This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/intern/multi_function_procedure.cc
Jacques Lucke eedcf1876a Functions: introduce multi-function namespace
This moves all multi-function related code in the `functions` module
into a new `multi_function` namespace. This is similar to how there
is a `lazy_function` namespace.

The main benefit of this is that many types names that were prefixed
with `MF` (for "multi function") can be simplified.

There is also a common shorthand for the `multi_function` namespace: `mf`.
This is also similar to lazy-functions where the shortened namespace
is called `lf`.
2023-01-07 17:32:28 +01:00

865 lines
26 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include "FN_multi_function_procedure.hh"
#include "BLI_dot_export.hh"
#include "BLI_stack.hh"
namespace blender::fn::multi_function {
void InstructionCursor::set_next(Procedure &procedure, Instruction *new_instruction) const
{
switch (type_) {
case Type::None: {
break;
}
case Type::Entry: {
procedure.set_entry(*new_instruction);
break;
}
case Type::Call: {
static_cast<CallInstruction *>(instruction_)->set_next(new_instruction);
break;
}
case Type::Branch: {
BranchInstruction &branch_instruction = *static_cast<BranchInstruction *>(instruction_);
if (branch_output_) {
branch_instruction.set_branch_true(new_instruction);
}
else {
branch_instruction.set_branch_false(new_instruction);
}
break;
}
case Type::Destruct: {
static_cast<DestructInstruction *>(instruction_)->set_next(new_instruction);
break;
}
case Type::Dummy: {
static_cast<DummyInstruction *>(instruction_)->set_next(new_instruction);
break;
}
}
}
Instruction *InstructionCursor::next(Procedure &procedure) const
{
switch (type_) {
case Type::None:
return nullptr;
case Type::Entry:
return procedure.entry();
case Type::Call:
return static_cast<CallInstruction *>(instruction_)->next();
case Type::Branch: {
BranchInstruction &branch_instruction = *static_cast<BranchInstruction *>(instruction_);
if (branch_output_) {
return branch_instruction.branch_true();
}
return branch_instruction.branch_false();
}
case Type::Destruct:
return static_cast<DestructInstruction *>(instruction_)->next();
case Type::Dummy:
return static_cast<DummyInstruction *>(instruction_)->next();
}
return nullptr;
}
void Variable::set_name(std::string name)
{
name_ = std::move(name);
}
void CallInstruction::set_next(Instruction *instruction)
{
if (next_ != nullptr) {
next_->prev_.remove_first_occurrence_and_reorder(*this);
}
if (instruction != nullptr) {
instruction->prev_.append(*this);
}
next_ = instruction;
}
void CallInstruction::set_param_variable(int param_index, Variable *variable)
{
if (params_[param_index] != nullptr) {
params_[param_index]->users_.remove_first_occurrence_and_reorder(this);
}
if (variable != nullptr) {
BLI_assert(fn_->param_type(param_index).data_type() == variable->data_type());
variable->users_.append(this);
}
params_[param_index] = variable;
}
void CallInstruction::set_params(Span<Variable *> variables)
{
BLI_assert(variables.size() == params_.size());
for (const int i : variables.index_range()) {
this->set_param_variable(i, variables[i]);
}
}
void BranchInstruction::set_condition(Variable *variable)
{
if (condition_ != nullptr) {
condition_->users_.remove_first_occurrence_and_reorder(this);
}
if (variable != nullptr) {
variable->users_.append(this);
}
condition_ = variable;
}
void BranchInstruction::set_branch_true(Instruction *instruction)
{
if (branch_true_ != nullptr) {
branch_true_->prev_.remove_first_occurrence_and_reorder({*this, true});
}
if (instruction != nullptr) {
instruction->prev_.append({*this, true});
}
branch_true_ = instruction;
}
void BranchInstruction::set_branch_false(Instruction *instruction)
{
if (branch_false_ != nullptr) {
branch_false_->prev_.remove_first_occurrence_and_reorder({*this, false});
}
if (instruction != nullptr) {
instruction->prev_.append({*this, false});
}
branch_false_ = instruction;
}
void DestructInstruction::set_variable(Variable *variable)
{
if (variable_ != nullptr) {
variable_->users_.remove_first_occurrence_and_reorder(this);
}
if (variable != nullptr) {
variable->users_.append(this);
}
variable_ = variable;
}
void DestructInstruction::set_next(Instruction *instruction)
{
if (next_ != nullptr) {
next_->prev_.remove_first_occurrence_and_reorder(*this);
}
if (instruction != nullptr) {
instruction->prev_.append(*this);
}
next_ = instruction;
}
void DummyInstruction::set_next(Instruction *instruction)
{
if (next_ != nullptr) {
next_->prev_.remove_first_occurrence_and_reorder(*this);
}
if (instruction != nullptr) {
instruction->prev_.append(*this);
}
next_ = instruction;
}
Variable &Procedure::new_variable(DataType data_type, std::string name)
{
Variable &variable = *allocator_.construct<Variable>().release();
variable.name_ = std::move(name);
variable.data_type_ = data_type;
variable.index_in_graph_ = variables_.size();
variables_.append(&variable);
return variable;
}
CallInstruction &Procedure::new_call_instruction(const MultiFunction &fn)
{
CallInstruction &instruction = *allocator_.construct<CallInstruction>().release();
instruction.type_ = InstructionType::Call;
instruction.fn_ = &fn;
instruction.params_ = allocator_.allocate_array<Variable *>(fn.param_amount());
instruction.params_.fill(nullptr);
call_instructions_.append(&instruction);
return instruction;
}
BranchInstruction &Procedure::new_branch_instruction()
{
BranchInstruction &instruction = *allocator_.construct<BranchInstruction>().release();
instruction.type_ = InstructionType::Branch;
branch_instructions_.append(&instruction);
return instruction;
}
DestructInstruction &Procedure::new_destruct_instruction()
{
DestructInstruction &instruction = *allocator_.construct<DestructInstruction>().release();
instruction.type_ = InstructionType::Destruct;
destruct_instructions_.append(&instruction);
return instruction;
}
DummyInstruction &Procedure::new_dummy_instruction()
{
DummyInstruction &instruction = *allocator_.construct<DummyInstruction>().release();
instruction.type_ = InstructionType::Dummy;
dummy_instructions_.append(&instruction);
return instruction;
}
ReturnInstruction &Procedure::new_return_instruction()
{
ReturnInstruction &instruction = *allocator_.construct<ReturnInstruction>().release();
instruction.type_ = InstructionType::Return;
return_instructions_.append(&instruction);
return instruction;
}
void Procedure::add_parameter(ParamType::InterfaceType interface_type, Variable &variable)
{
params_.append({interface_type, &variable});
}
void Procedure::set_entry(Instruction &entry)
{
if (entry_ != nullptr) {
entry_->prev_.remove_first_occurrence_and_reorder(InstructionCursor::ForEntry());
}
entry_ = &entry;
entry_->prev_.append(InstructionCursor::ForEntry());
}
Procedure::~Procedure()
{
for (CallInstruction *instruction : call_instructions_) {
instruction->~CallInstruction();
}
for (BranchInstruction *instruction : branch_instructions_) {
instruction->~BranchInstruction();
}
for (DestructInstruction *instruction : destruct_instructions_) {
instruction->~DestructInstruction();
}
for (DummyInstruction *instruction : dummy_instructions_) {
instruction->~DummyInstruction();
}
for (ReturnInstruction *instruction : return_instructions_) {
instruction->~ReturnInstruction();
}
for (Variable *variable : variables_) {
variable->~Variable();
}
}
bool Procedure::validate() const
{
if (entry_ == nullptr) {
return false;
}
if (!this->validate_all_instruction_pointers_set()) {
return false;
}
if (!this->validate_all_params_provided()) {
return false;
}
if (!this->validate_same_variables_in_one_call()) {
return false;
}
if (!this->validate_parameters()) {
return false;
}
if (!this->validate_initialization()) {
return false;
}
return true;
}
bool Procedure::validate_all_instruction_pointers_set() const
{
for (const CallInstruction *instruction : call_instructions_) {
if (instruction->next_ == nullptr) {
return false;
}
}
for (const DestructInstruction *instruction : destruct_instructions_) {
if (instruction->next_ == nullptr) {
return false;
}
}
for (const BranchInstruction *instruction : branch_instructions_) {
if (instruction->branch_true_ == nullptr) {
return false;
}
if (instruction->branch_false_ == nullptr) {
return false;
}
}
for (const DummyInstruction *instruction : dummy_instructions_) {
if (instruction->next_ == nullptr) {
return false;
}
}
return true;
}
bool Procedure::validate_all_params_provided() const
{
for (const CallInstruction *instruction : call_instructions_) {
const MultiFunction &fn = instruction->fn();
for (const int param_index : fn.param_indices()) {
const ParamType param_type = fn.param_type(param_index);
if (param_type.category() == ParamCategory::SingleOutput) {
/* Single outputs are optional. */
continue;
}
const Variable *variable = instruction->params_[param_index];
if (variable == nullptr) {
return false;
}
}
}
for (const BranchInstruction *instruction : branch_instructions_) {
if (instruction->condition_ == nullptr) {
return false;
}
}
for (const DestructInstruction *instruction : destruct_instructions_) {
if (instruction->variable_ == nullptr) {
return false;
}
}
return true;
}
bool Procedure::validate_same_variables_in_one_call() const
{
for (const CallInstruction *instruction : call_instructions_) {
const MultiFunction &fn = *instruction->fn_;
for (const int param_index : fn.param_indices()) {
const ParamType param_type = fn.param_type(param_index);
const Variable *variable = instruction->params_[param_index];
if (variable == nullptr) {
continue;
}
for (const int other_param_index : fn.param_indices()) {
if (other_param_index == param_index) {
continue;
}
const Variable *other_variable = instruction->params_[other_param_index];
if (other_variable != variable) {
continue;
}
if (ELEM(param_type.interface_type(), ParamType::Mutable, ParamType::Output)) {
/* When a variable is used as mutable or output parameter, it can only be used once. */
return false;
}
const ParamType other_param_type = fn.param_type(other_param_index);
/* A variable is allowed to be used as input more than once. */
if (other_param_type.interface_type() != ParamType::Input) {
return false;
}
}
}
}
return true;
}
bool Procedure::validate_parameters() const
{
Set<const Variable *> variables;
for (const MFParameter &param : params_) {
/* One variable cannot be used as multiple parameters. */
if (!variables.add(param.variable)) {
return false;
}
}
return true;
}
bool Procedure::validate_initialization() const
{
/* TODO: Issue warning when it maybe wrongly initialized. */
for (const DestructInstruction *instruction : destruct_instructions_) {
const Variable &variable = *instruction->variable_;
const InitState state = this->find_initialization_state_before_instruction(*instruction,
variable);
if (!state.can_be_initialized) {
return false;
}
}
for (const BranchInstruction *instruction : branch_instructions_) {
const Variable &variable = *instruction->condition_;
const InitState state = this->find_initialization_state_before_instruction(*instruction,
variable);
if (!state.can_be_initialized) {
return false;
}
}
for (const CallInstruction *instruction : call_instructions_) {
const MultiFunction &fn = *instruction->fn_;
for (const int param_index : fn.param_indices()) {
const ParamType param_type = fn.param_type(param_index);
/* If the parameter was an unneeded output, it could be null. */
if (!instruction->params_[param_index]) {
continue;
}
const Variable &variable = *instruction->params_[param_index];
const InitState state = this->find_initialization_state_before_instruction(*instruction,
variable);
switch (param_type.interface_type()) {
case ParamType::Input:
case ParamType::Mutable: {
if (!state.can_be_initialized) {
return false;
}
break;
}
case ParamType::Output: {
if (!state.can_be_uninitialized) {
return false;
}
break;
}
}
}
}
Set<const Variable *> variables_that_should_be_initialized_on_return;
for (const MFParameter &param : params_) {
if (ELEM(param.type, ParamType::Mutable, ParamType::Output)) {
variables_that_should_be_initialized_on_return.add_new(param.variable);
}
}
for (const ReturnInstruction *instruction : return_instructions_) {
for (const Variable *variable : variables_) {
const InitState init_state = this->find_initialization_state_before_instruction(*instruction,
*variable);
if (variables_that_should_be_initialized_on_return.contains(variable)) {
if (!init_state.can_be_initialized) {
return false;
}
}
else {
if (!init_state.can_be_uninitialized) {
return false;
}
}
}
}
return true;
}
Procedure::InitState Procedure::find_initialization_state_before_instruction(
const Instruction &target_instruction, const Variable &target_variable) const
{
InitState state;
auto check_entry_instruction = [&]() {
bool caller_initialized_variable = false;
for (const MFParameter &param : params_) {
if (param.variable == &target_variable) {
if (ELEM(param.type, ParamType::Input, ParamType::Mutable)) {
caller_initialized_variable = true;
break;
}
}
}
if (caller_initialized_variable) {
state.can_be_initialized = true;
}
else {
state.can_be_uninitialized = true;
}
};
if (&target_instruction == entry_) {
check_entry_instruction();
}
Set<const Instruction *> checked_instructions;
Stack<const Instruction *> instructions_to_check;
for (const InstructionCursor &cursor : target_instruction.prev_) {
if (cursor.instruction() != nullptr) {
instructions_to_check.push(cursor.instruction());
}
}
while (!instructions_to_check.is_empty()) {
const Instruction &instruction = *instructions_to_check.pop();
if (!checked_instructions.add(&instruction)) {
/* Skip if the instruction has been checked already. */
continue;
}
bool state_modified = false;
switch (instruction.type_) {
case InstructionType::Call: {
const CallInstruction &call_instruction = static_cast<const CallInstruction &>(
instruction);
const MultiFunction &fn = *call_instruction.fn_;
for (const int param_index : fn.param_indices()) {
if (call_instruction.params_[param_index] == &target_variable) {
const ParamType param_type = fn.param_type(param_index);
if (param_type.interface_type() == ParamType::Output) {
state.can_be_initialized = true;
state_modified = true;
break;
}
}
}
break;
}
case InstructionType::Destruct: {
const DestructInstruction &destruct_instruction = static_cast<const DestructInstruction &>(
instruction);
if (destruct_instruction.variable_ == &target_variable) {
state.can_be_uninitialized = true;
state_modified = true;
}
break;
}
case InstructionType::Branch:
case InstructionType::Dummy:
case InstructionType::Return: {
/* These instruction types don't change the initialization state of variables. */
break;
}
}
if (!state_modified) {
if (&instruction == entry_) {
check_entry_instruction();
}
for (const InstructionCursor &cursor : instruction.prev_) {
if (cursor.instruction() != nullptr) {
instructions_to_check.push(cursor.instruction());
}
}
}
}
return state;
}
class ProcedureDotExport {
private:
const Procedure &procedure_;
dot::DirectedGraph digraph_;
Map<const Instruction *, dot::Node *> dot_nodes_by_begin_;
Map<const Instruction *, dot::Node *> dot_nodes_by_end_;
public:
ProcedureDotExport(const Procedure &procedure) : procedure_(procedure)
{
}
std::string generate()
{
this->create_nodes();
this->create_edges();
return digraph_.to_dot_string();
}
void create_nodes()
{
Vector<const Instruction *> all_instructions;
auto add_instructions = [&](auto instructions) {
all_instructions.extend(instructions.begin(), instructions.end());
};
add_instructions(procedure_.call_instructions_);
add_instructions(procedure_.branch_instructions_);
add_instructions(procedure_.destruct_instructions_);
add_instructions(procedure_.dummy_instructions_);
add_instructions(procedure_.return_instructions_);
Set<const Instruction *> handled_instructions;
for (const Instruction *representative : all_instructions) {
if (handled_instructions.contains(representative)) {
continue;
}
Vector<const Instruction *> block_instructions = this->get_instructions_in_block(
*representative);
std::stringstream ss;
ss << "<";
for (const Instruction *current : block_instructions) {
handled_instructions.add_new(current);
switch (current->type()) {
case InstructionType::Call: {
this->instruction_to_string(*static_cast<const CallInstruction *>(current), ss);
break;
}
case InstructionType::Destruct: {
this->instruction_to_string(*static_cast<const DestructInstruction *>(current), ss);
break;
}
case InstructionType::Dummy: {
this->instruction_to_string(*static_cast<const DummyInstruction *>(current), ss);
break;
}
case InstructionType::Return: {
this->instruction_to_string(*static_cast<const ReturnInstruction *>(current), ss);
break;
}
case InstructionType::Branch: {
this->instruction_to_string(*static_cast<const BranchInstruction *>(current), ss);
break;
}
}
ss << R"(<br align="left" />)";
}
ss << ">";
dot::Node &dot_node = digraph_.new_node(ss.str());
dot_node.set_shape(dot::Attr_shape::Rectangle);
dot_nodes_by_begin_.add_new(block_instructions.first(), &dot_node);
dot_nodes_by_end_.add_new(block_instructions.last(), &dot_node);
}
}
void create_edges()
{
auto create_edge = [&](dot::Node &from_node,
const Instruction *to_instruction) -> dot::DirectedEdge & {
if (to_instruction == nullptr) {
dot::Node &to_node = digraph_.new_node("missing");
to_node.set_shape(dot::Attr_shape::Diamond);
return digraph_.new_edge(from_node, to_node);
}
dot::Node &to_node = *dot_nodes_by_begin_.lookup(to_instruction);
return digraph_.new_edge(from_node, to_node);
};
for (auto item : dot_nodes_by_end_.items()) {
const Instruction &from_instruction = *item.key;
dot::Node &from_node = *item.value;
switch (from_instruction.type()) {
case InstructionType::Call: {
const Instruction *to_instruction =
static_cast<const CallInstruction &>(from_instruction).next();
create_edge(from_node, to_instruction);
break;
}
case InstructionType::Destruct: {
const Instruction *to_instruction =
static_cast<const DestructInstruction &>(from_instruction).next();
create_edge(from_node, to_instruction);
break;
}
case InstructionType::Dummy: {
const Instruction *to_instruction =
static_cast<const DummyInstruction &>(from_instruction).next();
create_edge(from_node, to_instruction);
break;
}
case InstructionType::Return: {
break;
}
case InstructionType::Branch: {
const BranchInstruction &branch_instruction = static_cast<const BranchInstruction &>(
from_instruction);
const Instruction *to_true_instruction = branch_instruction.branch_true();
const Instruction *to_false_instruction = branch_instruction.branch_false();
create_edge(from_node, to_true_instruction).attributes.set("color", "#118811");
create_edge(from_node, to_false_instruction).attributes.set("color", "#881111");
break;
}
}
}
dot::Node &entry_node = this->create_entry_node();
create_edge(entry_node, procedure_.entry());
}
bool has_to_be_block_begin(const Instruction &instruction)
{
if (instruction.prev().size() != 1) {
return true;
}
if (ELEM(instruction.prev()[0].type(),
InstructionCursor::Type::Branch,
InstructionCursor::Type::Entry)) {
return true;
}
return false;
}
const Instruction &get_first_instruction_in_block(const Instruction &representative)
{
const Instruction *current = &representative;
while (!this->has_to_be_block_begin(*current)) {
current = current->prev()[0].instruction();
if (current == &representative) {
/* There is a loop without entry or exit, just break it up here. */
break;
}
}
return *current;
}
const Instruction *get_next_instruction_in_block(const Instruction &instruction,
const Instruction &block_begin)
{
const Instruction *next = nullptr;
switch (instruction.type()) {
case InstructionType::Call: {
next = static_cast<const CallInstruction &>(instruction).next();
break;
}
case InstructionType::Destruct: {
next = static_cast<const DestructInstruction &>(instruction).next();
break;
}
case InstructionType::Dummy: {
next = static_cast<const DummyInstruction &>(instruction).next();
break;
}
case InstructionType::Return:
case InstructionType::Branch: {
break;
}
}
if (next == nullptr) {
return nullptr;
}
if (next == &block_begin) {
return nullptr;
}
if (this->has_to_be_block_begin(*next)) {
return nullptr;
}
return next;
}
Vector<const Instruction *> get_instructions_in_block(const Instruction &representative)
{
Vector<const Instruction *> instructions;
const Instruction &begin = this->get_first_instruction_in_block(representative);
for (const Instruction *current = &begin; current != nullptr;
current = this->get_next_instruction_in_block(*current, begin)) {
instructions.append(current);
}
return instructions;
}
void variable_to_string(const Variable *variable, std::stringstream &ss)
{
if (variable == nullptr) {
ss << "null";
}
else {
ss << "$" << variable->index_in_procedure();
if (!variable->name().is_empty()) {
ss << "(" << variable->name() << ")";
}
}
}
void instruction_name_format(StringRef name, std::stringstream &ss)
{
ss << name;
}
void instruction_to_string(const CallInstruction &instruction, std::stringstream &ss)
{
const MultiFunction &fn = instruction.fn();
this->instruction_name_format(fn.debug_name() + ": ", ss);
for (const int param_index : fn.param_indices()) {
const ParamType param_type = fn.param_type(param_index);
const Variable *variable = instruction.params()[param_index];
ss << R"(<font color="grey30">)";
switch (param_type.interface_type()) {
case ParamType::Input: {
ss << "in";
break;
}
case ParamType::Mutable: {
ss << "mut";
break;
}
case ParamType::Output: {
ss << "out";
break;
}
}
ss << " </font> ";
variable_to_string(variable, ss);
if (param_index < fn.param_amount() - 1) {
ss << ", ";
}
}
}
void instruction_to_string(const DestructInstruction &instruction, std::stringstream &ss)
{
instruction_name_format("Destruct ", ss);
variable_to_string(instruction.variable(), ss);
}
void instruction_to_string(const DummyInstruction & /*instruction*/, std::stringstream &ss)
{
instruction_name_format("Dummy ", ss);
}
void instruction_to_string(const ReturnInstruction & /*instruction*/, std::stringstream &ss)
{
instruction_name_format("Return ", ss);
Vector<ConstMFParameter> outgoing_parameters;
for (const ConstMFParameter &param : procedure_.params()) {
if (ELEM(param.type, ParamType::Mutable, ParamType::Output)) {
outgoing_parameters.append(param);
}
}
for (const int param_index : outgoing_parameters.index_range()) {
const ConstMFParameter &param = outgoing_parameters[param_index];
variable_to_string(param.variable, ss);
if (param_index < outgoing_parameters.size() - 1) {
ss << ", ";
}
}
}
void instruction_to_string(const BranchInstruction &instruction, std::stringstream &ss)
{
instruction_name_format("Branch ", ss);
variable_to_string(instruction.condition(), ss);
}
dot::Node &create_entry_node()
{
std::stringstream ss;
ss << "Entry: ";
Vector<ConstMFParameter> incoming_parameters;
for (const ConstMFParameter &param : procedure_.params()) {
if (ELEM(param.type, ParamType::Input, ParamType::Mutable)) {
incoming_parameters.append(param);
}
}
for (const int param_index : incoming_parameters.index_range()) {
const ConstMFParameter &param = incoming_parameters[param_index];
variable_to_string(param.variable, ss);
if (param_index < incoming_parameters.size() - 1) {
ss << ", ";
}
}
dot::Node &node = digraph_.new_node(ss.str());
node.set_shape(dot::Attr_shape::Ellipse);
return node;
}
};
std::string Procedure::to_dot() const
{
ProcedureDotExport dot_export{*this};
return dot_export.generate();
}
} // namespace blender::fn::multi_function