This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/BME_structure.c
Brecht Van Lommel 874c29cea8 2.50: svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r19323:HEAD
Notes:
* blenderbuttons and ICON_SNAP_PEEL_OBJECT were not merged.
2009-04-20 15:06:46 +00:00

628 lines
15 KiB
C

/**
* BME_structure.c jan 2007
*
* Low level routines for manipulating the BMesh structure.
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2007 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Geoffrey Bantle.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <limits.h>
#include "MEM_guardedalloc.h"
#include "DNA_listBase.h"
#include "BKE_utildefines.h"
#include "BKE_bmesh.h"
#include "BLI_blenlib.h"
#include "BLI_linklist.h"
#include "BLI_ghash.h"
/**
* MISC utility functions.
*
*/
int BME_vert_in_edge(BME_Edge *e, BME_Vert *v){
if(e->v1 == v || e->v2 == v) return 1;
return 0;
}
int BME_verts_in_edge(BME_Vert *v1, BME_Vert *v2, BME_Edge *e){
if(e->v1 == v1 && e->v2 == v2) return 1;
else if(e->v1 == v2 && e->v2 == v1) return 1;
return 0;
}
BME_Vert *BME_edge_getothervert(BME_Edge *e, BME_Vert *v){
if(e->v1 == v) return e->v2;
else if(e->v2 == v) return e->v1;
return NULL;
}
int BME_edge_swapverts(BME_Edge *e, BME_Vert *orig, BME_Vert *new){
if(e->v1 == orig){
e->v1 = new;
e->d1.next = NULL;
e->d1.prev = NULL;
return 1;
}
else if(e->v2 == orig){
e->v2 = new;
e->d2.next = NULL;
e->d2.prev = NULL;
return 1;
}
return 0;
}
/**
* ALLOCATION/DEALLOCATION FUNCTIONS
*/
BME_Vert *BME_addvertlist(BME_Mesh *bm, BME_Vert *example){
BME_Vert *v=NULL;
v = BLI_mempool_alloc(bm->vpool);
v->next = v->prev = NULL;
v->EID = bm->nextv;
v->co[0] = v->co[1] = v->co[2] = 0.0f;
v->no[0] = v->no[1] = v->no[2] = 0.0f;
v->edge = NULL;
v->data = NULL;
v->eflag1 = v->eflag2 = v->tflag1 = v->tflag2 = 0;
v->flag = v->h = 0;
v->bweight = 0.0f;
BLI_addtail(&(bm->verts), v);
bm->nextv++;
bm->totvert++;
if(example){
VECCOPY(v->co,example->co);
CustomData_bmesh_copy_data(&bm->vdata, &bm->vdata, example->data, &v->data);
}
else
CustomData_bmesh_set_default(&bm->vdata, &v->data);
return v;
}
BME_Edge *BME_addedgelist(BME_Mesh *bm, BME_Vert *v1, BME_Vert *v2, BME_Edge *example){
BME_Edge *e=NULL;
e = BLI_mempool_alloc(bm->epool);
e->next = e->prev = NULL;
e->EID = bm->nexte;
e->v1 = v1;
e->v2 = v2;
e->d1.next = e->d1.prev = e->d2.next = e->d2.prev = NULL;
e->d1.data = e;
e->d2.data = e;
e->loop = NULL;
e->data = NULL;
e->eflag1 = e->eflag2 = e->tflag1 = e->tflag2 = 0;
e->flag = e->h = 0;
e->crease = e->bweight = 0.0f;
bm->nexte++;
bm->totedge++;
BLI_addtail(&(bm->edges), e);
if(example)
CustomData_bmesh_copy_data(&bm->edata, &bm->edata, example->data, &e->data);
else
CustomData_bmesh_set_default(&bm->edata, &e->data);
return e;
}
BME_Loop *BME_create_loop(BME_Mesh *bm, BME_Vert *v, BME_Edge *e, BME_Poly *f, BME_Loop *example){
BME_Loop *l=NULL;
l = BLI_mempool_alloc(bm->lpool);
l->next = l->prev = NULL;
l->EID = bm->nextl;
l->radial.next = l->radial.prev = NULL;
l->radial.data = l;
l->v = v;
l->e = e;
l->f = f;
l->data = NULL;
l->eflag1 = l->eflag2 = l->tflag1 = l->tflag2 = 0;
l->flag = l->h = 0; //stupid waste!
bm->nextl++;
bm->totloop++;
if(example)
CustomData_bmesh_copy_data(&bm->ldata, &bm->ldata, example->data, &l->data);
else
CustomData_bmesh_set_default(&bm->ldata, &l->data);
return l;
}
BME_Poly *BME_addpolylist(BME_Mesh *bm, BME_Poly *example){
BME_Poly *f = NULL;
f = BLI_mempool_alloc(bm->ppool);
f->next = f->prev = NULL;
f->EID = bm->nextp;
f->loopbase = NULL;
f->len = 0;
f->data = NULL;
f->eflag1 = f->eflag2 = f->tflag1 = f->tflag2 = 0;
f->flag = f->h = f->mat_nr;
BLI_addtail(&(bm->polys),f);
bm->nextp++;
bm->totpoly++;
if(example)
CustomData_bmesh_copy_data(&bm->pdata, &bm->pdata, example->data, &f->data);
else
CustomData_bmesh_set_default(&bm->pdata, &f->data);
return f;
}
/* free functions dont do much *yet*. When per-vertex, per-edge and per-face/faceloop
data is added though these will be needed.
*/
void BME_free_vert(BME_Mesh *bm, BME_Vert *v){
bm->totvert--;
CustomData_bmesh_free_block(&bm->vdata, &v->data);
BLI_mempool_free(bm->vpool, v);
}
void BME_free_edge(BME_Mesh *bm, BME_Edge *e){
bm->totedge--;
CustomData_bmesh_free_block(&bm->edata, &e->data);
BLI_mempool_free(bm->epool, e);
}
void BME_free_poly(BME_Mesh *bm, BME_Poly *f){
bm->totpoly--;
CustomData_bmesh_free_block(&bm->pdata, &f->data);
BLI_mempool_free(bm->ppool, f);
}
void BME_free_loop(BME_Mesh *bm, BME_Loop *l){
bm->totloop--;
CustomData_bmesh_free_block(&bm->ldata, &l->data);
BLI_mempool_free(bm->lpool, l);
}
/**
* BMESH CYCLES
*
* Cycles are circular doubly linked lists that form the basis of adjacency
* information in the BME modeller. Full adjacency relations can be derived
* from examining these cycles very quickly. Although each cycle is a double
* circular linked list, each one is considered to have a 'base' or 'head',
* and care must be taken by Euler code when modifying the contents of a cycle.
*
* The contents of this file are split into two parts. First there are the
* BME_cycle family of functions which are generic circular double linked list
* procedures. The second part contains higher level procedures for supporting
* modification of specific cycle types.
*
* The three cycles explicitly stored in the BMesh data structure are as follows:
*
* 1: The Disk Cycle - A circle of edges around a vertex
* Base: vertex->edge pointer.
*
* This cycle is the most complicated in terms of its structure. Each BME_Edge contains
* two BME_CycleNode structures to keep track of that edge's membership in the disk cycle
* of each of its vertices. However for any given vertex it may be the first in some edges
* in its disk cycle and the second for others. The BME_disk_XXX family of functions contain
* some nice utilities for navigating disk cycles in a way that hides this detail from the
* tool writer.
*
* Note that the disk cycle is completley independant from face data. One advantage of this
* is that wire edges are fully integrated into the topology database. Another is that the
* the disk cycle has no problems dealing with non-manifold conditions involving faces.
*
* Functions relating to this cycle:
*
* BME_disk_append_edge
* BME_disk_remove_edge
* BME_disk_nextedge
* BME_disk_getpointer
*
* 2: The Radial Cycle - A circle of face edges (BME_Loop) around an edge
* Base: edge->loop->radial structure.
*
* The radial cycle is similar to the radial cycle in the radial edge data structure.*
* Unlike the radial edge however, the radial cycle does not require a large amount of memory
* to store non-manifold conditions since BMesh does not keep track of region/shell
* information.
*
* Functions relating to this cycle:
*
* BME_radial_append
* BME_radial_remove_loop
* BME_radial_nextloop
* BME_radial_find_face
*
*
* 3: The Loop Cycle - A circle of face edges around a polygon.
* Base: polygon->loopbase.
*
* The loop cycle keeps track of a faces vertices and edges. It should be noted that the
* direction of a loop cycle is either CW or CCW depending on the face normal, and is
* not oriented to the faces editedges.
*
* Functions relating to this cycle:
*
* BME_cycle_XXX family of functions.
*
*
* Note that the order of elements in all cycles except the loop cycle is undefined. This
* leads to slightly increased seek time for deriving some adjacency relations, however the
* advantage is that no intrinsic properties of the data structures are dependant upon the
* cycle order and all non-manifold conditions are represented trivially.
*
*/
void BME_cycle_append(void *h, void *nt)
{
BME_CycleNode *oldtail, *head, *newtail;
head = (BME_CycleNode*)h;
newtail = (BME_CycleNode*)nt;
if(head->next == NULL){
head->next = newtail;
head->prev = newtail;
newtail->next = head;
newtail->prev = head;
}
else{
oldtail = head->prev;
oldtail->next = newtail;
newtail->next = head;
newtail->prev = oldtail;
head->prev = newtail;
}
}
/**
* BME_cycle_length
*
* Count the nodes in a cycle.
*
* Returns -
* Integer
*/
int BME_cycle_length(void *h){
int len = 0;
BME_CycleNode *head, *curnode;
head = (BME_CycleNode*)h;
if(head){
len = 1;
for(curnode = head->next; curnode != head; curnode=curnode->next){
if(len == INT_MAX){ //check for infinite loop/corrupted cycle
return -1;
}
len++;
}
}
return len;
}
/**
* BME_cycle_remove
*
* Removes a node from a cycle.
*
* Returns -
* 1 for success, 0 for failure.
*/
int BME_cycle_remove(void *h, void *remn)
{
int i, len;
BME_CycleNode *head, *remnode, *curnode;
head = (BME_CycleNode*)h;
remnode = (BME_CycleNode*)remn;
len = BME_cycle_length(h);
if(len == 1 && head == remnode){
head->next = NULL;
head->prev = NULL;
return 1;
}
else{
for(i=0, curnode = head; i < len; curnode = curnode->next){
if(curnode == remnode){
remnode->prev->next = remnode->next;
remnode->next->prev = remnode->prev;
/*zero out remnode pointers, important!*/
//remnode->next = NULL;
//remnode->prev = NULL;
return 1;
}
}
}
return 0;
}
/**
* BME_cycle_validate
*
* Validates a cycle. Takes as an argument the expected length of the cycle and
* a pointer to the cycle head or base.
*
*
* Returns -
* 1 for success, 0 for failure.
*/
int BME_cycle_validate(int len, void *h){
int i;
BME_CycleNode *curnode, *head;
head = (BME_CycleNode*)h;
/*forward validation*/
for(i = 0, curnode = head; i < len; i++, curnode = curnode->next);
if(curnode != head) return 0;
/*reverse validation*/
for(i = 0, curnode = head; i < len; i++, curnode = curnode->prev);
if(curnode != head) return 0;
return 1;
}
/*Begin Disk Cycle routines*/
/**
* BME_disk_nextedge
*
* Find the next edge in a disk cycle
*
* Returns -
* Pointer to the next edge in the disk cycle for the vertex v.
*/
BME_Edge *BME_disk_nextedge(BME_Edge *e, BME_Vert *v)
{
if(BME_vert_in_edge(e, v)){
if(e->v1 == v) return e->d1.next->data;
else if(e->v2 == v) return e->d2.next->data;
}
return NULL;
}
/**
* BME_disk_getpointer
*
* Given an edge and one of its vertices, find the apporpriate CycleNode
*
* Returns -
* Pointer to BME_CycleNode.
*/
BME_CycleNode *BME_disk_getpointer(BME_Edge *e, BME_Vert *v){
/*returns pointer to the cycle node for the appropriate vertex in this disk*/
if(e->v1 == v) return &(e->d1);
else if (e->v2 == v) return &(e->d2);
return NULL;
}
/**
* BME_disk_append_edge
*
* Appends edge to the end of a vertex disk cycle.
*
* Returns -
* 1 for success, 0 for failure
*/
int BME_disk_append_edge(BME_Edge *e, BME_Vert *v)
{
BME_CycleNode *base, *tail;
if(BME_vert_in_edge(e, v) == 0) return 0; /*check to make sure v is in e*/
/*check for loose vert first*/
if(v->edge == NULL){
v->edge = e;
base = tail = BME_disk_getpointer(e, v);
BME_cycle_append(base, tail); /*circular reference is ok!*/
return 1;
}
/*insert e at the end of disk cycle and make it the new v->edge*/
base = BME_disk_getpointer(v->edge, v);
tail = BME_disk_getpointer(e, v);
BME_cycle_append(base, tail);
return 1;
}
/**
* BME_disk_remove_edge
*
* Removes an edge from a disk cycle. If the edge to be removed is
* at the base of the cycle, the next edge becomes the new base.
*
*
* Returns -
* Nothing
*/
void BME_disk_remove_edge(BME_Edge *e, BME_Vert *v)
{
BME_CycleNode *base, *remnode;
BME_Edge *newbase;
int len;
base = BME_disk_getpointer(v->edge, v);
remnode = BME_disk_getpointer(e, v);
/*first deal with v->edge pointer...*/
len = BME_cycle_length(base);
if(len == 1) newbase = NULL;
else if(v->edge == e) newbase = base->next-> data;
else newbase = v->edge;
/*remove and rebase*/
BME_cycle_remove(base, remnode);
v->edge = newbase;
}
/**
* BME_disk_next_edgeflag
*
* Searches the disk cycle of v, starting with e, for the
* next edge that has either eflag or tflag.
*
* BME_Edge pointer.
*/
BME_Edge *BME_disk_next_edgeflag(BME_Edge *e, BME_Vert *v, int eflag, int tflag){
BME_CycleNode *diskbase;
BME_Edge *curedge;
int len, ok;
if(eflag && tflag) return NULL;
ok = BME_vert_in_edge(e,v);
if(ok){
diskbase = BME_disk_getpointer(e, v);
len = BME_cycle_length(diskbase);
curedge = BME_disk_nextedge(e,v);
while(curedge != e){
if(tflag){
if(curedge->tflag1 == tflag) return curedge;
}
else if(eflag){
if(curedge->eflag1 == eflag) return curedge;
}
curedge = BME_disk_nextedge(curedge, v);
}
}
return NULL;
}
/**
* BME_disk_count_edgeflag
*
* Counts number of edges in this verts disk cycle which have
* either eflag or tflag (but not both!)
*
* Returns -
* Integer.
*/
int BME_disk_count_edgeflag(BME_Vert *v, int eflag, int tflag){
BME_CycleNode *diskbase;
BME_Edge *curedge;
int i, len=0, count=0;
if(v->edge){
if(eflag && tflag) return 0; /*tflag and eflag are reserved for different functions!*/
diskbase = BME_disk_getpointer(v->edge, v);
len = BME_cycle_length(diskbase);
for(i = 0, curedge=v->edge; i<len; i++){
if(tflag){
if(curedge->tflag1 == tflag) count++;
}
else if(eflag){
if(curedge->eflag1 == eflag) count++;
}
curedge = BME_disk_nextedge(curedge, v);
}
}
return count;
}
int BME_disk_hasedge(BME_Vert *v, BME_Edge *e){
BME_CycleNode *diskbase;
BME_Edge *curedge;
int i, len=0;
if(v->edge){
diskbase = BME_disk_getpointer(v->edge,v);
len = BME_cycle_length(diskbase);
for(i = 0, curedge=v->edge; i<len; i++){
if(curedge == e) return 1;
else curedge=BME_disk_nextedge(curedge, v);
}
}
return 0;
}
/*end disk cycle routines*/
BME_Loop *BME_radial_nextloop(BME_Loop *l){
return (BME_Loop*)(l->radial.next->data);
}
void BME_radial_append(BME_Edge *e, BME_Loop *l){
if(e->loop == NULL) e->loop = l;
BME_cycle_append(&(e->loop->radial), &(l->radial));
}
void BME_radial_remove_loop(BME_Loop *l, BME_Edge *e)
{
BME_Loop *newbase;
int len;
/*deal with edge->loop pointer*/
len = BME_cycle_length(&(e->loop->radial));
if(len == 1) newbase = NULL;
else if(e->loop == l) newbase = e->loop->radial.next->data;
else newbase = e->loop;
/*remove and rebase*/
BME_cycle_remove(&(e->loop->radial), &(l->radial));
e->loop = newbase;
}
int BME_radial_find_face(BME_Edge *e,BME_Poly *f)
{
BME_Loop *curloop;
int i, len;
len = BME_cycle_length(&(e->loop->radial));
for(i = 0, curloop = e->loop; i < len; i++, curloop = curloop->radial.next->data){
if(curloop->f == f) return 1;
}
return 0;
}
struct BME_Loop *BME_loop_find_loop(struct BME_Poly *f, struct BME_Vert *v) {
BME_Loop *l;
int i, len;
len = BME_cycle_length(f->loopbase);
for (i = 0, l=f->loopbase; i < len; i++, l=l->next) {
if (l->v == v) return l;
}
return NULL;
}