, 0.226124,
0.295664, 0.374594, 0.533240, 0.237876, 0.669629, 0.599083, 0.513081, 0.878719, 0.201577,
0.721296, 0.495038, 0.079760, 0.965959, 0.233090, 0.052496, 0.714748, 0.887844, 0.308724,
0.972885, 0.723337, 0.453089, 0.914474, 0.704063, 0.823198, 0.834769, 0.906561, 0.919600,
0.100601, 0.307564, 0.901977, 0.468879, 0.265376, 0.885188, 0.683875, 0.868623, 0.081032,
0.466835, 0.199087, 0.663437, 0.812241, 0.311337, 0.821361, 0.356628, 0.898054, 0.160781,
0.222539, 0.714889, 0.490287, 0.984915, 0.951755, 0.964097, 0.641795, 0.815472, 0.852732,
0.862074, 0.051108, 0.440139, 0.323207, 0.517171, 0.562984, 0.115295, 0.743103, 0.977914,
0.337596, 0.440694, 0.535879, 0.959427, 0.351427, 0.704361, 0.010826, 0.131162, 0.577080,
0.349572, 0.774892, 0.425796, 0.072697, 0.500001, 0.267322, 0.909654, 0.206176, 0.223987,
0.937698, 0.323423, 0.117501, 0.490308, 0.474372, 0.689943, 0.168671, 0.719417, 0.188928,
0.330464, 0.265273, 0.446271, 0.171933, 0.176133, 0.474616, 0.140182, 0.114246, 0.905043,
0.713870, 0.555261, 0.951333,
};
extern const unsigned char BLI_noise_hash_uchar_512[512]; /* Quiet warning. */
const unsigned char BLI_noise_hash_uchar_512[512] = {
0xA2, 0xA0, 0x19, 0x3B, 0xF8, 0xEB, 0xAA, 0xEE, 0xF3, 0x1C, 0x67, 0x28, 0x1D, 0xED, 0x0, 0xDE,
0x95, 0x2E, 0xDC, 0x3F, 0x3A, 0x82, 0x35, 0x4D, 0x6C, 0xBA, 0x36, 0xD0, 0xF6, 0xC, 0x79, 0x32,
0xD1, 0x59, 0xF4, 0x8, 0x8B, 0x63, 0x89, 0x2F, 0xB8, 0xB4, 0x97, 0x83, 0xF2, 0x8F, 0x18, 0xC7,
0x51, 0x14, 0x65, 0x87, 0x48, 0x20, 0x42, 0xA8, 0x80, 0xB5, 0x40, 0x13, 0xB2, 0x22, 0x7E, 0x57,
0xBC, 0x7F, 0x6B, 0x9D, 0x86, 0x4C, 0xC8, 0xDB, 0x7C, 0xD5, 0x25, 0x4E, 0x5A, 0x55, 0x74, 0x50,
0xCD, 0xB3, 0x7A, 0xBB, 0xC3, 0xCB, 0xB6, 0xE2, 0xE4, 0xEC, 0xFD, 0x98, 0xB, 0x96, 0xD3, 0x9E,
0x5C, 0xA1, 0x64, 0xF1, 0x81, 0x61, 0xE1, 0xC4, 0x24, 0x72, 0x49, 0x8C, 0x90, 0x4B, 0x84, 0x34,
0x38, 0xAB, 0x78, 0xCA, 0x1F, 0x1, 0xD7, 0x93, 0x11, 0xC1, 0x58, 0xA9, 0x31, 0xF9, 0x44, 0x6D,
0xBF, 0x33, 0x9C, 0x5F, 0x9, 0x94, 0xA3, 0x85, 0x6, 0xC6, 0x9A, 0x1E, 0x7B, 0x46, 0x15, 0x30,
0x27, 0x2B, 0x1B, 0x71, 0x3C, 0x5B, 0xD6, 0x6F, 0x62, 0xAC, 0x4F, 0xC2, 0xC0, 0xE, 0xB1, 0x23,
0xA7, 0xDF, 0x47, 0xB0, 0x77, 0x69, 0x5, 0xE9, 0xE6, 0xE7, 0x76, 0x73, 0xF, 0xFE, 0x6E, 0x9B,
0x56, 0xEF, 0x12, 0xA5, 0x37, 0xFC, 0xAE, 0xD9, 0x3, 0x8E, 0xDD, 0x10, 0xB9, 0xCE, 0xC9, 0x8D,
0xDA, 0x2A, 0xBD, 0x68, 0x17, 0x9F, 0xBE, 0xD4, 0xA, 0xCC, 0xD2, 0xE8, 0x43, 0x3D, 0x70, 0xB7,
0x2, 0x7D, 0x99, 0xD8, 0xD, 0x60, 0x8A, 0x4, 0x2C, 0x3E, 0x92, 0xE5, 0xAF, 0x53, 0x7, 0xE0,
0x29, 0xA6, 0xC5, 0xE3, 0xF5, 0xF7, 0x4A, 0x41, 0x26, 0x6A, 0x16, 0x5E, 0x52, 0x2D, 0x21, 0xAD,
0xF0, 0x91, 0xFF, 0xEA, 0x54, 0xFA, 0x66, 0x1A, 0x45, 0x39, 0xCF, 0x75, 0xA4, 0x88, 0xFB, 0x5D,
0xA2, 0xA0, 0x19, 0x3B, 0xF8, 0xEB, 0xAA, 0xEE, 0xF3, 0x1C, 0x67, 0x28, 0x1D, 0xED, 0x0, 0xDE,
0x95, 0x2E, 0xDC, 0x3F, 0x3A, 0x82, 0x35, 0x4D, 0x6C, 0xBA, 0x36, 0xD0, 0xF6, 0xC, 0x79, 0x32,
0xD1, 0x59, 0xF4, 0x8, 0x8B, 0x63, 0x89, 0x2F, 0xB8, 0xB4, 0x97, 0x83, 0xF2, 0x8F, 0x18, 0xC7,
0x51, 0x14, 0x65, 0x87, 0x48, 0x20, 0x42, 0xA8, 0x80, 0xB5, 0x40, 0x13, 0xB2, 0x22, 0x7E, 0x57,
0xBC, 0x7F, 0x6B, 0x9D, 0x86, 0x4C, 0xC8, 0xDB, 0x7C, 0xD5, 0x25, 0x4E, 0x5A, 0x55, 0x74, 0x50,
0xCD, 0xB3, 0x7A, 0xBB, 0xC3, 0xCB, 0xB6, 0xE2, 0xE4, 0xEC, 0xFD, 0x98, 0xB, 0x96, 0xD3, 0x9E,
0x5C, 0xA1, 0x64, 0xF1, 0x81, 0x61, 0xE1, 0xC4, 0x24, 0x72, 0x49, 0x8C, 0x90, 0x4B, 0x84, 0x34,
0x38, 0xAB, 0x78, 0xCA, 0x1F, 0x1, 0xD7, 0x93, 0x11, 0xC1, 0x58, 0xA9, 0x31, 0xF9, 0x44, 0x6D,
0xBF, 0x33, 0x9C, 0x5F, 0x9, 0x94, 0xA3, 0x85, 0x6, 0xC6, 0x9A, 0x1E, 0x7B, 0x46, 0x15, 0x30,
0x27, 0x2B, 0x1B, 0x71, 0x3C, 0x5B, 0xD6, 0x6F, 0x62, 0xAC, 0x4F, 0xC2, 0xC0, 0xE, 0xB1, 0x23,
0xA7, 0xDF, 0x47, 0xB0, 0x77, 0x69, 0x5, 0xE9, 0xE6, 0xE7, 0x76, 0x73, 0xF, 0xFE, 0x6E, 0x9B,
0x56, 0xEF, 0x12, 0xA5, 0x37, 0xFC, 0xAE, 0xD9, 0x3, 0x8E, 0xDD, 0x10, 0xB9, 0xCE, 0xC9, 0x8D,
0xDA, 0x2A, 0xBD, 0x68, 0x17, 0x9F, 0xBE, 0xD4, 0xA, 0xCC, 0xD2, 0xE8, 0x43, 0x3D, 0x70, 0xB7,
0x2, 0x7D, 0x99, 0xD8, 0xD, 0x60, 0x8A, 0x4, 0x2C, 0x3E, 0x92, 0xE5, 0xAF, 0x53, 0x7, 0xE0,
0x29, 0xA6, 0xC5, 0xE3, 0xF5, 0xF7, 0x4A, 0x41, 0x26, 0x6A, 0x16, 0x5E, 0x52, 0x2D, 0x21, 0xAD,
0xF0, 0x91, 0xFF, 0xEA, 0x54, 0xFA, 0x66, 0x1A, 0x45, 0x39, 0xCF, 0x75, 0xA4, 0x88, 0xFB, 0x5D,
};
#define hash BLI_noise_hash_uchar_512
static const float hashvectf[768] = {
0.33783, 0.715698, -0.611206, -0.944031, -0.326599, -0.045624, -0.101074, -0.416443,
-0.903503, 0.799286, 0.49411, -0.341949, -0.854645, 0.518036, 0.033936, 0.42514,
-0.437866, -0.792114, -0.358948, 0.597046, 0.717377, -0.985413, 0.144714, 0.089294,
-0.601776, -0.33728, -0.723907, -0.449921, 0.594513, 0.666382, 0.208313, -0.10791,
0.972076, 0.575317, 0.060425, 0.815643, 0.293365, -0.875702, -0.383453, 0.293762,
0.465759, 0.834686, -0.846008, -0.233398, -0.47934, -0.115814, 0.143036, -0.98291,
0.204681, -0.949036, -0.239532, 0.946716, -0.263947, 0.184326, -0.235596, 0.573822,
0.784332, 0.203705, -0.372253, -0.905487, 0.756989, -0.651031, 0.055298, 0.497803,
0.814697, -0.297363, -0.16214, 0.063995, -0.98468, -0.329254, 0.834381, 0.441925,
0.703827, -0.527039, -0.476227, 0.956421, 0.266113, 0.119781, 0.480133, 0.482849,
0.7323, -0.18631, 0.961212, -0.203125, -0.748474, -0.656921, -0.090393, -0.085052,
-0.165253, 0.982544, -0.76947, 0.628174, -0.115234, 0.383148, 0.537659, 0.751068,
0.616486, -0.668488, -0.415924, -0.259979, -0.630005, 0.73175, 0.570953, -0.087952,
0.816223, -0.458008, 0.023254, 0.888611, -0.196167, 0.976563, -0.088287, -0.263885,
-0.69812, -0.665527, 0.437134, -0.892273, -0.112793, -0.621674, -0.230438, 0.748566,
0.232422, 0.900574, -0.367249, 0.22229, -0.796143, 0.562744, -0.665497, -0.73764,
0.11377, 0.670135, 0.704803, 0.232605, 0.895599, 0.429749, -0.114655, -0.11557,
-0.474243, 0.872742, 0.621826, 0.604004, -0.498444, -0.832214, 0.012756, 0.55426,
-0.702484, 0.705994, -0.089661, -0.692017, 0.649292, 0.315399, -0.175995, -0.977997,
0.111877, 0.096954, -0.04953, 0.994019, 0.635284, -0.606689, -0.477783, -0.261261,
-0.607422, -0.750153, 0.983276, 0.165436, 0.075958, -0.29837, 0.404083, -0.864655,
-0.638672, 0.507721, 0.578156, 0.388214, 0.412079, 0.824249, 0.556183, -0.208832,
0.804352, 0.778442, 0.562012, 0.27951, -0.616577, 0.781921, -0.091522, 0.196289,
0.051056, 0.979187, -0.121216, 0.207153, -0.970734, -0.173401, -0.384735, 0.906555,
0.161499, -0.723236, -0.671387, 0.178497, -0.006226, -0.983887, -0.126038, 0.15799,
0.97934, 0.830475, -0.024811, 0.556458, -0.510132, -0.76944, 0.384247, 0.81424,
0.200104, -0.544891, -0.112549, -0.393311, -0.912445, 0.56189, 0.152222, -0.813049,
0.198914, -0.254517, -0.946381, -0.41217, 0.690979, -0.593811, -0.407257, 0.324524,
0.853668, -0.690186, 0.366119, -0.624115, -0.428345, 0.844147, -0.322296, -0.21228,
-0.297546, -0.930756, -0.273071, 0.516113, 0.811798, 0.928314, 0.371643, 0.007233,
0.785828, -0.479218, -0.390778, -0.704895, 0.058929, 0.706818, 0.173248, 0.203583,
0.963562, 0.422211, -0.904297, -0.062469, -0.363312, -0.182465, 0.913605, 0.254028,
-0.552307, -0.793945, -0.28891, -0.765747, -0.574554, 0.058319, 0.291382, 0.954803,
0.946136, -0.303925, 0.111267, -0.078156, 0.443695, -0.892731, 0.182098, 0.89389,
0.409515, -0.680298, -0.213318, 0.701141, 0.062469, 0.848389, -0.525635, -0.72879,
-0.641846, 0.238342, -0.88089, 0.427673, 0.202637, -0.532501, -0.21405, 0.818878,
0.948975, -0.305084, 0.07962, 0.925446, 0.374664, 0.055817, 0.820923, 0.565491,
0.079102, 0.25882, 0.099792, -0.960724, -0.294617, 0.910522, 0.289978, 0.137115,
0.320038, -0.937408, -0.908386, 0.345276, -0.235718, -0.936218, 0.138763, 0.322754,
0.366577, 0.925934, -0.090637, 0.309296, -0.686829, -0.657684, 0.66983, 0.024445,
0.742065, -0.917999, -0.059113, -0.392059, 0.365509, 0.462158, -0.807922, 0.083374,
0.996399, -0.014801, 0.593842, 0.253143, -0.763672, 0.974976, -0.165466, 0.148285,
0.918976, 0.137299, 0.369537, 0.294952, 0.694977, 0.655731, 0.943085, 0.152618,
-0.295319, 0.58783, -0.598236, 0.544495, 0.203796, 0.678223, 0.705994, -0.478821,
-0.661011, 0.577667, 0.719055, -0.1698, -0.673828, -0.132172, -0.965332, 0.225006,
-0.981873, -0.14502, 0.121979, 0.763458, 0.579742, 0.284546, -0.893188, 0.079681,
0.442474, -0.795776, -0.523804, 0.303802, 0.734955, 0.67804, -0.007446, 0.15506,
0.986267, -0.056183, 0.258026, 0.571503, -0.778931, -0.681549, -0.702087, -0.206116,
-0.96286, -0.177185, 0.203613, -0.470978, -0.515106, 0.716095, -0.740326, 0.57135,
0.354095, -0.56012, -0.824982, -0.074982, -0.507874, 0.753204, 0.417969, -0.503113,
0.038147, 0.863342, 0.594025, 0.673553, -0.439758, -0.119873, -0.005524, -0.992737,
0.098267, -0.213776, 0.971893, -0.615631, 0.643951, 0.454163, 0.896851, -0.441071,
0.032166, -0.555023, 0.750763, -0.358093, 0.398773, 0.304688, 0.864929, -0.722961,
0.303589, 0.620544, -0.63559, -0.621948, -0.457306, -0.293243, 0.072327, 0.953278,
-0.491638, 0.661041, -0.566772, -0.304199, -0.572083, -0.761688, 0.908081, -0.398956,
0.127014, -0.523621, -0.549683, -0.650848, -0.932922, -0.19986, 0.299408, 0.099426,
0.140869, 0.984985, -0.020325, -0.999756, -0.002319, 0.952667, 0.280853, -0.11615,
-0.971893, 0.082581, 0.220337, 0.65921, 0.705292, -0.260651, 0.733063, -0.175537,
0.657043, -0.555206, 0.429504, -0.712189, 0.400421, -0.89859, 0.179352, 0.750885,
-0.19696, 0.630341, 0.785675, -0.569336, 0.241821, -0.058899, -0.464111, 0.883789,
0.129608, -0.94519, 0.299622, -0.357819, 0.907654, 0.219238, -0.842133, -0.439117,
-0.312927, -0.313477, 0.84433, 0.434479, -0.241211, 0.053253, 0.968994, 0.063873,
0.823273, 0.563965, 0.476288, 0.862152, -0.172516, 0.620941, -0.298126, 0.724915,
0.25238, -0.749359, -0.612122, -0.577545, 0.386566, 0.718994, -0.406342, -0.737976,
0.538696, 0.04718, 0.556305, 0.82959, -0.802856, 0.587463, 0.101166, -0.707733,
-0.705963, 0.026428, 0.374908, 0.68457, 0.625092, 0.472137, 0.208405, -0.856506,
-0.703064, -0.581085, -0.409821, -0.417206, -0.736328, 0.532623, -0.447876, -0.20285,
-0.870728, 0.086945, -0.990417, 0.107086, 0.183685, 0.018341, -0.982788, 0.560638,
-0.428864, 0.708282, 0.296722, -0.952576, -0.0672, 0.135773, 0.990265, 0.030243,
-0.068787, 0.654724, 0.752686, 0.762604, -0.551758, 0.337585, -0.819611, -0.407684,
0.402466, -0.727844, -0.55072, -0.408539, -0.855774, -0.480011, 0.19281, 0.693176,
-0.079285, 0.716339, 0.226013, 0.650116, -0.725433, 0.246704, 0.953369, -0.173553,
-0.970398, -0.239227, -0.03244, 0.136383, -0.394318, 0.908752, 0.813232, 0.558167,
0.164368, 0.40451, 0.549042, -0.731323, -0.380249, -0.566711, 0.730865, 0.022156,
0.932739, 0.359741, 0.00824, 0.996552, -0.082306, 0.956635, -0.065338, -0.283722,
-0.743561, 0.008209, 0.668579, -0.859589, -0.509674, 0.035767, -0.852234, 0.363678,
-0.375977, -0.201965, -0.970795, -0.12915, 0.313477, 0.947327, 0.06546, -0.254028,
-0.528259, 0.81015, 0.628052, 0.601105, 0.49411, -0.494385, 0.868378, 0.037933,
0.275635, -0.086426, 0.957336, -0.197937, 0.468903, -0.860748, 0.895599, 0.399384,
0.195801, 0.560791, 0.825012, -0.069214, 0.304199, -0.849487, 0.43103, 0.096375,
0.93576, 0.339111, -0.051422, 0.408966, -0.911072, 0.330444, 0.942841, -0.042389,
-0.452362, -0.786407, 0.420563, 0.134308, -0.933472, -0.332489, 0.80191, -0.566711,
-0.188934, -0.987946, -0.105988, 0.112518, -0.24408, 0.892242, -0.379791, -0.920502,
0.229095, -0.316376, 0.7789, 0.325958, 0.535706, -0.912872, 0.185211, -0.36377,
-0.184784, 0.565369, -0.803833, -0.018463, 0.119537, 0.992615, -0.259247, -0.935608,
0.239532, -0.82373, -0.449127, -0.345947, -0.433105, 0.659515, 0.614349, -0.822754,
0.378845, -0.423676, 0.687195, -0.674835, -0.26889, -0.246582, -0.800842, 0.545715,
-0.729187, -0.207794, 0.651978, 0.653534, -0.610443, -0.447388, 0.492584, -0.023346,
0.869934, 0.609039, 0.009094, -0.79306, 0.962494, -0.271088, -0.00885, 0.2659,
-0.004913, 0.963959, 0.651245, 0.553619, -0.518951, 0.280548, -0.84314, 0.458618,
-0.175293, -0.983215, 0.049805, 0.035339, -0.979919, 0.196045, -0.982941, 0.164307,
-0.082245, 0.233734, -0.97226, -0.005005, -0.747253, -0.611328, 0.260437, 0.645599,
0.592773, 0.481384, 0.117706, -0.949524, -0.29068, -0.535004, -0.791901, -0.294312,
-0.627167, -0.214447, 0.748718, -0.047974, -0.813477, -0.57959, -0.175537, 0.477264,
-0.860992, 0.738556, -0.414246, -0.53183, 0.562561, -0.704071, 0.433289, -0.754944,
0.64801, -0.100586, 0.114716, 0.044525, -0.992371, 0.966003, 0.244873, -0.082764,
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Improved Perlin Noise Implementation (New)
* \{ */
BLI_INLINE float lerp(float t, float a, float b)
{
return (a + t * (b - a));
}
BLI_INLINE float npfade(float t)
{
return (t * t * t * (t * (t * 6.0f - 15.0f) + 10.0f));
}
BLI_INLINE float grad(int hash_val, float x, float y, float z)
{
int h = hash_val & 15; /* CONVERT LO 4 BITS OF HASH CODE */
float u = h < 8 ? x : y; /* INTO 12 GRADIENT DIRECTIONS. */
float v = h < 4 ? y : h == 12 || h == 14 ? x : z;
return ((h & 1) == 0 ? u : -u) + ((h & 2) == 0 ? v : -v);
}
/* instead of adding another permutation array, just use hash table defined above */
static float newPerlin(float x, float y, float z)
{
int A, AA, AB, B, BA, BB;
float u = floor(x), v = floor(y), w = floor(z);
int X = ((int)u) & 255;
int Y = ((int)v) & 255;
int Z = ((int)w) & 255; /* FIND UNIT CUBE THAT CONTAINS POINT */
x -= u; /* FIND RELATIVE X,Y,Z */
y -= v; /* OF POINT IN CUBE. */
z -= w;
u = npfade(x); /* COMPUTE FADE CURVES */
v = npfade(y); /* FOR EACH OF X,Y,Z. */
w = npfade(z);
A = hash[X] + Y;
AA = hash[A] + Z;
AB = hash[A + 1] + Z; /* HASH COORDINATES OF */
B = hash[X + 1] + Y;
BA = hash[B] + Z;
BB = hash[B + 1] + Z; /* THE 8 CUBE CORNERS, */
return lerp(
w,
lerp(v,
lerp(u,
grad(hash[AA], x, y, z), /* AND ADD */
grad(hash[BA], x - 1, y, z)), /* BLENDED */
lerp(u,
grad(hash[AB], x, y - 1, z), /* RESULTS */
grad(hash[BB], x - 1, y - 1, z))), /* FROM 8 */
lerp(v,
lerp(u,
grad(hash[AA + 1], x, y, z - 1), /* CORNERS */
grad(hash[BA + 1], x - 1, y, z - 1)), /* OF CUBE */
lerp(u, grad(hash[AB + 1], x, y - 1, z - 1), grad(hash[BB + 1], x - 1, y - 1, z - 1))));
}
/* for use with BLI_noise_generic_noise()/BLI_noise_generic_turbulence(), returns unsigned improved
* perlin noise */
static float newPerlinU(float x, float y, float z)
{
return (0.5f + 0.5f * newPerlin(x, y, z));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Improved Perlin Noise Implementation (Original)
* \{ */
/* Was BLI_noise_hnoise(), removed noisesize, so other functions can call it without scaling. */
static float orgBlenderNoise(float x, float y, float z)
{
float cn1, cn2, cn3, cn4, cn5, cn6, i;
const float *h;
float fx, fy, fz, ox, oy, oz, jx, jy, jz;
float n = 0.5;
int ix, iy, iz, b00, b01, b10, b11, b20, b21;
fx = floor(x);
fy = floor(y);
fz = floor(z);
ox = x - fx;
oy = y - fy;
oz = z - fz;
ix = (int)fx;
iy = (int)fy;
iz = (int)fz;
jx = ox - 1;
jy = oy - 1;
jz = oz - 1;
cn1 = ox * ox;
cn2 = oy * oy;
cn3 = oz * oz;
cn4 = jx * jx;
cn5 = jy * jy;
cn6 = jz * jz;
cn1 = 1.0f - 3.0f * cn1 + 2.0f * cn1 * ox;
cn2 = 1.0f - 3.0f * cn2 + 2.0f * cn2 * oy;
cn3 = 1.0f - 3.0f * cn3 + 2.0f * cn3 * oz;
cn4 = 1.0f - 3.0f * cn4 - 2.0f * cn4 * jx;
cn5 = 1.0f - 3.0f * cn5 - 2.0f * cn5 * jy;
cn6 = 1.0f - 3.0f * cn6 - 2.0f * cn6 * jz;
b00 = hash[hash[ix & 255] + (iy & 255)];
b10 = hash[hash[(ix + 1) & 255] + (iy & 255)];
b01 = hash[hash[ix & 255] + ((iy + 1) & 255)];
b11 = hash[hash[(ix + 1) & 255] + ((iy + 1) & 255)];
b20 = iz & 255;
b21 = (iz + 1) & 255;
/* 0 */
i = (cn1 * cn2 * cn3);
h = hashvectf + 3 * hash[b20 + b00];
n += i * (h[0] * ox + h[1] * oy + h[2] * oz);
/* 1 */
i = (cn1 * cn2 * cn6);
h = hashvectf + 3 * hash[b21 + b00];
n += i * (h[0] * ox + h[1] * oy + h[2] * jz);
/* 2 */
i = (cn1 * cn5 * cn3);
h = hashvectf + 3 * hash[b20 + b01];
n += i * (h[0] * ox + h[1] * jy + h[2] * oz);
/* 3 */
i = (cn1 * cn5 * cn6);
h = hashvectf + 3 * hash[b21 + b01];
n += i * (h[0] * ox + h[1] * jy + h[2] * jz);
/* 4 */
i = cn4 * cn2 * cn3;
h = hashvectf + 3 * hash[b20 + b10];
n += i * (h[0] * jx + h[1] * oy + h[2] * oz);
/* 5 */
i = cn4 * cn2 * cn6;
h = hashvectf + 3 * hash[b21 + b10];
n += i * (h[0] * jx + h[1] * oy + h[2] * jz);
/* 6 */
i = cn4 * cn5 * cn3;
h = hashvectf + 3 * hash[b20 + b11];
n += i * (h[0] * jx + h[1] * jy + h[2] * oz);
/* 7 */
i = (cn4 * cn5 * cn6);
h = hashvectf + 3 * hash[b21 + b11];
n += i * (h[0] * jx + h[1] * jy + h[2] * jz);
if (n < 0.0f) {
n = 0.0f;
}
else if (n > 1.0f) {
n = 1.0f;
}
return n;
}
/* as orgBlenderNoise(), returning signed noise */
static float orgBlenderNoiseS(float x, float y, float z)
{
return (2.0f * orgBlenderNoise(x, y, z) - 1.0f);
}
/* separated from orgBlenderNoise above, with scaling */
float BLI_noise_hnoise(float noisesize, float x, float y, float z)
{
if (noisesize == 0.0f) {
return 0.0f;
}
x = (1.0f + x) / noisesize;
y = (1.0f + y) / noisesize;
z = (1.0f + z) / noisesize;
return orgBlenderNoise(x, y, z);
}
/* original turbulence functions */
float BLI_noise_turbulence(float noisesize, float x, float y, float z, int nr)
{
float s, d = 0.5, div = 1.0;
s = BLI_noise_hnoise(noisesize, x, y, z);
while (nr > 0) {
s += d * BLI_noise_hnoise(noisesize * d, x, y, z);
div += d;
d *= 0.5f;
nr--;
}
return s / div;
}
/* ********************* FROM PERLIN HIMSELF: ******************** */
static const char g_perlin_data_ub[512 + 2] = {
0xA2, 0xA0, 0x19, 0x3B, 0xF8, 0xEB, 0xAA, 0xEE, 0xF3, 0x1C, 0x67, 0x28, 0x1D, 0xED, 0x0, 0xDE,
0x95, 0x2E, 0xDC, 0x3F, 0x3A, 0x82, 0x35, 0x4D, 0x6C, 0xBA, 0x36, 0xD0, 0xF6, 0xC, 0x79, 0x32,
0xD1, 0x59, 0xF4, 0x8, 0x8B, 0x63, 0x89, 0x2F, 0xB8, 0xB4, 0x97, 0x83, 0xF2, 0x8F, 0x18, 0xC7,
0x51, 0x14, 0x65, 0x87, 0x48, 0x20, 0x42, 0xA8, 0x80, 0xB5, 0x40, 0x13, 0xB2, 0x22, 0x7E, 0x57,
0xBC, 0x7F, 0x6B, 0x9D, 0x86, 0x4C, 0xC8, 0xDB, 0x7C, 0xD5, 0x25, 0x4E, 0x5A, 0x55, 0x74, 0x50,
0xCD, 0xB3, 0x7A, 0xBB, 0xC3, 0xCB, 0xB6, 0xE2, 0xE4, 0xEC, 0xFD, 0x98, 0xB, 0x96, 0xD3, 0x9E,
0x5C, 0xA1, 0x64, 0xF1, 0x81, 0x61, 0xE1, 0xC4, 0x24, 0x72, 0x49, 0x8C, 0x90, 0x4B, 0x84, 0x34,
0x38, 0xAB, 0x78, 0xCA, 0x1F, 0x1, 0xD7, 0x93, 0x11, 0xC1, 0x58, 0xA9, 0x31, 0xF9, 0x44, 0x6D,
0xBF, 0x33, 0x9C, 0x5F, 0x9, 0x94, 0xA3, 0x85, 0x6, 0xC6, 0x9A, 0x1E, 0x7B, 0x46, 0x15, 0x30,
0x27, 0x2B, 0x1B, 0x71, 0x3C, 0x5B, 0xD6, 0x6F, 0x62, 0xAC, 0x4F, 0xC2, 0xC0, 0xE, 0xB1, 0x23,
0xA7, 0xDF, 0x47, 0xB0, 0x77, 0x69, 0x5, 0xE9, 0xE6, 0xE7, 0x76, 0x73, 0xF, 0xFE, 0x6E, 0x9B,
0x56, 0xEF, 0x12, 0xA5, 0x37, 0xFC, 0xAE, 0xD9, 0x3, 0x8E, 0xDD, 0x10, 0xB9, 0xCE, 0xC9, 0x8D,
0xDA, 0x2A, 0xBD, 0x68, 0x17, 0x9F, 0xBE, 0xD4, 0xA, 0xCC, 0xD2, 0xE8, 0x43, 0x3D, 0x70, 0xB7,
0x2, 0x7D, 0x99, 0xD8, 0xD, 0x60, 0x8A, 0x4, 0x2C, 0x3E, 0x92, 0xE5, 0xAF, 0x53, 0x7, 0xE0,
0x29, 0xA6, 0xC5, 0xE3, 0xF5, 0xF7, 0x4A, 0x41, 0x26, 0x6A, 0x16, 0x5E, 0x52, 0x2D, 0x21, 0xAD,
0xF0, 0x91, 0xFF, 0xEA, 0x54, 0xFA, 0x66, 0x1A, 0x45, 0x39, 0xCF, 0x75, 0xA4, 0x88, 0xFB, 0x5D,
0xA2, 0xA0, 0x19, 0x3B, 0xF8, 0xEB, 0xAA, 0xEE, 0xF3, 0x1C, 0x67, 0x28, 0x1D, 0xED, 0x0, 0xDE,
0x95, 0x2E, 0xDC, 0x3F, 0x3A, 0x82, 0x35, 0x4D, 0x6C, 0xBA, 0x36, 0xD0, 0xF6, 0xC, 0x79, 0x32,
0xD1, 0x59, 0xF4, 0x8, 0x8B, 0x63, 0x89, 0x2F, 0xB8, 0xB4, 0x97, 0x83, 0xF2, 0x8F, 0x18, 0xC7,
0x51, 0x14, 0x65, 0x87, 0x48, 0x20, 0x42, 0xA8, 0x80, 0xB5, 0x40, 0x13, 0xB2, 0x22, 0x7E, 0x57,
0xBC, 0x7F, 0x6B, 0x9D, 0x86, 0x4C, 0xC8, 0xDB, 0x7C, 0xD5, 0x25, 0x4E, 0x5A, 0x55, 0x74, 0x50,
0xCD, 0xB3, 0x7A, 0xBB, 0xC3, 0xCB, 0xB6, 0xE2, 0xE4, 0xEC, 0xFD, 0x98, 0xB, 0x96, 0xD3, 0x9E,
0x5C, 0xA1, 0x64, 0xF1, 0x81, 0x61, 0xE1, 0xC4, 0x24, 0x72, 0x49, 0x8C, 0x90, 0x4B, 0x84, 0x34,
0x38, 0xAB, 0x78, 0xCA, 0x1F, 0x1, 0xD7, 0x93, 0x11, 0xC1, 0x58, 0xA9, 0x31, 0xF9, 0x44, 0x6D,
0xBF, 0x33, 0x9C, 0x5F, 0x9, 0x94, 0xA3, 0x85, 0x6, 0xC6, 0x9A, 0x1E, 0x7B, 0x46, 0x15, 0x30,
0x27, 0x2B, 0x1B, 0x71, 0x3C, 0x5B, 0xD6, 0x6F, 0x62, 0xAC, 0x4F, 0xC2, 0xC0, 0xE, 0xB1, 0x23,
0xA7, 0xDF, 0x47, 0xB0, 0x77, 0x69, 0x5, 0xE9, 0xE6, 0xE7, 0x76, 0x73, 0xF, 0xFE, 0x6E, 0x9B,
0x56, 0xEF, 0x12, 0xA5, 0x37, 0xFC, 0xAE, 0xD9, 0x3, 0x8E, 0xDD, 0x10, 0xB9, 0xCE, 0xC9, 0x8D,
0xDA, 0x2A, 0xBD, 0x68, 0x17, 0x9F, 0xBE, 0xD4, 0xA, 0xCC, 0xD2, 0xE8, 0x43, 0x3D, 0x70, 0xB7,
0x2, 0x7D, 0x99, 0xD8, 0xD, 0x60, 0x8A, 0x4, 0x2C, 0x3E, 0x92, 0xE5, 0xAF, 0x53, 0x7, 0xE0,
0x29, 0xA6, 0xC5, 0xE3, 0xF5, 0xF7, 0x4A, 0x41, 0x26, 0x6A, 0x16, 0x5E, 0x52, 0x2D, 0x21, 0xAD,
0xF0, 0x91, 0xFF, 0xEA, 0x54, 0xFA, 0x66, 0x1A, 0x45, 0x39, 0xCF, 0x75, 0xA4, 0x88, 0xFB, 0x5D,
0xA2, 0xA0,
};
static const float g_perlin_data_v3[512 + 2][3] = {
{0.33783, 0.715698, -0.611206}, {-0.944031, -0.326599, -0.045624},
{-0.101074, -0.416443, -0.903503}, {0.799286, 0.49411, -0.341949},
{-0.854645, 0.518036, 0.033936}, {0.42514, -0.437866, -0.792114},
{-0.358948, 0.597046, 0.717377}, {-0.985413, 0.144714, 0.089294},
{-0.601776, -0.33728, -0.723907}, {-0.449921, 0.594513, 0.666382},
{0.208313, -0.10791, 0.972076}, {0.575317, 0.060425, 0.815643},
{0.293365, -0.875702, -0.383453}, {0.293762, 0.465759, 0.834686},
{-0.846008, -0.233398, -0.47934}, {-0.115814, 0.143036, -0.98291},
{0.204681, -0.949036, -0.239532}, {0.946716, -0.263947, 0.184326},
{-0.235596, 0.573822, 0.784332}, {0.203705, -0.372253, -0.905487},
{0.756989, -0.651031, 0.055298}, {0.497803, 0.814697, -0.297363},
{-0.16214, 0.063995, -0.98468}, {-0.329254, 0.834381, 0.441925},
{0.703827, -0.527039, -0.476227}, {0.956421, 0.266113, 0.119781},
{0.480133, 0.482849, 0.7323}, {-0.18631, 0.961212, -0.203125},
{-0.748474, -0.656921, -0.090393}, {-0.085052, -0.165253, 0.982544},
{-0.76947, 0.628174, -0.115234}, {0.383148, 0.537659, 0.751068},
{0.616486, -0.668488, -0.415924}, {-0.259979, -0.630005, 0.73175},
{0.570953, -0.087952, 0.816223}, {-0.458008, 0.023254, 0.888611},
{-0.196167, 0.976563, -0.088287}, {-0.263885, -0.69812, -0.665527},
{0.437134, -0.892273, -0.112793}, {-0.621674, -0.230438, 0.748566},
{0.232422, 0.900574, -0.367249}, {0.22229, -0.796143, 0.562744},
{-0.665497, -0.73764, 0.11377}, {0.670135, 0.704803, 0.232605},
{0.895599, 0.429749, -0.114655}, {-0.11557, -0.474243, 0.872742},
{0.621826, 0.604004, -0.498444}, {-0.832214, 0.012756, 0.55426},
{-0.702484, 0.705994, -0.089661}, {-0.692017, 0.649292, 0.315399},
{-0.175995, -0.977997, 0.111877}, {0.096954, -0.04953, 0.994019},
{0.635284, -0.606689, -0.477783}, {-0.261261, -0.607422, -0.750153},
{0.983276, 0.165436, 0.075958}, {-0.29837, 0.404083, -0.864655},
{-0.638672, 0.507721, 0.578156}, {0.388214, 0.412079, 0.824249},
{0.556183, -0.208832, 0.804352}, {0.778442, 0.562012, 0.27951},
{-0.616577, 0.781921, -0.091522}, {0.196289, 0.051056, 0.979187},
{-0.121216, 0.207153, -0.970734}, {-0.173401, -0.384735, 0.906555},
{0.161499, -0.723236, -0.671387}, {0.178497, -0.006226, -0.983887},
{-0.126038, 0.15799, 0.97934}, {0.830475, -0.024811, 0.556458},
{-0.510132, -0.76944, 0.384247}, {0.81424, 0.200104, -0.544891},
{-0.112549, -0.393311, -0.912445}, {0.56189, 0.152222, -0.813049},
{0.198914, -0.254517, -0.946381}, {-0.41217, 0.690979, -0.593811},
{-0.407257, 0.324524, 0.853668}, {-0.690186, 0.366119, -0.624115},
{-0.428345, 0.844147, -0.322296}, {-0.21228, -0.297546, -0.930756},
{-0.273071, 0.516113, 0.811798}, {0.928314, 0.371643, 0.007233},
{0.785828, -0.479218, -0.390778}, {-0.704895, 0.058929, 0.706818},
{0.173248, 0.203583, 0.963562}, {0.422211, -0.904297, -0.062469},
{-0.363312, -0.182465, 0.913605}, {0.254028, -0.552307, -0.793945},
{-0.28891, -0.765747, -0.574554}, {0.058319, 0.291382, 0.954803},
{0.946136, -0.303925, 0.111267}, {-0.078156, 0.443695, -0.892731},
{0.182098, 0.89389, 0.409515}, {-0.680298, -0.213318, 0.701141},
{0.062469, 0.848389, -0.525635}, {-0.72879, -0.641846, 0.238342},
{-0.88089, 0.427673, 0.202637}, {-0.532501, -0.21405, 0.818878},
{0.948975, -0.305084, 0.07962}, {0.925446, 0.374664, 0.055817},
{0.820923, 0.565491, 0.079102}, {0.25882, 0.099792, -0.960724},
{-0.294617, 0.910522, 0.289978}, {0.137115, 0.320038, -0.937408},
{-0.908386, 0.345276, -0.235718}, {-0.936218, 0.138763, 0.322754},
{0.366577, 0.925934, -0.090637}, {0.309296, -0.686829, -0.657684},
{0.66983, 0.024445, 0.742065}, {-0.917999, -0.059113, -0.392059},
{0.365509, 0.462158, -0.807922}, {0.083374, 0.996399, -0.014801},
{0.593842, 0.253143, -0.763672}, {0.974976, -0.165466, 0.148285},
{0.918976, 0.137299, 0.369537}, {0.294952, 0.694977, 0.655731},
{0.943085, 0.152618, -0.295319}, {0.58783, -0.598236, 0.544495},
{0.203796, 0.678223, 0.705994}, {-0.478821, -0.661011, 0.577667},
{0.719055, -0.1698, -0.673828}, {-0.132172, -0.965332, 0.225006},
{-0.981873, -0.14502, 0.121979}, {0.763458, 0.579742, 0.284546},
{-0.893188, 0.079681, 0.442474}, {-0.795776, -0.523804, 0.303802},
{0.734955, 0.67804, -0.007446}, {0.15506, 0.986267, -0.056183},
{0.258026, 0.571503, -0.778931}, {-0.681549, -0.702087, -0.206116},
{-0.96286, -0.177185, 0.203613}, {-0.470978, -0.515106, 0.716095},
{-0.740326, 0.57135, 0.354095}, {-0.56012, -0.824982, -0.074982},
{-0.507874, 0.753204, 0.417969}, {-0.503113, 0.038147, 0.863342},
{0.594025, 0.673553, -0.439758}, {-0.119873, -0.005524, -0.992737},
{0.098267, -0.213776, 0.971893}, {-0.615631, 0.643951, 0.454163},
{0.896851, -0.441071, 0.032166}, {-0.555023, 0.750763, -0.358093},
{0.398773, 0.304688, 0.864929}, {-0.722961, 0.303589, 0.620544},
{-0.63559, -0.621948, -0.457306}, {-0.293243, 0.072327, 0.953278},
{-0.491638, 0.661041, -0.566772}, {-0.304199, -0.572083, -0.761688},
{0.908081, -0.398956, 0.127014}, {-0.523621, -0.549683, -0.650848},
{-0.932922, -0.19986, 0.299408}, {0.099426, 0.140869, 0.984985},
{-0.020325, -0.999756, -0.002319}, {0.952667, 0.280853, -0.11615},
{-0.971893, 0.082581, 0.220337}, {0.65921, 0.705292, -0.260651},
{0.733063, -0.175537, 0.657043}, {-0.555206, 0.429504, -0.712189},
{0.400421, -0.89859, 0.179352}, {0.750885, -0.19696, 0.630341},
{0.785675, -0.569336, 0.241821}, {-0.058899, -0.464111, 0.883789},
{0.129608, -0.94519, 0.299622}, {-0.357819, 0.907654, 0.219238},
{-0.842133, -0.439117, -0.312927}, {-0.313477, 0.84433, 0.434479},
{-0.241211, 0.053253, 0.968994}, {0.063873, 0.823273, 0.563965},
{0.476288, 0.862152, -0.172516}, {0.620941, -0.298126, 0.724915},
{0.25238, -0.749359, -0.612122}, {-0.577545, 0.386566, 0.718994},
{-0.406342, -0.737976, 0.538696}, {0.04718, 0.556305, 0.82959},
{-0.802856, 0.587463, 0.101166}, {-0.707733, -0.705963, 0.026428},
{0.374908, 0.68457, 0.625092}, {0.472137, 0.208405, -0.856506},
{-0.703064, -0.581085, -0.409821}, {-0.417206, -0.736328, 0.532623},
{-0.447876, -0.20285, -0.870728}, {0.086945, -0.990417, 0.107086},
{0.183685, 0.018341, -0.982788}, {0.560638, -0.428864, 0.708282},
{0.296722, -0.952576, -0.0672}, {0.135773, 0.990265, 0.030243},
{-0.068787, 0.654724, 0.752686}, {0.762604, -0.551758, 0.337585},
{-0.819611, -0.407684, 0.402466}, {-0.727844, -0.55072, -0.408539},
{-0.855774, -0.480011, 0.19281}, {0.693176, -0.079285, 0.716339},
{0.226013, 0.650116, -0.725433}, {0.246704, 0.953369, -0.173553},
{-0.970398, -0.239227, -0.03244}, {0.136383, -0.394318, 0.908752},
{0.813232, 0.558167, 0.164368}, {0.40451, 0.549042, -0.731323},
{-0.380249, -0.566711, 0.730865}, {0.022156, 0.932739, 0.359741},
{0.00824, 0.996552, -0.082306}, {0.956635, -0.065338, -0.283722},
{-0.743561, 0.008209, 0.668579}, {-0.859589, -0.509674, 0.035767},
{-0.852234, 0.363678, -0.375977}, {-0.201965, -0.970795, -0.12915},
{0.313477, 0.947327, 0.06546}, {-0.254028, -0.528259, 0.81015},
{0.628052, 0.601105, 0.49411}, {-0.494385, 0.868378, 0.037933},
{0.275635, -0.086426, 0.957336}, {-0.197937, 0.468903, -0.860748},
{0.895599, 0.399384, 0.195801}, {0.560791, 0.825012, -0.069214},
{0.304199, -0.849487, 0.43103}, {0.096375, 0.93576, 0.339111},
{-0.051422, 0.408966, -0.911072}, {0.330444, 0.942841, -0.042389},
{-0.452362, -0.786407, 0.420563}, {0.134308, -0.933472, -0.332489},
{0.80191, -0.566711, -0.188934}, {-0.987946, -0.105988, 0.112518},
{-0.24408, 0.892242, -0.379791}, {-0.920502, 0.229095, -0.316376},
{0.7789, 0.325958, 0.535706}, {-0.912872, 0.185211, -0.36377},
{-0.184784, 0.565369, -0.803833}, {-0.018463, 0.119537, 0.992615},
{-0.259247, -0.935608, 0.239532}, {-0.82373, -0.449127, -0.345947},
{-0.433105, 0.659515, 0.614349}, {-0.822754, 0.378845, -0.423676},
{0.687195, -0.674835, -0.26889}, {-0.246582, -0.800842, 0.545715},
{-0.729187, -0.207794, 0.651978}, {0.653534, -0.610443, -0.447388},
{0.492584, -0.023346, 0.869934}, {0.609039, 0.009094, -0.79306},
{0.962494, -0.271088, -0.00885}, {0.2659, -0.004913, 0.963959},
{0.651245, 0.553619, -0.518951}, {0.280548, -0.84314, 0.458618},
{-0.175293, -0.983215, 0.049805}, {0.035339, -0.979919, 0.196045},
{-0.982941, 0.164307, -0.082245}, {0.233734, -0.97226, -0.005005},
{-0.747253, -0.611328, 0.260437}, {0.645599, 0.592773, 0.481384},
{0.117706, -0.949524, -0.29068}, {-0.535004, -0.791901, -0.294312},
{-0.627167, -0.214447, 0.748718}, {-0.047974, -0.813477, -0.57959},
{-0.175537, 0.477264, -0.860992}, {0.738556, -0.414246, -0.53183},
{0.562561, -0.704071, 0.433289}, {-0.754944, 0.64801, -0.100586},
{0.114716, 0.044525, -0.992371}, {0.966003, 0.244873, -0.082764},
{0.33783, 0.715698, -0.611206}, {-0.944031, -0.326599, -0.045624},
{-0.101074, -0.416443, -0.903503}, {0.799286, 0.49411, -0.341949},
{-0.854645, 0.518036, 0.033936}, {0.42514, -0.437866, -0.792114},
{-0.358948, 0.597046, 0.717377}, {-0.985413, 0.144714, 0.089294},
{-0.601776, -0.33728, -0.723907}, {-0.449921, 0.594513, 0.666382},
{0.208313, -0.10791, 0.972076}, {0.575317, 0.060425, 0.815643},
{0.293365, -0.875702, -0.383453}, {0.293762, 0.465759, 0.834686},
{-0.846008, -0.233398, -0.47934}, {-0.115814, 0.143036, -0.98291},
{0.204681, -0.949036, -0.239532}, {0.946716, -0.263947, 0.184326},
{-0.235596, 0.573822, 0.784332}, {0.203705, -0.372253, -0.905487},
{0.756989, -0.651031, 0.055298}, {0.497803, 0.814697, -0.297363},
{-0.16214, 0.063995, -0.98468}, {-0.329254, 0.834381, 0.441925},
{0.703827, -0.527039, -0.476227}, {0.956421, 0.266113, 0.119781},
{0.480133, 0.482849, 0.7323}, {-0.18631, 0.961212, -0.203125},
{-0.748474, -0.656921, -0.090393}, {-0.085052, -0.165253, 0.982544},
{-0.76947, 0.628174, -0.115234}, {0.383148, 0.537659, 0.751068},
{0.616486, -0.668488, -0.415924}, {-0.259979, -0.630005, 0.73175},
{0.570953, -0.087952, 0.816223}, {-0.458008, 0.023254, 0.888611},
{-0.196167, 0.976563, -0.088287}, {-0.263885, -0.69812, -0.665527},
{0.437134, -0.892273, -0.112793}, {-0.621674, -0.230438, 0.748566},
{0.232422, 0.900574, -0.367249}, {0.22229, -0.796143, 0.562744},
{-0.665497, -0.73764, 0.11377}, {0.670135, 0.704803, 0.232605},
{0.895599, 0.429749, -0.114655}, {-0.11557, -0.474243, 0.872742},
{0.621826, 0.604004, -0.498444}, {-0.832214, 0.012756, 0.55426},
{-0.702484, 0.705994, -0.089661}, {-0.692017, 0.649292, 0.315399},
{-0.175995, -0.977997, 0.111877}, {0.096954, -0.04953, 0.994019},
{0.635284, -0.606689, -0.477783}, {-0.261261, -0.607422, -0.750153},
{0.983276, 0.165436, 0.075958}, {-0.29837, 0.404083, -0.864655},
{-0.638672, 0.507721, 0.578156}, {0.388214, 0.412079, 0.824249},
{0.556183, -0.208832, 0.804352}, {0.778442, 0.562012, 0.27951},
{-0.616577, 0.781921, -0.091522}, {0.196289, 0.051056, 0.979187},
{-0.121216, 0.207153, -0.970734}, {-0.173401, -0.384735, 0.906555},
{0.161499, -0.723236, -0.671387}, {0.178497, -0.006226, -0.983887},
{-0.126038, 0.15799, 0.97934}, {0.830475, -0.024811, 0.556458},
{-0.510132, -0.76944, 0.384247}, {0.81424, 0.200104, -0.544891},
{-0.112549, -0.393311, -0.912445}, {0.56189, 0.152222, -0.813049},
{0.198914, -0.254517, -0.946381}, {-0.41217, 0.690979, -0.593811},
{-0.407257, 0.324524, 0.853668}, {-0.690186, 0.366119, -0.624115},
{-0.428345, 0.844147, -0.322296}, {-0.21228, -0.297546, -0.930756},
{-0.273071, 0.516113, 0.811798}, {0.928314, 0.371643, 0.007233},
{0.785828, -0.479218, -0.390778}, {-0.704895, 0.058929, 0.706818},
{0.173248, 0.203583, 0.963562}, {0.422211, -0.904297, -0.062469},
{-0.363312, -0.182465, 0.913605}, {0.254028, -0.552307, -0.793945},
{-0.28891, -0.765747, -0.574554}, {0.058319, 0.291382, 0.954803},
{0.946136, -0.303925, 0.111267}, {-0.078156, 0.443695, -0.892731},
{0.182098, 0.89389, 0.409515}, {-0.680298, -0.213318, 0.701141},
{0.062469, 0.848389, -0.525635}, {-0.72879, -0.641846, 0.238342},
{-0.88089, 0.427673, 0.202637}, {-0.532501, -0.21405, 0.818878},
{0.948975, -0.305084, 0.07962}, {0.925446, 0.374664, 0.055817},
{0.820923, 0.565491, 0.079102}, {0.25882, 0.099792, -0.960724},
{-0.294617, 0.910522, 0.289978}, {0.137115, 0.320038, -0.937408},
{-0.908386, 0.345276, -0.235718}, {-0.936218, 0.138763, 0.322754},
{0.366577, 0.925934, -0.090637}, {0.309296, -0.686829, -0.657684},
{0.66983, 0.024445, 0.742065}, {-0.917999, -0.059113, -0.392059},
{0.365509, 0.462158, -0.807922}, {0.083374, 0.996399, -0.014801},
{0.593842, 0.253143, -0.763672}, {0.974976, -0.165466, 0.148285},
{0.918976, 0.137299, 0.369537}, {0.294952, 0.694977, 0.655731},
{0.943085, 0.152618, -0.295319}, {0.58783, -0.598236, 0.544495},
{0.203796, 0.678223, 0.705994}, {-0.478821, -0.661011, 0.577667},
{0.719055, -0.1698, -0.673828}, {-0.132172, -0.965332, 0.225006},
{-0.981873, -0.14502, 0.121979}, {0.763458, 0.579742, 0.284546},
{-0.893188, 0.079681, 0.442474}, {-0.795776, -0.523804, 0.303802},
{0.734955, 0.67804, -0.007446}, {0.15506, 0.986267, -0.056183},
{0.258026, 0.571503, -0.778931}, {-0.681549, -0.702087, -0.206116},
{-0.96286, -0.177185, 0.203613}, {-0.470978, -0.515106, 0.716095},
{-0.740326, 0.57135, 0.354095}, {-0.56012, -0.824982, -0.074982},
{-0.507874, 0.753204, 0.417969}, {-0.503113, 0.038147, 0.863342},
{0.594025, 0.673553, -0.439758}, {-0.119873, -0.005524, -0.992737},
{0.098267, -0.213776, 0.971893}, {-0.615631, 0.643951, 0.454163},
{0.896851, -0.441071, 0.032166}, {-0.555023, 0.750763, -0.358093},
{0.398773, 0.304688, 0.864929}, {-0.722961, 0.303589, 0.620544},
{-0.63559, -0.621948, -0.457306}, {-0.293243, 0.072327, 0.953278},
{-0.491638, 0.661041, -0.566772}, {-0.304199, -0.572083, -0.761688},
{0.908081, -0.398956, 0.127014}, {-0.523621, -0.549683, -0.650848},
{-0.932922, -0.19986, 0.299408}, {0.099426, 0.140869, 0.984985},
{-0.020325, -0.999756, -0.002319}, {0.952667, 0.280853, -0.11615},
{-0.971893, 0.082581, 0.220337}, {0.65921, 0.705292, -0.260651},
{0.733063, -0.175537, 0.657043}, {-0.555206, 0.429504, -0.712189},
{0.400421, -0.89859, 0.179352}, {0.750885, -0.19696, 0.630341},
{0.785675, -0.569336, 0.241821}, {-0.058899, -0.464111, 0.883789},
{0.129608, -0.94519, 0.299622}, {-0.357819, 0.907654, 0.219238},
{-0.842133, -0.439117, -0.312927}, {-0.313477, 0.84433, 0.434479},
{-0.241211, 0.053253, 0.968994}, {0.063873, 0.823273, 0.563965},
{0.476288, 0.862152, -0.172516}, {0.620941, -0.298126, 0.724915},
{0.25238, -0.749359, -0.612122}, {-0.577545, 0.386566, 0.718994},
{-0.406342, -0.737976, 0.538696}, {0.04718, 0.556305, 0.82959},
{-0.802856, 0.587463, 0.101166}, {-0.707733, -0.705963, 0.026428},
{0.374908, 0.68457, 0.625092}, {0.472137, 0.208405, -0.856506},
{-0.703064, -0.581085, -0.409821}, {-0.417206, -0.736328, 0.532623},
{-0.447876, -0.20285, -0.870728}, {0.086945, -0.990417, 0.107086},
{0.183685, 0.018341, -0.982788}, {0.560638, -0.428864, 0.708282},
{0.296722, -0.952576, -0.0672}, {0.135773, 0.990265, 0.030243},
{-0.068787, 0.654724, 0.752686}, {0.762604, -0.551758, 0.337585},
{-0.819611, -0.407684, 0.402466}, {-0.727844, -0.55072, -0.408539},
{-0.855774, -0.480011, 0.19281}, {0.693176, -0.079285, 0.716339},
{0.226013, 0.650116, -0.725433}, {0.246704, 0.953369, -0.173553},
{-0.970398, -0.239227, -0.03244}, {0.136383, -0.394318, 0.908752},
{0.813232, 0.558167, 0.164368}, {0.40451, 0.549042, -0.731323},
{-0.380249, -0.566711, 0.730865}, {0.022156, 0.932739, 0.359741},
{0.00824, 0.996552, -0.082306}, {0.956635, -0.065338, -0.283722},
{-0.743561, 0.008209, 0.668579}, {-0.859589, -0.509674, 0.035767},
{-0.852234, 0.363678, -0.375977}, {-0.201965, -0.970795, -0.12915},
{0.313477, 0.947327, 0.06546}, {-0.254028, -0.528259, 0.81015},
{0.628052, 0.601105, 0.49411}, {-0.494385, 0.868378, 0.037933},
{0.275635, -0.086426, 0.957336}, {-0.197937, 0.468903, -0.860748},
{0.895599, 0.399384, 0.195801}, {0.560791, 0.825012, -0.069214},
{0.304199, -0.849487, 0.43103}, {0.096375, 0.93576, 0.339111},
{-0.051422, 0.408966, -0.911072}, {0.330444, 0.942841, -0.042389},
{-0.452362, -0.786407, 0.420563}, {0.134308, -0.933472, -0.332489},
{0.80191, -0.566711, -0.188934}, {-0.987946, -0.105988, 0.112518},
{-0.24408, 0.892242, -0.379791}, {-0.920502, 0.229095, -0.316376},
{0.7789, 0.325958, 0.535706}, {-0.912872, 0.185211, -0.36377},
{-0.184784, 0.565369, -0.803833}, {-0.018463, 0.119537, 0.992615},
{-0.259247, -0.935608, 0.239532}, {-0.82373, -0.449127, -0.345947},
{-0.433105, 0.659515, 0.614349}, {-0.822754, 0.378845, -0.423676},
{0.687195, -0.674835, -0.26889}, {-0.246582, -0.800842, 0.545715},
{-0.729187, -0.207794, 0.651978}, {0.653534, -0.610443, -0.447388},
{0.492584, -0.023346, 0.869934}, {0.609039, 0.009094, -0.79306},
{0.962494, -0.271088, -0.00885}, {0.2659, -0.004913, 0.963959},
{0.651245, 0.553619, -0.518951}, {0.280548, -0.84314, 0.458618},
{-0.175293, -0.983215, 0.049805}, {0.035339, -0.979919, 0.196045},
{-0.982941, 0.164307, -0.082245}, {0.233734, -0.97226, -0.005005},
{-0.747253, -0.611328, 0.260437}, {0.645599, 0.592773, 0.481384},
{0.117706, -0.949524, -0.29068}, {-0.535004, -0.791901, -0.294312},
{-0.627167, -0.214447, 0.748718}, {-0.047974, -0.813477, -0.57959},
{-0.175537, 0.477264, -0.860992}, {0.738556, -0.414246, -0.53183},
{0.562561, -0.704071, 0.433289}, {-0.754944, 0.64801, -0.100586},
{0.114716, 0.044525, -0.992371}, {0.966003, 0.244873, -0.082764},
{0.33783, 0.715698, -0.611206}, {-0.944031, -0.326599, -0.045624},
};
#define SETUP(val, b0, b1, r0, r1) \
{ \
t = val + 10000.0f; \
b0 = ((int)t) & 255; \
b1 = (b0 + 1) & 255; \
r0 = t - floorf(t); \
r1 = r0 - 1.0f; \
} \
(void)0
static float noise3_perlin(const float vec[3])
{
const char *p = g_perlin_data_ub;
const float(*g)[3] = g_perlin_data_v3;
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
float rx0, rx1, ry0, ry1, rz0, rz1, sx, sy, sz, a, b, c, d, t, u, v;
const float *q;
SETUP(vec[0], bx0, bx1, rx0, rx1);
SETUP(vec[1], by0, by1, ry0, ry1);
SETUP(vec[2], bz0, bz1, rz0, rz1);
int i = p[bx0];
int j = p[bx1];
b00 = p[i + by0];
b10 = p[j + by0];
b01 = p[i + by1];
b11 = p[j + by1];
#define VALUE_AT(rx, ry, rz) ((rx)*q[0] + (ry)*q[1] + (rz)*q[2])
#define SURVE(t) ((t) * (t) * (3.0f - 2.0f * (t)))
/* lerp moved to improved perlin above */
sx = SURVE(rx0);
sy = SURVE(ry0);
sz = SURVE(rz0);
q = g[b00 + bz0];
u = VALUE_AT(rx0, ry0, rz0);
q = g[b10 + bz0];
v = VALUE_AT(rx1, ry0, rz0);
a = lerp(sx, u, v);
q = g[b01 + bz0];
u = VALUE_AT(rx0, ry1, rz0);
q = g[b11 + bz0];
v = VALUE_AT(rx1, ry1, rz0);
b = lerp(sx, u, v);
c = lerp(sy, a, b); /* interpolate in y at lo x */
q = g[b00 + bz1];
u = VALUE_AT(rx0, ry0, rz1);
q = g[b10 + bz1];
v = VALUE_AT(rx1, ry0, rz1);
a = lerp(sx, u, v);
q = g[b01 + bz1];
u = VALUE_AT(rx0, ry1, rz1);
q = g[b11 + bz1];
v = VALUE_AT(rx1, ry1, rz1);
b = lerp(sx, u, v);
d = lerp(sy, a, b); /* interpolate in y at hi x */
return 1.5f * lerp(sz, c, d); /* interpolate in z */
#undef VALUE_AT
#undef SURVE
}
/* for use with BLI_noise_generic_noise/gTurbulence, returns signed noise */
static float orgPerlinNoise(float x, float y, float z)
{
float v[3] = {x, y, z};
return noise3_perlin(v);
}
/* for use with BLI_noise_generic_noise/gTurbulence, returns unsigned noise */
static float orgPerlinNoiseU(float x, float y, float z)
{
float v[3] = {x, y, z};
return (0.5f + 0.5f * noise3_perlin(v));
}
/* *************** CALL AS: *************** */
float BLI_noise_hnoisep(float noisesize, float x, float y, float z)
{
float vec[3];
vec[0] = x / noisesize;
vec[1] = y / noisesize;
vec[2] = z / noisesize;
return noise3_perlin(vec);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Voronoi/Worley Implementation
* \{ */
/* distance metrics for voronoi, e parameter only used in Minkowski */
/* Camberra omitted, didn't seem useful */
/* distance squared */
static float dist_Squared(float x, float y, float z, float e)
{
(void)e;
return (x * x + y * y + z * z);
}
/* real distance */
static float dist_Real(float x, float y, float z, float e)
{
(void)e;
return sqrtf(x * x + y * y + z * z);
}
/* manhattan/taxicab/cityblock distance */
static float dist_Manhattan(float x, float y, float z, float e)
{
(void)e;
return (fabsf(x) + fabsf(y) + fabsf(z));
}
/* Chebychev */
static float dist_Chebychev(float x, float y, float z, float e)
{
(void)e;
x = fabsf(x);
y = fabsf(y);
z = fabsf(z);
float t = (x > y) ? x : y;
return ((z > t) ? z : t);
}
/* minkowski preset exponent 0.5 */
static float dist_MinkovskyH(float x, float y, float z, float e)
{
float d = sqrtf(fabsf(x)) + sqrtf(fabsf(y)) + sqrtf(fabsf(z));
(void)e;
return (d * d);
}
/* minkowski preset exponent 4 */
static float dist_Minkovsky4(float x, float y, float z, float e)
{
(void)e;
x *= x;
y *= y;
z *= z;
return sqrtf(sqrtf(x * x + y * y + z * z));
}
/* Minkowski, general case, slow, maybe too slow to be useful */
static float dist_Minkovsky(float x, float y, float z, float e)
{
return powf(powf(fabsf(x), e) + powf(fabsf(y), e) + powf(fabsf(z), e), 1.0f / e);
}
/* Not 'pure' Worley, but the results are virtually the same.
* Returns distances in da and point coords in pa */
void BLI_noise_voronoi(float x, float y, float z, float *da, float *pa, float me, int dtype)
{
float (*distfunc)(float, float, float, float);
switch (dtype) {
case 1:
distfunc = dist_Squared;
break;
case 2:
distfunc = dist_Manhattan;
break;
case 3:
distfunc = dist_Chebychev;
break;
case 4:
distfunc = dist_MinkovskyH;
break;
case 5:
distfunc = dist_Minkovsky4;
break;
case 6:
distfunc = dist_Minkovsky;
break;
case 0:
default:
distfunc = dist_Real;
break;
}
int xi = (int)(floor(x));
int yi = (int)(floor(y));
int zi = (int)(floor(z));
da[0] = da[1] = da[2] = da[3] = 1e10f;
for (int xx = xi - 1; xx <= xi + 1; xx++) {
for (int yy = yi - 1; yy <= yi + 1; yy++) {
for (int zz = zi - 1; zz <= zi + 1; zz++) {
const float *p = HASHPNT(xx, yy, zz);
float xd = x - (p[0] + xx);
float yd = y - (p[1] + yy);
float zd = z - (p[2] + zz);
float d = distfunc(xd, yd, zd, me);
if (d < da[0]) {
da[3] = da[2];
da[2] = da[1];
da[1] = da[0];
da[0] = d;
pa[9] = pa[6];
pa[10] = pa[7];
pa[11] = pa[8];
pa[6] = pa[3];
pa[7] = pa[4];
pa[8] = pa[5];
pa[3] = pa[0];
pa[4] = pa[1];
pa[5] = pa[2];
pa[0] = p[0] + xx;
pa[1] = p[1] + yy;
pa[2] = p[2] + zz;
}
else if (d < da[1]) {
da[3] = da[2];
da[2] = da[1];
da[1] = d;
pa[9] = pa[6];
pa[10] = pa[7];
pa[11] = pa[8];
pa[6] = pa[3];
pa[7] = pa[4];
pa[8] = pa[5];
pa[3] = p[0] + xx;
pa[4] = p[1] + yy;
pa[5] = p[2] + zz;
}
else if (d < da[2]) {
da[3] = da[2];
da[2] = d;
pa[9] = pa[6];
pa[10] = pa[7];
pa[11] = pa[8];
pa[6] = p[0] + xx;
pa[7] = p[1] + yy;
pa[8] = p[2] + zz;
}
else if (d < da[3]) {
da[3] = d;
pa[9] = p[0] + xx;
pa[10] = p[1] + yy;
pa[11] = p[2] + zz;
}
}
}
}
}
/* returns different feature points for use in BLI_noise_generic_noise() */
static float voronoi_F1(float x, float y, float z)
{
float da[4], pa[12];
BLI_noise_voronoi(x, y, z, da, pa, 1, 0);
return da[0];
}
static float voronoi_F2(float x, float y, float z)
{
float da[4], pa[12];
BLI_noise_voronoi(x, y, z, da, pa, 1, 0);
return da[1];
}
static float voronoi_F3(float x, float y, float z)
{
float da[4], pa[12];
BLI_noise_voronoi(x, y, z, da, pa, 1, 0);
return da[2];
}
static float voronoi_F4(float x, float y, float z)
{
float da[4], pa[12];
BLI_noise_voronoi(x, y, z, da, pa, 1, 0);
return da[3];
}
static float voronoi_F1F2(float x, float y, float z)
{
float da[4], pa[12];
BLI_noise_voronoi(x, y, z, da, pa, 1, 0);
return (da[1] - da[0]);
}
/* Crackle type pattern, just a scale/clamp of F2-F1 */
static float voronoi_Cr(float x, float y, float z)
{
float t = 10 * voronoi_F1F2(x, y, z);
if (t > 1.0f) {
return 1.0f;
}
return t;
}
/* Signed version of all 6 of the above, just 2x-1, not really correct though
* (range is potentially (0, sqrt(6)).
* Used in the musgrave functions */
static float voronoi_F1S(float x, float y, float z)
{
float da[4], pa[12];
BLI_noise_voronoi(x, y, z, da, pa, 1, 0);
return (2.0f * da[0] - 1.0f);
}
static float voronoi_F2S(float x, float y, float z)
{
float da[4], pa[12];
BLI_noise_voronoi(x, y, z, da, pa, 1, 0);
return (2.0f * da[1] - 1.0f);
}
static float voronoi_F3S(float x, float y, float z)
{
float da[4], pa[12];
BLI_noise_voronoi(x, y, z, da, pa, 1, 0);
return (2.0f * da[2] - 1.0f);
}
static float voronoi_F4S(float x, float y, float z)
{
float da[4], pa[12];
BLI_noise_voronoi(x, y, z, da, pa, 1, 0);
return (2.0f * da[3] - 1.0f);
}
static float voronoi_F1F2S(float x, float y, float z)
{
float da[4], pa[12];
BLI_noise_voronoi(x, y, z, da, pa, 1, 0);
return (2.0f * (da[1] - da[0]) - 1.0f);
}
/* Crackle type pattern, just a scale/clamp of F2-F1 */
static float voronoi_CrS(float x, float y, float z)
{
float t = 10 * voronoi_F1F2(x, y, z);
if (t > 1.0f) {
return 1.0f;
}
return (2.0f * t - 1.0f);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Cell-Noise Implementation
* \{ */
/** Returns unsigned cell-noise. */
static float BLI_cellNoiseU(float x, float y, float z)
{
/* avoid precision issues on unit coordinates */
x = (x + 0.000001f) * 1.00001f;
y = (y + 0.000001f) * 1.00001f;
z = (z + 0.000001f) * 1.00001f;
int xi = (int)(floor(x));
int yi = (int)(floor(y));
int zi = (int)(floor(z));
unsigned int n = xi + yi * 1301 + zi * 314159;
n ^= (n << 13);
return ((float)(n * (n * n * 15731 + 789221) + 1376312589) / 4294967296.0f);
}
/* idem, signed */
float BLI_noise_cell(float x, float y, float z)
{
return (2.0f * BLI_cellNoiseU(x, y, z) - 1.0f);
}
/* returns a vector/point/color in ca, using point hasharray directly */
void BLI_noise_cell_v3(float x, float y, float z, float ca[3])
{
/* avoid precision issues on unit coordinates */
x = (x + 0.000001f) * 1.00001f;
y = (y + 0.000001f) * 1.00001f;
z = (z + 0.000001f) * 1.00001f;
int xi = (int)(floor(x));
int yi = (int)(floor(y));
int zi = (int)(floor(z));
const float *p = HASHPNT(xi, yi, zi);
ca[0] = p[0];
ca[1] = p[1];
ca[2] = p[2];
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Public API's
* \{ */
/**
* newnoise: generic noise function for use with different `noisebasis`.
*/
float BLI_noise_generic_noise(
float noisesize, float x, float y, float z, bool hard, int noisebasis)
{
float (*noisefunc)(float, float, float);
switch (noisebasis) {
case 1:
noisefunc = orgPerlinNoiseU;
break;
case 2:
noisefunc = newPerlinU;
break;
case 3:
noisefunc = voronoi_F1;
break;
case 4:
noisefunc = voronoi_F2;
break;
case 5:
noisefunc = voronoi_F3;
break;
case 6:
noisefunc = voronoi_F4;
break;
case 7:
noisefunc = voronoi_F1F2;
break;
case 8:
noisefunc = voronoi_Cr;
break;
case 14:
noisefunc = BLI_cellNoiseU;
break;
case 0:
default: {
noisefunc = orgBlenderNoise;
/* add one to make return value same as BLI_noise_hnoise */
x += 1;
y += 1;
z += 1;
break;
}
}
if (noisesize != 0.0f) {
noisesize = 1.0f / noisesize;
x *= noisesize;
y *= noisesize;
z *= noisesize;
}
if (hard) {
return fabsf(2.0f * noisefunc(x, y, z) - 1.0f);
}
return noisefunc(x, y, z);
}
/* newnoise: generic turbulence function for use with different noisebasis */
float BLI_noise_generic_turbulence(
float noisesize, float x, float y, float z, int oct, bool hard, int noisebasis)
{
float (*noisefunc)(float, float, float);
switch (noisebasis) {
case 1:
noisefunc = orgPerlinNoiseU;
break;
case 2:
noisefunc = newPerlinU;
break;
case 3:
noisefunc = voronoi_F1;
break;
case 4:
noisefunc = voronoi_F2;
break;
case 5:
noisefunc = voronoi_F3;
break;
case 6:
noisefunc = voronoi_F4;
break;
case 7:
noisefunc = voronoi_F1F2;
break;
case 8:
noisefunc = voronoi_Cr;
break;
case 14:
noisefunc = BLI_cellNoiseU;
break;
case 0:
default:
noisefunc = orgBlenderNoise;
x += 1;
y += 1;
z += 1;
break;
}
if (noisesize != 0.0f) {
noisesize = 1.0f / noisesize;
x *= noisesize;
y *= noisesize;
z *= noisesize;
}
float sum = 0, amp = 1, fscale = 1;
for (int i = 0; i <= oct; i++, amp *= 0.5f, fscale *= 2.0f) {
float t = noisefunc(fscale * x, fscale * y, fscale * z);
if (hard) {
t = fabsf(2.0f * t - 1.0f);
}
sum += t * amp;
}
sum *= ((float)(1 << oct) / (float)((1 << (oct + 1)) - 1));
return sum;
}
/*
* The following code is based on Ken Musgrave's explanations and sample
* source code in the book "Texturing and Modeling: A procedural approach"
*/
/*
* Procedural fBm evaluated at "point"; returns value stored in "value".
*
* Parameters:
* ``H'' is the fractal increment parameter
* ``lacunarity'' is the gap between successive frequencies
* ``octaves'' is the number of frequencies in the fBm
*/
float BLI_noise_mg_fbm(
float x, float y, float z, float H, float lacunarity, float octaves, int noisebasis)
{
float (*noisefunc)(float, float, float);
switch (noisebasis) {
case 1:
noisefunc = orgPerlinNoise;
break;
case 2:
noisefunc = newPerlin;
break;
case 3:
noisefunc = voronoi_F1S;
break;
case 4:
noisefunc = voronoi_F2S;
break;
case 5:
noisefunc = voronoi_F3S;
break;
case 6:
noisefunc = voronoi_F4S;
break;
case 7:
noisefunc = voronoi_F1F2S;
break;
case 8:
noisefunc = voronoi_CrS;
break;
case 14:
noisefunc = BLI_noise_cell;
break;
case 0:
default: {
noisefunc = orgBlenderNoiseS;
break;
}
}
float value = 0.0, pwr = 1.0, pwHL = powf(lacunarity, -H);
for (int i = 0; i < (int)octaves; i++) {
value += noisefunc(x, y, z) * pwr;
pwr *= pwHL;
x *= lacunarity;
y *= lacunarity;
z *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value += rmd * noisefunc(x, y, z) * pwr;
}
return value;
} /* fBm() */
/*
* Procedural multifractal evaluated at "point";
* returns value stored in "value".
*
* Parameters:
* ``H'' determines the highest fractal dimension
* ``lacunarity'' is gap between successive frequencies
* ``octaves'' is the number of frequencies in the fBm
* ``offset'' is the zero offset, which determines multifractality (NOT USED??)
*/
/* this one is in fact rather confusing,
* there seem to be errors in the original source code (in all three versions of proc.text&mod),
* I modified it to something that made sense to me, so it might be wrong... */
float BLI_noise_mg_multi_fractal(
float x, float y, float z, float H, float lacunarity, float octaves, int noisebasis)
{
float (*noisefunc)(float, float, float);
switch (noisebasis) {
case 1:
noisefunc = orgPerlinNoise;
break;
case 2:
noisefunc = newPerlin;
break;
case 3:
noisefunc = voronoi_F1S;
break;
case 4:
noisefunc = voronoi_F2S;
break;
case 5:
noisefunc = voronoi_F3S;
break;
case 6:
noisefunc = voronoi_F4S;
break;
case 7:
noisefunc = voronoi_F1F2S;
break;
case 8:
noisefunc = voronoi_CrS;
break;
case 14:
noisefunc = BLI_noise_cell;
break;
case 0:
default: {
noisefunc = orgBlenderNoiseS;
break;
}
}
float value = 1.0, pwr = 1.0, pwHL = powf(lacunarity, -H);
for (int i = 0; i < (int)octaves; i++) {
value *= (pwr * noisefunc(x, y, z) + 1.0f);
pwr *= pwHL;
x *= lacunarity;
y *= lacunarity;
z *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value *= (rmd * noisefunc(x, y, z) * pwr + 1.0f);
}
return value;
} /* multifractal() */
/*
* Heterogeneous procedural terrain function: stats by altitude method.
* Evaluated at "point"; returns value stored in "value".
*
* Parameters:
* ``H'' determines the fractal dimension of the roughest areas
* ``lacunarity'' is the gap between successive frequencies
* ``octaves'' is the number of frequencies in the fBm
* ``offset'' raises the terrain from `sea level'
*/
float BLI_noise_mg_hetero_terrain(float x,
float y,
float z,
float H,
float lacunarity,
float octaves,
float offset,
int noisebasis)
{
float (*noisefunc)(float, float, float);
switch (noisebasis) {
case 1:
noisefunc = orgPerlinNoise;
break;
case 2:
noisefunc = newPerlin;
break;
case 3:
noisefunc = voronoi_F1S;
break;
case 4:
noisefunc = voronoi_F2S;
break;
case 5:
noisefunc = voronoi_F3S;
break;
case 6:
noisefunc = voronoi_F4S;
break;
case 7:
noisefunc = voronoi_F1F2S;
break;
case 8:
noisefunc = voronoi_CrS;
break;
case 14:
noisefunc = BLI_noise_cell;
break;
case 0:
default: {
noisefunc = orgBlenderNoiseS;
break;
}
}
/* first unscaled octave of function; later octaves are scaled */
float value = offset + noisefunc(x, y, z);
x *= lacunarity;
y *= lacunarity;
z *= lacunarity;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL; /* starts with i=1 instead of 0 */
for (int i = 1; i < (int)octaves; i++) {
float increment = (noisefunc(x, y, z) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
x *= lacunarity;
y *= lacunarity;
z *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
float increment = (noisefunc(x, y, z) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* Hybrid additive/multiplicative multifractal terrain model.
*
* Some good parameter values to start with:
*
* H: 0.25
* offset: 0.7
*/
float BLI_noise_mg_hybrid_multi_fractal(float x,
float y,
float z,
float H,
float lacunarity,
float octaves,
float offset,
float gain,
int noisebasis)
{
float (*noisefunc)(float, float, float);
switch (noisebasis) {
case 1:
noisefunc = orgPerlinNoise;
break;
case 2:
noisefunc = newPerlin;
break;
case 3:
noisefunc = voronoi_F1S;
break;
case 4:
noisefunc = voronoi_F2S;
break;
case 5:
noisefunc = voronoi_F3S;
break;
case 6:
noisefunc = voronoi_F4S;
break;
case 7:
noisefunc = voronoi_F1F2S;
break;
case 8:
noisefunc = voronoi_CrS;
break;
case 14:
noisefunc = BLI_noise_cell;
break;
case 0:
default: {
noisefunc = orgBlenderNoiseS;
break;
}
}
float result = noisefunc(x, y, z) + offset;
float weight = gain * result;
x *= lacunarity;
y *= lacunarity;
z *= lacunarity;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL; /* starts with i=1 instead of 0 */
for (int i = 1; (weight > 0.001f) && (i < (int)octaves); i++) {
if (weight > 1.0f) {
weight = 1.0f;
}
float signal = (noisefunc(x, y, z) + offset) * pwr;
pwr *= pwHL;
result += weight * signal;
weight *= gain * signal;
x *= lacunarity;
y *= lacunarity;
z *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
result += rmd * ((noisefunc(x, y, z) + offset) * pwr);
}
return result;
} /* HybridMultifractal() */
/* Ridged multifractal terrain model.
*
* Some good parameter values to start with:
*
* H: 1.0
* offset: 1.0
* gain: 2.0
*/
float BLI_noise_mg_ridged_multi_fractal(float x,
float y,
float z,
float H,
float lacunarity,
float octaves,
float offset,
float gain,
int noisebasis)
{
float (*noisefunc)(float, float, float);
switch (noisebasis) {
case 1:
noisefunc = orgPerlinNoise;
break;
case 2:
noisefunc = newPerlin;
break;
case 3:
noisefunc = voronoi_F1S;
break;
case 4:
noisefunc = voronoi_F2S;
break;
case 5:
noisefunc = voronoi_F3S;
break;
case 6:
noisefunc = voronoi_F4S;
break;
case 7:
noisefunc = voronoi_F1F2S;
break;
case 8:
noisefunc = voronoi_CrS;
break;
case 14:
noisefunc = BLI_noise_cell;
break;
case 0:
default: {
noisefunc = orgBlenderNoiseS;
break;
}
}
float signal = powf(offset - fabsf(noisefunc(x, y, z)), 2);
float result = signal;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL; /* starts with i=1 instead of 0 */
for (int i = 1; i < (int)octaves; i++) {
x *= lacunarity;
y *= lacunarity;
z *= lacunarity;
float weight = signal * gain;
if (weight > 1.0f) {
weight = 1.0f;
}
else if (weight < 0.0f) {
weight = 0.0f;
}
signal = offset - fabsf(noisefunc(x, y, z));
signal *= signal;
signal *= weight;
result += signal * pwr;
pwr *= pwHL;
}
return result;
} /* RidgedMultifractal() */
/* "Variable Lacunarity Noise"
* A distorted variety of Perlin noise.
*/
float BLI_noise_mg_variable_lacunarity(
float x, float y, float z, float distortion, int nbas1, int nbas2)
{
float (*noisefunc1)(float, float, float);
switch (nbas1) {
case 1:
noisefunc1 = orgPerlinNoise;
break;
case 2:
noisefunc1 = newPerlin;
break;
case 3:
noisefunc1 = voronoi_F1S;
break;
case 4:
noisefunc1 = voronoi_F2S;
break;
case 5:
noisefunc1 = voronoi_F3S;
break;
case 6:
noisefunc1 = voronoi_F4S;
break;
case 7:
noisefunc1 = voronoi_F1F2S;
break;
case 8:
noisefunc1 = voronoi_CrS;
break;
case 14:
noisefunc1 = BLI_noise_cell;
break;
case 0:
default: {
noisefunc1 = orgBlenderNoiseS;
break;
}
}
float (*noisefunc2)(float, float, float);
switch (nbas2) {
case 1:
noisefunc2 = orgPerlinNoise;
break;
case 2:
noisefunc2 = newPerlin;
break;
case 3:
noisefunc2 = voronoi_F1S;
break;
case 4:
noisefunc2 = voronoi_F2S;
break;
case 5:
noisefunc2 = voronoi_F3S;
break;
case 6:
noisefunc2 = voronoi_F4S;
break;
case 7:
noisefunc2 = voronoi_F1F2S;
break;
case 8:
noisefunc2 = voronoi_CrS;
break;
case 14:
noisefunc2 = BLI_noise_cell;
break;
case 0:
default: {
noisefunc2 = orgBlenderNoiseS;
break;
}
}
/* get a random vector and scale the randomization */
float rv[3] = {
rv[0] = noisefunc1(x + 13.5f, y + 13.5f, z + 13.5f) * distortion,
rv[1] = noisefunc1(x, y, z) * distortion,
rv[2] = noisefunc1(x - 13.5f, y - 13.5f, z - 13.5f) * distortion,
};
return noisefunc2(x + rv[0], y + rv[1], z + rv[2]); /* distorted-domain noise */
}
/** \} */