This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/blender/blender_python.cpp
Dalai Felinto eec3eaba08 Cycles Bake
Expand Cycles to use the new baking API in Blender.

It works on the selected object, and the panel can be accessed in the Render panel (similar to where it is for the Blender Internal).

It bakes for the active texture of each material of the object. The active texture is currently defined as the active Image Texture node present in the material nodetree. If you don't want the baking to override an existent material, make sure the active Image Texture node is not connected to the nodetree. The active texture is also the texture shown in the viewport in the rendered mode.

Remember to save your images after the baking is complete.

Note: Bake currently only works in the CPU
Note: This is not supported by Cycles standalone because a lot of the work is done in Blender as part of the operator only, not the engine (Cycles).

Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Bake

Supported Passes:
-----------------
Data Passes
 * Normal
 * UV
 * Diffuse/Glossy/Transmission/Subsurface/Emit Color

Light Passes
 * AO
 * Combined
 * Shadow
 * Diffuse/Glossy/Transmission/Subsurface/Emit Direct/Indirect
 * Environment

Review: D421
Reviewed by: Campbell Barton, Brecht van Lommel, Sergey Sharybin, Thomas Dinge

Original design by Brecht van Lommel.

The entire commit history can be found on the branch: bake-cycles
2014-05-02 21:19:09 -03:00

578 lines
15 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
#include <Python.h>
#include "CCL_api.h"
#include "blender_sync.h"
#include "blender_session.h"
#include "util_foreach.h"
#include "util_md5.h"
#include "util_opengl.h"
#include "util_path.h"
#ifdef WITH_OSL
#include "osl.h"
#include <OSL/oslquery.h>
#include <OSL/oslconfig.h>
#endif
CCL_NAMESPACE_BEGIN
void python_thread_state_save(void **python_thread_state)
{
*python_thread_state = (void*)PyEval_SaveThread();
}
void python_thread_state_restore(void **python_thread_state)
{
PyEval_RestoreThread((PyThreadState*)*python_thread_state);
*python_thread_state = NULL;
}
static PyObject *init_func(PyObject *self, PyObject *args)
{
const char *path, *user_path;
if(!PyArg_ParseTuple(args, "ss", &path, &user_path))
return NULL;
path_init(path, user_path);
Py_RETURN_NONE;
}
static PyObject *create_func(PyObject *self, PyObject *args)
{
PyObject *pyengine, *pyuserpref, *pydata, *pyscene, *pyregion, *pyv3d, *pyrv3d;
int preview_osl;
if(!PyArg_ParseTuple(args, "OOOOOOOi", &pyengine, &pyuserpref, &pydata, &pyscene, &pyregion, &pyv3d, &pyrv3d, &preview_osl))
return NULL;
/* RNA */
PointerRNA engineptr;
RNA_pointer_create(NULL, &RNA_RenderEngine, (void*)PyLong_AsVoidPtr(pyengine), &engineptr);
BL::RenderEngine engine(engineptr);
PointerRNA userprefptr;
RNA_pointer_create(NULL, &RNA_UserPreferences, (void*)PyLong_AsVoidPtr(pyuserpref), &userprefptr);
BL::UserPreferences userpref(userprefptr);
PointerRNA dataptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pydata), &dataptr);
BL::BlendData data(dataptr);
PointerRNA sceneptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene scene(sceneptr);
PointerRNA regionptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyregion), &regionptr);
BL::Region region(regionptr);
PointerRNA v3dptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyv3d), &v3dptr);
BL::SpaceView3D v3d(v3dptr);
PointerRNA rv3dptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyrv3d), &rv3dptr);
BL::RegionView3D rv3d(rv3dptr);
/* create session */
BlenderSession *session;
if(rv3d) {
/* interactive viewport session */
int width = region.width();
int height = region.height();
session = new BlenderSession(engine, userpref, data, scene, v3d, rv3d, width, height);
}
else {
/* override some settings for preview */
if(engine.is_preview()) {
PointerRNA cscene = RNA_pointer_get(&sceneptr, "cycles");
RNA_boolean_set(&cscene, "shading_system", preview_osl);
RNA_boolean_set(&cscene, "use_progressive_refine", true);
}
/* offline session or preview render */
session = new BlenderSession(engine, userpref, data, scene);
}
python_thread_state_save(&session->python_thread_state);
session->create();
python_thread_state_restore(&session->python_thread_state);
return PyLong_FromVoidPtr(session);
}
static PyObject *free_func(PyObject *self, PyObject *value)
{
delete (BlenderSession*)PyLong_AsVoidPtr(value);
Py_RETURN_NONE;
}
static PyObject *render_func(PyObject *self, PyObject *value)
{
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(value);
python_thread_state_save(&session->python_thread_state);
session->render();
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
/* pixel_array and result passed as pointers */
static PyObject *bake_func(PyObject *self, PyObject *args)
{
PyObject *pysession, *pyobject;
PyObject *pypixel_array, *pyresult;
const char *pass_type;
int num_pixels, depth;
if(!PyArg_ParseTuple(args, "OOsOiiO", &pysession, &pyobject, &pass_type, &pypixel_array, &num_pixels, &depth, &pyresult))
return NULL;
Py_BEGIN_ALLOW_THREADS
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(pysession);
PointerRNA objectptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyobject), &objectptr);
BL::Object b_object(objectptr);
void *b_result = PyLong_AsVoidPtr(pyresult);
PointerRNA bakepixelptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pypixel_array), &bakepixelptr);
BL::BakePixel b_bake_pixel(bakepixelptr);
session->bake(b_object, pass_type, b_bake_pixel, num_pixels, depth, (float *)b_result);
Py_END_ALLOW_THREADS
Py_RETURN_NONE;
}
static PyObject *draw_func(PyObject *self, PyObject *args)
{
PyObject *pysession, *pyv3d, *pyrv3d;
if(!PyArg_ParseTuple(args, "OOO", &pysession, &pyv3d, &pyrv3d))
return NULL;
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(pysession);
if(PyLong_AsVoidPtr(pyrv3d)) {
/* 3d view drawing */
int viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
session->draw(viewport[2], viewport[3]);
}
Py_RETURN_NONE;
}
static PyObject *reset_func(PyObject *self, PyObject *args)
{
PyObject *pysession, *pydata, *pyscene;
if(!PyArg_ParseTuple(args, "OOO", &pysession, &pydata, &pyscene))
return NULL;
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(pysession);
PointerRNA dataptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pydata), &dataptr);
BL::BlendData b_data(dataptr);
PointerRNA sceneptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene b_scene(sceneptr);
python_thread_state_save(&session->python_thread_state);
session->reset_session(b_data, b_scene);
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *sync_func(PyObject *self, PyObject *value)
{
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(value);
python_thread_state_save(&session->python_thread_state);
session->synchronize();
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *available_devices_func(PyObject *self, PyObject *args)
{
vector<DeviceInfo>& devices = Device::available_devices();
PyObject *ret = PyTuple_New(devices.size());
for(size_t i = 0; i < devices.size(); i++) {
DeviceInfo& device = devices[i];
PyTuple_SET_ITEM(ret, i, PyUnicode_FromString(device.description.c_str()));
}
return ret;
}
#ifdef WITH_OSL
static PyObject *osl_update_node_func(PyObject *self, PyObject *args)
{
PyObject *pynodegroup, *pynode;
const char *filepath = NULL;
if(!PyArg_ParseTuple(args, "OOs", &pynodegroup, &pynode, &filepath))
return NULL;
/* RNA */
PointerRNA nodeptr;
RNA_pointer_create((ID*)PyLong_AsVoidPtr(pynodegroup), &RNA_ShaderNodeScript, (void*)PyLong_AsVoidPtr(pynode), &nodeptr);
BL::ShaderNodeScript b_node(nodeptr);
/* update bytecode hash */
string bytecode = b_node.bytecode();
if(!bytecode.empty()) {
MD5Hash md5;
md5.append((const uint8_t*)bytecode.c_str(), bytecode.size());
b_node.bytecode_hash(md5.get_hex().c_str());
}
else
b_node.bytecode_hash("");
/* query from file path */
OSL::OSLQuery query;
if(!OSLShaderManager::osl_query(query, filepath))
Py_RETURN_FALSE;
/* add new sockets from parameters */
set<void*> used_sockets;
for(int i = 0; i < query.nparams(); i++) {
const OSL::OSLQuery::Parameter *param = query.getparam(i);
/* skip unsupported types */
if(param->varlenarray || param->isstruct || param->type.arraylen > 1)
continue;
/* determine socket type */
std::string socket_type;
BL::NodeSocket::type_enum data_type = BL::NodeSocket::type_VALUE;
float4 default_float4 = make_float4(0.0f, 0.0f, 0.0f, 1.0f);
float default_float = 0.0f;
int default_int = 0;
std::string default_string = "";
if(param->isclosure) {
socket_type = "NodeSocketShader";
data_type = BL::NodeSocket::type_SHADER;
}
else if(param->type.vecsemantics == TypeDesc::COLOR) {
socket_type = "NodeSocketColor";
data_type = BL::NodeSocket::type_RGBA;
if(param->validdefault) {
default_float4[0] = param->fdefault[0];
default_float4[1] = param->fdefault[1];
default_float4[2] = param->fdefault[2];
}
}
else if(param->type.vecsemantics == TypeDesc::POINT ||
param->type.vecsemantics == TypeDesc::VECTOR ||
param->type.vecsemantics == TypeDesc::NORMAL) {
socket_type = "NodeSocketVector";
data_type = BL::NodeSocket::type_VECTOR;
if(param->validdefault) {
default_float4[0] = param->fdefault[0];
default_float4[1] = param->fdefault[1];
default_float4[2] = param->fdefault[2];
}
}
else if(param->type.aggregate == TypeDesc::SCALAR) {
if(param->type.basetype == TypeDesc::INT) {
socket_type = "NodeSocketInt";
data_type = BL::NodeSocket::type_INT;
if(param->validdefault)
default_int = param->idefault[0];
}
else if(param->type.basetype == TypeDesc::FLOAT) {
socket_type = "NodeSocketFloat";
data_type = BL::NodeSocket::type_VALUE;
if(param->validdefault)
default_float = param->fdefault[0];
}
else if(param->type.basetype == TypeDesc::STRING) {
socket_type = "NodeSocketString";
data_type = BL::NodeSocket::type_STRING;
if(param->validdefault)
default_string = param->sdefault[0];
}
else
continue;
}
else
continue;
/* find socket socket */
BL::NodeSocket b_sock(PointerRNA_NULL);
if (param->isoutput) {
b_sock = b_node.outputs[param->name];
/* remove if type no longer matches */
if(b_sock && b_sock.bl_idname() != socket_type) {
b_node.outputs.remove(b_sock);
b_sock = BL::NodeSocket(PointerRNA_NULL);
}
}
else {
b_sock = b_node.inputs[param->name];
/* remove if type no longer matches */
if(b_sock && b_sock.bl_idname() != socket_type) {
b_node.inputs.remove(b_sock);
b_sock = BL::NodeSocket(PointerRNA_NULL);
}
}
if(!b_sock) {
/* create new socket */
if(param->isoutput)
b_sock = b_node.outputs.create(socket_type.c_str(), param->name.c_str(), param->name.c_str());
else
b_sock = b_node.inputs.create(socket_type.c_str(), param->name.c_str(), param->name.c_str());
/* set default value */
if(data_type == BL::NodeSocket::type_VALUE) {
set_float(b_sock.ptr, "default_value", default_float);
}
else if(data_type == BL::NodeSocket::type_INT) {
set_int(b_sock.ptr, "default_value", default_int);
}
else if(data_type == BL::NodeSocket::type_RGBA) {
set_float4(b_sock.ptr, "default_value", default_float4);
}
else if(data_type == BL::NodeSocket::type_VECTOR) {
set_float3(b_sock.ptr, "default_value", float4_to_float3(default_float4));
}
else if(data_type == BL::NodeSocket::type_STRING) {
set_string(b_sock.ptr, "default_value", default_string);
}
}
used_sockets.insert(b_sock.ptr.data);
}
/* remove unused parameters */
bool removed;
do {
BL::Node::inputs_iterator b_input;
BL::Node::outputs_iterator b_output;
removed = false;
for (b_node.inputs.begin(b_input); b_input != b_node.inputs.end(); ++b_input) {
if(used_sockets.find(b_input->ptr.data) == used_sockets.end()) {
b_node.inputs.remove(*b_input);
removed = true;
break;
}
}
for (b_node.outputs.begin(b_output); b_output != b_node.outputs.end(); ++b_output) {
if(used_sockets.find(b_output->ptr.data) == used_sockets.end()) {
b_node.outputs.remove(*b_output);
removed = true;
break;
}
}
} while(removed);
Py_RETURN_TRUE;
}
static PyObject *osl_compile_func(PyObject *self, PyObject *args)
{
const char *inputfile = NULL, *outputfile = NULL;
if(!PyArg_ParseTuple(args, "ss", &inputfile, &outputfile))
return NULL;
/* return */
if(!OSLShaderManager::osl_compile(inputfile, outputfile))
Py_RETURN_FALSE;
Py_RETURN_TRUE;
}
#endif
static PyMethodDef methods[] = {
{"init", init_func, METH_VARARGS, ""},
{"create", create_func, METH_VARARGS, ""},
{"free", free_func, METH_O, ""},
{"render", render_func, METH_O, ""},
{"bake", bake_func, METH_VARARGS, ""},
{"draw", draw_func, METH_VARARGS, ""},
{"sync", sync_func, METH_O, ""},
{"reset", reset_func, METH_VARARGS, ""},
#ifdef WITH_OSL
{"osl_update_node", osl_update_node_func, METH_VARARGS, ""},
{"osl_compile", osl_compile_func, METH_VARARGS, ""},
#endif
{"available_devices", available_devices_func, METH_NOARGS, ""},
{NULL, NULL, 0, NULL},
};
static struct PyModuleDef module = {
PyModuleDef_HEAD_INIT,
"_cycles",
"Blender cycles render integration",
-1,
methods,
NULL, NULL, NULL, NULL
};
static CCLDeviceInfo *compute_device_list(DeviceType type)
{
/* device list stored static */
static ccl::vector<CCLDeviceInfo> device_list;
static ccl::DeviceType device_type = DEVICE_NONE;
/* create device list if it's not already done */
if(type != device_type) {
ccl::vector<DeviceInfo>& devices = ccl::Device::available_devices();
device_type = type;
device_list.clear();
/* add devices */
int i = 0;
foreach(DeviceInfo& info, devices) {
if(info.type == type ||
(info.type == DEVICE_MULTI && info.multi_devices[0].type == type))
{
CCLDeviceInfo cinfo;
strncpy(cinfo.identifier, info.id.c_str(), sizeof(cinfo.identifier));
cinfo.identifier[info.id.length()] = '\0';
strncpy(cinfo.name, info.description.c_str(), sizeof(cinfo.name));
cinfo.name[info.description.length()] = '\0';
cinfo.value = i++;
device_list.push_back(cinfo);
}
}
/* null terminate */
if(!device_list.empty()) {
CCLDeviceInfo cinfo = {"", "", 0};
device_list.push_back(cinfo);
}
}
return (device_list.empty())? NULL: &device_list[0];
}
CCL_NAMESPACE_END
void *CCL_python_module_init()
{
PyObject *mod = PyModule_Create(&ccl::module);
#ifdef WITH_OSL
/* TODO(sergey): This gives us library we've been linking against.
* In theory with dynamic OSL library it might not be
* accurate, but there's nothing in OSL API which we
* might use to get version in runtime.
*/
int curversion = OSL_LIBRARY_VERSION_CODE;
PyModule_AddObject(mod, "with_osl", Py_True);
Py_INCREF(Py_True);
PyModule_AddObject(mod, "osl_version",
Py_BuildValue("(iii)",
curversion / 10000, (curversion / 100) % 100, curversion % 100));
PyModule_AddObject(mod, "osl_version_string",
PyUnicode_FromFormat("%2d, %2d, %2d",
curversion / 10000, (curversion / 100) % 100, curversion % 100));
#else
PyModule_AddObject(mod, "with_osl", Py_False);
Py_INCREF(Py_False);
PyModule_AddStringConstant(mod, "osl_version", "unknown");
PyModule_AddStringConstant(mod, "osl_version_string", "unknown");
#endif
#ifdef WITH_NETWORK
PyModule_AddObject(mod, "with_network", Py_True);
Py_INCREF(Py_True);
#else /* WITH_NETWORK */
PyModule_AddObject(mod, "with_network", Py_False);
Py_INCREF(Py_False);
#endif /* WITH_NETWORK */
return (void*)mod;
}
CCLDeviceInfo *CCL_compute_device_list(int device_type)
{
ccl::DeviceType type;
switch(device_type) {
case 0:
type = ccl::DEVICE_CUDA;
break;
case 1:
type = ccl::DEVICE_OPENCL;
break;
case 2:
type = ccl::DEVICE_NETWORK;
break;
default:
type = ccl::DEVICE_NONE;
break;
}
return ccl::compute_device_list(type);
}