Transform helpline and experimental drawing code to indicate direction of motion for specific transformations.
		
			
				
	
	
		
			339 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			339 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * $Id: transform_input.c 18142 2008-12-29 07:19:16Z aligorith $
 | |
|  *
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | |
|  *
 | |
|  * Contributor(s): none yet.
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "DNA_screen_types.h"
 | |
| 
 | |
| #include "BLI_arithb.h"
 | |
| 
 | |
| #include "WM_types.h"
 | |
| 
 | |
| #include "transform.h"
 | |
| 
 | |
| 
 | |
|   
 | |
| /* ************************** INPUT FROM MOUSE *************************** */
 | |
| 
 | |
| void InputVector(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
 | |
| {
 | |
| 	float vec[3], dvec[3];
 | |
| 	if(mi->precision)
 | |
| 	{
 | |
| 		/* calculate the main translation and the precise one separate */
 | |
| 		convertViewVec(t, dvec, (short)(mval[0] - mi->precision_mval[0]), (short)(mval[1] - mi->precision_mval[1]));
 | |
| 		VecMulf(dvec, 0.1f);
 | |
| 		convertViewVec(t, vec, (short)(mi->precision_mval[0] - t->imval[0]), (short)(mi->precision_mval[1] - t->imval[1]));
 | |
| 		VecAddf(output, vec, dvec);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		convertViewVec(t, output, (short)(mval[0] - t->imval[0]), (short)(mval[1] - t->imval[1]));
 | |
| 	}
 | |
| 	
 | |
| }
 | |
| 
 | |
| void InputSpring(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
 | |
| {
 | |
| 	float ratio, precise_ratio, dx, dy;
 | |
| 	if(mi->precision)
 | |
| 	{
 | |
| 		/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
 | |
| 		dx = (float)(mi->center[0] - mi->precision_mval[0]);
 | |
| 		dy = (float)(mi->center[1] - mi->precision_mval[1]);
 | |
| 		ratio = (float)sqrt( dx*dx + dy*dy);
 | |
| 		
 | |
| 		dx= (float)(mi->center[0] - mval[0]);
 | |
| 		dy= (float)(mi->center[1] - mval[1]);
 | |
| 		precise_ratio = (float)sqrt( dx*dx + dy*dy);
 | |
| 		
 | |
| 		ratio = (ratio + (precise_ratio - ratio) / 10.0f) / mi->factor;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		dx = (float)(mi->center[0] - mval[0]);
 | |
| 		dy = (float)(mi->center[1] - mval[1]);
 | |
| 		ratio = (float)sqrt( dx*dx + dy*dy) / mi->factor;
 | |
| 	}
 | |
| 	
 | |
| 	output[0] = ratio;
 | |
| }
 | |
| 
 | |
| void InputSpringFlip(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
 | |
| {
 | |
| 	InputSpring(t, mi, mval, output);
 | |
| 	
 | |
| 	/* flip scale */
 | |
| 	if	((mi->center[0] - mval[0]) * (mi->center[0] - mi->imval[0]) + 
 | |
| 		 (mi->center[1] - mval[1]) * (mi->center[1] - mi->imval[1]) < 0)
 | |
| 	 {
 | |
| 		output[0] *= -1.0f;
 | |
| 	 }
 | |
| }
 | |
| 
 | |
| void InputTrackBall(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
 | |
| {
 | |
| 	
 | |
| 	if(mi->precision)
 | |
| 	{
 | |
| 		output[0] = ( mi->imval[1] - mi->precision_mval[1] ) + ( mi->precision_mval[1] - mval[1] ) * 0.1f;
 | |
| 		output[1] = ( mi->precision_mval[0] - mi->imval[0] ) + ( mval[0] - mi->precision_mval[0] ) * 0.1f;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		output[0] = (float)( mi->imval[1] - mval[1] );
 | |
| 		output[1] = (float)( mval[0] - mi->imval[0] );
 | |
| 	}
 | |
| 	
 | |
| 	output[0] *= mi->factor;
 | |
| 	output[1] *= mi->factor;
 | |
| }
 | |
| 
 | |
| void InputHorizontalRatio(TransInfo *t, MouseInput *mi, short mval[2], float output[3]) {
 | |
| 	float x, pad;
 | |
| 
 | |
| 	pad = t->ar->winx / 10;
 | |
| 
 | |
| 	if (mi->precision)
 | |
| 	{
 | |
| 		/* deal with Shift key by adding motion / 10 to motion before shift press */
 | |
| 		x = mi->precision_mval[0] + (float)(mval[0] - mi->precision_mval[0]) / 10.0f;
 | |
| 	}
 | |
| 	else {
 | |
| 		x = mval[0];
 | |
| 	}
 | |
| 	
 | |
| 	output[0] = (x - pad) / (t->ar->winx - 2 * pad);
 | |
| }
 | |
| 
 | |
| void InputHorizontalAbsolute(TransInfo *t, MouseInput *mi, short mval[2], float output[3]) {
 | |
| 	float vec[3];
 | |
| 
 | |
| 	InputVector(t, mi, mval, vec);
 | |
| 	Projf(vec, vec, t->viewinv[0]);
 | |
| 	
 | |
| 	output[0] = Inpf(t->viewinv[0], vec) * 2.0f;
 | |
| }
 | |
| 
 | |
| void InputVerticalRatio(TransInfo *t, MouseInput *mi, short mval[2], float output[3]) {
 | |
| 	float y, pad;
 | |
| 
 | |
| 	pad = t->ar->winy / 10;
 | |
| 
 | |
| 	if (mi->precision) {
 | |
| 		/* deal with Shift key by adding motion / 10 to motion before shift press */
 | |
| 		y = mi->precision_mval[1] + (float)(mval[1] - mi->precision_mval[1]) / 10.0f;
 | |
| 	}
 | |
| 	else {
 | |
| 		y = mval[0];
 | |
| 	}
 | |
| 	
 | |
| 	output[0] = (y - pad) / (t->ar->winy - 2 * pad);
 | |
| }
 | |
| 
 | |
| void InputVerticalAbsolute(TransInfo *t, MouseInput *mi, short mval[2], float output[3]) {
 | |
| 	float vec[3];
 | |
| 
 | |
| 	InputVector(t, mi, mval, vec);
 | |
| 	Projf(vec, vec, t->viewinv[1]);
 | |
| 	
 | |
| 	output[0] = Inpf(t->viewinv[1], vec) * 2.0f;
 | |
| }
 | |
| 
 | |
| void InputAngle(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
 | |
| {
 | |
| 	double dx2 = mval[0] - mi->center[0];
 | |
| 	double dy2 = mval[1] - mi->center[1];
 | |
| 	double B = sqrt(dx2*dx2+dy2*dy2);
 | |
| 
 | |
| 	double dx1 = mi->imval[0] - mi->center[0];
 | |
| 	double dy1 = mi->imval[1] - mi->center[1];
 | |
| 	double A = sqrt(dx1*dx1+dy1*dy1);
 | |
| 
 | |
| 	double dx3 = mval[0] - mi->imval[0];
 | |
| 	double dy3 = mval[1] - mi->imval[1];
 | |
| 
 | |
| 	/* use doubles here, to make sure a "1.0" (no rotation) doesnt become 9.999999e-01, which gives 0.02 for acos */
 | |
| 	double deler = ((dx1*dx1+dy1*dy1)+(dx2*dx2+dy2*dy2)-(dx3*dx3+dy3*dy3))
 | |
| 		/ (2.0 * (A*B?A*B:1.0));
 | |
| 	/* (A*B?A*B:1.0f) this takes care of potential divide by zero errors */
 | |
| 
 | |
| 	float dphi;
 | |
| 	
 | |
| 	dphi = saacos((float)deler);
 | |
| 	if( (dx1*dy2-dx2*dy1)>0.0 ) dphi= -dphi;
 | |
| 
 | |
| 	/* If the angle is zero, because of lack of precision close to the 1.0 value in acos
 | |
| 	 * approximate the angle with the oposite side of the normalized triangle
 | |
| 	 * This is a good approximation here since the smallest acos value seems to be around
 | |
| 	 * 0.02 degree and lower values don't even have a 0.01% error compared to the approximation
 | |
| 	 * */	
 | |
| 	if (dphi == 0)
 | |
| 	{
 | |
| 		double dx, dy;
 | |
| 		
 | |
| 		dx2 /= A;
 | |
| 		dy2 /= A;
 | |
| 		
 | |
| 		dx1 /= B;
 | |
| 		dy1 /= B;
 | |
| 		
 | |
| 		dx = dx1 - dx2;
 | |
| 		dy = dy1 - dy2;
 | |
| 		
 | |
| 		dphi = sqrt(dx*dx + dy*dy);
 | |
| 		if( (dx1*dy2-dx2*dy1)>0.0 ) dphi= -dphi;
 | |
| 	}
 | |
| 	
 | |
| 	if(mi->precision) dphi = dphi/30.0f;
 | |
| 	
 | |
| 	/* if no delta angle, don't update initial position */
 | |
| 	if (dphi != 0)
 | |
| 	{
 | |
| 		mi->imval[0] = mval[0];
 | |
| 		mi->imval[1] = mval[1];
 | |
| 	}
 | |
| 	
 | |
| 	output[0] += dphi;
 | |
| }
 | |
| 
 | |
| void initMouseInput(TransInfo *t, MouseInput *mi, int center[2], short mval[2])
 | |
| {
 | |
| 	mi->factor = 0;
 | |
| 	mi->precision = 0;
 | |
| 
 | |
| 	mi->center[0] = center[0];
 | |
| 	mi->center[1] = center[1];
 | |
| 	
 | |
| 	mi->imval[0] = mval[0];
 | |
| 	mi->imval[1] = mval[1];
 | |
| }
 | |
| 
 | |
| static void calcSpringFactor(MouseInput *mi)
 | |
| {
 | |
| 	mi->factor = (float)sqrt(
 | |
| 		(
 | |
| 			((float)(mi->center[1] - mi->imval[1]))*((float)(mi->center[1] - mi->imval[1]))
 | |
| 		+
 | |
| 			((float)(mi->center[0] - mi->imval[0]))*((float)(mi->center[0] - mi->imval[0]))
 | |
| 		) );
 | |
| 
 | |
| 	if (mi->factor==0.0f)
 | |
| 		mi->factor= 1.0f; /* prevent Inf */
 | |
| }
 | |
| 
 | |
| void initMouseInputMode(TransInfo *t, MouseInput *mi, MouseInputMode mode)
 | |
| {
 | |
| 	
 | |
| 	switch(mode)
 | |
| 	{
 | |
| 	case INPUT_VECTOR:
 | |
| 		mi->apply = InputVector;
 | |
| 		t->helpline = HLP_NONE;
 | |
| 		break;
 | |
| 	case INPUT_SPRING:
 | |
| 		calcSpringFactor(mi);
 | |
| 		mi->apply = InputSpring;
 | |
| 		t->helpline = HLP_SPRING;
 | |
| 		break;
 | |
| 	case INPUT_SPRING_FLIP:
 | |
| 		calcSpringFactor(mi);
 | |
| 		mi->apply = InputSpringFlip;
 | |
| 		t->helpline = HLP_SPRING;
 | |
| 		break;
 | |
| 	case INPUT_ANGLE:
 | |
| 		mi->apply = InputAngle;
 | |
| 		t->helpline = HLP_ANGLE;
 | |
| 		break;
 | |
| 	case INPUT_TRACKBALL:
 | |
| 		/* factor has to become setting or so */
 | |
| 		mi->factor = 0.1f;
 | |
| 		mi->apply = InputTrackBall;
 | |
| 		t->helpline = HLP_TRACKBALL;
 | |
| 		break;
 | |
| 	case INPUT_HORIZONTAL_RATIO:
 | |
| 		mi->factor = (float)(mi->center[0] - mi->imval[0]);
 | |
| 		mi->apply = InputHorizontalRatio;
 | |
| 		t->helpline = HLP_HARROW;
 | |
| 		break;
 | |
| 	case INPUT_HORIZONTAL_ABSOLUTE:
 | |
| 		mi->apply = InputHorizontalAbsolute;
 | |
| 		t->helpline = HLP_HARROW;
 | |
| 		break;
 | |
| 	case INPUT_VERTICAL_RATIO:
 | |
| 		mi->apply = InputVerticalRatio;
 | |
| 		t->helpline = HLP_VARROW;
 | |
| 		break;
 | |
| 	case INPUT_VERTICAL_ABSOLUTE:
 | |
| 		mi->apply = InputVerticalAbsolute;
 | |
| 		t->helpline = HLP_VARROW;
 | |
| 		break;
 | |
| 	case INPUT_NONE:
 | |
| 	default:
 | |
| 		mi->apply = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 	
 | |
| 	/* bootstrap mouse input with initial values */		
 | |
| 	applyMouseInput(t, mi, mi->imval, t->values);
 | |
| }
 | |
| 
 | |
| void applyMouseInput(TransInfo *t, MouseInput *mi, short mval[2], float output[3])
 | |
| {
 | |
| 	if (mi->apply != NULL)
 | |
| 	{
 | |
| 		mi->apply(t, mi, mval, output);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int handleMouseInput(TransInfo *t, MouseInput *mi, wmEvent *event)
 | |
| {
 | |
| 	int redraw = 0;
 | |
| 	
 | |
| 	switch (event->type)
 | |
| 	{
 | |
| 	case LEFTSHIFTKEY:
 | |
| 	case RIGHTSHIFTKEY:
 | |
| 		if (event->val)
 | |
| 		{
 | |
| 			t->modifiers |= MOD_PRECISION;
 | |
| 			/* shift is modifier for higher precision transform
 | |
| 			 * store the mouse position where the normal movement ended */
 | |
| 			mi->precision_mval[0] = event->x - t->ar->winrct.xmin;
 | |
| 			mi->precision_mval[1] = event->y - t->ar->winrct.ymin;
 | |
| 			mi->precision = 1;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			t->modifiers &= ~MOD_PRECISION;
 | |
| 			mi->precision = 0;
 | |
| 		}
 | |
| 		redraw = 1;
 | |
| 		break;
 | |
| 	}
 | |
| 	
 | |
| 	return redraw;
 | |
| }
 |