This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/particle_system.c
Campbell Barton eed13b43b1 merged from trunk 20741:20848
* Missing changes to release/windows/installer
* Sequencer fixes in source/blender/src/seqaudio.c dont apply to 2.5
* brechts fix for #18855 r20763 wasnt merged, does this apply to 2.5?
2009-06-13 11:09:13 +00:00

4832 lines
128 KiB
C

/* particle_system.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_particle_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_force.h"
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "DNA_curve_types.h"
#include "DNA_group_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "DNA_ipo_types.h" // XXX old animation system stuff... to be removed!
#include "BLI_rand.h"
#include "BLI_jitter.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_kdtree.h"
#include "BLI_kdopbvh.h"
#include "BLI_linklist.h"
#include "BLI_threads.h"
#include "BKE_anim.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_collision.h"
#include "BKE_displist.h"
#include "BKE_effect.h"
#include "BKE_particle.h"
#include "BKE_global.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
#include "BKE_object.h"
#include "BKE_material.h"
#include "BKE_softbody.h"
#include "BKE_depsgraph.h"
#include "BKE_lattice.h"
#include "BKE_pointcache.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_scene.h"
#include "BKE_bvhutils.h"
#include "PIL_time.h"
#include "RE_shader_ext.h"
/* fluid sim particle import */
#ifndef DISABLE_ELBEEM
#include "DNA_object_fluidsim.h"
#include "LBM_fluidsim.h"
#include <zlib.h>
#include <string.h>
#ifdef WIN32
#ifndef snprintf
#define snprintf _snprintf
#endif
#endif
#endif // DISABLE_ELBEEM
/************************************************/
/* Reacting to system events */
/************************************************/
static int get_current_display_percentage(ParticleSystem *psys)
{
ParticleSettings *part=psys->part;
if(psys->renderdata || (part->child_nbr && part->childtype))
return 100;
if(part->phystype==PART_PHYS_KEYED){
if(psys->flag & PSYS_FIRST_KEYED)
return psys->part->disp;
else
return 100;
}
else
return psys->part->disp;
}
void psys_reset(ParticleSystem *psys, int mode)
{
ParticleSettings *part= psys->part;
ParticleData *pa;
int i;
if(ELEM(mode, PSYS_RESET_ALL, PSYS_RESET_DEPSGRAPH)) {
if(mode == PSYS_RESET_ALL || !(part->type == PART_HAIR && (psys->flag & PSYS_EDITED))) {
if(psys->particles) {
if(psys->particles->keys)
MEM_freeN(psys->particles->keys);
for(i=0, pa=psys->particles; i<psys->totpart; i++, pa++)
if(pa->hair) MEM_freeN(pa->hair);
MEM_freeN(psys->particles);
psys->particles= NULL;
}
psys->totpart= 0;
psys->totkeyed= 0;
psys->flag &= ~(PSYS_HAIR_DONE|PSYS_KEYED);
if(psys->reactevents.first)
BLI_freelistN(&psys->reactevents);
}
}
else if(mode == PSYS_RESET_CACHE_MISS) {
/* set all particles to be skipped */
ParticleData *pa = psys->particles;
int p=0;
for(; p<psys->totpart; p++, pa++)
pa->flag |= PARS_NO_DISP;
}
/* reset children */
if(psys->child) {
MEM_freeN(psys->child);
psys->child= 0;
}
psys->totchild= 0;
/* reset path cache */
psys_free_path_cache(psys);
/* reset point cache */
psys->pointcache->flag &= ~PTCACHE_SIMULATION_VALID;
psys->pointcache->simframe= 0;
}
static void realloc_particles(Object *ob, ParticleSystem *psys, int new_totpart)
{
ParticleData *newpars = 0, *pa;
int i, totpart, totsaved = 0;
if(new_totpart<0) {
if(psys->part->distr==PART_DISTR_GRID && psys->part->from != PART_FROM_VERT) {
totpart= psys->part->grid_res;
totpart*=totpart*totpart;
}
else
totpart=psys->part->totpart;
}
else
totpart=new_totpart;
if(totpart)
newpars= MEM_callocN(totpart*sizeof(ParticleData), "particles");
if(psys->particles) {
totsaved=MIN2(psys->totpart,totpart);
/*save old pars*/
if(totsaved)
memcpy(newpars,psys->particles,totsaved*sizeof(ParticleData));
if(psys->particles->keys)
MEM_freeN(psys->particles->keys);
for(i=0, pa=psys->particles; i<psys->totpart; i++, pa++)
if(pa->keys) {
pa->keys= NULL;
pa->totkey= 0;
}
for(i=totsaved, pa=psys->particles+totsaved; i<psys->totpart; i++, pa++)
if(pa->hair) MEM_freeN(pa->hair);
MEM_freeN(psys->particles);
}
psys->particles=newpars;
if(psys->child) {
MEM_freeN(psys->child);
psys->child=0;
psys->totchild=0;
}
psys->totpart=totpart;
}
static int get_psys_child_number(struct Scene *scene, ParticleSystem *psys)
{
int nbr;
if(!psys->part->childtype)
return 0;
if(psys->renderdata) {
nbr= psys->part->ren_child_nbr;
return get_render_child_particle_number(&scene->r, nbr);
}
else
return psys->part->child_nbr;
}
static int get_psys_tot_child(struct Scene *scene, ParticleSystem *psys)
{
return psys->totpart*get_psys_child_number(scene, psys);
}
static void alloc_child_particles(ParticleSystem *psys, int tot)
{
if(psys->child){
MEM_freeN(psys->child);
psys->child=0;
psys->totchild=0;
}
if(psys->part->childtype) {
psys->totchild= tot;
if(psys->totchild)
psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles");
}
}
void psys_calc_dmcache(Object *ob, DerivedMesh *dm, ParticleSystem *psys)
{
/* use for building derived mesh mapping info:
node: the allocated links - total derived mesh element count
nodearray: the array of nodes aligned with the base mesh's elements, so
each original elements can reference its derived elements
*/
Mesh *me= (Mesh*)ob->data;
ParticleData *pa= 0;
int p;
/* CACHE LOCATIONS */
if(!dm->deformedOnly) {
/* Will use later to speed up subsurf/derivedmesh */
LinkNode *node, *nodedmelem, **nodearray;
int totdmelem, totelem, i, *origindex;
if(psys->part->from == PART_FROM_VERT) {
totdmelem= dm->getNumVerts(dm);
totelem= me->totvert;
origindex= DM_get_vert_data_layer(dm, CD_ORIGINDEX);
}
else { /* FROM_FACE/FROM_VOLUME */
totdmelem= dm->getNumFaces(dm);
totelem= me->totface;
origindex= DM_get_face_data_layer(dm, CD_ORIGINDEX);
}
nodedmelem= MEM_callocN(sizeof(LinkNode)*totdmelem, "psys node elems");
nodearray= MEM_callocN(sizeof(LinkNode *)*totelem, "psys node array");
for(i=0, node=nodedmelem; i<totdmelem; i++, origindex++, node++) {
node->link= SET_INT_IN_POINTER(i);
if(*origindex != -1) {
if(nodearray[*origindex]) {
/* prepend */
node->next = nodearray[*origindex];
nodearray[*origindex]= node;
}
else
nodearray[*origindex]= node;
}
}
/* cache the verts/faces! */
for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
if(psys->part->from == PART_FROM_VERT) {
if(nodearray[pa->num])
pa->num_dmcache= GET_INT_FROM_POINTER(nodearray[pa->num]->link);
}
else { /* FROM_FACE/FROM_VOLUME */
/* Note that somtimes the pa->num is over the nodearray size, this is bad, maybe there is a better place to fix this,
* but for now passing NULL is OK. every face will be searched for the particle so its slower - Campbell */
pa->num_dmcache= psys_particle_dm_face_lookup(ob, dm, pa->num, pa->fuv, pa->num < totelem ? nodearray[pa->num] : NULL);
}
}
MEM_freeN(nodearray);
MEM_freeN(nodedmelem);
}
else {
/* TODO PARTICLE, make the following line unnecessary, each function
* should know to use the num or num_dmcache, set the num_dmcache to
* an invalid value, just incase */
for(p=0,pa=psys->particles; p<psys->totpart; p++,pa++)
pa->num_dmcache = -1;
}
}
static void distribute_particles_in_grid(DerivedMesh *dm, ParticleSystem *psys)
{
ParticleData *pa=0;
float min[3], max[3], delta[3], d;
MVert *mv, *mvert = dm->getVertDataArray(dm,0);
int totvert=dm->getNumVerts(dm), from=psys->part->from;
int i, j, k, p, res=psys->part->grid_res, size[3], axis;
mv=mvert;
/* find bounding box of dm */
VECCOPY(min,mv->co);
VECCOPY(max,mv->co);
mv++;
for(i=1; i<totvert; i++, mv++){
min[0]=MIN2(min[0],mv->co[0]);
min[1]=MIN2(min[1],mv->co[1]);
min[2]=MIN2(min[2],mv->co[2]);
max[0]=MAX2(max[0],mv->co[0]);
max[1]=MAX2(max[1],mv->co[1]);
max[2]=MAX2(max[2],mv->co[2]);
}
VECSUB(delta,max,min);
/* determine major axis */
axis = (delta[0]>=delta[1])?0:((delta[1]>=delta[2])?1:2);
d = delta[axis]/(float)res;
size[axis]=res;
size[(axis+1)%3]=(int)ceil(delta[(axis+1)%3]/d);
size[(axis+2)%3]=(int)ceil(delta[(axis+2)%3]/d);
/* float errors grrr.. */
size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
min[0]+=d/2.0f;
min[1]+=d/2.0f;
min[2]+=d/2.0f;
for(i=0,p=0,pa=psys->particles; i<res; i++){
for(j=0; j<res; j++){
for(k=0; k<res; k++,p++,pa++){
pa->fuv[0]=min[0]+(float)i*d;
pa->fuv[1]=min[1]+(float)j*d;
pa->fuv[2]=min[2]+(float)k*d;
pa->flag |= PARS_UNEXIST;
pa->loop=0; /* abused in volume calculation */
}
}
}
/* enable particles near verts/edges/faces/inside surface */
if(from==PART_FROM_VERT){
float vec[3];
pa=psys->particles;
min[0]-=d/2.0f;
min[1]-=d/2.0f;
min[2]-=d/2.0f;
for(i=0,mv=mvert; i<totvert; i++,mv++){
VecSubf(vec,mv->co,min);
vec[0]/=delta[0];
vec[1]/=delta[1];
vec[2]/=delta[2];
(pa +((int)(vec[0]*(size[0]-1))*res
+(int)(vec[1]*(size[1]-1)))*res
+(int)(vec[2]*(size[2]-1)))->flag &= ~PARS_UNEXIST;
}
}
else if(ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)){
float co1[3], co2[3];
MFace *mface=0;
float v1[3], v2[3], v3[3], v4[4], lambda;
int a, a1, a2, a0mul, a1mul, a2mul, totface;
int amax= from==PART_FROM_FACE ? 3 : 1;
totface=dm->getNumFaces(dm);
mface=dm->getFaceDataArray(dm,CD_MFACE);
for(a=0; a<amax; a++){
if(a==0){ a0mul=res*res; a1mul=res; a2mul=1; }
else if(a==1){ a0mul=res; a1mul=1; a2mul=res*res; }
else{ a0mul=1; a1mul=res*res; a2mul=res; }
for(a1=0; a1<size[(a+1)%3]; a1++){
for(a2=0; a2<size[(a+2)%3]; a2++){
mface=dm->getFaceDataArray(dm,CD_MFACE);
pa=psys->particles + a1*a1mul + a2*a2mul;
VECCOPY(co1,pa->fuv);
co1[a]-=d/2.0f;
VECCOPY(co2,co1);
co2[a]+=delta[a] + 0.001f*d;
co1[a]-=0.001f*d;
/* lets intersect the faces */
for(i=0; i<totface; i++,mface++){
VECCOPY(v1,mvert[mface->v1].co);
VECCOPY(v2,mvert[mface->v2].co);
VECCOPY(v3,mvert[mface->v3].co);
if(AxialLineIntersectsTriangle(a,co1, co2, v2, v3, v1, &lambda)){
if(from==PART_FROM_FACE)
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
else /* store number of intersections */
(pa+(int)(lambda*size[a])*a0mul)->loop++;
}
if(mface->v4){
VECCOPY(v4,mvert[mface->v4].co);
if(AxialLineIntersectsTriangle(a,co1, co2, v4, v1, v3, &lambda)){
if(from==PART_FROM_FACE)
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
else
(pa+(int)(lambda*size[a])*a0mul)->loop++;
}
}
}
if(from==PART_FROM_VOLUME){
int in=pa->loop%2;
if(in) pa->loop++;
for(i=0; i<size[0]; i++){
if(in || (pa+i*a0mul)->loop%2)
(pa+i*a0mul)->flag &= ~PARS_UNEXIST;
/* odd intersections == in->out / out->in */
/* even intersections -> in stays same */
in=(in + (pa+i*a0mul)->loop) % 2;
}
}
}
}
}
}
if(psys->part->flag & PART_GRID_INVERT){
for(i=0,pa=psys->particles; i<size[0]; i++){
for(j=0; j<size[1]; j++){
pa=psys->particles + res*(i*res + j);
for(k=0; k<size[2]; k++, pa++){
pa->flag ^= PARS_UNEXIST;
}
}
}
}
}
/* modified copy from rayshade.c */
static void hammersley_create(float *out, int n, int seed, float amount)
{
RNG *rng;
double p, t, offs[2];
int k, kk;
rng = rng_new(31415926 + n + seed);
offs[0]= rng_getDouble(rng) + amount;
offs[1]= rng_getDouble(rng) + amount;
rng_free(rng);
for (k = 0; k < n; k++) {
t = 0;
for (p = 0.5, kk = k; kk; p *= 0.5, kk >>= 1)
if (kk & 1) /* kk mod 2 = 1 */
t += p;
out[2*k + 0]= fmod((double)k/(double)n + offs[0], 1.0);
out[2*k + 1]= fmod(t + offs[1], 1.0);
}
}
/* modified copy from effect.c */
static void init_mv_jit(float *jit, int num, int seed2, float amount)
{
RNG *rng;
float *jit2, x, rad1, rad2, rad3;
int i, num2;
if(num==0) return;
rad1= (float)(1.0/sqrt((float)num));
rad2= (float)(1.0/((float)num));
rad3= (float)sqrt((float)num)/((float)num);
rng = rng_new(31415926 + num + seed2);
x= 0;
num2 = 2 * num;
for(i=0; i<num2; i+=2) {
jit[i]= x + amount*rad1*(0.5f - rng_getFloat(rng));
jit[i+1]= i/(2.0f*num) + amount*rad1*(0.5f - rng_getFloat(rng));
jit[i]-= (float)floor(jit[i]);
jit[i+1]-= (float)floor(jit[i+1]);
x+= rad3;
x -= (float)floor(x);
}
jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
for (i=0 ; i<4 ; i++) {
BLI_jitterate1(jit, jit2, num, rad1);
BLI_jitterate1(jit, jit2, num, rad1);
BLI_jitterate2(jit, jit2, num, rad2);
}
MEM_freeN(jit2);
rng_free(rng);
}
static void psys_uv_to_w(float u, float v, int quad, float *w)
{
float vert[4][3], co[3];
if(!quad) {
if(u+v > 1.0f)
v= 1.0f-v;
else
u= 1.0f-u;
}
vert[0][0]= 0.0f; vert[0][1]= 0.0f; vert[0][2]= 0.0f;
vert[1][0]= 1.0f; vert[1][1]= 0.0f; vert[1][2]= 0.0f;
vert[2][0]= 1.0f; vert[2][1]= 1.0f; vert[2][2]= 0.0f;
co[0]= u;
co[1]= v;
co[2]= 0.0f;
if(quad) {
vert[3][0]= 0.0f; vert[3][1]= 1.0f; vert[3][2]= 0.0f;
MeanValueWeights(vert, 4, co, w);
}
else {
MeanValueWeights(vert, 3, co, w);
w[3]= 0.0f;
}
}
static int binary_search_distribution(float *sum, int n, float value)
{
int mid, low=0, high=n;
while(low <= high) {
mid= (low + high)/2;
if(sum[mid] <= value && value <= sum[mid+1])
return mid;
else if(sum[mid] > value)
high= mid - 1;
else if(sum[mid] < value)
low= mid + 1;
else
return mid;
}
return low;
}
/* note: this function must be thread safe, for from == PART_FROM_CHILD */
#define ONLY_WORKING_WITH_PA_VERTS 0
void psys_thread_distribute_particle(ParticleThread *thread, ParticleData *pa, ChildParticle *cpa, int p)
{
ParticleThreadContext *ctx= thread->ctx;
Object *ob= ctx->ob;
DerivedMesh *dm= ctx->dm;
ParticleData *tpa;
ParticleSettings *part= ctx->psys->part;
float *v1, *v2, *v3, *v4, nor[3], orco1[3], co1[3], co2[3], nor1[3], ornor1[3];
float cur_d, min_d, randu, randv;
int from= ctx->from;
int cfrom= ctx->cfrom;
int distr= ctx->distr;
int i, intersect, tot;
if(from == PART_FROM_VERT) {
/* TODO_PARTICLE - use original index */
pa->num= ctx->index[p];
pa->fuv[0] = 1.0f;
pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
//pa->verts[0] = pa->verts[1] = pa->verts[2] = 0;
#if ONLY_WORKING_WITH_PA_VERTS
if(ctx->tree){
KDTreeNearest ptn[3];
int w, maxw;
psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_n_nearest(ctx->tree,3,orco1,NULL,ptn);
for(w=0; w<maxw; w++){
pa->verts[w]=ptn->num;
}
}
#endif
}
else if(from == PART_FROM_FACE || from == PART_FROM_VOLUME) {
MFace *mface;
pa->num = i = ctx->index[p];
mface = dm->getFaceData(dm,i,CD_MFACE);
switch(distr){
case PART_DISTR_JIT:
ctx->jitoff[i] = fmod(ctx->jitoff[i],(float)ctx->jitlevel);
psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mface->v4, pa->fuv);
ctx->jitoff[i]++;
//ctx->jitoff[i]=(float)fmod(ctx->jitoff[i]+ctx->maxweight/ctx->weight[i],(float)ctx->jitlevel);
break;
case PART_DISTR_RAND:
randu= rng_getFloat(thread->rng);
randv= rng_getFloat(thread->rng);
psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
break;
}
pa->foffset= 0.0f;
/*
pa->verts[0] = mface->v1;
pa->verts[1] = mface->v2;
pa->verts[2] = mface->v3;
*/
/* experimental */
if(from==PART_FROM_VOLUME){
MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
tot=dm->getNumFaces(dm);
psys_interpolate_face(mvert,mface,0,0,pa->fuv,co1,nor,0,0,0,0);
Normalize(nor);
VecMulf(nor,-100.0);
VECADD(co2,co1,nor);
min_d=2.0;
intersect=0;
for(i=0,mface=dm->getFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++){
if(i==pa->num) continue;
v1=mvert[mface->v1].co;
v2=mvert[mface->v2].co;
v3=mvert[mface->v3].co;
if(LineIntersectsTriangle(co1, co2, v2, v3, v1, &cur_d, 0)){
if(cur_d<min_d){
min_d=cur_d;
pa->foffset=cur_d*50.0f; /* to the middle of volume */
intersect=1;
}
}
if(mface->v4){
v4=mvert[mface->v4].co;
if(LineIntersectsTriangle(co1, co2, v4, v1, v3, &cur_d, 0)){
if(cur_d<min_d){
min_d=cur_d;
pa->foffset=cur_d*50.0f; /* to the middle of volume */
intersect=1;
}
}
}
}
if(intersect==0)
pa->foffset=0.0;
else switch(distr){
case PART_DISTR_JIT:
pa->foffset*= ctx->jit[2*(int)ctx->jitoff[i]];
break;
case PART_DISTR_RAND:
pa->foffset*=BLI_frand();
break;
}
}
}
else if(from == PART_FROM_PARTICLE) {
//pa->verts[0]=0; /* not applicable */
//pa->verts[1]=0;
//pa->verts[2]=0;
tpa=ctx->tpars+ctx->index[p];
pa->num=ctx->index[p];
pa->fuv[0]=tpa->fuv[0];
pa->fuv[1]=tpa->fuv[1];
/* abusing foffset a little for timing in near reaction */
pa->foffset=ctx->weight[ctx->index[p]];
ctx->weight[ctx->index[p]]+=ctx->maxweight;
}
else if(from == PART_FROM_CHILD) {
MFace *mf;
if(ctx->index[p] < 0) {
cpa->num=0;
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
cpa->rand[0]=cpa->rand[1]=cpa->rand[2]=0.0f;
return;
}
mf= dm->getFaceData(dm, ctx->index[p], CD_MFACE);
//switch(distr){
// case PART_DISTR_JIT:
// i=index[p];
// psys_uv_to_w(ctx->jit[2*(int)ctx->jitoff[i]], ctx->jit[2*(int)ctx->jitoff[i]+1], mf->v4, cpa->fuv);
// ctx->jitoff[i]=(float)fmod(ctx->jitoff[i]+ctx->maxweight/ctx->weight[i],(float)ctx->jitlevel);
// break;
// case PART_DISTR_RAND:
randu= rng_getFloat(thread->rng);
randv= rng_getFloat(thread->rng);
psys_uv_to_w(randu, randv, mf->v4, cpa->fuv);
// break;
//}
cpa->rand[0] = rng_getFloat(thread->rng);
cpa->rand[1] = rng_getFloat(thread->rng);
cpa->rand[2] = rng_getFloat(thread->rng);
cpa->num = ctx->index[p];
if(ctx->tree){
KDTreeNearest ptn[10];
int w,maxw, do_seams;
float maxd,mind,dd,totw=0.0;
int parent[10];
float pweight[10];
do_seams= (part->flag&PART_CHILD_SEAMS && ctx->seams);
psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,0,0,orco1,ornor1);
transform_mesh_orco_verts((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_n_nearest(ctx->tree,(do_seams)?10:4,orco1,ornor1,ptn);
maxd=ptn[maxw-1].dist;
mind=ptn[0].dist;
dd=maxd-mind;
/* the weights here could be done better */
for(w=0; w<maxw; w++){
parent[w]=ptn[w].index;
pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
//pweight[w]= (1.0f - ptn[w].dist*ptn[w].dist/(maxd*maxd));
//pweight[w] *= pweight[w];
}
for(;w<10; w++){
parent[w]=-1;
pweight[w]=0.0f;
}
if(do_seams){
ParticleSeam *seam=ctx->seams;
float temp[3],temp2[3],tan[3];
float inp,cur_len,min_len=10000.0f;
int min_seam=0, near_vert=0;
/* find closest seam */
for(i=0; i<ctx->totseam; i++, seam++){
VecSubf(temp,co1,seam->v0);
inp=Inpf(temp,seam->dir)/seam->length2;
if(inp<0.0f){
cur_len=VecLenf(co1,seam->v0);
}
else if(inp>1.0f){
cur_len=VecLenf(co1,seam->v1);
}
else{
VecCopyf(temp2,seam->dir);
VecMulf(temp2,inp);
cur_len=VecLenf(temp,temp2);
}
if(cur_len<min_len){
min_len=cur_len;
min_seam=i;
if(inp<0.0f) near_vert=-1;
else if(inp>1.0f) near_vert=1;
else near_vert=0;
}
}
seam=ctx->seams+min_seam;
VecCopyf(temp,seam->v0);
if(near_vert){
if(near_vert==-1)
VecSubf(tan,co1,seam->v0);
else{
VecSubf(tan,co1,seam->v1);
VecCopyf(temp,seam->v1);
}
Normalize(tan);
}
else{
VecCopyf(tan,seam->tan);
VecSubf(temp2,co1,temp);
if(Inpf(tan,temp2)<0.0f)
VecNegf(tan);
}
for(w=0; w<maxw; w++){
VecSubf(temp2,ptn[w].co,temp);
if(Inpf(tan,temp2)<0.0f){
parent[w]=-1;
pweight[w]=0.0f;
}
}
}
for(w=0,i=0; w<maxw && i<4; w++){
if(parent[w]>=0){
cpa->pa[i]=parent[w];
cpa->w[i]=pweight[w];
totw+=pweight[w];
i++;
}
}
for(;i<4; i++){
cpa->pa[i]=-1;
cpa->w[i]=0.0f;
}
if(totw>0.0f) for(w=0; w<4; w++)
cpa->w[w]/=totw;
cpa->parent=cpa->pa[0];
}
}
}
static void *exec_distribution(void *data)
{
ParticleThread *thread= (ParticleThread*)data;
ParticleSystem *psys= thread->ctx->psys;
ParticleData *pa;
ChildParticle *cpa;
int p, totpart;
if(thread->ctx->from == PART_FROM_CHILD) {
totpart= psys->totchild;
cpa= psys->child;
for(p=0; p<totpart; p++, cpa++) {
if(thread->ctx->skip) /* simplification skip */
rng_skip(thread->rng, 5*thread->ctx->skip[p]);
if((p+thread->num) % thread->tot == 0)
psys_thread_distribute_particle(thread, NULL, cpa, p);
else /* thread skip */
rng_skip(thread->rng, 5);
}
}
else {
totpart= psys->totpart;
pa= psys->particles + thread->num;
for(p=thread->num; p<totpart; p+=thread->tot, pa+=thread->tot)
psys_thread_distribute_particle(thread, pa, NULL, p);
}
return 0;
}
/* not thread safe, but qsort doesn't take userdata argument */
static int *COMPARE_ORIG_INDEX = NULL;
static int compare_orig_index(const void *p1, const void *p2)
{
int index1 = COMPARE_ORIG_INDEX[*(const int*)p1];
int index2 = COMPARE_ORIG_INDEX[*(const int*)p2];
if(index1 < index2)
return -1;
else if(index1 == index2) {
/* this pointer comparison appears to make qsort stable for glibc,
* and apparently on solaris too, makes the renders reproducable */
if(p1 < p2)
return -1;
else if(p1 == p2)
return 0;
else
return 1;
}
else
return 1;
}
/* creates a distribution of coordinates on a DerivedMesh */
/* */
/* 1. lets check from what we are emitting */
/* 2. now we know that we have something to emit from so */
/* let's calculate some weights */
/* 2.1 from even distribution */
/* 2.2 and from vertex groups */
/* 3. next we determine the indexes of emitting thing that */
/* the particles will have */
/* 4. let's do jitter if we need it */
/* 5. now we're ready to set the indexes & distributions to */
/* the particles */
/* 6. and we're done! */
/* This is to denote functionality that does not yet work with mesh - only derived mesh */
int psys_threads_init_distribution(ParticleThread *threads, Scene *scene, DerivedMesh *finaldm, int from)
{
ParticleThreadContext *ctx= threads[0].ctx;
Object *ob= ctx->ob;
ParticleSystem *psys= ctx->psys;
Object *tob;
ParticleData *pa=0, *tpars= 0;
ParticleSettings *part;
ParticleSystem *tpsys;
ParticleSeam *seams= 0;
ChildParticle *cpa=0;
KDTree *tree=0;
DerivedMesh *dm= NULL;
float *jit= NULL;
int i, seed, p=0, totthread= threads[0].tot;
int no_distr=0, cfrom=0;
int tot=0, totpart, *index=0, children=0, totseam=0;
//int *vertpart=0;
int jitlevel= 1, distr;
float *weight=0,*sum=0,*jitoff=0;
float cur, maxweight=0.0, tweight, totweight, co[3], nor[3], orco[3], ornor[3];
if(ob==0 || psys==0 || psys->part==0)
return 0;
part=psys->part;
totpart=psys->totpart;
if(totpart==0)
return 0;
if (!finaldm->deformedOnly && !CustomData_has_layer( &finaldm->faceData, CD_ORIGINDEX ) ) {
// XXX error("Can't paint with the current modifier stack, disable destructive modifiers");
return 0;
}
BLI_srandom(31415926 + psys->seed);
if(from==PART_FROM_CHILD){
distr=PART_DISTR_RAND;
if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
dm= finaldm;
children=1;
tree=BLI_kdtree_new(totpart);
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
psys_particle_on_dm(dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,ornor);
transform_mesh_orco_verts((Mesh*)ob->data, &orco, 1, 1);
BLI_kdtree_insert(tree, p, orco, ornor);
}
BLI_kdtree_balance(tree);
totpart=get_psys_tot_child(scene, psys);
cfrom=from=PART_FROM_FACE;
if(part->flag&PART_CHILD_SEAMS){
MEdge *ed, *medge=dm->getEdgeDataArray(dm,CD_MEDGE);
MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
int totedge=dm->getNumEdges(dm);
for(p=0, ed=medge; p<totedge; p++,ed++)
if(ed->flag&ME_SEAM)
totseam++;
if(totseam){
ParticleSeam *cur_seam=seams=MEM_callocN(totseam*sizeof(ParticleSeam),"Child Distribution Seams");
float temp[3],temp2[3];
for(p=0, ed=medge; p<totedge; p++,ed++){
if(ed->flag&ME_SEAM){
VecCopyf(cur_seam->v0,(mvert+ed->v1)->co);
VecCopyf(cur_seam->v1,(mvert+ed->v2)->co);
VecSubf(cur_seam->dir,cur_seam->v1,cur_seam->v0);
cur_seam->length2=VecLength(cur_seam->dir);
cur_seam->length2*=cur_seam->length2;
temp[0]=(float)((mvert+ed->v1)->no[0]);
temp[1]=(float)((mvert+ed->v1)->no[1]);
temp[2]=(float)((mvert+ed->v1)->no[2]);
temp2[0]=(float)((mvert+ed->v2)->no[0]);
temp2[1]=(float)((mvert+ed->v2)->no[1]);
temp2[2]=(float)((mvert+ed->v2)->no[2]);
VecAddf(cur_seam->nor,temp,temp2);
Normalize(cur_seam->nor);
Crossf(cur_seam->tan,cur_seam->dir,cur_seam->nor);
Normalize(cur_seam->tan);
cur_seam++;
}
}
}
}
}
else{
/* no need to figure out distribution */
int child_nbr= get_psys_child_number(scene, psys);
totpart= get_psys_tot_child(scene, psys);
alloc_child_particles(psys, totpart);
cpa=psys->child;
for(i=0; i<child_nbr; i++){
for(p=0; p<psys->totpart; p++,cpa++){
float length=2.0;
cpa->parent=p;
/* create even spherical distribution inside unit sphere */
while(length>=1.0f){
cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
length=VecLength(cpa->fuv);
}
cpa->rand[0]=BLI_frand();
cpa->rand[1]=BLI_frand();
cpa->rand[2]=BLI_frand();
cpa->num=-1;
}
}
return 0;
}
}
else{
dm= CDDM_from_mesh((Mesh*)ob->data, ob);
/* special handling of grid distribution */
if(part->distr==PART_DISTR_GRID && from != PART_FROM_VERT){
distribute_particles_in_grid(dm,psys);
dm->release(dm);
return 0;
}
/* we need orco for consistent distributions */
DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, get_mesh_orco_verts(ob));
distr=part->distr;
pa=psys->particles;
if(from==PART_FROM_VERT){
MVert *mv= dm->getVertDataArray(dm, CD_MVERT);
float (*orcodata)[3]= dm->getVertDataArray(dm, CD_ORCO);
int totvert = dm->getNumVerts(dm);
tree=BLI_kdtree_new(totvert);
for(p=0; p<totvert; p++){
if(orcodata) {
VECCOPY(co,orcodata[p])
transform_mesh_orco_verts((Mesh*)ob->data, &co, 1, 1);
}
else
VECCOPY(co,mv[p].co)
BLI_kdtree_insert(tree,p,co,NULL);
}
BLI_kdtree_balance(tree);
}
}
/* 1. */
switch(from){
case PART_FROM_VERT:
tot = dm->getNumVerts(dm);
break;
case PART_FROM_VOLUME:
case PART_FROM_FACE:
tot = dm->getNumFaces(dm);
break;
case PART_FROM_PARTICLE:
if(psys->target_ob)
tob=psys->target_ob;
else
tob=ob;
if((tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1))){
tpars=tpsys->particles;
tot=tpsys->totpart;
}
break;
}
if(tot==0){
no_distr=1;
if(children){
if(G.f & G_DEBUG)
fprintf(stderr,"Particle child distribution error: Nothing to emit from!\n");
if(psys->child) {
for(p=0,cpa=psys->child; p<totpart; p++,cpa++){
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]= 0.0;
cpa->foffset= 0.0f;
cpa->parent=0;
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
cpa->num= -1;
}
}
}
else {
if(G.f & G_DEBUG)
fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
pa->fuv[0]=pa->fuv[1]=pa->fuv[2]= pa->fuv[3]= 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
if(dm != finaldm) dm->release(dm);
return 0;
}
/* 2. */
weight=MEM_callocN(sizeof(float)*tot, "particle_distribution_weights");
index=MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
sum=MEM_callocN(sizeof(float)*(tot+1), "particle_distribution_sum");
jitoff=MEM_callocN(sizeof(float)*tot, "particle_distribution_jitoff");
/* 2.1 */
if((part->flag&PART_EDISTR || children) && ELEM(from,PART_FROM_PARTICLE,PART_FROM_VERT)==0){
MVert *v1, *v2, *v3, *v4;
float totarea=0.0, co1[3], co2[3], co3[3], co4[3];
float (*orcodata)[3];
orcodata= dm->getVertDataArray(dm, CD_ORCO);
for(i=0; i<tot; i++){
MFace *mf=dm->getFaceData(dm,i,CD_MFACE);
if(orcodata) {
VECCOPY(co1, orcodata[mf->v1]);
VECCOPY(co2, orcodata[mf->v2]);
VECCOPY(co3, orcodata[mf->v3]);
transform_mesh_orco_verts((Mesh*)ob->data, &co1, 1, 1);
transform_mesh_orco_verts((Mesh*)ob->data, &co2, 1, 1);
transform_mesh_orco_verts((Mesh*)ob->data, &co3, 1, 1);
}
else {
v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT);
v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT);
v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT);
VECCOPY(co1, v1->co);
VECCOPY(co2, v2->co);
VECCOPY(co3, v3->co);
}
if (mf->v4){
if(orcodata) {
VECCOPY(co4, orcodata[mf->v4]);
transform_mesh_orco_verts((Mesh*)ob->data, &co4, 1, 1);
}
else {
v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT);
VECCOPY(co4, v4->co);
}
cur= AreaQ3Dfl(co1, co2, co3, co4);
}
else
cur= AreaT3Dfl(co1, co2, co3);
if(cur>maxweight)
maxweight=cur;
weight[i]= cur;
totarea+=cur;
}
for(i=0; i<tot; i++)
weight[i] /= totarea;
maxweight /= totarea;
}
else if(from==PART_FROM_PARTICLE){
float val=(float)tot/(float)totpart;
for(i=0; i<tot; i++)
weight[i]=val;
maxweight=val;
}
else{
float min=1.0f/(float)(MIN2(tot,totpart));
for(i=0; i<tot; i++)
weight[i]=min;
maxweight=min;
}
/* 2.2 */
if(ELEM3(from,PART_FROM_VERT,PART_FROM_FACE,PART_FROM_VOLUME)){
float *vweight= psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
if(vweight){
if(from==PART_FROM_VERT) {
for(i=0;i<tot; i++)
weight[i]*=vweight[i];
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
for(i=0;i<tot; i++){
MFace *mf=dm->getFaceData(dm,i,CD_MFACE);
tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
if(mf->v4) {
tweight += vweight[mf->v4];
tweight /= 4.0;
}
else {
tweight /= 3.0;
}
weight[i]*=tweight;
}
}
MEM_freeN(vweight);
}
}
/* 3. */
totweight= 0.0f;
for(i=0;i<tot; i++)
totweight += weight[i];
if(totweight > 0.0f)
totweight= 1.0f/totweight;
sum[0]= 0.0f;
for(i=0;i<tot; i++)
sum[i+1]= sum[i]+weight[i]*totweight;
if((part->flag&PART_TRAND) || (part->simplify_flag&PART_SIMPLIFY_ENABLE)) {
float pos;
for(p=0; p<totpart; p++) {
pos= BLI_frand();
index[p]= binary_search_distribution(sum, tot, pos);
index[p]= MIN2(tot-1, index[p]);
jitoff[index[p]]= pos;
}
}
else {
double step, pos;
step= (totpart <= 1)? 0.5: 1.0/(totpart-1);
pos= 1e-16f; /* tiny offset to avoid zero weight face */
i= 0;
for(p=0; p<totpart; p++, pos+=step) {
while((i < tot) && (pos > sum[i+1]))
i++;
index[p]= MIN2(tot-1, i);
/* avoid zero weight face */
if(p == totpart-1 && weight[index[p]] == 0.0f)
index[p]= index[p-1];
jitoff[index[p]]= pos;
}
}
MEM_freeN(sum);
/* for hair, sort by origindex, allows optimizations in rendering */
/* however with virtual parents the children need to be in random order */
if(part->type == PART_HAIR && !(part->childtype==PART_CHILD_FACES && part->parents!=0.0)) {
if(from != PART_FROM_PARTICLE) {
COMPARE_ORIG_INDEX = NULL;
if(from == PART_FROM_VERT) {
if(dm->numVertData)
COMPARE_ORIG_INDEX= dm->getVertDataArray(dm, CD_ORIGINDEX);
}
else {
if(dm->numFaceData)
COMPARE_ORIG_INDEX= dm->getFaceDataArray(dm, CD_ORIGINDEX);
}
if(COMPARE_ORIG_INDEX) {
qsort(index, totpart, sizeof(int), compare_orig_index);
COMPARE_ORIG_INDEX = NULL;
}
}
}
/* weights are no longer used except for FROM_PARTICLE, which needs them zeroed for indexing */
if(from==PART_FROM_PARTICLE){
for(i=0; i<tot; i++)
weight[i]=0.0f;
}
/* 4. */
if(distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
jitlevel= part->userjit;
if(jitlevel == 0) {
jitlevel= totpart/tot;
if(part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
if(jitlevel<3) jitlevel= 3;
//if(jitlevel>100) jitlevel= 100;
}
jit= MEM_callocN((2+ jitlevel*2)*sizeof(float), "jit");
/* for small amounts of particles we use regular jitter since it looks
* a bit better, for larger amounts we switch to hammersley sequence
* because it is much faster */
if(jitlevel < 25)
init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
else
hammersley_create(jit, jitlevel+1, psys->seed, part->jitfac);
BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
}
/* 5. */
ctx->tree= tree;
ctx->seams= seams;
ctx->totseam= totseam;
ctx->psys= psys;
ctx->index= index;
ctx->jit= jit;
ctx->jitlevel= jitlevel;
ctx->jitoff= jitoff;
ctx->weight= weight;
ctx->maxweight= maxweight;
ctx->from= (children)? PART_FROM_CHILD: from;
ctx->cfrom= cfrom;
ctx->distr= distr;
ctx->dm= dm;
ctx->tpars= tpars;
if(children) {
totpart= psys_render_simplify_distribution(ctx, totpart);
alloc_child_particles(psys, totpart);
}
if(!children || psys->totchild < 10000)
totthread= 1;
seed= 31415926 + ctx->psys->seed;
for(i=0; i<totthread; i++) {
threads[i].rng= rng_new(seed);
threads[i].tot= totthread;
}
return 1;
}
static void distribute_particles_on_dm(DerivedMesh *finaldm, Scene *scene, Object *ob, ParticleSystem *psys, int from)
{
ListBase threads;
ParticleThread *pthreads;
ParticleThreadContext *ctx;
int i, totthread;
pthreads= psys_threads_create(scene, ob, psys);
if(!psys_threads_init_distribution(pthreads, scene, finaldm, from)) {
psys_threads_free(pthreads);
return;
}
totthread= pthreads[0].tot;
if(totthread > 1) {
BLI_init_threads(&threads, exec_distribution, totthread);
for(i=0; i<totthread; i++)
BLI_insert_thread(&threads, &pthreads[i]);
BLI_end_threads(&threads);
}
else
exec_distribution(&pthreads[0]);
psys_calc_dmcache(ob, finaldm, psys);
ctx= pthreads[0].ctx;
if(ctx->dm != finaldm)
ctx->dm->release(ctx->dm);
psys_threads_free(pthreads);
}
/* ready for future use, to emit particles without geometry */
static void distribute_particles_on_shape(Object *ob, ParticleSystem *psys, int from)
{
ParticleData *pa;
int totpart=psys->totpart, p;
fprintf(stderr,"Shape emission not yet possible!\n");
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
static void distribute_particles(Scene *scene, Object *ob, ParticleSystem *psys, int from)
{
ParticleSystemModifierData *psmd=0;
int distr_error=0;
psmd=psys_get_modifier(ob,psys);
if(psmd){
if(psmd->dm)
distribute_particles_on_dm(psmd->dm, scene, ob, psys, from);
else
distr_error=1;
}
else
distribute_particles_on_shape(ob,psys,from);
if(distr_error){
ParticleData *pa;
int totpart=psys->totpart, p;
fprintf(stderr,"Particle distribution error!\n");
for(p=0,pa=psys->particles; p<totpart; p++,pa++){
pa->fuv[0]=pa->fuv[1]=pa->fuv[2]=pa->fuv[3]= 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
}
/* threaded child particle distribution and path caching */
ParticleThread *psys_threads_create(struct Scene *scene, struct Object *ob, struct ParticleSystem *psys)
{
ParticleThread *threads;
ParticleThreadContext *ctx;
int i, totthread;
if(scene->r.mode & R_FIXED_THREADS)
totthread= scene->r.threads;
else
totthread= BLI_system_thread_count();
threads= MEM_callocN(sizeof(ParticleThread)*totthread, "ParticleThread");
ctx= MEM_callocN(sizeof(ParticleThreadContext), "ParticleThreadContext");
ctx->scene= scene;
ctx->ob= ob;
ctx->psys= psys;
ctx->psmd= psys_get_modifier(ob, psys);
ctx->dm= ctx->psmd->dm;
ctx->ma= give_current_material(ob, psys->part->omat);
memset(threads, 0, sizeof(ParticleThread)*totthread);
for(i=0; i<totthread; i++) {
threads[i].ctx= ctx;
threads[i].num= i;
threads[i].tot= totthread;
}
return threads;
}
void psys_threads_free(ParticleThread *threads)
{
ParticleThreadContext *ctx= threads[0].ctx;
int i, totthread= threads[0].tot;
/* path caching */
if(ctx->vg_length)
MEM_freeN(ctx->vg_length);
if(ctx->vg_clump)
MEM_freeN(ctx->vg_clump);
if(ctx->vg_kink)
MEM_freeN(ctx->vg_kink);
if(ctx->vg_rough1)
MEM_freeN(ctx->vg_rough1);
if(ctx->vg_rough2)
MEM_freeN(ctx->vg_rough2);
if(ctx->vg_roughe)
MEM_freeN(ctx->vg_roughe);
if(ctx->psys->lattice){
end_latt_deform(ctx->psys->lattice);
ctx->psys->lattice= NULL;
}
/* distribution */
if(ctx->jit) MEM_freeN(ctx->jit);
if(ctx->jitoff) MEM_freeN(ctx->jitoff);
if(ctx->weight) MEM_freeN(ctx->weight);
if(ctx->index) MEM_freeN(ctx->index);
if(ctx->skip) MEM_freeN(ctx->skip);
if(ctx->seams) MEM_freeN(ctx->seams);
//if(ctx->vertpart) MEM_freeN(ctx->vertpart);
BLI_kdtree_free(ctx->tree);
/* threads */
for(i=0; i<totthread; i++) {
if(threads[i].rng)
rng_free(threads[i].rng);
if(threads[i].rng_path)
rng_free(threads[i].rng_path);
}
MEM_freeN(ctx);
MEM_freeN(threads);
}
/* set particle parameters that don't change during particle's life */
void initialize_particle(ParticleData *pa, int p, Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
{
ParticleSettings *part;
ParticleTexture ptex;
Material *ma=0;
//IpoCurve *icu=0; // XXX old animation system
int totpart;
float rand,length;
part=psys->part;
totpart=psys->totpart;
ptex.life=ptex.size=ptex.exist=ptex.length=1.0;
ptex.time=(float)p/(float)totpart;
BLI_srandom(psys->seed+p);
if(part->from!=PART_FROM_PARTICLE && part->type!=PART_FLUID){
ma=give_current_material(ob,part->omat);
/* TODO: needs some work to make most blendtypes generally usefull */
psys_get_texture(ob,ma,psmd,psys,pa,&ptex,MAP_PA_INIT);
}
pa->lifetime= part->lifetime*ptex.life;
if(part->type==PART_HAIR)
pa->time= 0.0f;
else if(part->type==PART_REACTOR && (part->flag&PART_REACT_STA_END)==0)
pa->time= 300000.0f; /* max frame */
else{
//icu=find_ipocurve(psys->part->ipo,PART_EMIT_TIME);
//if(icu){
// calc_icu(icu,100*ptex.time);
// ptex.time=icu->curval;
//}
pa->time= part->sta + (part->end - part->sta)*ptex.time;
}
if(part->type==PART_HAIR){
pa->lifetime=100.0f;
}
else{
#if 0 // XXX old animation system
icu=find_ipocurve(psys->part->ipo,PART_EMIT_LIFE);
if(icu){
calc_icu(icu,100*ptex.time);
pa->lifetime*=icu->curval;
}
#endif // XXX old animation system
/* need to get every rand even if we don't use them so that randoms don't affect each other */
rand= BLI_frand();
if(part->randlife!=0.0)
pa->lifetime*= 1.0f - part->randlife*rand;
}
pa->dietime= pa->time+pa->lifetime;
pa->sizemul= BLI_frand();
rand= BLI_frand();
/* while loops are to have a spherical distribution (avoid cubic distribution) */
length=2.0f;
while(length>1.0){
pa->r_ve[0]=2.0f*(BLI_frand()-0.5f);
pa->r_ve[1]=2.0f*(BLI_frand()-0.5f);
pa->r_ve[2]=2.0f*(BLI_frand()-0.5f);
length=VecLength(pa->r_ve);
}
length=2.0f;
while(length>1.0){
pa->r_ave[0]=2.0f*(BLI_frand()-0.5f);
pa->r_ave[1]=2.0f*(BLI_frand()-0.5f);
pa->r_ave[2]=2.0f*(BLI_frand()-0.5f);
length=VecLength(pa->r_ave);
}
pa->r_rot[0]=2.0f*(BLI_frand()-0.5f);
pa->r_rot[1]=2.0f*(BLI_frand()-0.5f);
pa->r_rot[2]=2.0f*(BLI_frand()-0.5f);
pa->r_rot[3]=2.0f*(BLI_frand()-0.5f);
NormalQuat(pa->r_rot);
if(part->type!=PART_HAIR && part->distr!=PART_DISTR_GRID && part->from != PART_FROM_VERT){
/* any unique random number will do (r_ave[0]) */
if(ptex.exist < 0.5*(1.0+pa->r_ave[0]))
pa->flag |= PARS_UNEXIST;
else
pa->flag &= ~PARS_UNEXIST;
}
pa->loop=0;
/* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
/* usage other than straight after distribute has to handle this index by itself - jahka*/
//pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we dont have a derived mesh face */
}
static void initialize_all_particles(Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd)
{
//IpoCurve *icu=0; // XXX old animation system
ParticleData *pa;
int p, totpart=psys->totpart;
for(p=0, pa=psys->particles; p<totpart; p++, pa++)
initialize_particle(pa,p,ob,psys,psmd);
if(psys->part->type != PART_FLUID) {
#if 0 // XXX old animation system
icu=find_ipocurve(psys->part->ipo,PART_EMIT_FREQ);
if(icu){
float time=psys->part->sta, end=psys->part->end;
float v1, v2, a=0.0f, t1,t2, d;
p=0;
pa=psys->particles;
calc_icu(icu,time);
v1=icu->curval;
if(v1<0.0f) v1=0.0f;
calc_icu(icu,time+1.0f);
v2=icu->curval;
if(v2<0.0f) v2=0.0f;
for(p=0, pa=psys->particles; p<totpart && time<end; p++, pa++){
while(a+0.5f*(v1+v2) < (float)(p+1) && time<end){
a+=0.5f*(v1+v2);
v1=v2;
time++;
calc_icu(icu,time+1.0f);
v2=icu->curval;
}
if(time<end){
if(v1==v2){
pa->time=time+((float)(p+1)-a)/v1;
}
else{
d=(float)sqrt(v1*v1-2.0f*(v2-v1)*(a-(float)(p+1)));
t1=(-v1+d)/(v2-v1);
t2=(-v1-d)/(v2-v1);
/* the root between 0-1 is the correct one */
if(t1>0.0f && t1<=1.0f)
pa->time=time+t1;
else
pa->time=time+t2;
}
}
pa->dietime = pa->time+pa->lifetime;
pa->flag &= ~PARS_UNEXIST;
}
for(; p<totpart; p++, pa++){
pa->flag |= PARS_UNEXIST;
}
}
#endif // XXX old animation system
}
}
/* sets particle to the emitter surface with initial velocity & rotation */
void reset_particle(Scene *scene, ParticleData *pa, ParticleSystem *psys, ParticleSystemModifierData *psmd, Object *ob,
float dtime, float cfra, float *vg_vel, float *vg_tan, float *vg_rot)
{
ParticleSettings *part;
ParticleTexture ptex;
ParticleKey state;
//IpoCurve *icu=0; // XXX old animation system
float fac, phasefac, nor[3]={0,0,0},loc[3],tloc[3],vel[3]={0.0,0.0,0.0},rot[4],q2[4];
float r_vel[3],r_ave[3],r_rot[4],p_vel[3]={0.0,0.0,0.0};
float x_vec[3]={1.0,0.0,0.0}, utan[3]={0.0,1.0,0.0}, vtan[3]={0.0,0.0,1.0}, rot_vec[3]={0.0,0.0,0.0};
float q_phase[4];
part=psys->part;
ptex.ivel=1.0;
if(part->from==PART_FROM_PARTICLE){
Object *tob;
ParticleSystem *tpsys=0;
float speed;
tob=psys->target_ob;
if(tob==0)
tob=ob;
tpsys=BLI_findlink(&tob->particlesystem,psys->target_psys-1);
state.time = pa->time;
if(pa->num == -1)
memset(&state, 0, sizeof(state));
else
psys_get_particle_state(scene, tob,tpsys,pa->num,&state,1);
psys_get_from_key(&state,loc,nor,rot,0);
QuatMulVecf(rot,vtan);
QuatMulVecf(rot,utan);
VECCOPY(r_vel,pa->r_ve);
VECCOPY(r_rot,pa->r_rot);
VECCOPY(r_ave,pa->r_ave);
VECCOPY(p_vel,state.vel);
speed=Normalize(p_vel);
VecMulf(p_vel,Inpf(pa->r_ve,p_vel));
VECSUB(p_vel,pa->r_ve,p_vel);
Normalize(p_vel);
VecMulf(p_vel,speed);
VECCOPY(pa->fuv,loc); /* abusing pa->fuv (not used for "from particle") for storing emit location */
}
else{
/* get precise emitter matrix if particle is born */
if(part->type!=PART_HAIR && pa->time < cfra && pa->time >= psys->cfra)
where_is_object_time(scene, ob,pa->time);
/* get birth location from object */
psys_particle_on_emitter(psmd,part->from,pa->num, pa->num_dmcache, pa->fuv,pa->foffset,loc,nor,utan,vtan,0,0);
/* save local coordinates for later */
VECCOPY(tloc,loc);
/* get possible textural influence */
psys_get_texture(ob,give_current_material(ob,part->omat),psmd,psys,pa,&ptex,MAP_PA_IVEL);
if(vg_vel && pa->num != -1)
ptex.ivel*=psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_vel);
/* particles live in global space so */
/* let's convert: */
/* -location */
Mat4MulVecfl(ob->obmat,loc);
/* -normal */
VECADD(nor,tloc,nor);
Mat4MulVecfl(ob->obmat,nor);
VECSUB(nor,nor,loc);
Normalize(nor);
/* -tangent */
if(part->tanfac!=0.0){
float phase=vg_rot?2.0f*(psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_rot)-0.5f):0.0f;
VecMulf(vtan,-(float)cos(M_PI*(part->tanphase+phase)));
fac=-(float)sin(M_PI*(part->tanphase+phase));
VECADDFAC(vtan,vtan,utan,fac);
VECADD(vtan,tloc,vtan);
Mat4MulVecfl(ob->obmat,vtan);
VECSUB(vtan,vtan,loc);
VECCOPY(utan,nor);
VecMulf(utan,Inpf(vtan,nor));
VECSUB(vtan,vtan,utan);
Normalize(vtan);
}
/* -velocity */
if(part->randfac!=0.0){
VECADD(r_vel,tloc,pa->r_ve);
Mat4MulVecfl(ob->obmat,r_vel);
VECSUB(r_vel,r_vel,loc);
Normalize(r_vel);
}
/* -angular velocity */
if(part->avemode==PART_AVE_RAND){
VECADD(r_ave,tloc,pa->r_ave);
Mat4MulVecfl(ob->obmat,r_ave);
VECSUB(r_ave,r_ave,loc);
Normalize(r_ave);
}
/* -rotation */
if(part->randrotfac != 0.0f){
QUATCOPY(r_rot,pa->r_rot);
Mat4ToQuat(ob->obmat,rot);
QuatMul(r_rot,r_rot,rot);
}
}
/* conversion done so now we apply new: */
/* -velocity from: */
/* *reactions */
if(dtime>0.0f){
VECSUB(vel,pa->state.vel,pa->prev_state.vel);
}
/* *emitter velocity */
if(dtime!=0.0 && part->obfac!=0.0){
VECSUB(vel,loc,pa->state.co);
VecMulf(vel,part->obfac/dtime);
}
/* *emitter normal */
if(part->normfac!=0.0)
VECADDFAC(vel,vel,nor,part->normfac);
/* *emitter tangent */
if(part->tanfac!=0.0)
VECADDFAC(vel,vel,vtan,part->tanfac*(vg_tan?psys_particle_value_from_verts(psmd->dm,part->from,pa,vg_tan):1.0f));
/* *texture */
/* TODO */
/* *random */
if(part->randfac!=0.0)
VECADDFAC(vel,vel,r_vel,part->randfac);
/* *particle */
if(part->partfac!=0.0)
VECADDFAC(vel,vel,p_vel,part->partfac);
#if 0 // XXX old animation system
icu=find_ipocurve(psys->part->ipo,PART_EMIT_VEL);
if(icu){
calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta)));
ptex.ivel*=icu->curval;
}
#endif // XXX old animation system
VecMulf(vel,ptex.ivel);
VECCOPY(pa->state.vel,vel);
/* -location from emitter */
VECCOPY(pa->state.co,loc);
/* -rotation */
pa->state.rot[0]=1.0;
pa->state.rot[1]=pa->state.rot[2]=pa->state.rot[3]=0.0;
if(part->rotmode){
/* create vector into which rotation is aligned */
switch(part->rotmode){
case PART_ROT_NOR:
VecCopyf(rot_vec, nor);
break;
case PART_ROT_VEL:
VecCopyf(rot_vec, vel);
break;
case PART_ROT_GLOB_X:
case PART_ROT_GLOB_Y:
case PART_ROT_GLOB_Z:
rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f;
break;
case PART_ROT_OB_X:
case PART_ROT_OB_Y:
case PART_ROT_OB_Z:
VecCopyf(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]);
break;
}
/* create rotation quat */
VecNegf(rot_vec);
vectoquat(rot_vec, OB_POSX, OB_POSZ, q2);
/* randomize rotation quat */
if(part->randrotfac!=0.0f)
QuatInterpol(rot, q2, r_rot, part->randrotfac);
else
QuatCopy(rot,q2);
/* rotation phase */
phasefac = part->phasefac;
if(part->randphasefac != 0.0f) /* abuse r_ave[0] as a random number */
phasefac += part->randphasefac * pa->r_ave[0];
VecRotToQuat(x_vec, phasefac*(float)M_PI, q_phase);
/* combine base rotation & phase */
QuatMul(pa->state.rot, rot, q_phase);
}
/* -angular velocity */
pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0;
if(part->avemode){
switch(part->avemode){
case PART_AVE_SPIN:
VECCOPY(pa->state.ave,vel);
break;
case PART_AVE_RAND:
VECCOPY(pa->state.ave,r_ave);
break;
}
Normalize(pa->state.ave);
VecMulf(pa->state.ave,part->avefac);
#if 0 // XXX old animation system
icu=find_ipocurve(psys->part->ipo,PART_EMIT_AVE);
if(icu){
calc_icu(icu,100*((pa->time-part->sta)/(part->end-part->sta)));
VecMulf(pa->state.ave,icu->curval);
}
#endif // XXX old animation system
}
pa->dietime = pa->time + pa->lifetime;
if(pa->time >= cfra)
pa->alive = PARS_UNBORN;
pa->state.time = cfra;
pa->stick_ob = 0;
pa->flag &= ~PARS_STICKY;
}
static void reset_all_particles(Scene *scene, Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float dtime, float cfra, int from)
{
ParticleData *pa;
int p, totpart=psys->totpart;
float *vg_vel=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_VEL);
float *vg_tan=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_TAN);
float *vg_rot=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_ROT);
for(p=from, pa=psys->particles+from; p<totpart; p++, pa++)
reset_particle(scene, pa, psys, psmd, ob, dtime, cfra, vg_vel, vg_tan, vg_rot);
if(vg_vel)
MEM_freeN(vg_vel);
}
/************************************************/
/* Keyed particles */
/************************************************/
/* a bit of an unintuitive function :) counts objects in a keyed chain and returns 1 if some of them were selected (used in drawing) */
int psys_count_keyed_targets(Object *ob, ParticleSystem *psys)
{
ParticleSystem *kpsys=psys,*tpsys;
ParticleSettings *tpart;
Object *kob=ob,*tob;
int select=ob->flag&SELECT;
short totkeyed=0;
Base *base;
ListBase lb;
lb.first=lb.last=0;
tob=psys->keyed_ob;
while(tob){
if((tpsys=BLI_findlink(&tob->particlesystem,kpsys->keyed_psys-1))){
tpart=tpsys->part;
if(tpart->phystype==PART_PHYS_KEYED){
if(lb.first){
for(base=lb.first;base;base=base->next){
if(tob==base->object){
fprintf(stderr,"Error: loop in keyed chain!\n");
BLI_freelistN(&lb);
return select;
}
}
}
base=MEM_callocN(sizeof(Base), "keyed base");
base->object=tob;
BLI_addtail(&lb,base);
if(tob->flag&SELECT)
select++;
kob=tob;
kpsys=tpsys;
tob=tpsys->keyed_ob;
totkeyed++;
}
else{
tob=0;
totkeyed++;
}
}
else
tob=0;
}
psys->totkeyed=totkeyed;
BLI_freelistN(&lb);
return select;
}
static void set_keyed_keys(Scene *scene, Object *ob, ParticleSystem *psys)
{
Object *kob = ob;
ParticleSystem *kpsys = psys;
ParticleData *pa;
int totpart = psys->totpart, i, k, totkeys = psys->totkeyed + 1;
float prevtime, nexttime, keyedtime;
/* no proper targets so let's clear and bail out */
if(psys->totkeyed==0) {
free_keyed_keys(psys);
psys->flag &= ~PSYS_KEYED;
return;
}
if(totpart && psys->particles->totkey != totkeys) {
free_keyed_keys(psys);
psys->particles->keys = MEM_callocN(psys->totpart*totkeys*sizeof(ParticleKey), "Keyed keys");
psys->particles->totkey = totkeys;
for(i=1, pa=psys->particles+1; i<totpart; i++,pa++){
pa->keys = (pa-1)->keys + totkeys;
pa->totkey = totkeys;
}
}
psys->flag &= ~PSYS_KEYED;
for(k=0; k<totkeys; k++) {
for(i=0,pa=psys->particles; i<totpart; i++, pa++) {
(pa->keys + k)->time = -1.0; /* use current time */
if(kpsys->totpart > 0)
psys_get_particle_state(scene, kob, kpsys, i%kpsys->totpart, pa->keys + k, 1);
if(k==0)
pa->keys->time = pa->time;
else if(k==totkeys-1)
(pa->keys + k)->time = pa->time + pa->lifetime;
else{
if(psys->flag & PSYS_KEYED_TIME){
prevtime = (pa->keys + k - 1)->time;
nexttime = pa->time + pa->lifetime;
keyedtime = kpsys->part->keyed_time;
(pa->keys + k)->time = (1.0f - keyedtime) * prevtime + keyedtime * nexttime;
}
else
(pa->keys+k)->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
}
}
if(kpsys->keyed_ob){
kob = kpsys->keyed_ob;
kpsys = BLI_findlink(&kob->particlesystem, kpsys->keyed_psys - 1);
}
}
psys->flag |= PSYS_KEYED;
}
/************************************************/
/* Reactors */
/************************************************/
static void push_reaction(Object* ob, ParticleSystem *psys, int pa_num, int event, ParticleKey *state)
{
Object *rob;
ParticleSystem *rpsys;
ParticleSettings *rpart;
ParticleData *pa;
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
ParticleReactEvent *re;
if(lb->first) for(ec = lb->first; ec; ec= ec->next){
if(ec->type & PSYS_EC_REACTOR){
/* all validity checks already done in add_to_effectors */
rob=ec->ob;
rpsys=BLI_findlink(&rob->particlesystem,ec->psys_nbr);
rpart=rpsys->part;
if(rpsys->part->reactevent==event){
pa=psys->particles+pa_num;
re= MEM_callocN(sizeof(ParticleReactEvent), "react event");
re->event=event;
re->pa_num = pa_num;
re->ob = ob;
re->psys = psys;
re->size = pa->size;
copy_particle_key(&re->state,state,1);
switch(event){
case PART_EVENT_DEATH:
re->time=pa->dietime;
break;
case PART_EVENT_COLLIDE:
re->time=state->time;
break;
case PART_EVENT_NEAR:
re->time=state->time;
break;
}
BLI_addtail(&rpsys->reactevents, re);
}
}
}
}
static void react_to_events(ParticleSystem *psys, int pa_num)
{
ParticleSettings *part=psys->part;
ParticleData *pa=psys->particles+pa_num;
ParticleReactEvent *re=psys->reactevents.first;
int birth=0;
float dist=0.0f;
for(re=psys->reactevents.first; re; re=re->next){
birth=0;
if(part->from==PART_FROM_PARTICLE){
if(pa->num==re->pa_num && pa->alive==PARS_UNBORN){
if(re->event==PART_EVENT_NEAR){
ParticleData *tpa = re->psys->particles+re->pa_num;
float pa_time=tpa->time + pa->foffset*tpa->lifetime;
if(re->time >= pa_time){
pa->time=pa_time;
pa->dietime=pa->time+pa->lifetime;
}
}
else{
pa->time=re->time;
pa->dietime=pa->time+pa->lifetime;
}
}
}
else{
dist=VecLenf(pa->state.co, re->state.co);
if(dist <= re->size){
if(pa->alive==PARS_UNBORN){
pa->time=re->time;
pa->dietime=pa->time+pa->lifetime;
birth=1;
}
if(birth || part->flag&PART_REACT_MULTIPLE){
float vec[3];
VECSUB(vec,pa->state.co, re->state.co);
if(birth==0)
VecMulf(vec,(float)pow(1.0f-dist/re->size,part->reactshape));
VECADDFAC(pa->state.vel,pa->state.vel,vec,part->reactfac);
VECADDFAC(pa->state.vel,pa->state.vel,re->state.vel,part->partfac);
}
if(birth)
VecMulf(pa->state.vel,(float)pow(1.0f-dist/re->size,part->reactshape));
}
}
}
}
void psys_get_reactor_target(Object *ob, ParticleSystem *psys, Object **target_ob, ParticleSystem **target_psys)
{
Object *tob;
tob=psys->target_ob;
if(tob==0)
tob=ob;
*target_psys=BLI_findlink(&tob->particlesystem,psys->target_psys-1);
if(*target_psys)
*target_ob=tob;
else
*target_ob=0;
}
/************************************************/
/* Point Cache */
/************************************************/
static void write_particles_to_cache(Object *ob, ParticleSystem *psys, int cfra)
{
PTCacheID pid;
PTCacheFile *pf;
ParticleData *pa;
int i, totpart= psys->totpart;
if(totpart == 0)
return;
BKE_ptcache_id_from_particles(&pid, ob, psys);
pf= BKE_ptcache_file_open(&pid, PTCACHE_FILE_WRITE, cfra);
if(!pf)
return;
/* assuming struct consists of tightly packed floats */
for(i=0, pa=psys->particles; i<totpart; i++, pa++)
BKE_ptcache_file_write_floats(pf, (float*)&pa->state, sizeof(ParticleKey)/sizeof(float));
BKE_ptcache_file_close(pf);
}
static int get_particles_from_cache(Object *ob, ParticleSystem *psys, int cfra)
{
PTCacheID pid;
PTCacheFile *pf;
ParticleData *pa;
int i, totpart= psys->totpart;
if(totpart == 0)
return 0;
BKE_ptcache_id_from_particles(&pid, ob, psys);
pf= BKE_ptcache_file_open(&pid, PTCACHE_FILE_READ, cfra);
if(!pf)
return 0;
/* assuming struct consists of tightly packed floats */
for(i=0, pa=psys->particles; i<totpart; i++, pa++) {
if(cfra!=pa->state.time)
copy_particle_key(&pa->prev_state,&pa->state,1);
if(!BKE_ptcache_file_read_floats(pf, (float*)&pa->state, sizeof(ParticleKey)/sizeof(float))) {
BKE_ptcache_file_close(pf);
return 0;
}
}
BKE_ptcache_file_close(pf);
return 1;
}
/************************************************/
/* Effectors */
/************************************************/
static void do_texture_effector(Tex *tex, short mode, short is_2d, float nabla, short object, float *pa_co, float obmat[4][4], float force_val, float falloff, float *field)
{
TexResult result[4];
float tex_co[3], strength, mag_vec[3];
int hasrgb;
if(tex==NULL) return;
result[0].nor = result[1].nor = result[2].nor = result[3].nor = 0;
strength= force_val*falloff;///(float)pow((double)distance,(double)power);
VECCOPY(tex_co,pa_co);
if(is_2d){
float fac=-Inpf(tex_co,obmat[2]);
VECADDFAC(tex_co,tex_co,obmat[2],fac);
}
if(object){
VecSubf(tex_co,tex_co,obmat[3]);
Mat4Mul3Vecfl(obmat,tex_co);
}
hasrgb = multitex_ext(tex, tex_co, NULL,NULL, 1, result);
if(hasrgb && mode==PFIELD_TEX_RGB){
mag_vec[0]= (0.5f-result->tr)*strength;
mag_vec[1]= (0.5f-result->tg)*strength;
mag_vec[2]= (0.5f-result->tb)*strength;
}
else{
strength/=nabla;
tex_co[0]+= nabla;
multitex_ext(tex, tex_co, NULL,NULL, 1, result+1);
tex_co[0]-= nabla;
tex_co[1]+= nabla;
multitex_ext(tex, tex_co, NULL,NULL, 1, result+2);
tex_co[1]-= nabla;
tex_co[2]+= nabla;
multitex_ext(tex, tex_co, NULL,NULL, 1, result+3);
if(mode==PFIELD_TEX_GRAD || !hasrgb){ /* if we dont have rgb fall back to grad */
mag_vec[0]= (result[0].tin-result[1].tin)*strength;
mag_vec[1]= (result[0].tin-result[2].tin)*strength;
mag_vec[2]= (result[0].tin-result[3].tin)*strength;
}
else{ /*PFIELD_TEX_CURL*/
float dbdy,dgdz,drdz,dbdx,dgdx,drdy;
dbdy= result[2].tb-result[0].tb;
dgdz= result[3].tg-result[0].tg;
drdz= result[3].tr-result[0].tr;
dbdx= result[1].tb-result[0].tb;
dgdx= result[1].tg-result[0].tg;
drdy= result[2].tr-result[0].tr;
mag_vec[0]=(dbdy-dgdz)*strength;
mag_vec[1]=(drdz-dbdx)*strength;
mag_vec[2]=(dgdx-drdy)*strength;
}
}
if(is_2d){
float fac=-Inpf(mag_vec,obmat[2]);
VECADDFAC(mag_vec,mag_vec,obmat[2],fac);
}
VecAddf(field,field,mag_vec);
}
static void add_to_effectors(ListBase *lb, Scene *scene, Object *ob, Object *obsrc, ParticleSystem *psys)
{
ParticleEffectorCache *ec;
PartDeflect *pd= ob->pd;
short type=0,i;
if(pd && ob != obsrc){
if(pd->forcefield == PFIELD_GUIDE) {
if(ob->type==OB_CURVE) {
Curve *cu= ob->data;
if(cu->flag & CU_PATH) {
if(cu->path==NULL || cu->path->data==NULL)
makeDispListCurveTypes(scene, ob, 0);
if(cu->path && cu->path->data) {
type |= PSYS_EC_EFFECTOR;
}
}
}
}
else if(pd->forcefield)
{
type |= PSYS_EC_EFFECTOR;
}
}
if(pd && pd->deflect)
type |= PSYS_EC_DEFLECT;
if(type){
ec= MEM_callocN(sizeof(ParticleEffectorCache), "effector cache");
ec->ob= ob;
ec->type=type;
ec->distances=0;
ec->locations=0;
ec->rng = rng_new(1);
rng_srandom(ec->rng, (unsigned int)(ceil(PIL_check_seconds_timer()))); // use better seed
BLI_addtail(lb, ec);
}
type=0;
/* add particles as different effectors */
if(ob->particlesystem.first){
ParticleSystem *epsys=ob->particlesystem.first;
ParticleSettings *epart=0;
Object *tob;
for(i=0; epsys; epsys=epsys->next,i++){
type=0;
if(epsys!=psys || (psys->part->flag & PART_SELF_EFFECT)){
epart=epsys->part;
if((epsys->part->pd && epsys->part->pd->forcefield)
|| (epsys->part->pd2 && epsys->part->pd2->forcefield))
{
type=PSYS_EC_PARTICLE;
}
if(epart->type==PART_REACTOR) {
tob=epsys->target_ob;
if(tob==0)
tob=ob;
if(BLI_findlink(&tob->particlesystem,epsys->target_psys-1)==psys)
type|=PSYS_EC_REACTOR;
}
if(type){
ec= MEM_callocN(sizeof(ParticleEffectorCache), "effector cache");
ec->ob= ob;
ec->type=type;
ec->psys_nbr=i;
ec->rng = rng_new(1);
rng_srandom(ec->rng, (unsigned int)(ceil(PIL_check_seconds_timer())));
BLI_addtail(lb, ec);
}
}
}
}
}
static void psys_init_effectors_recurs(Scene *scene, Object *ob, Object *obsrc, ParticleSystem *psys, ListBase *listb, int level)
{
Group *group;
GroupObject *go;
unsigned int layer= obsrc->lay;
if(level>MAX_DUPLI_RECUR) return;
if(ob->lay & layer) {
if(ob->pd || ob->particlesystem.first)
add_to_effectors(listb, scene, ob, obsrc, psys);
if(ob->dup_group) {
group= ob->dup_group;
for(go= group->gobject.first; go; go= go->next)
psys_init_effectors_recurs(scene, go->ob, obsrc, psys, listb, level+1);
}
}
}
void psys_init_effectors(Scene *scene, Object *obsrc, Group *group, ParticleSystem *psys)
{
ListBase *listb= &psys->effectors;
Base *base;
listb->first=listb->last=0;
if(group) {
GroupObject *go;
for(go= group->gobject.first; go; go= go->next)
psys_init_effectors_recurs(scene, go->ob, obsrc, psys, listb, 0);
}
else {
for(base = scene->base.first; base; base= base->next)
psys_init_effectors_recurs(scene, base->object, obsrc, psys, listb, 0);
}
}
void psys_end_effectors(ParticleSystem *psys)
{
/* NOTE:
ec->ob is not valid in here anymore! - dg
*/
ListBase *lb=&psys->effectors;
if(lb->first) {
ParticleEffectorCache *ec;
for(ec= lb->first; ec; ec= ec->next){
if(ec->distances)
MEM_freeN(ec->distances);
if(ec->locations)
MEM_freeN(ec->locations);
if(ec->face_minmax)
MEM_freeN(ec->face_minmax);
if(ec->vert_cos)
MEM_freeN(ec->vert_cos);
if(ec->tree)
BLI_kdtree_free(ec->tree);
if(ec->rng)
rng_free(ec->rng);
}
BLI_freelistN(lb);
}
}
static void precalc_effectors(Scene *scene, Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra)
{
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
ParticleSettings *part=psys->part;
ParticleData *pa;
float vec2[3],loc[3],*co=0;
int p,totpart;
for(ec= lb->first; ec; ec= ec->next) {
PartDeflect *pd= ec->ob->pd;
co = NULL;
if(ec->type==PSYS_EC_EFFECTOR && pd->forcefield==PFIELD_GUIDE && ec->ob->type==OB_CURVE
&& part->phystype!=PART_PHYS_BOIDS) {
float vec[4];
where_on_path(ec->ob, 0.0, vec, vec2);
Mat4MulVecfl(ec->ob->obmat,vec);
Mat4Mul3Vecfl(ec->ob->obmat,vec2);
QUATCOPY(ec->firstloc,vec);
VECCOPY(ec->firstdir,vec2);
totpart=psys->totpart;
if(totpart){
ec->distances=MEM_callocN(totpart*sizeof(float),"particle distances");
ec->locations=MEM_callocN(totpart*3*sizeof(float),"particle locations");
for(p=0,pa=psys->particles; p<totpart; p++, pa++){
if(part->from == PART_FROM_PARTICLE) {
VECCOPY(loc, pa->fuv);
}
else
psys_particle_on_emitter(psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,loc,0,0,0,0,0);
Mat4MulVecfl(ob->obmat,loc);
ec->distances[p]=VecLenf(loc,vec);
VECSUB(loc,loc,vec);
VECCOPY(ec->locations+3*p,loc);
}
}
}
else if(ec->type==PSYS_EC_PARTICLE){
Object *eob = ec->ob;
ParticleSystem *epsys = BLI_findlink(&eob->particlesystem,ec->psys_nbr);
ParticleSettings *epart = epsys->part;
ParticleData *epa;
int p, totepart = epsys->totpart;
if(psys->part->phystype==PART_PHYS_BOIDS){
ParticleKey state;
PartDeflect *pd;
pd= epart->pd;
if(pd->forcefield==PFIELD_FORCE && totepart){
KDTree *tree;
tree=BLI_kdtree_new(totepart);
ec->tree=tree;
for(p=0, epa=epsys->particles; p<totepart; p++,epa++)
if(epa->alive==PARS_ALIVE && psys_get_particle_state(scene, eob,epsys,p,&state,0))
BLI_kdtree_insert(tree, p, state.co, NULL);
BLI_kdtree_balance(tree);
}
}
}
else if(ec->type==PSYS_EC_DEFLECT) {
CollisionModifierData *collmd = ( CollisionModifierData * ) ( modifiers_findByType ( ec->ob, eModifierType_Collision ) );
if(collmd)
collision_move_object(collmd, 1.0, 0.0);
}
}
}
/* calculate forces that all effectors apply to a particle*/
void do_effectors(int pa_no, ParticleData *pa, ParticleKey *state, Scene *scene, Object *ob, ParticleSystem *psys, float *rootco, float *force_field, float *vel,float framestep, float cfra)
{
Object *eob;
ParticleSystem *epsys;
ParticleSettings *epart;
ParticleData *epa;
ParticleKey estate;
PartDeflect *pd;
SurfaceModifierData *surmd = NULL;
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
float distance, vec_to_part[3];
float falloff, charge = 0.0f;
int p;
/* check all effector objects for interaction */
if(lb->first){
if(psys->part->pd && psys->part->pd->forcefield==PFIELD_CHARGE){
/* Only the charge of the effected particle is used for
interaction, not fall-offs. If the fall-offs aren't the
same this will be unphysical, but for animation this
could be the wanted behavior. If you want physical
correctness the fall-off should be spherical 2.0 anyways.
*/
charge = psys->part->pd->f_strength;
}
if(psys->part->pd2 && psys->part->pd2->forcefield==PFIELD_CHARGE){
charge += psys->part->pd2->f_strength;
}
for(ec = lb->first; ec; ec= ec->next){
eob= ec->ob;
if(ec->type & PSYS_EC_EFFECTOR){
pd=eob->pd;
if(psys->part->type!=PART_HAIR && psys->part->integrator)
where_is_object_time(scene, eob,cfra);
if(pd && pd->flag&PFIELD_SURFACE) {
surmd = (SurfaceModifierData *)modifiers_findByType ( eob, eModifierType_Surface );
}
if(surmd) {
/* closest point in the object surface is an effector */
BVHTreeNearest nearest;
float velocity[3];
nearest.index = -1;
nearest.dist = FLT_MAX;
/* using velocity corrected location allows for easier sliding over effector surface */
VecCopyf(velocity, state->vel);
VecMulf(velocity, psys_get_timestep(psys->part));
VecAddf(vec_to_part, state->co, velocity);
BLI_bvhtree_find_nearest(surmd->bvhtree->tree, vec_to_part, &nearest, surmd->bvhtree->nearest_callback, surmd->bvhtree);
if(nearest.index != -1) {
VecSubf(vec_to_part, state->co, nearest.co);
}
else
vec_to_part[0] = vec_to_part[1] = vec_to_part[2] = 0.0f;
}
else
/* use center of object for distance calculus */
VecSubf(vec_to_part, state->co, eob->obmat[3]);
distance = VecLength(vec_to_part);
falloff=effector_falloff(pd,eob->obmat[2],vec_to_part);
if(falloff<=0.0f)
; /* don't do anything */
else if(pd->forcefield==PFIELD_TEXTURE) {
do_texture_effector(pd->tex, pd->tex_mode, pd->flag&PFIELD_TEX_2D, pd->tex_nabla,
pd->flag & PFIELD_TEX_OBJECT, (pd->flag & PFIELD_TEX_ROOTCO) ? rootco : state->co, eob->obmat,
pd->f_strength, falloff, force_field);
} else {
do_physical_effector(scene, eob, state->co, pd->forcefield,pd->f_strength,distance,
falloff,0.0,pd->f_damp,eob->obmat[2],vec_to_part,
state->vel,force_field,pd->flag&PFIELD_PLANAR,ec->rng,pd->f_noise,charge,pa->size);
}
}
if(ec->type & PSYS_EC_PARTICLE){
int totepart, i;
epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
epart= epsys->part;
pd=epart->pd;
totepart= epsys->totpart;
if(totepart <= 0)
continue;
if(pd && pd->forcefield==PFIELD_HARMONIC){
/* every particle is mapped to only one harmonic effector particle */
p= pa_no%epsys->totpart;
totepart= p+1;
}
else{
p=0;
}
epsys->lattice= psys_get_lattice(scene, ob, psys);
for(; p<totepart; p++){
/* particle skips itself as effector */
if(epsys==psys && p == pa_no) continue;
epa = epsys->particles + p;
estate.time=cfra;
if(psys_get_particle_state(scene, eob,epsys,p,&estate,0)){
VECSUB(vec_to_part, state->co, estate.co);
distance = VecLength(vec_to_part);
for(i=0, pd = epart->pd; i<2; i++,pd = epart->pd2) {
if(pd==NULL || pd->forcefield==0) continue;
falloff=effector_falloff(pd,estate.vel,vec_to_part);
if(falloff<=0.0f)
; /* don't do anything */
else
do_physical_effector(scene, eob, state->co, pd->forcefield,pd->f_strength,distance,
falloff,epart->size,pd->f_damp,estate.vel,vec_to_part,
state->vel,force_field,0, ec->rng, pd->f_noise,charge,pa->size);
}
}
else if(pd && pd->forcefield==PFIELD_HARMONIC && cfra-framestep <= epa->dietime && cfra>epa->dietime){
/* first step after key release */
psys_get_particle_state(scene, eob,epsys,p,&estate,1);
VECADD(vel,vel,estate.vel);
/* TODO: add rotation handling here too */
}
}
if(epsys->lattice){
end_latt_deform(epsys->lattice);
epsys->lattice= NULL;
}
}
}
}
}
/************************************************/
/* Newtonian physics */
/************************************************/
/* gathers all forces that effect particles and calculates a new state for the particle */
static void apply_particle_forces(Scene *scene, int pa_no, ParticleData *pa, Object *ob, ParticleSystem *psys, ParticleSettings *part, float timestep, float dfra, float cfra)
{
ParticleKey states[5], tkey;
float force[3],tvel[3],dx[4][3],dv[4][3];
float dtime=dfra*timestep, time, pa_mass=part->mass, fac, fra=psys->cfra;
int i, steps=1;
/* maintain angular velocity */
VECCOPY(pa->state.ave,pa->prev_state.ave);
if(part->flag & PART_SIZEMASS)
pa_mass*=pa->size;
switch(part->integrator){
case PART_INT_EULER:
steps=1;
break;
case PART_INT_MIDPOINT:
steps=2;
break;
case PART_INT_RK4:
steps=4;
break;
}
copy_particle_key(states,&pa->state,1);
for(i=0; i<steps; i++){
force[0]=force[1]=force[2]=0.0;
tvel[0]=tvel[1]=tvel[2]=0.0;
/* add effectors */
if(part->type != PART_HAIR)
do_effectors(pa_no,pa,states+i,scene, ob, psys,states->co,force,tvel,dfra,fra);
/* calculate air-particle interaction */
if(part->dragfac!=0.0f){
fac=-part->dragfac*pa->size*pa->size*VecLength(states[i].vel);
VECADDFAC(force,force,states[i].vel,fac);
}
/* brownian force */
if(part->brownfac!=0.0){
force[0]+=(BLI_frand()-0.5f)*part->brownfac;
force[1]+=(BLI_frand()-0.5f)*part->brownfac;
force[2]+=(BLI_frand()-0.5f)*part->brownfac;
}
/* force to acceleration*/
VecMulf(force,1.0f/pa_mass);
/* add global acceleration (gravitation) */
VECADD(force,force,part->acc);
/* calculate next state */
VECADD(states[i].vel,states[i].vel,tvel);
switch(part->integrator){
case PART_INT_EULER:
VECADDFAC(pa->state.co,states->co,states->vel,dtime);
VECADDFAC(pa->state.vel,states->vel,force,dtime);
break;
case PART_INT_MIDPOINT:
if(i==0){
VECADDFAC(states[1].co,states->co,states->vel,dtime*0.5f);
VECADDFAC(states[1].vel,states->vel,force,dtime*0.5f);
fra=psys->cfra+0.5f*dfra;
}
else{
VECADDFAC(pa->state.co,states->co,states[1].vel,dtime);
VECADDFAC(pa->state.vel,states->vel,force,dtime);
}
break;
case PART_INT_RK4:
switch(i){
case 0:
VECCOPY(dx[0],states->vel);
VecMulf(dx[0],dtime);
VECCOPY(dv[0],force);
VecMulf(dv[0],dtime);
VECADDFAC(states[1].co,states->co,dx[0],0.5f);
VECADDFAC(states[1].vel,states->vel,dv[0],0.5f);
fra=psys->cfra+0.5f*dfra;
break;
case 1:
VECADDFAC(dx[1],states->vel,dv[0],0.5f);
VecMulf(dx[1],dtime);
VECCOPY(dv[1],force);
VecMulf(dv[1],dtime);
VECADDFAC(states[2].co,states->co,dx[1],0.5f);
VECADDFAC(states[2].vel,states->vel,dv[1],0.5f);
break;
case 2:
VECADDFAC(dx[2],states->vel,dv[1],0.5f);
VecMulf(dx[2],dtime);
VECCOPY(dv[2],force);
VecMulf(dv[2],dtime);
VECADD(states[3].co,states->co,dx[2]);
VECADD(states[3].vel,states->vel,dv[2]);
fra=cfra;
break;
case 3:
VECADD(dx[3],states->vel,dv[2]);
VecMulf(dx[3],dtime);
VECCOPY(dv[3],force);
VecMulf(dv[3],dtime);
VECADDFAC(pa->state.co,states->co,dx[0],1.0f/6.0f);
VECADDFAC(pa->state.co,pa->state.co,dx[1],1.0f/3.0f);
VECADDFAC(pa->state.co,pa->state.co,dx[2],1.0f/3.0f);
VECADDFAC(pa->state.co,pa->state.co,dx[3],1.0f/6.0f);
VECADDFAC(pa->state.vel,states->vel,dv[0],1.0f/6.0f);
VECADDFAC(pa->state.vel,pa->state.vel,dv[1],1.0f/3.0f);
VECADDFAC(pa->state.vel,pa->state.vel,dv[2],1.0f/3.0f);
VECADDFAC(pa->state.vel,pa->state.vel,dv[3],1.0f/6.0f);
}
break;
}
}
/* damp affects final velocity */
if(part->dampfac!=0.0)
VecMulf(pa->state.vel,1.0f-part->dampfac);
/* finally we do guides */
time=(cfra-pa->time)/pa->lifetime;
CLAMP(time,0.0,1.0);
VECCOPY(tkey.co,pa->state.co);
VECCOPY(tkey.vel,pa->state.vel);
tkey.time=pa->state.time;
if(part->type != PART_HAIR) {
if(do_guide(scene, &tkey, pa_no, time, &psys->effectors)) {
VECCOPY(pa->state.co,tkey.co);
/* guides don't produce valid velocity */
VECSUB(pa->state.vel,tkey.co,pa->prev_state.co);
VecMulf(pa->state.vel,1.0f/dtime);
pa->state.time=tkey.time;
}
}
}
static void rotate_particle(ParticleSettings *part, ParticleData *pa, float dfra, float timestep)
{
float rotfac, rot1[4], rot2[4]={1.0,0.0,0.0,0.0}, dtime=dfra*timestep;
if((part->flag & PART_ROT_DYN)==0){
if(part->avemode==PART_AVE_SPIN){
float angle;
float len1 = VecLength(pa->prev_state.vel);
float len2 = VecLength(pa->state.vel);
if(len1==0.0f || len2==0.0f)
pa->state.ave[0]=pa->state.ave[1]=pa->state.ave[2]=0.0f;
else{
Crossf(pa->state.ave,pa->prev_state.vel,pa->state.vel);
Normalize(pa->state.ave);
angle=Inpf(pa->prev_state.vel,pa->state.vel)/(len1*len2);
VecMulf(pa->state.ave,saacos(angle)/dtime);
}
VecRotToQuat(pa->state.vel,dtime*part->avefac,rot2);
}
}
rotfac=VecLength(pa->state.ave);
if(rotfac==0.0){ /* QuatOne (in VecRotToQuat) doesn't give unit quat [1,0,0,0]?? */
rot1[0]=1.0;
rot1[1]=rot1[2]=rot1[3]=0;
}
else{
VecRotToQuat(pa->state.ave,rotfac*dtime,rot1);
}
QuatMul(pa->state.rot,rot1,pa->prev_state.rot);
QuatMul(pa->state.rot,rot2,pa->state.rot);
/* keep rotation quat in good health */
NormalQuat(pa->state.rot);
}
/* convert from triangle barycentric weights to quad mean value weights */
static void intersect_dm_quad_weights(float *v1, float *v2, float *v3, float *v4, float *w)
{
float co[3], vert[4][3];
VECCOPY(vert[0], v1);
VECCOPY(vert[1], v2);
VECCOPY(vert[2], v3);
VECCOPY(vert[3], v4);
co[0]= v1[0]*w[0] + v2[0]*w[1] + v3[0]*w[2] + v4[0]*w[3];
co[1]= v1[1]*w[0] + v2[1]*w[1] + v3[1]*w[2] + v4[1]*w[3];
co[2]= v1[2]*w[0] + v2[2]*w[1] + v3[2]*w[2] + v4[2]*w[3];
MeanValueWeights(vert, 4, co, w);
}
/* check intersection with a derivedmesh */
int psys_intersect_dm(Scene *scene, Object *ob, DerivedMesh *dm, float *vert_cos, float *co1, float* co2, float *min_d, int *min_face, float *min_w,
float *face_minmax, float *pa_minmax, float radius, float *ipoint)
{
MFace *mface=0;
MVert *mvert=0;
int i, totface, intersect=0;
float cur_d, cur_uv[2], v1[3], v2[3], v3[3], v4[3], min[3], max[3], p_min[3],p_max[3];
float cur_ipoint[3];
if(dm==0){
psys_disable_all(ob);
dm=mesh_get_derived_final(scene, ob, 0);
if(dm==0)
dm=mesh_get_derived_deform(scene, ob, 0);
psys_enable_all(ob);
if(dm==0)
return 0;
}
if(pa_minmax==0){
INIT_MINMAX(p_min,p_max);
DO_MINMAX(co1,p_min,p_max);
DO_MINMAX(co2,p_min,p_max);
}
else{
VECCOPY(p_min,pa_minmax);
VECCOPY(p_max,pa_minmax+3);
}
totface=dm->getNumFaces(dm);
mface=dm->getFaceDataArray(dm,CD_MFACE);
mvert=dm->getVertDataArray(dm,CD_MVERT);
/* lets intersect the faces */
for(i=0; i<totface; i++,mface++){
if(vert_cos){
VECCOPY(v1,vert_cos+3*mface->v1);
VECCOPY(v2,vert_cos+3*mface->v2);
VECCOPY(v3,vert_cos+3*mface->v3);
if(mface->v4)
VECCOPY(v4,vert_cos+3*mface->v4)
}
else{
VECCOPY(v1,mvert[mface->v1].co);
VECCOPY(v2,mvert[mface->v2].co);
VECCOPY(v3,mvert[mface->v3].co);
if(mface->v4)
VECCOPY(v4,mvert[mface->v4].co)
}
if(face_minmax==0){
INIT_MINMAX(min,max);
DO_MINMAX(v1,min,max);
DO_MINMAX(v2,min,max);
DO_MINMAX(v3,min,max);
if(mface->v4)
DO_MINMAX(v4,min,max)
if(AabbIntersectAabb(min,max,p_min,p_max)==0)
continue;
}
else{
VECCOPY(min, face_minmax+6*i);
VECCOPY(max, face_minmax+6*i+3);
if(AabbIntersectAabb(min,max,p_min,p_max)==0)
continue;
}
if(radius>0.0f){
if(SweepingSphereIntersectsTriangleUV(co1, co2, radius, v2, v3, v1, &cur_d, cur_ipoint)){
if(cur_d<*min_d){
*min_d=cur_d;
VECCOPY(ipoint,cur_ipoint);
*min_face=i;
intersect=1;
}
}
if(mface->v4){
if(SweepingSphereIntersectsTriangleUV(co1, co2, radius, v4, v1, v3, &cur_d, cur_ipoint)){
if(cur_d<*min_d){
*min_d=cur_d;
VECCOPY(ipoint,cur_ipoint);
*min_face=i;
intersect=1;
}
}
}
}
else{
if(LineIntersectsTriangle(co1, co2, v1, v2, v3, &cur_d, cur_uv)){
if(cur_d<*min_d){
*min_d=cur_d;
min_w[0]= 1.0 - cur_uv[0] - cur_uv[1];
min_w[1]= cur_uv[0];
min_w[2]= cur_uv[1];
min_w[3]= 0.0f;
if(mface->v4)
intersect_dm_quad_weights(v1, v2, v3, v4, min_w);
*min_face=i;
intersect=1;
}
}
if(mface->v4){
if(LineIntersectsTriangle(co1, co2, v1, v3, v4, &cur_d, cur_uv)){
if(cur_d<*min_d){
*min_d=cur_d;
min_w[0]= 1.0 - cur_uv[0] - cur_uv[1];
min_w[1]= 0.0f;
min_w[2]= cur_uv[0];
min_w[3]= cur_uv[1];
intersect_dm_quad_weights(v1, v2, v3, v4, min_w);
*min_face=i;
intersect=1;
}
}
}
}
}
return intersect;
}
/* container for moving data between deflet_particle and particle_intersect_face */
typedef struct ParticleCollision
{
struct Object *ob, *ob_t; // collided and current objects
struct CollisionModifierData *md; // collision modifier for ob_t;
float nor[3]; // normal at collision point
float vel[3]; // velocity of collision point
float co1[3], co2[3]; // ray start and end points
float ray_len; // original length of co2-co1, needed for collision time evaluation
float t; // time of previous collision, needed for substracting face velocity
}
ParticleCollision;
static void particle_intersect_face(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
ParticleCollision *col = (ParticleCollision *) userdata;
MFace *face = col->md->mfaces + index;
MVert *x = col->md->x;
MVert *v = col->md->current_v;
float vel[3], co1[3], co2[3], uv[2], ipoint[3], temp[3], t;
float *t0, *t1, *t2, *t3;
t0 = x[ face->v1 ].co;
t1 = x[ face->v2 ].co;
t2 = x[ face->v3 ].co;
t3 = face->v4 ? x[ face->v4].co : NULL;
/* calculate average velocity of face */
VECCOPY(vel, v[ face->v1 ].co);
VECADD(vel, vel, v[ face->v2 ].co);
VECADD(vel, vel, v[ face->v3 ].co);
VecMulf(vel, 0.33334f);
/* substract face velocity, in other words convert to
a coordinate system where only the particle moves */
VECADDFAC(co1, col->co1, vel, -col->t);
VECSUB(co2, col->co2, vel);
do
{
if(ray->radius == 0.0f) {
if(LineIntersectsTriangle(co1, co2, t0, t1, t2, &t, uv)) {
if(t >= 0.0f && t < hit->dist/col->ray_len) {
hit->dist = col->ray_len * t;
hit->index = index;
/* calculate normal that's facing the particle */
CalcNormFloat(t0, t1, t2, col->nor);
VECSUB(temp, co2, co1);
if(Inpf(col->nor, temp) > 0.0f)
VecNegf(col->nor);
VECCOPY(col->vel,vel);
col->ob = col->ob_t;
}
}
}
else {
if(SweepingSphereIntersectsTriangleUV(co1, co2, ray->radius, t0, t1, t2, &t, ipoint)) {
if(t >=0.0f && t < hit->dist/col->ray_len) {
hit->dist = col->ray_len * t;
hit->index = index;
VecLerpf(temp, co1, co2, t);
VECSUB(col->nor, temp, ipoint);
Normalize(col->nor);
VECCOPY(col->vel,vel);
col->ob = col->ob_t;
}
}
}
t1 = t2;
t2 = t3;
t3 = NULL;
} while(t2);
}
/* particle - mesh collision code */
/* in addition to basic point to surface collisions handles friction & damping,*/
/* angular momentum <-> linear momentum and swept sphere - mesh collisions */
/* 1. check for all possible deflectors for closest intersection on particle path */
/* 2. if deflection was found kill the particle or calculate new coordinates */
static void deflect_particle(Scene *scene, Object *pob, ParticleSystemModifierData *psmd, ParticleSystem *psys, ParticleSettings *part, ParticleData *pa, int p, float timestep, float dfra, float cfra){
Object *ob = NULL;
ListBase *lb=&psys->effectors;
ParticleEffectorCache *ec;
ParticleKey reaction_state;
ParticleCollision col;
BVHTreeRayHit hit;
float ray_dir[3], zerovec[3]={0.0,0.0,0.0};
float radius = ((part->flag & PART_SIZE_DEFL)?pa->size:0.0f);
int deflections=0, max_deflections=10;
VECCOPY(col.co1, pa->prev_state.co);
VECCOPY(col.co2, pa->state.co);
col.t = 0.0f;
/* 10 iterations to catch multiple deflections */
if(lb->first) while(deflections < max_deflections){
/* 1. */
VECSUB(ray_dir, col.co2, col.co1);
hit.index = -1;
hit.dist = col.ray_len = VecLength(ray_dir);
/* even if particle is stationary we want to check for moving colliders */
/* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */
if(hit.dist == 0.0f)
hit.dist = col.ray_len = 0.000001f;
for(ec=lb->first; ec; ec=ec->next){
if(ec->type & PSYS_EC_DEFLECT){
ob= ec->ob;
if(part->type!=PART_HAIR)
where_is_object_time(scene, ob,cfra);
/* particles should not collide with emitter at birth */
if(ob==pob && pa->time < cfra && pa->time >= psys->cfra)
continue;
col.md = ( CollisionModifierData * ) ( modifiers_findByType ( ec->ob, eModifierType_Collision ) );
col.ob_t = ob;
if(col.md && col.md->bvhtree)
BLI_bvhtree_ray_cast(col.md->bvhtree, col.co1, ray_dir, radius, &hit, particle_intersect_face, &col);
}
}
/* 2. */
if(hit.index>=0) {
PartDeflect *pd = col.ob->pd;
int through = (BLI_frand() < pd->pdef_perm) ? 1 : 0;
float co[3]; /* point of collision */
float vec[3]; /* movement through collision */
float t = hit.dist/col.ray_len; /* time of collision between this iteration */
float dt = col.t + t * (1.0f - col.t); /* time of collision between frame change*/
VecLerpf(co, col.co1, col.co2, t);
VECSUB(vec, col.co2, col.co1);
VecMulf(col.vel, 1.0f-col.t);
/* particle dies in collision */
if(through == 0 && (part->flag & PART_DIE_ON_COL || pd->flag & PDEFLE_KILL_PART)) {
pa->alive = PARS_DYING;
pa->dietime = pa->state.time + (cfra - pa->state.time) * dt;
/* we have to add this for dying particles too so that reactors work correctly */
VECADDFAC(co, co, col.nor, (through ? -0.0001f : 0.0001f));
VECCOPY(pa->state.co, co);
VecLerpf(pa->state.vel, pa->prev_state.vel, pa->state.vel, dt);
QuatInterpol(pa->state.rot, pa->prev_state.rot, pa->state.rot, dt);
VecLerpf(pa->state.ave, pa->prev_state.ave, pa->state.ave, dt);
/* particle is dead so we don't need to calculate further */
deflections=max_deflections;
/* store for reactors */
copy_particle_key(&reaction_state,&pa->state,0);
if(part->flag & PART_STICKY){
pa->stick_ob=ob;
pa->flag |= PARS_STICKY;
}
}
else {
float nor_vec[3], tan_vec[3], tan_vel[3], vel[3];
float damp, frict;
float inp, inp_v;
/* get damping & friction factors */
damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_frand() - 0.5f);
CLAMP(damp,0.0,1.0);
frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_frand() - 0.5f);
CLAMP(frict,0.0,1.0);
/* treat normal & tangent components separately */
inp = Inpf(col.nor, vec);
inp_v = Inpf(col.nor, col.vel);
VECADDFAC(tan_vec, vec, col.nor, -inp);
VECADDFAC(tan_vel, col.vel, col.nor, -inp_v);
if((part->flag & PART_ROT_DYN)==0)
VecLerpf(tan_vec, tan_vec, tan_vel, frict);
VECCOPY(nor_vec, col.nor);
inp *= 1.0f - damp;
if(through)
inp_v *= damp;
/* special case for object hitting the particle from behind */
if(through==0 && ((inp_v>0 && inp>0 && inp_v>inp) || (inp_v<0 && inp<0 && inp_v<inp)))
VecMulf(nor_vec, inp_v);
else
VecMulf(nor_vec, inp_v + (through ? 1.0f : -1.0f) * inp);
/* angular <-> linear velocity - slightly more physical and looks even nicer than before */
if(part->flag & PART_ROT_DYN) {
float surface_vel[3], rot_vel[3], friction[3], dave[3], dvel[3];
/* apparent velocity along collision surface */
VECSUB(surface_vel, tan_vec, tan_vel);
/* direction of rolling friction */
Crossf(rot_vel, pa->state.ave, col.nor);
/* convert to current dt */
VecMulf(rot_vel, (timestep*dfra) * (1.0f - col.t));
VecMulf(rot_vel, pa->size);
/* apply sliding friction */
VECSUB(surface_vel, surface_vel, rot_vel);
VECCOPY(friction, surface_vel);
VecMulf(surface_vel, 1.0 - frict);
VecMulf(friction, frict);
/* sliding changes angular velocity */
Crossf(dave, col.nor, friction);
VecMulf(dave, 1.0f/MAX2(pa->size, 0.001));
/* we assume rolling friction is around 0.01 of sliding friction */
VecMulf(rot_vel, 1.0 - frict*0.01);
/* change in angular velocity has to be added to the linear velocity too */
Crossf(dvel, dave, col.nor);
VecMulf(dvel, pa->size);
VECADD(rot_vel, rot_vel, dvel);
VECADD(surface_vel, surface_vel, rot_vel);
VECADD(tan_vec, surface_vel, tan_vel);
/* convert back to normal time */
VecMulf(dave, 1.0f/MAX2((timestep*dfra) * (1.0f - col.t), 0.00001));
VecMulf(pa->state.ave, 1.0 - frict*0.01);
VECADD(pa->state.ave, pa->state.ave, dave);
}
/* combine components together again */
VECADD(vec, nor_vec, tan_vec);
/* calculate velocity from collision vector */
VECCOPY(vel, vec);
VecMulf(vel, 1.0f/MAX2((timestep*dfra) * (1.0f - col.t), 0.00001));
/* make sure we don't hit the current face again */
VECADDFAC(co, co, col.nor, (through ? -0.0001f : 0.0001f));
/* store state for reactors */
VECCOPY(reaction_state.co, co);
VecLerpf(reaction_state.vel, pa->prev_state.vel, pa->state.vel, dt);
QuatInterpol(reaction_state.rot, pa->prev_state.rot, pa->state.rot, dt);
/* set coordinates for next iteration */
VECCOPY(col.co1, co);
VECADDFAC(col.co2, co, vec, 1.0f - t);
col.t = dt;
if(VecLength(vec) < 0.001 && VecLength(pa->state.vel) < 0.001) {
/* kill speed to stop slipping */
VECCOPY(pa->state.vel,zerovec);
VECCOPY(pa->state.co, co);
if(part->flag & PART_ROT_DYN) {
VECCOPY(pa->state.ave,zerovec);
}
}
else {
VECCOPY(pa->state.co, col.co2);
VECCOPY(pa->state.vel, vel);
}
}
deflections++;
reaction_state.time = cfra - (1.0f - dt) * dfra;
push_reaction(col.ob, psys, p, PART_EVENT_COLLIDE, &reaction_state);
}
else
return;
}
}
/************************************************/
/* Boid physics */
/************************************************/
static int boid_see_mesh(ListBase *lb, Scene *scene, Object *pob, ParticleSystem *psys, float *vec1, float *vec2, float *loc, float *nor, float cfra)
{
Object *ob, *min_ob;
DerivedMesh *dm;
MFace *mface;
MVert *mvert;
ParticleEffectorCache *ec;
ParticleSystemModifierData *psmd=psys_get_modifier(pob,psys);
float imat[4][4];
float co1[3], co2[3], min_w[4], min_d;
int min_face=0, intersect=0;
if(lb->first){
intersect=0;
min_d=20000.0;
min_ob=NULL;
for(ec=lb->first; ec; ec=ec->next){
if(ec->type & PSYS_EC_DEFLECT){
ob= ec->ob;
if(psys->part->type!=PART_HAIR)
where_is_object_time(scene, ob,cfra);
if(ob==pob)
dm=psmd->dm;
else
dm=0;
VECCOPY(co1,vec1);
VECCOPY(co2,vec2);
if(ec->vert_cos==0){
/* convert particle coordinates to object coordinates */
Mat4Invert(imat,ob->obmat);
Mat4MulVecfl(imat,co1);
Mat4MulVecfl(imat,co2);
}
if(psys_intersect_dm(scene,ob,dm,ec->vert_cos,co1,co2,&min_d,&min_face,min_w,ec->face_minmax,0,0,0))
min_ob=ob;
}
}
if(min_ob){
ob=min_ob;
if(ob==pob){
dm=psmd->dm;
}
else{
psys_disable_all(ob);
dm=mesh_get_derived_final(scene, ob, 0);
if(dm==0)
dm=mesh_get_derived_deform(scene, ob, 0);
psys_enable_all(ob);
}
mface=dm->getFaceDataArray(dm,CD_MFACE);
mface+=min_face;
mvert=dm->getVertDataArray(dm,CD_MVERT);
/* get deflection point & normal */
psys_interpolate_face(mvert,mface,0,0,min_w,loc,nor,0,0,0,0);
VECADD(nor,nor,loc);
Mat4MulVecfl(ob->obmat,loc);
Mat4MulVecfl(ob->obmat,nor);
VECSUB(nor,nor,loc);
return 1;
}
}
return 0;
}
/* vector calculus functions in 2d vs. 3d */
static void set_boid_vec_func(BoidVecFunc *bvf, int is_2d)
{
if(is_2d){
bvf->Addf = Vec2Addf;
bvf->Subf = Vec2Subf;
bvf->Mulf = Vec2Mulf;
bvf->Length = Vec2Length;
bvf->Normalize = Normalize2;
bvf->Inpf = Inp2f;
bvf->Copyf = Vec2Copyf;
}
else{
bvf->Addf = VecAddf;
bvf->Subf = VecSubf;
bvf->Mulf = VecMulf;
bvf->Length = VecLength;
bvf->Normalize = Normalize;
bvf->Inpf = Inpf;
bvf->Copyf = VecCopyf;
}
}
/* boids have limited processing capability so once there's too much information (acceleration) no more is processed */
static int add_boid_acc(BoidVecFunc *bvf, float lat_max, float tan_max, float *lat_accu, float *tan_accu, float *acc, float *dvec, float *vel)
{
static float tangent[3];
static float tan_length;
if(vel){
bvf->Copyf(tangent,vel);
tan_length=bvf->Normalize(tangent);
return 1;
}
else{
float cur_tan, cur_lat;
float tan_acc[3], lat_acc[3];
int ret=0;
bvf->Copyf(tan_acc,tangent);
if(tan_length>0.0){
bvf->Mulf(tan_acc,Inpf(tangent,dvec));
bvf->Subf(lat_acc,dvec,tan_acc);
}
else{
bvf->Copyf(tan_acc,dvec);
lat_acc[0]=lat_acc[1]=lat_acc[2]=0.0f;
*lat_accu=lat_max;
}
cur_tan=bvf->Length(tan_acc);
cur_lat=bvf->Length(lat_acc);
/* add tangential acceleration */
if(*lat_accu+cur_lat<=lat_max){
bvf->Addf(acc,acc,lat_acc);
*lat_accu+=cur_lat;
ret=1;
}
else{
bvf->Mulf(lat_acc,(lat_max-*lat_accu)/cur_lat);
bvf->Addf(acc,acc,lat_acc);
*lat_accu=lat_max;
}
/* add lateral acceleration */
if(*tan_accu+cur_tan<=tan_max){
bvf->Addf(acc,acc,tan_acc);
*tan_accu+=cur_tan;
ret=1;
}
else{
bvf->Mulf(tan_acc,(tan_max-*tan_accu)/cur_tan);
bvf->Addf(acc,acc,tan_acc);
*tan_accu=tan_max;
}
return ret;
}
}
/* determines the acceleration that the boid tries to acchieve */
static void boid_brain(BoidVecFunc *bvf, ParticleData *pa, Scene *scene, Object *ob, ParticleSystem *psys, ParticleSettings *part, KDTree *tree, float timestep, float cfra, float *acc)
{
ParticleData *pars=psys->particles;
KDTreeNearest ptn[MAX_BOIDNEIGHBOURS+1];
ParticleEffectorCache *ec=0;
float dvec[3]={0.0,0.0,0.0}, ob_co[3], ob_nor[3];
float avoid[3]={0.0,0.0,0.0}, velocity[3]={0.0,0.0,0.0}, center[3]={0.0,0.0,0.0};
float cubedist[MAX_BOIDNEIGHBOURS+1];
int i, n, neighbours=0, near, not_finished=1;
float cur_vel;
float lat_accu=0.0f, max_lat_acc=part->max_vel*part->max_lat_acc;
float tan_accu=0.0f, max_tan_acc=part->max_vel*part->max_tan_acc;
float avg_vel=part->average_vel*part->max_vel;
acc[0]=acc[1]=acc[2]=0.0f;
/* the +1 neighbour is because boid itself is in the tree */
neighbours=BLI_kdtree_find_n_nearest(tree,part->boidneighbours+1,pa->state.co,NULL,ptn);
for(n=1; n<neighbours; n++){
cubedist[n]=(float)pow((double)(ptn[n].dist/pa->size),3.0);
cubedist[n]=1.0f/MAX2(cubedist[n],1.0f);
}
/* initialize tangent */
add_boid_acc(bvf,0.0,0.0,0,0,0,0,pa->state.vel);
for(i=0; i<BOID_TOT_RULES && not_finished; i++){
switch(part->boidrule[i]){
case BOID_COLLIDE:
/* collision avoidance */
bvf->Copyf(dvec,pa->prev_state.vel);
bvf->Mulf(dvec,5.0f);
bvf->Addf(dvec,dvec,pa->prev_state.co);
if(boid_see_mesh(&psys->effectors,scene, ob,psys,pa->prev_state.co,dvec,ob_co,ob_nor,cfra)){
float probelen = bvf->Length(dvec);
float proj;
float oblen;
Normalize(ob_nor);
proj = bvf->Inpf(ob_nor,pa->prev_state.vel);
bvf->Subf(dvec,pa->prev_state.co,ob_co);
oblen=bvf->Length(dvec);
bvf->Copyf(dvec,ob_nor);
bvf->Mulf(dvec,-proj);
bvf->Mulf(dvec,((probelen/oblen)-1.0f)*100.0f*part->boidfac[BOID_COLLIDE]);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
break;
case BOID_AVOID:
/* predator avoidance */
if(psys->effectors.first){
for(ec=psys->effectors.first; ec; ec=ec->next){
if(ec->type & PSYS_EC_EFFECTOR){
Object *eob = ec->ob;
PartDeflect *pd = eob->pd;
if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0){
float distance;
VECSUB(dvec,eob->obmat[3],pa->prev_state.co);
distance=Normalize(dvec);
if(part->flag & PART_DIE_ON_COL && distance < pd->mindist){
pa->alive = PARS_DYING;
pa->dietime=cfra;
i=BOID_TOT_RULES;
break;
}
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
}
}
else if(ec->type & PSYS_EC_PARTICLE){
Object *eob = ec->ob;
ParticleSystem *epsys;
ParticleSettings *epart;
ParticleKey state;
PartDeflect *pd;
KDTreeNearest ptn2[MAX_BOIDNEIGHBOURS];
int totepart, p, count;
float distance;
epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
epart= epsys->part;
pd= epart->pd;
totepart= epsys->totpart;
if(pd->forcefield==PFIELD_FORCE && pd->f_strength<0.0 && ec->tree){
count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->prev_state.co,NULL,ptn2);
for(p=0; p<count; p++){
state.time=-1.0;
if(psys_get_particle_state(scene, eob,epsys,ptn2[p].index,&state,0)){
VECSUB(dvec, state.co, pa->prev_state.co);
distance = Normalize(dvec);
if(part->flag & PART_DIE_ON_COL && distance < (epsys->particles+ptn2[p].index)->size){
pa->alive = PARS_DYING;
pa->dietime=cfra;
i=BOID_TOT_RULES;
break;
}
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
}
}
}
}
}
}
break;
case BOID_CROWD:
/* crowd avoidance */
near=0;
for(n=1; n<neighbours; n++){
if(ptn[n].dist<2.0f*pa->size){
if(ptn[n].dist!=0.0f) {
bvf->Subf(dvec,pa->prev_state.co,pars[ptn[n].index].state.co);
bvf->Mulf(dvec,(2.0f*pa->size-ptn[n].dist)/ptn[n].dist);
bvf->Addf(avoid,avoid,dvec);
near++;
}
}
/* ptn[] is distance ordered so no need to check others */
else break;
}
if(near){
bvf->Mulf(avoid,part->boidfac[BOID_CROWD]*2.0f/timestep);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,avoid,0);
}
break;
case BOID_CENTER:
/* flock centering */
if(neighbours>1){
for(n=1; n<neighbours; n++){
bvf->Addf(center,center,pars[ptn[n].index].state.co);
}
bvf->Mulf(center,1.0f/((float)neighbours-1.0f));
bvf->Subf(dvec,center,pa->prev_state.co);
bvf->Mulf(dvec,part->boidfac[BOID_CENTER]*2.0f);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
break;
case BOID_AV_VEL:
/* average velocity */
cur_vel=bvf->Length(pa->prev_state.vel);
if(cur_vel>0.0){
bvf->Copyf(dvec,pa->prev_state.vel);
bvf->Mulf(dvec,part->boidfac[BOID_AV_VEL]*(avg_vel-cur_vel)/cur_vel);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
break;
case BOID_VEL_MATCH:
/* velocity matching */
if(neighbours>1){
for(n=1; n<neighbours; n++){
bvf->Copyf(dvec,pars[ptn[n].index].state.vel);
bvf->Mulf(dvec,cubedist[n]);
bvf->Addf(velocity,velocity,dvec);
}
bvf->Mulf(velocity,1.0f/((float)neighbours-1.0f));
bvf->Subf(dvec,velocity,pa->prev_state.vel);
bvf->Mulf(dvec,part->boidfac[BOID_VEL_MATCH]);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
break;
case BOID_GOAL:
/* goal seeking */
if(psys->effectors.first){
for(ec=psys->effectors.first; ec; ec=ec->next){
if(ec->type & PSYS_EC_EFFECTOR){
Object *eob = ec->ob;
PartDeflect *pd = eob->pd;
float temp[4];
if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0){
float distance;
VECSUB(dvec,eob->obmat[3],pa->prev_state.co);
distance=Normalize(dvec);
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
VecMulf(dvec,pd->f_strength*part->boidfac[BOID_GOAL]/(float)pow((double)distance,(double)pd->f_power));
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
}
else if(pd->forcefield==PFIELD_GUIDE){
float distance;
where_on_path(eob, (cfra-pa->time)/pa->lifetime, temp, dvec);
VECSUB(dvec,temp,pa->prev_state.co);
distance=Normalize(dvec);
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
VecMulf(dvec,pd->f_strength*part->boidfac[BOID_GOAL]/(float)pow((double)distance,(double)pd->f_power));
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
}
}
else if(ec->type & PSYS_EC_PARTICLE){
Object *eob = ec->ob;
ParticleSystem *epsys;
ParticleSettings *epart;
ParticleKey state;
PartDeflect *pd;
KDTreeNearest ptn2[MAX_BOIDNEIGHBOURS];
int totepart, p, count;
float distance;
epsys= BLI_findlink(&eob->particlesystem,ec->psys_nbr);
epart= epsys->part;
pd= epart->pd;
totepart= epsys->totpart;
if(pd->forcefield==PFIELD_FORCE && pd->f_strength>0.0 && ec->tree){
count=BLI_kdtree_find_n_nearest(ec->tree,epart->boidneighbours,pa->prev_state.co,NULL,ptn2);
for(p=0; p<count; p++){
state.time=-1.0;
if(psys_get_particle_state(scene, eob,epsys,ptn2[p].index,&state,0)){
VECSUB(dvec, state.co, pa->prev_state.co);
distance = Normalize(dvec);
if(pd->flag&PFIELD_USEMAX && distance > pd->maxdist)
;
else{
bvf->Mulf(dvec,part->boidfac[BOID_AVOID]*pd->f_strength/(float)pow((double)distance,(double)pd->f_power));
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
}
}
}
}
}
}
break;
case BOID_LEVEL:
/* level flight */
if((part->flag & PART_BOIDS_2D)==0){
dvec[0]=dvec[1]=0.0;
dvec[2]=-pa->prev_state.vel[2];
VecMulf(dvec,part->boidfac[BOID_LEVEL]);
not_finished=add_boid_acc(bvf,max_lat_acc,max_tan_acc,&lat_accu,&tan_accu,acc,dvec,0);
}
break;
}
}
}
/* tries to realize the wanted acceleration */
static void boid_body(Scene *scene, BoidVecFunc *bvf, ParticleData *pa, ParticleSystem *psys, ParticleSettings *part, float timestep, float *acc)
{
float dvec[3], bvec[3], length, max_vel=part->max_vel;
float q2[4], q[4];
float g=9.81f, pa_mass=part->mass;
float yvec[3]={0.0,1.0,0.0}, zvec[3]={0.0,0.0,-1.0}, bank;
/* apply new velocity, location & rotation */
copy_particle_key(&pa->state,&pa->prev_state,0);
if(part->flag & PART_SIZEMASS)
pa_mass*=pa->size;
/* by regarding the acceleration as a force at this stage we*/
/* can get better controll allthough it's a bit unphysical */
bvf->Mulf(acc,1.0f/pa_mass);
bvf->Copyf(dvec,acc);
bvf->Mulf(dvec,timestep*timestep*0.5f);
bvf->Copyf(bvec,pa->state.vel);
bvf->Mulf(bvec,timestep);
bvf->Addf(dvec,dvec,bvec);
bvf->Addf(pa->state.co,pa->state.co,dvec);
/* air speed from wind and vortex effectors */
if(psys->effectors.first) {
ParticleEffectorCache *ec;
for(ec=psys->effectors.first; ec; ec=ec->next) {
if(ec->type & PSYS_EC_EFFECTOR) {
Object *eob = ec->ob;
PartDeflect *pd = eob->pd;
float direction[3], vec_to_part[3];
float falloff;
if(pd->f_strength != 0.0f) {
VecCopyf(direction, eob->obmat[2]);
VecSubf(vec_to_part, pa->state.co, eob->obmat[3]);
falloff=effector_falloff(pd, direction, vec_to_part);
switch(pd->forcefield) {
case PFIELD_WIND:
if(falloff <= 0.0f)
; /* don't do anything */
else {
Normalize(direction);
VecMulf(direction, pd->f_strength * falloff);
bvf->Addf(pa->state.co, pa->state.co, direction);
}
break;
case PFIELD_VORTEX:
{
float distance, mag_vec[3];
Crossf(mag_vec, direction, vec_to_part);
Normalize(mag_vec);
distance = VecLength(vec_to_part);
VecMulf(mag_vec, pd->f_strength * distance * falloff);
bvf->Addf(pa->state.co, pa->state.co, mag_vec);
break;
}
}
}
}
}
}
if((part->flag & PART_BOIDS_2D)==0 && pa->prev_state.vel[0]!=0.0 && pa->prev_state.vel[0]!=0.0 && pa->prev_state.vel[0]!=0.0){
Crossf(yvec,pa->state.vel,zvec);
Normalize(yvec);
bank=Inpf(yvec,acc);
bank=-(float)atan((double)(bank/g));
bank*=part->banking;
bank-=pa->bank;
if(bank>M_PI*part->max_bank){
bank=pa->bank+(float)M_PI*part->max_bank;
}
else if(bank<-M_PI*part->max_bank){
bank=pa->bank-(float)M_PI*part->max_bank;
}
else
bank+=pa->bank;
pa->bank=bank;
}
else{
bank=0.0;
}
VecRotToQuat(pa->state.vel,bank,q);
VECCOPY(dvec,pa->state.vel);
VecNegf(dvec);
vectoquat(dvec, OB_POSX, OB_POSZ, q2);
QuatMul(pa->state.rot,q,q2);
bvf->Mulf(acc,timestep);
bvf->Addf(pa->state.vel,pa->state.vel,acc);
if(part->flag & PART_BOIDS_2D){
pa->state.vel[2]=0.0;
pa->state.co[2]=part->groundz;
if(psys->keyed_ob && (psys->keyed_ob->type == OB_MESH)){
Object *zob=psys->keyed_ob;
int min_face;
float co1[3],co2[3],min_d=2.0,min_w[4],imat[4][4];
VECCOPY(co1,pa->state.co);
VECCOPY(co2,pa->state.co);
co1[2]=1000.0f;
co2[2]=-1000.0f;
Mat4Invert(imat,zob->obmat);
Mat4MulVecfl(imat,co1);
Mat4MulVecfl(imat,co2);
if(psys_intersect_dm(scene,zob,0,0,co1,co2,&min_d,&min_face,min_w,0,0,0,0)){
DerivedMesh *dm;
MFace *mface;
MVert *mvert;
float loc[3],nor[3],q1[4];
psys_disable_all(zob);
dm=mesh_get_derived_final(scene, zob, 0);
psys_enable_all(zob);
mface=dm->getFaceDataArray(dm,CD_MFACE);
mface+=min_face;
mvert=dm->getVertDataArray(dm,CD_MVERT);
/* get deflection point & normal */
psys_interpolate_face(mvert,mface,0,0,min_w,loc,nor,0,0,0,0);
Mat4MulVecfl(zob->obmat,loc);
Mat4Mul3Vecfl(zob->obmat,nor);
Normalize(nor);
VECCOPY(pa->state.co,loc);
zvec[2]=1.0;
Crossf(loc,zvec,nor);
bank=VecLength(loc);
if(bank>0.0){
bank=saasin(bank);
VecRotToQuat(loc,bank,q);
QUATCOPY(q1,pa->state.rot);
QuatMul(pa->state.rot,q,q1);
}
}
}
}
length=bvf->Length(pa->state.vel);
if(length > max_vel)
bvf->Mulf(pa->state.vel,max_vel/length);
}
/************************************************/
/* Hair */
/************************************************/
static void save_hair(Scene *scene, Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra){
ParticleData *pa;
HairKey *key;
int totpart;
int i;
Mat4Invert(ob->imat,ob->obmat);
psys->lattice= psys_get_lattice(scene, ob, psys);
if(psys->totpart==0) return;
totpart=psys->totpart;
/* save new keys for elements if needed */
for(i=0,pa=psys->particles; i<totpart; i++,pa++) {
/* first time alloc */
if(pa->totkey==0 || pa->hair==NULL) {
pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys");
pa->totkey = 0;
}
key = pa->hair + pa->totkey;
/* convert from global to geometry space */
VecCopyf(key->co, pa->state.co);
Mat4MulVecfl(ob->imat, key->co);
if(pa->totkey) {
VECSUB(key->co, key->co, pa->hair->co);
psys_vec_rot_to_face(psmd->dm, pa, key->co);
}
key->time = pa->state.time;
key->weight = 1.0f - key->time / 100.0f;
pa->totkey++;
/* root is always in the origin of hair space so we set it to be so after the last key is saved*/
if(pa->totkey == psys->part->hair_step + 1)
pa->hair->co[0] = pa->hair->co[1] = pa->hair->co[2] = 0.0f;
}
}
/************************************************/
/* System Core */
/************************************************/
/* unbaked particles are calculated dynamically */
static void dynamics_step(Scene *scene, Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra,
float *vg_vel, float *vg_tan, float *vg_rot, float *vg_size)
{
ParticleData *pa;
ParticleSettings *part=psys->part;
KDTree *tree=0;
BoidVecFunc bvf;
IpoCurve *icu_esize= NULL; //=find_ipocurve(part->ipo,PART_EMIT_SIZE); // XXX old animation system
Material *ma=give_current_material(ob,part->omat);
float timestep;
int p, totpart;
/* current time */
float ctime, ipotime; // XXX old animation system
/* frame & time changes */
float dfra, dtime, pa_dtime, pa_dfra=0.0;
float birthtime, dietime;
/* where have we gone in time since last time */
dfra= cfra - psys->cfra;
totpart=psys->totpart;
timestep=psys_get_timestep(part);
dtime= dfra*timestep;
ctime= cfra*timestep;
ipotime= cfra; // XXX old animation system
#if 0 // XXX old animation system
if(part->flag&PART_ABS_TIME && part->ipo){
calc_ipo(part->ipo, cfra);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
if(dfra<0.0){
float *vg_size=0;
if(part->type==PART_REACTOR)
vg_size=psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE);
for(p=0, pa=psys->particles; p<totpart; p++,pa++){
if(pa->flag & PARS_UNEXIST) continue;
/* set correct ipo timing */
#if 0 // XXX old animation system
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
calc_ipo(part->ipo, ipotime);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
reset_particle(scene, pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
if(cfra>pa->time && part->flag & PART_LOOP && part->type!=PART_HAIR){
pa->loop=(short)((cfra-pa->time)/pa->lifetime);
pa->alive=PARS_UNBORN;
}
else{
pa->loop = 0;
if(cfra <= pa->time)
pa->alive = PARS_UNBORN;
/* without dynamics the state is allways known so no need to kill */
else if(ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)){
if(cfra < pa->dietime)
pa->alive = PARS_ALIVE;
}
else
pa->alive = PARS_KILLED;
}
}
if(vg_size)
MEM_freeN(vg_size);
}
else{
BLI_srandom(31415926 + (int)cfra + psys->seed);
/* update effectors */
if(psys->effectors.first)
psys_end_effectors(psys);
psys_init_effectors(scene, ob, part->eff_group, psys);
if(psys->effectors.first)
precalc_effectors(scene, ob,psys,psmd,cfra);
if(part->phystype==PART_PHYS_BOIDS){
/* create particle tree for fast inter-particle comparisons */
tree=BLI_kdtree_new(totpart);
for(p=0, pa=psys->particles; p<totpart; p++,pa++){
if(pa->flag & (PARS_NO_DISP+PARS_UNEXIST) || pa->alive!=PARS_ALIVE)
continue;
BLI_kdtree_insert(tree, p, pa->state.co, NULL);
}
BLI_kdtree_balance(tree);
set_boid_vec_func(&bvf,part->flag&PART_BOIDS_2D);
}
/* main loop: calculate physics for all particles */
for(p=0, pa=psys->particles; p<totpart; p++,pa++){
if(pa->flag & PARS_UNEXIST) continue;
copy_particle_key(&pa->prev_state,&pa->state,1);
/* set correct ipo timing */
#if 0 // XXX old animation system
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
calc_ipo(part->ipo, ipotime);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
pa->size=psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
/* reactions can change birth time so they need to be checked first */
if(psys->reactevents.first && ELEM(pa->alive,PARS_DEAD,PARS_KILLED)==0)
react_to_events(psys,p);
birthtime = pa->time + pa->loop * pa->lifetime;
dietime = birthtime + pa->lifetime;
/* allways reset particles to emitter before birth */
if(pa->alive==PARS_UNBORN
|| pa->alive==PARS_KILLED
|| ELEM(part->phystype,PART_PHYS_NO,PART_PHYS_KEYED)
|| birthtime >= cfra){
reset_particle(scene, pa,psys,psmd,ob,dtime,cfra,vg_vel,vg_tan,vg_rot);
}
pa_dfra = dfra;
pa_dtime = dtime;
if(birthtime <= cfra && birthtime >= psys->cfra){
/* particle is born some time between this and last step*/
pa->alive = PARS_ALIVE;
pa_dfra = cfra - birthtime;
pa_dtime = pa_dfra*timestep;
}
else if(dietime <= cfra && psys->cfra < dietime){
/* particle dies some time between this and last step */
pa_dfra = dietime - psys->cfra;
pa_dtime = pa_dfra * timestep;
pa->alive = PARS_DYING;
}
else if(dietime < cfra){
/* nothing to be done when particle is dead */
}
if(dfra>0.0 && ELEM(pa->alive,PARS_ALIVE,PARS_DYING)){
switch(part->phystype){
case PART_PHYS_NEWTON:
/* do global forces & effectors */
apply_particle_forces(scene, p, pa, ob, psys, part, timestep,pa_dfra,cfra);
/* deflection */
deflect_particle(scene, ob,psmd,psys,part,pa,p,timestep,pa_dfra,cfra);
/* rotations */
rotate_particle(part,pa,pa_dfra,timestep);
break;
case PART_PHYS_BOIDS:
{
float acc[3];
boid_brain(&bvf, pa, scene, ob, psys, part, tree, timestep,cfra,acc);
if(pa->alive != PARS_DYING)
boid_body(scene, &bvf,pa,psys,part,timestep,acc);
break;
}
}
if(pa->alive == PARS_DYING){
push_reaction(ob,psys,p,PART_EVENT_DEATH,&pa->state);
if(part->flag & PART_LOOP && part->type!=PART_HAIR){
pa->loop++;
reset_particle(scene, pa,psys,psmd,ob,0.0,cfra,vg_vel,vg_tan,vg_rot);
pa->alive=PARS_ALIVE;
}
else{
pa->alive=PARS_DEAD;
pa->state.time=pa->dietime;
if(pa->flag&PARS_STICKY)
psys_key_to_object(pa->stick_ob,&pa->state,0);
}
}
else
pa->state.time=cfra;
push_reaction(ob,psys,p,PART_EVENT_NEAR,&pa->state);
}
}
}
if(psys->reactevents.first)
BLI_freelistN(&psys->reactevents);
if(tree)
BLI_kdtree_free(tree);
}
/* check if path cache or children need updating and do it if needed */
static void psys_update_path_cache(Scene *scene, Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra)
{
ParticleSettings *part=psys->part;
ParticleEditSettings *pset=&scene->toolsettings->particle;
int distr=0,alloc=0;
if((psys->part->childtype && psys->totchild != get_psys_tot_child(scene, psys)) || psys->recalc&PSYS_RECALC_RESET)
alloc=1;
if(alloc || psys->recalc&PSYS_RECALC_RESET || (psys->vgroup[PSYS_VG_DENSITY] && (G.f & G_WEIGHTPAINT)))
distr=1;
if(distr){
if(alloc)
realloc_particles(ob,psys,psys->totpart);
if(get_psys_tot_child(scene, psys)) {
/* don't generate children while computing the hair keys */
if(!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) {
distribute_particles(scene, ob, psys, PART_FROM_CHILD);
if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES && part->parents!=0.0)
psys_find_parents(ob,psmd,psys);
}
}
}
if((part->type==PART_HAIR || psys->flag&PSYS_KEYED) && ( psys_in_edit_mode(scene, psys) || (part->type==PART_HAIR
|| (part->ren_as == PART_DRAW_PATH && (part->draw_as == PART_DRAW_REND || psys->renderdata))))){
psys_cache_paths(scene, ob, psys, cfra, 0);
/* for render, child particle paths are computed on the fly */
if(part->childtype) {
if(((psys->totchild!=0)) || (psys_in_edit_mode(scene, psys) && (pset->flag&PE_SHOW_CHILD)))
if(!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE))
psys_cache_child_paths(scene, ob, psys, cfra, 0);
}
}
else if(psys->pathcache)
psys_free_path_cache(psys);
}
/* calculate and store key locations in world coordinates */
void psys_update_world_cos(Object *ob, ParticleSystem *psys)
{
ParticleSystemModifierData *psmd= psys_get_modifier(ob, psys);
ParticleData *pa;
ParticleEditKey *key;
int i, k, totpart;
float hairmat[4][4];
if(psys==0 || psys->edit==0)
return;
totpart= psys->totpart;
for(i=0, pa=psys->particles; i<totpart; i++, pa++) {
psys_mat_hair_to_global(ob, psmd->dm, psys->part->from, pa, hairmat);
for(k=0, key=psys->edit->keys[i]; k<pa->totkey; k++, key++) {
VECCOPY(key->world_co,key->co);
Mat4MulVecfl(hairmat, key->world_co);
}
}
}
static void hair_step(Scene *scene, Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra)
{
ParticleSettings *part = psys->part;
ParticleData *pa;
int p;
float disp = (float)get_current_display_percentage(psys)/50.0f-1.0f;
for(p=0, pa=psys->particles; p<psys->totpart; p++,pa++){
if(pa->r_rot[0] > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
if(psys->recalc & PSYS_RECALC_RESET)
/* need this for changing subsurf levels */
psys_calc_dmcache(ob, psmd->dm, psys);
if(psys->effectors.first)
psys_end_effectors(psys);
psys_init_effectors(scene, ob, part->eff_group, psys);
if(psys->effectors.first)
precalc_effectors(scene, ob,psys,psmd,cfra);
if(psys_in_edit_mode(scene, psys))
psys_update_world_cos(ob, psys);
psys_update_path_cache(scene, ob,psmd,psys,cfra);
}
/* updates cached particles' alive & other flags etc..*/
static void cached_step(Scene *scene, Object *ob, ParticleSystemModifierData *psmd, ParticleSystem *psys, float cfra)
{
ParticleSettings *part=psys->part;
ParticleData *pa;
ParticleKey state;
IpoCurve *icu_esize= NULL; //=find_ipocurve(part->ipo,PART_EMIT_SIZE); // XXX old animation system
Material *ma=give_current_material(ob,part->omat);
int p;
float disp, birthtime, dietime, *vg_size= NULL; // XXX ipotime=cfra
if(part->from!=PART_FROM_PARTICLE)
vg_size= psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE);
if(psys->effectors.first)
psys_end_effectors(psys);
//if(part->flag & (PART_BAKED_GUIDES+PART_BAKED_DEATHS)){
psys_init_effectors(scene, ob, part->eff_group, psys);
if(psys->effectors.first)
precalc_effectors(scene, ob,psys,psmd,cfra);
//}
disp= (float)get_current_display_percentage(psys)/50.0f-1.0f;
for(p=0, pa=psys->particles; p<psys->totpart; p++,pa++){
#if 0 // XXX old animation system
if((part->flag&PART_ABS_TIME)==0 && part->ipo){
ipotime=100.0f*(cfra-pa->time)/pa->lifetime;
calc_ipo(part->ipo, ipotime);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
pa->size= psys_get_size(ob,ma,psmd,icu_esize,psys,part,pa,vg_size);
psys->lattice= psys_get_lattice(scene, ob, psys);
if(part->flag & PART_LOOP && part->type!=PART_HAIR)
pa->loop = (short)((cfra - pa->time) / pa->lifetime);
else
pa->loop = 0;
birthtime = pa->time + pa->loop * pa->lifetime;
dietime = birthtime + (1 + pa->loop) * (pa->dietime - pa->time);
/* update alive status and push events */
if(pa->time > cfra)
pa->alive = PARS_UNBORN;
else if(dietime <= cfra){
if(dietime > psys->cfra){
state.time = pa->dietime;
psys_get_particle_state(scene, ob,psys,p,&state,1);
push_reaction(ob,psys,p,PART_EVENT_DEATH,&state);
}
pa->alive = PARS_DEAD;
}
else{
pa->alive = PARS_ALIVE;
state.time = cfra;
psys_get_particle_state(scene, ob,psys,p,&state,1);
state.time = cfra;
push_reaction(ob,psys,p,PART_EVENT_NEAR,&state);
}
if(psys->lattice){
end_latt_deform(psys->lattice);
psys->lattice= NULL;
}
if(pa->r_rot[0] > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
/* make sure that children are up to date */
if(psys->part->childtype && psys->totchild != get_psys_tot_child(scene, psys)) {
realloc_particles(ob, psys, psys->totpart);
distribute_particles(scene, ob, psys, PART_FROM_CHILD);
}
if(vg_size)
MEM_freeN(vg_size);
}
void psys_changed_type(ParticleSystem *psys)
{
ParticleSettings *part;
part= psys->part;
/* system type has changed so set sensible defaults and clear non applicable flags */
if(part->from == PART_FROM_PARTICLE) {
if(part->type != PART_REACTOR)
part->from = PART_FROM_FACE;
if(part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT)
part->distr = PART_DISTR_JIT;
}
if(psys->part->phystype != PART_PHYS_KEYED)
psys->flag &= ~PSYS_KEYED;
if(part->type == PART_HAIR) {
if(ELEM4(part->ren_as, PART_DRAW_NOT, PART_DRAW_PATH, PART_DRAW_OB, PART_DRAW_GR)==0)
part->ren_as = PART_DRAW_PATH;
if(ELEM3(part->draw_as, PART_DRAW_NOT, PART_DRAW_REND, PART_DRAW_PATH)==0)
part->draw_as = PART_DRAW_REND;
}
else
free_hair(psys, 1);
psys->softflag= 0;
psys_reset(psys, PSYS_RESET_ALL);
}
static void particles_fluid_step(Scene *scene, Object *ob, ParticleSystem *psys, int cfra)
{
if(psys->particles){
MEM_freeN(psys->particles);
psys->particles = 0;
psys->totpart = 0;
}
/* fluid sim particle import handling, actual loading of particles from file */
#ifndef DISABLE_ELBEEM
{
FluidsimModifierData *fluidmd = (FluidsimModifierData *)modifiers_findByType(ob, eModifierType_Fluidsim);
if( fluidmd && fluidmd->fss) {
FluidsimSettings *fss= fluidmd->fss;
ParticleSettings *part = psys->part;
ParticleData *pa=0;
char *suffix = "fluidsurface_particles_####";
char *suffix2 = ".gz";
char filename[256];
char debugStrBuffer[256];
int curFrame = scene->r.cfra -1; // warning - sync with derived mesh fsmesh loading
int p, j, numFileParts, totpart;
int readMask, activeParts = 0, fileParts = 0;
gzFile gzf;
// XXX if(ob==G.obedit) // off...
// return;
// ok, start loading
strcpy(filename, fss->surfdataPath);
strcat(filename, suffix);
BLI_convertstringcode(filename, G.sce);
BLI_convertstringframe(filename, curFrame); // fixed #frame-no
strcat(filename, suffix2);
gzf = gzopen(filename, "rb");
if (!gzf) {
snprintf(debugStrBuffer,256,"readFsPartData::error - Unable to open file for reading '%s' \n", filename);
// XXX bad level call elbeemDebugOut(debugStrBuffer);
return;
}
gzread(gzf, &totpart, sizeof(totpart));
numFileParts = totpart;
totpart = (G.rendering)?totpart:(part->disp*totpart)/100;
part->totpart= totpart;
part->sta=part->end = 1.0f;
part->lifetime = scene->r.efra + 1;
/* initialize particles */
realloc_particles(ob, psys, part->totpart);
initialize_all_particles(ob, psys, 0);
// set up reading mask
readMask = fss->typeFlags;
for(p=0, pa=psys->particles; p<totpart; p++, pa++) {
int ptype=0;
gzread(gzf, &ptype, sizeof( ptype ));
if(ptype&readMask) {
activeParts++;
gzread(gzf, &(pa->size), sizeof( float ));
pa->size /= 10.0f;
for(j=0; j<3; j++) {
float wrf;
gzread(gzf, &wrf, sizeof( wrf ));
pa->state.co[j] = wrf;
//fprintf(stderr,"Rj%d ",j);
}
for(j=0; j<3; j++) {
float wrf;
gzread(gzf, &wrf, sizeof( wrf ));
pa->state.vel[j] = wrf;
}
pa->state.ave[0] = pa->state.ave[1] = pa->state.ave[2] = 0.0f;
pa->state.rot[0] = 1.0;
pa->state.rot[1] = pa->state.rot[2] = pa->state.rot[3] = 0.0;
pa->alive = PARS_ALIVE;
//if(a<25) fprintf(stderr,"FSPARTICLE debug set %s , a%d = %f,%f,%f , life=%f \n", filename, a, pa->co[0],pa->co[1],pa->co[2], pa->lifetime );
} else {
// skip...
for(j=0; j<2*3+1; j++) {
float wrf; gzread(gzf, &wrf, sizeof( wrf ));
}
}
fileParts++;
}
gzclose( gzf );
totpart = psys->totpart = activeParts;
snprintf(debugStrBuffer,256,"readFsPartData::done - particles:%d, active:%d, file:%d, mask:%d \n", psys->totpart,activeParts,fileParts,readMask);
// bad level call
// XXX elbeemDebugOut(debugStrBuffer);
} // fluid sim particles done
}
#endif // DISABLE_ELBEEM
}
/* Calculates the next state for all particles of the system */
/* In particles code most fra-ending are frames, time-ending are fra*timestep (seconds)*/
static void system_step(Scene *scene, Object *ob, ParticleSystem *psys, ParticleSystemModifierData *psmd, float cfra)
{
ParticleSettings *part;
ParticleData *pa;
PointCache *cache;
PTCacheID pid;
int totpart, oldtotpart, totchild, oldtotchild, p;
float disp, *vg_vel= 0, *vg_tan= 0, *vg_rot= 0, *vg_size= 0;
int init= 0, distr= 0, alloc= 0, usecache= 0, only_children_changed= 0;
int framenr, framedelta, startframe, endframe;
part= psys->part;
cache= psys->pointcache;
framenr= (int)scene->r.cfra;
framedelta= framenr - cache->simframe;
BKE_ptcache_id_from_particles(&pid, ob, psys);
BKE_ptcache_id_time(&pid, scene, 0.0f, &startframe, &endframe, NULL);
/* update ipo's */
#if 0 // XXX old animation system
if((part->flag & PART_ABS_TIME) && part->ipo) {
calc_ipo(part->ipo, cfra);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
/* hair if it's already done is handled separate */
if(part->type == PART_HAIR && (psys->flag & PSYS_HAIR_DONE)) {
hair_step(scene, ob, psmd, psys, cfra);
psys->cfra = cfra;
psys->recalc = 0;
return;
}
/* fluid is also handled separate */
else if(part->type == PART_FLUID) {
particles_fluid_step(scene, ob, psys, framenr);
psys->cfra = cfra;
psys->recalc = 0;
return;
}
/* cache shouldn't be used for hair or "none" or "keyed" physics */
if(part->type == PART_HAIR || ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED))
usecache= 0;
else if(BKE_ptcache_get_continue_physics())
usecache= 0;
else
usecache= 1;
if(usecache) {
/* frame clamping */
if(framenr < startframe) {
psys_reset(psys, PSYS_RESET_CACHE_MISS);
psys->cfra = cfra;
psys->recalc = 0;
return;
}
else if(framenr > endframe) {
framenr= endframe;
}
}
/* verify if we need to reallocate */
oldtotpart = psys->totpart;
oldtotchild = psys->totchild;
if(part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT)
totpart = part->grid_res*part->grid_res*part->grid_res;
else
totpart = psys->part->totpart;
totchild = get_psys_tot_child(scene, psys);
if(oldtotpart != totpart || (psys->part->childtype && oldtotchild != totchild)) {
only_children_changed = (oldtotpart == totpart);
realloc_particles(ob, psys, totpart);
alloc = 1;
distr= 1;
init= 1;
}
if(psys->recalc & PSYS_RECALC_RESET) {
distr= 1;
init= 1;
}
if(init) {
if(distr) {
if(alloc)
realloc_particles(ob, psys, totpart);
distribute_particles(scene, ob, psys, part->from);
if((psys->part->type == PART_HAIR) && !(psys->flag & PSYS_HAIR_DONE))
/* don't generate children while growing hair - waste of time */
psys_free_children(psys);
else if(get_psys_tot_child(scene, psys))
distribute_particles(scene, ob, psys, PART_FROM_CHILD);
}
if(only_children_changed==0) {
free_keyed_keys(psys);
initialize_all_particles(ob, psys, psmd);
if(alloc)
reset_all_particles(scene, ob, psys, psmd, 0.0, cfra, oldtotpart);
}
/* flag for possible explode modifiers after this system */
psmd->flag |= eParticleSystemFlag_Pars;
}
/* try to read from the cache */
if(usecache) {
if(get_particles_from_cache(ob, psys, framenr)) {
if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED) {
psys_count_keyed_targets(ob,psys);
set_keyed_keys(scene, ob, psys);
}
cached_step(scene, ob, psmd, psys, cfra);
psys->cfra=cfra;
psys->recalc = 0;
if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED) {
psys_update_path_cache(scene, ob, psmd, psys, framenr);
}
cache->simframe= framenr;
cache->flag |= PTCACHE_SIMULATION_VALID;
return;
}
else if(ob->id.lib || (cache->flag & PTCACHE_BAKED)) {
psys_reset(psys, PSYS_RESET_CACHE_MISS);
psys->cfra=cfra;
psys->recalc = 0;
return;
}
if(framenr != startframe && framedelta != 1) {
psys_reset(psys, PSYS_RESET_CACHE_MISS);
psys->cfra = cfra;
psys->recalc = 0;
return;
}
}
else {
cache->flag &= ~PTCACHE_SIMULATION_VALID;
cache->simframe= 0;
}
/* if on second frame, write cache for first frame */
if(usecache && framenr == startframe+1)
write_particles_to_cache(ob, psys, startframe);
if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED)
psys_count_keyed_targets(ob,psys);
/* initialize vertex groups */
if(part->from!=PART_FROM_PARTICLE) {
vg_vel= psys_cache_vgroup(psmd->dm,psys,PSYS_VG_VEL);
vg_tan= psys_cache_vgroup(psmd->dm,psys,PSYS_VG_TAN);
vg_rot= psys_cache_vgroup(psmd->dm,psys,PSYS_VG_ROT);
vg_size= psys_cache_vgroup(psmd->dm,psys,PSYS_VG_SIZE);
}
/* set particles to be not calculated TODO: can't work with pointcache */
disp= (float)get_current_display_percentage(psys)/50.0f-1.0f;
for(p=0, pa=psys->particles; p<totpart; p++,pa++){
if(pa->r_rot[0] > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
if(psys->totpart) {
int dframe, totframesback = 0;
/* handle negative frame start at the first frame by doing
* all the steps before the first frame */
if(framenr == startframe && part->sta < startframe)
totframesback = (startframe - (int)part->sta);
for(dframe=-totframesback; dframe<=0; dframe++) {
/* ok now we're all set so let's go */
dynamics_step(scene, ob, psys, psmd, cfra+dframe, vg_vel, vg_tan, vg_rot, vg_size);
psys->cfra = cfra+dframe;
}
}
cache->simframe= framenr;
cache->flag |= PTCACHE_SIMULATION_VALID;
psys->recalc = 0;
psys->cfra = cfra;
/* only write cache starting from second frame */
if(usecache && framenr != startframe)
write_particles_to_cache(ob, psys, framenr);
/* for keyed particles the path is allways known so it can be drawn */
if(part->phystype==PART_PHYS_KEYED && psys->flag&PSYS_FIRST_KEYED){
set_keyed_keys(scene, ob, psys);
psys_update_path_cache(scene, ob, psmd, psys,(int)cfra);
}
else if(psys->pathcache)
psys_free_path_cache(psys);
/* cleanup */
if(vg_vel) MEM_freeN(vg_vel);
if(vg_tan) MEM_freeN(vg_tan);
if(vg_rot) MEM_freeN(vg_rot);
if(vg_size) MEM_freeN(vg_size);
if(psys->lattice){
end_latt_deform(psys->lattice);
psys->lattice= NULL;
}
}
static void psys_to_softbody(Scene *scene, Object *ob, ParticleSystem *psys)
{
SoftBody *sb;
short softflag;
if(!(psys->softflag & OB_SB_ENABLE))
return;
/* let's replace the object's own softbody with the particle softbody */
/* a temporary solution before cloth simulation is implemented, jahka */
/* save these */
sb= ob->soft;
softflag= ob->softflag;
/* swich to new ones */
ob->soft= psys->soft;
ob->softflag= psys->softflag;
/* do softbody */
sbObjectStep(scene, ob, (float)scene->r.cfra, NULL, psys_count_keys(psys));
/* return things back to normal */
psys->soft= ob->soft;
psys->softflag= ob->softflag;
ob->soft= sb;
ob->softflag= softflag;
}
static int hair_needs_recalc(ParticleSystem *psys)
{
if((psys->flag & PSYS_EDITED)==0 &&
((psys->flag & PSYS_HAIR_DONE)==0 || psys->recalc & PSYS_RECALC_REDO)) {
psys->recalc &= ~PSYS_RECALC_REDO;
return 1;
}
return 0;
}
/* main particle update call, checks that things are ok on the large scale before actual particle calculations */
void particle_system_update(Scene *scene, Object *ob, ParticleSystem *psys)
{
ParticleSystemModifierData *psmd;
float cfra;
if(!psys_check_enabled(ob, psys))
return;
cfra= bsystem_time(scene, ob, (float)scene->r.cfra, 0.0f);
psmd= psys_get_modifier(ob, psys);
/* system was already updated from modifier stack */
if(psmd->flag & eParticleSystemFlag_psys_updated) {
psmd->flag &= ~eParticleSystemFlag_psys_updated;
/* make sure it really was updated to cfra */
if(psys->cfra == cfra)
return;
}
if(!psmd->dm)
return;
if(psys->recalc & PSYS_RECALC_TYPE)
psys_changed_type(psys);
/* (re-)create hair */
if(psys->part->type==PART_HAIR && hair_needs_recalc(psys)) {
float hcfra=0.0f;
int i;
free_hair(psys, 0);
/* first step is negative so particles get killed and reset */
psys->cfra= 1.0f;
for(i=0; i<=psys->part->hair_step; i++){
hcfra=100.0f*(float)i/(float)psys->part->hair_step;
system_step(scene, ob, psys, psmd, hcfra);
save_hair(scene, ob, psys, psmd, hcfra);
}
psys->flag |= PSYS_HAIR_DONE;
}
/* handle softbody hair */
if(psys->part->type==PART_HAIR && psys->soft)
psys_to_softbody(scene, ob, psys);
/* the main particle system step */
system_step(scene, ob, psys, psmd, cfra);
/* save matrix for duplicators */
Mat4Invert(psys->imat, ob->obmat);
}