* fixes posible reference count issues with mathutils * mathutils classes should no longer memory leak
		
			
				
	
	
		
			833 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			833 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * $Id$
 | |
|  *
 | |
|  * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version. The Blender
 | |
|  * Foundation also sells licenses for use in proprietary software under
 | |
|  * the Blender License.  See http://www.blender.org/BL/ for information
 | |
|  * about this.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Contributor(s): Michel Selten & Joseph Gilbert
 | |
|  *
 | |
|  * ***** END GPL/BL DUAL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "Mathutils.h"
 | |
| 
 | |
| #include "BKE_utildefines.h"
 | |
| #include "BLI_arithb.h"
 | |
| #include "BLI_blenlib.h"
 | |
| #include "gen_utils.h"
 | |
| 
 | |
| //-------------------------DOC STRINGS ---------------------------
 | |
| char Matrix_Zero_doc[] = "() - set all values in the matrix to 0";
 | |
| char Matrix_Identity_doc[] = "() - set the square matrix to it's identity matrix";
 | |
| char Matrix_Transpose_doc[] = "() - set the matrix to it's transpose";
 | |
| char Matrix_Determinant_doc[] = "() - return the determinant of the matrix";
 | |
| char Matrix_Invert_doc[] =  "() - set the matrix to it's inverse if an inverse is possible";
 | |
| char Matrix_TranslationPart_doc[] = "() - return a vector encompassing the translation of the matrix";
 | |
| char Matrix_RotationPart_doc[] = "() - return a vector encompassing the rotation of the matrix";
 | |
| char Matrix_Resize4x4_doc[] = "() - resize the matrix to a 4x4 square matrix";
 | |
| char Matrix_toEuler_doc[] = "() - convert matrix to a euler angle rotation";
 | |
| char Matrix_toQuat_doc[] = "() - convert matrix to a quaternion rotation";
 | |
| //-----------------------METHOD DEFINITIONS ----------------------
 | |
| struct PyMethodDef Matrix_methods[] = {
 | |
| 	{"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
 | |
| 	{"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
 | |
| 	{"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
 | |
| 	{"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
 | |
| 	{"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
 | |
| 	{"translationPart", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
 | |
| 	{"rotationPart", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
 | |
| 	{"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
 | |
| 	{"toEuler", (PyCFunction) Matrix_toEuler, METH_NOARGS, Matrix_toEuler_doc},
 | |
| 	{"toQuat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| //-----------------------------METHODS----------------------------
 | |
| //---------------------------Matrix.toQuat() ---------------------
 | |
| PyObject *Matrix_toQuat(MatrixObject * self)
 | |
| {
 | |
| 	float quat[4];
 | |
| 
 | |
| 	//must be 3-4 cols, 3-4 rows, square matrix
 | |
| 	if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix.toQuat(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
 | |
| 	} 
 | |
| 	if(self->colSize == 3){
 | |
|         Mat3ToQuat((float (*)[3])*self->matrix, quat);
 | |
| 	}else{
 | |
| 		Mat4ToQuat((float (*)[4])*self->matrix, quat);
 | |
| 	}
 | |
| 	
 | |
| 	return newQuaternionObject(quat, Py_NEW);
 | |
| }
 | |
| //---------------------------Matrix.toEuler() --------------------
 | |
| PyObject *Matrix_toEuler(MatrixObject * self)
 | |
| {
 | |
| 	float eul[3];
 | |
| 	int x;
 | |
| 
 | |
| 	//must be 3-4 cols, 3-4 rows, square matrix
 | |
| 	if(self->colSize !=3 || self->rowSize != 3) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix.toQuat(): inappropriate matrix size - expects 3x3 matrix\n");
 | |
| 	} 
 | |
|     Mat3ToEul((float (*)[3])*self->matrix, eul);
 | |
| 	//have to convert to degrees
 | |
| 	for(x = 0; x < 3; x++) {
 | |
| 		eul[x] *= (float) (180 / Py_PI);
 | |
| 	}
 | |
| 	return newEulerObject(eul, Py_NEW);
 | |
| }
 | |
| //---------------------------Matrix.resize4x4() ------------------
 | |
| PyObject *Matrix_Resize4x4(MatrixObject * self)
 | |
| {
 | |
| 	int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows;
 | |
| 
 | |
| 	if(self->data.blend_data){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"cannot resize wrapped data - only python matrices\n");
 | |
| 	}
 | |
| 
 | |
| 	self->data.py_data = PyMem_Realloc(self->data.py_data, (sizeof(float) * 16));
 | |
| 	if(self->data.py_data == NULL) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | |
| 			"matrix.resize4x4(): problem allocating pointer space\n\n");
 | |
| 	}
 | |
| 	self->contigPtr = self->data.py_data;  //force
 | |
| 	self->matrix = PyMem_Realloc(self->matrix, (sizeof(float) * 4));
 | |
| 	if(self->matrix == NULL) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | |
| 			"matrix.resize4x4(): problem allocating pointer space\n\n");
 | |
| 	}
 | |
| 	//set row pointers
 | |
| 	for(x = 0; x < 4; x++) {
 | |
| 		self->matrix[x] = self->contigPtr + (x * 4);
 | |
| 	}
 | |
| 	//move data to new spot in array + clean
 | |
| 	for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
 | |
| 		for(x = 0; x < 4; x++){
 | |
| 			self->contigPtr[(4 * (self->rowSize + (blank_rows - 1))) + x] = 0.0f;
 | |
| 		}
 | |
| 	}
 | |
| 	for(x = 1; x <= self->rowSize; x++){
 | |
| 		first_row_elem = (self->colSize * (self->rowSize - x));
 | |
| 		curr_pos = (first_row_elem + (self->colSize -1));
 | |
| 		new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
 | |
| 		for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
 | |
| 			self->contigPtr[new_pos + blank_columns] = 0.0f;
 | |
| 		}
 | |
| 		for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
 | |
| 			self->contigPtr[new_pos] = self->contigPtr[curr_pos];
 | |
| 			new_pos--;
 | |
| 		}
 | |
| 	}
 | |
| 	self->rowSize = 4;
 | |
| 	self->colSize = 4;
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //---------------------------Matrix.translationPart() ------------
 | |
| PyObject *Matrix_TranslationPart(MatrixObject * self)
 | |
| {
 | |
| 	float vec[4];
 | |
| 
 | |
| 	if(self->colSize < 3 && self->rowSize < 4){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix.translationPart: inappropriate matrix size\n");
 | |
| 	}
 | |
| 
 | |
| 	vec[0] = self->matrix[3][0];
 | |
| 	vec[1] = self->matrix[3][1];
 | |
| 	vec[2] = self->matrix[3][2];
 | |
| 
 | |
| 	return newVectorObject(vec, 3, Py_NEW);
 | |
| }
 | |
| //---------------------------Matrix.rotationPart() ---------------
 | |
| PyObject *Matrix_RotationPart(MatrixObject * self)
 | |
| {
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(self->colSize < 3 && self->rowSize < 3){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix.rotationPart: inappropriate matrix size\n");
 | |
| 	}
 | |
| 
 | |
| 	mat[0] = self->matrix[0][0];
 | |
| 	mat[1] = self->matrix[0][1];
 | |
| 	mat[2] = self->matrix[0][2];
 | |
| 	mat[3] = self->matrix[1][0];
 | |
| 	mat[4] = self->matrix[1][1];
 | |
| 	mat[5] = self->matrix[1][2];
 | |
| 	mat[6] = self->matrix[2][0];
 | |
| 	mat[7] = self->matrix[2][1];
 | |
| 	mat[8] = self->matrix[2][2];
 | |
| 
 | |
| 	return newMatrixObject(mat, 3, 3, Py_NEW);
 | |
| }
 | |
| //---------------------------Matrix.invert() ---------------------
 | |
| PyObject *Matrix_Invert(MatrixObject * self)
 | |
| {
 | |
| 	
 | |
| 	int x, y, z = 0;
 | |
| 	float det = 0.0f;
 | |
| 	PyObject *f = NULL;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix.invert: only square matrices are supported\n");
 | |
| 	}
 | |
| 
 | |
| 	//calculate the determinant
 | |
| 	f = Matrix_Determinant(self);
 | |
| 	det = (float)PyFloat_AS_DOUBLE(f);
 | |
| 
 | |
| 	if(det != 0) {
 | |
| 		//calculate the classical adjoint
 | |
| 		if(self->rowSize == 2) {
 | |
| 			mat[0] = self->matrix[1][1];
 | |
| 			mat[1] = -self->matrix[1][0];
 | |
| 			mat[2] = -self->matrix[0][1];
 | |
| 			mat[3] = self->matrix[0][0];
 | |
| 		} else if(self->rowSize == 3) {
 | |
| 			Mat3Adj((float (*)[3]) mat,(float (*)[3]) *self->matrix);
 | |
| 		} else if(self->rowSize == 4) {
 | |
| 			Mat4Adj((float (*)[4]) mat, (float (*)[4]) *self->matrix);
 | |
| 		}
 | |
| 		//divide by determinate
 | |
| 		for(x = 0; x < (self->rowSize * self->colSize); x++) {
 | |
| 			mat[x] /= det;
 | |
| 		}
 | |
| 		//set values
 | |
| 		for(x = 0; x < self->rowSize; x++) {
 | |
| 			for(y = 0; y < self->colSize; y++) {
 | |
| 				self->matrix[x][y] = mat[z];
 | |
| 				z++;
 | |
| 			}
 | |
| 		}
 | |
| 		//transpose
 | |
| 		//Matrix_Transpose(self);
 | |
| 	} else {
 | |
| 		printf("Matrix.invert: matrix does not have an inverse\n");
 | |
| 	}
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //---------------------------Matrix.determinant() ----------------
 | |
| PyObject *Matrix_Determinant(MatrixObject * self)
 | |
| {
 | |
| 	float det = 0.0f;
 | |
| 
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix.determinant: only square matrices are supported\n");
 | |
| 	}
 | |
| 
 | |
| 	if(self->rowSize == 2) {
 | |
| 		det = Det2x2(self->matrix[0][0], self->matrix[0][1],
 | |
| 					 self->matrix[1][0], self->matrix[1][1]);
 | |
| 	} else if(self->rowSize == 3) {
 | |
| 		det = Det3x3(self->matrix[0][0], self->matrix[0][1],
 | |
| 					 self->matrix[0][2], self->matrix[1][0],
 | |
| 					 self->matrix[1][1], self->matrix[1][2],
 | |
| 					 self->matrix[2][0], self->matrix[2][1],
 | |
| 					 self->matrix[2][2]);
 | |
| 	} else {
 | |
| 		det = Det4x4((float (*)[4]) *self->matrix);
 | |
| 	}
 | |
| 
 | |
| 	return PyFloat_FromDouble( (double) det );
 | |
| }
 | |
| //---------------------------Matrix.transpose() ------------------
 | |
| PyObject *Matrix_Transpose(MatrixObject * self)
 | |
| {
 | |
| 	float t = 0.0f;
 | |
| 
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix.transpose: only square matrices are supported\n");
 | |
| 	}
 | |
| 
 | |
| 	if(self->rowSize == 2) {
 | |
| 		t = self->matrix[1][0];
 | |
| 		self->matrix[1][0] = self->matrix[0][1];
 | |
| 		self->matrix[0][1] = t;
 | |
| 	} else if(self->rowSize == 3) {
 | |
| 		Mat3Transp((float (*)[3])*self->matrix);
 | |
| 	} else {
 | |
| 		Mat4Transp((float (*)[4])*self->matrix);
 | |
| 	}
 | |
| 
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //---------------------------Matrix.zero() -----------------------
 | |
| PyObject *Matrix_Zero(MatrixObject * self)
 | |
| {
 | |
| 	int row, col;
 | |
| 
 | |
| 	for(row = 0; row < self->rowSize; row++) {
 | |
| 		for(col = 0; col < self->colSize; col++) {
 | |
| 			self->matrix[row][col] = 0.0f;
 | |
| 		}
 | |
| 	}
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //---------------------------Matrix.identity(() ------------------
 | |
| PyObject *Matrix_Identity(MatrixObject * self)
 | |
| {
 | |
| 	if(self->rowSize != self->colSize){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix.identity: only square matrices are supported\n");
 | |
| 	}
 | |
| 
 | |
| 	if(self->rowSize == 2) {
 | |
| 		self->matrix[0][0] = 1.0f;
 | |
| 		self->matrix[0][1] = 0.0f;
 | |
| 		self->matrix[1][0] = 0.0f;
 | |
| 		self->matrix[1][1] = 1.0f;
 | |
| 	} else if(self->rowSize == 3) {
 | |
| 		Mat3One((float (*)[3]) *self->matrix);
 | |
| 	} else {
 | |
| 		Mat4One((float (*)[4]) *self->matrix);
 | |
| 	}
 | |
| 
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------dealloc()(internal) ----------------
 | |
| //free the py_object
 | |
| static void Matrix_dealloc(MatrixObject * self)
 | |
| {
 | |
| 	Py_XDECREF(self->coerced_object);
 | |
| 	PyMem_Free(self->matrix);
 | |
| 	//only free py_data
 | |
| 	if(self->data.py_data){
 | |
| 		PyMem_Free(self->data.py_data);
 | |
| 	}
 | |
| 	PyObject_DEL(self);
 | |
| }
 | |
| //----------------------------getattr()(internal) ----------------
 | |
| //object.attribute access (get)
 | |
| static PyObject *Matrix_getattr(MatrixObject * self, char *name)
 | |
| {
 | |
| 	if(STREQ(name, "rowSize")) {
 | |
| 		return PyInt_FromLong((long) self->rowSize);
 | |
| 	} else if(STREQ(name, "colSize")) {
 | |
| 		return PyInt_FromLong((long) self->colSize);
 | |
| 	}
 | |
| 	if(STREQ(name, "wrapped")){
 | |
| 		if(self->wrapped == Py_WRAP)
 | |
| 			return EXPP_incr_ret((PyObject *)Py_True);
 | |
| 		else 
 | |
| 			return EXPP_incr_ret((PyObject *)Py_False);
 | |
| 	}
 | |
| 	return Py_FindMethod(Matrix_methods, (PyObject *) self, name);
 | |
| }
 | |
| //----------------------------setattr()(internal) ----------------
 | |
| //object.attribute access (set)
 | |
| static int Matrix_setattr(MatrixObject * self, char *name, PyObject * v)
 | |
| {
 | |
| 	/* This is not supported. */
 | |
| 	return (-1);
 | |
| }
 | |
| //----------------------------print object (internal)-------------
 | |
| //print the object to screen
 | |
| static PyObject *Matrix_repr(MatrixObject * self)
 | |
| {
 | |
| 	int x, y;
 | |
| 	char buffer[48], str[1024];
 | |
| 
 | |
| 	BLI_strncpy(str,"",1024);
 | |
| 	for(x = 0; x < self->rowSize; x++){
 | |
| 		sprintf(buffer, "[");
 | |
| 		strcat(str,buffer);
 | |
| 		for(y = 0; y < (self->colSize - 1); y++) {
 | |
| 			sprintf(buffer, "%.6f, ", self->matrix[x][y]);
 | |
| 			strcat(str,buffer);
 | |
| 		}
 | |
| 		if(x < (self->rowSize-1)){
 | |
| 			sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[x][y], x);
 | |
| 			strcat(str,buffer);
 | |
| 		}else{
 | |
| 			sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[x][y], x);
 | |
| 			strcat(str,buffer);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return PyString_FromString(str);
 | |
| }
 | |
| 
 | |
| //---------------------SEQUENCE PROTOCOLS------------------------
 | |
| //----------------------------len(object)------------------------
 | |
| //sequence length
 | |
| static int Matrix_len(MatrixObject * self)
 | |
| {
 | |
| 	return (self->colSize * self->rowSize);
 | |
| }
 | |
| //----------------------------object[]---------------------------
 | |
| //sequence accessor (get)
 | |
| //the wrapped vector gives direct access to the matrix data
 | |
| static PyObject *Matrix_item(MatrixObject * self, int i)
 | |
| {
 | |
| 	if(i < 0 || i >= self->rowSize)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_IndexError,
 | |
| 		"matrix[attribute]: array index out of range\n");
 | |
| 
 | |
| 	return newVectorObject(self->matrix[i], self->colSize, Py_WRAP);
 | |
| }
 | |
| //----------------------------object[]-------------------------
 | |
| //sequence accessor (set)
 | |
| static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
 | |
| {
 | |
| 	int y, x, size = 0;
 | |
| 	float vec[4];
 | |
| 	PyObject *m, *f;
 | |
| 
 | |
| 	if(i > self->rowSize || i < 0){
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 			"matrix[attribute] = x: bad row\n");
 | |
| 	}
 | |
| 
 | |
| 	if(PySequence_Check(ob)){
 | |
| 		size = PySequence_Length(ob);
 | |
| 		if(size != self->colSize){
 | |
| 			return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 				"matrix[attribute] = x: bad sequence size\n");
 | |
| 		}
 | |
| 		for (x = 0; x < size; x++) {
 | |
| 			m = PySequence_GetItem(ob, x);
 | |
| 			if (m == NULL) { // Failed to read sequence
 | |
| 				return EXPP_ReturnIntError(PyExc_RuntimeError, 
 | |
| 					"matrix[attribute] = x: unable to read sequence\n");
 | |
| 			}
 | |
| 
 | |
| 			f = PyNumber_Float(m);
 | |
| 			if(f == NULL) { // parsed item not a number
 | |
| 				Py_DECREF(m);
 | |
| 				return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 					"matrix[attribute] = x: sequence argument not a number\n");
 | |
| 			}
 | |
| 
 | |
| 			vec[x] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 			EXPP_decr2(m, f);
 | |
| 		}
 | |
| 		//parsed well - now set in matrix
 | |
| 		for(y = 0; y < size; y++){
 | |
| 			self->matrix[i][y] = vec[y];
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}else{
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 			"matrix[attribute] = x: expects a sequence of column size\n");
 | |
| 	}
 | |
| }
 | |
| //----------------------------object[z:y]------------------------
 | |
| //sequence slice (get)
 | |
| static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
 | |
| {
 | |
| 
 | |
| 	PyObject *list = NULL;
 | |
| 	int count;
 | |
| 
 | |
| 	CLAMP(begin, 0, self->rowSize);
 | |
| 	CLAMP(end, 0, self->rowSize);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	list = PyList_New(end - begin);
 | |
| 	for(count = begin; count < end; count++) {
 | |
| 		PyList_SetItem(list, count - begin,
 | |
| 				newVectorObject(self->matrix[count], self->colSize, Py_WRAP));
 | |
| 	}
 | |
| 
 | |
| 	return list;
 | |
| }
 | |
| //----------------------------object[z:y]------------------------
 | |
| //sequence slice (set)
 | |
| static int Matrix_ass_slice(MatrixObject * self, int begin, int end,
 | |
| 			     PyObject * seq)
 | |
| {
 | |
| 	int i, x, y, size, sub_size = 0;
 | |
| 	float mat[16];
 | |
| 	PyObject *subseq;
 | |
| 	PyObject *m, *f;
 | |
| 
 | |
| 	CLAMP(begin, 0, self->rowSize);
 | |
| 	CLAMP(end, 0, self->rowSize);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	if(PySequence_Check(seq)){
 | |
| 		size = PySequence_Length(seq);
 | |
| 		if(size != (end - begin)){
 | |
| 			return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 				"matrix[begin:end] = []: size mismatch in slice assignment\n");
 | |
| 		}
 | |
| 		//parse sub items
 | |
| 		for (i = 0; i < size; i++) {
 | |
| 			//parse each sub sequence
 | |
| 			subseq = PySequence_GetItem(seq, i);
 | |
| 			if (subseq == NULL) { // Failed to read sequence
 | |
| 				return EXPP_ReturnIntError(PyExc_RuntimeError, 
 | |
| 					"matrix[begin:end] = []: unable to read sequence\n");
 | |
| 			}
 | |
| 
 | |
| 			if(PySequence_Check(subseq)){
 | |
| 				//subsequence is also a sequence
 | |
| 				sub_size = PySequence_Length(subseq);
 | |
| 				if(sub_size != self->colSize){
 | |
| 					Py_DECREF(subseq);
 | |
| 					return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 						"matrix[begin:end] = []: size mismatch in slice assignment\n");
 | |
| 				}
 | |
| 				for (y = 0; y < sub_size; y++) {
 | |
| 					m = PySequence_GetItem(subseq, y);
 | |
| 					if (m == NULL) { // Failed to read sequence
 | |
| 						Py_DECREF(subseq);
 | |
| 						return EXPP_ReturnIntError(PyExc_RuntimeError, 
 | |
| 							"matrix[begin:end] = []: unable to read sequence\n");
 | |
| 					}
 | |
| 
 | |
| 					f = PyNumber_Float(m);
 | |
| 					if(f == NULL) { // parsed item not a number
 | |
| 						EXPP_decr2(m, subseq);
 | |
| 						return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 							"matrix[begin:end] = []: sequence argument not a number\n");
 | |
| 					}
 | |
| 
 | |
| 					mat[(i * self->colSize) + y] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 					EXPP_decr2(f, m);
 | |
| 				}
 | |
| 			}else{
 | |
| 				Py_DECREF(subseq);
 | |
| 				return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 					"matrix[begin:end] = []: illegal argument type for built-in operation\n");
 | |
| 			}
 | |
| 			Py_DECREF(subseq);
 | |
| 		}
 | |
| 		//parsed well - now set in matrix
 | |
| 		for(x = 0; x < (size * sub_size); x++){
 | |
| 			self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}else{
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 			"matrix[begin:end] = []: illegal argument type for built-in operation\n");
 | |
| 	}
 | |
| }
 | |
| //------------------------NUMERIC PROTOCOLS----------------------
 | |
| //------------------------obj + obj------------------------------
 | |
| static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
 | |
| {
 | |
| 	int x, y;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	mat1 = (MatrixObject*)m1;
 | |
| 	mat2 = (MatrixObject*)m2;
 | |
| 
 | |
| 	if(mat1->coerced_object || mat2->coerced_object){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix addition: arguments not valid for this operation....\n");
 | |
| 	}
 | |
| 	if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix addition: matrices must have the same dimensions for this operation\n");
 | |
| 	}
 | |
| 
 | |
| 	for(x = 0; x < mat1->rowSize; x++) {
 | |
| 		for(y = 0; y < mat1->colSize; y++) {
 | |
| 			mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
 | |
| }
 | |
| //------------------------obj - obj------------------------------
 | |
| //subtraction
 | |
| static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
 | |
| {
 | |
| 	int x, y;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	mat1 = (MatrixObject*)m1;
 | |
| 	mat2 = (MatrixObject*)m2;
 | |
| 
 | |
| 	if(mat1->coerced_object || mat2->coerced_object){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix addition: arguments not valid for this operation....\n");
 | |
| 	}
 | |
| 	if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Matrix addition: matrices must have the same dimensions for this operation\n");
 | |
| 	}
 | |
| 
 | |
| 	for(x = 0; x < mat1->rowSize; x++) {
 | |
| 		for(y = 0; y < mat1->colSize; y++) {
 | |
| 			mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
 | |
| }
 | |
| //------------------------obj * obj------------------------------
 | |
| //mulplication
 | |
| static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
 | |
| {
 | |
| 	int x, y, z;
 | |
| 	float scalar;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 	double dot = 0.0f;
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 	PyObject *f = NULL;
 | |
| 	VectorObject *vec = NULL;
 | |
| 	PointObject *pt = NULL;
 | |
| 
 | |
| 	mat1 = (MatrixObject*)m1;
 | |
| 	mat2 = (MatrixObject*)m2;
 | |
| 
 | |
| 	if(mat1->coerced_object){
 | |
| 		if (PyFloat_Check(mat1->coerced_object) || 
 | |
| 			PyInt_Check(mat1->coerced_object)){	// FLOAT/INT * MATRIX
 | |
| 			f = PyNumber_Float(mat1->coerced_object);
 | |
| 			if(f == NULL) { // parsed item not a number
 | |
| 				return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 					"Matrix multiplication: arguments not acceptable for this operation\n");
 | |
| 			}
 | |
| 
 | |
| 			scalar = (float)PyFloat_AS_DOUBLE(f);
 | |
| 			for(x = 0; x < mat2->rowSize; x++) {
 | |
| 				for(y = 0; y < mat2->colSize; y++) {
 | |
| 					mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
 | |
| 				}
 | |
| 			}
 | |
| 			return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW);
 | |
| 		}
 | |
| 	}else{
 | |
| 		if(mat2->coerced_object){
 | |
| 			if(VectorObject_Check(mat2->coerced_object)){ //MATRIX * VECTOR
 | |
| 				vec = (VectorObject*)mat2->coerced_object;
 | |
| 				return column_vector_multiplication(mat1, vec);
 | |
| 			}else if(PointObject_Check(mat2->coerced_object)){ //MATRIX * POINT
 | |
| 				pt = (PointObject*)mat2->coerced_object;
 | |
| 				return column_point_multiplication(mat1, pt);
 | |
| 			}else if (PyFloat_Check(mat2->coerced_object) || 
 | |
| 				PyInt_Check(mat2->coerced_object)){	// MATRIX * FLOAT/INT
 | |
| 				f = PyNumber_Float(mat2->coerced_object);
 | |
| 				if(f == NULL) { // parsed item not a number
 | |
| 					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 						"Matrix multiplication: arguments not acceptable for this operation\n");
 | |
| 				}
 | |
| 
 | |
| 				scalar = (float)PyFloat_AS_DOUBLE(f);
 | |
| 				for(x = 0; x < mat1->rowSize; x++) {
 | |
| 					for(y = 0; y < mat1->colSize; y++) {
 | |
| 						mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
 | |
| 					}
 | |
| 				}
 | |
| 				return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW);
 | |
| 			}
 | |
| 		}else{  //MATRIX * MATRIX
 | |
| 			if(mat1->colSize != mat2->rowSize){
 | |
| 				return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 					"Matrix multiplication: matrix A rowsize must equal matrix B colsize\n");
 | |
| 			}
 | |
| 			for(x = 0; x < mat1->rowSize; x++) {
 | |
| 				for(y = 0; y < mat2->colSize; y++) {
 | |
| 					for(z = 0; z < mat1->colSize; z++) {
 | |
| 						dot += (mat1->matrix[x][z] * mat2->matrix[z][y]);
 | |
| 					}
 | |
| 					mat[((x * mat1->rowSize) + y)] = (float)dot;
 | |
| 					dot = 0.0f;
 | |
| 				}
 | |
| 			}
 | |
| 			return newMatrixObject(mat, mat1->rowSize, mat2->colSize, Py_NEW);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 		"Matrix multiplication: arguments not acceptable for this operation\n");
 | |
| }
 | |
| PyObject* Matrix_inv(MatrixObject *self)
 | |
| {
 | |
| 	return Matrix_Invert(self);
 | |
| }
 | |
| //------------------------coerce(obj, obj)-----------------------
 | |
| //coercion of unknown types to type MatrixObject for numeric protocols
 | |
| /*Coercion() is called whenever a math operation has 2 operands that
 | |
|  it doesn't understand how to evaluate. 2+Matrix for example. We want to 
 | |
|  evaluate some of these operations like: (vector * 2), however, for math
 | |
|  to proceed, the unknown operand must be cast to a type that python math will
 | |
|  understand. (e.g. in the case above case, 2 must be cast to a vector and 
 | |
|  then call vector.multiply(vector, scalar_cast_as_vector)*/
 | |
| static int Matrix_coerce(PyObject ** m1, PyObject ** m2)
 | |
| {
 | |
| 	PyObject *coerced = NULL;
 | |
| 	if(!MatrixObject_Check(*m2)) {
 | |
| 		if(VectorObject_Check(*m2) || PyFloat_Check(*m2) || PyInt_Check(*m2) ||
 | |
| 			PointObject_Check(*m2)) {
 | |
| 			coerced = EXPP_incr_ret(*m2);
 | |
| 			*m2 = newMatrixObject(NULL,3,3,Py_NEW);
 | |
| 			((MatrixObject*)*m2)->coerced_object = coerced;
 | |
| 		}else{
 | |
| 			return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 				"matrix.coerce(): unknown operand - can't coerce for numeric protocols\n");
 | |
| 		}
 | |
| 	}
 | |
| 	EXPP_incr2(*m1, *m2);
 | |
| 	return 0;
 | |
| }
 | |
| //-----------------PROTCOL DECLARATIONS--------------------------
 | |
| static PySequenceMethods Matrix_SeqMethods = {
 | |
| 	(inquiry) Matrix_len,					/* sq_length */
 | |
| 	(binaryfunc) 0,							/* sq_concat */
 | |
| 	(intargfunc) 0,							/* sq_repeat */
 | |
| 	(intargfunc) Matrix_item,				/* sq_item */
 | |
| 	(intintargfunc) Matrix_slice,			/* sq_slice */
 | |
| 	(intobjargproc) Matrix_ass_item,		/* sq_ass_item */
 | |
| 	(intintobjargproc) Matrix_ass_slice,	/* sq_ass_slice */
 | |
| };
 | |
| static PyNumberMethods Matrix_NumMethods = {
 | |
| 	(binaryfunc) Matrix_add,				/* __add__ */
 | |
| 	(binaryfunc) Matrix_sub,				/* __sub__ */
 | |
| 	(binaryfunc) Matrix_mul,				/* __mul__ */
 | |
| 	(binaryfunc) 0,							/* __div__ */
 | |
| 	(binaryfunc) 0,							/* __mod__ */
 | |
| 	(binaryfunc) 0,							/* __divmod__ */
 | |
| 	(ternaryfunc) 0,						/* __pow__ */
 | |
| 	(unaryfunc) 0,							/* __neg__ */
 | |
| 	(unaryfunc) 0,							/* __pos__ */
 | |
| 	(unaryfunc) 0,							/* __abs__ */
 | |
| 	(inquiry) 0,							/* __nonzero__ */
 | |
| 	(unaryfunc) Matrix_inv,					/* __invert__ */
 | |
| 	(binaryfunc) 0,							/* __lshift__ */
 | |
| 	(binaryfunc) 0,							/* __rshift__ */
 | |
| 	(binaryfunc) 0,							/* __and__ */
 | |
| 	(binaryfunc) 0,							/* __xor__ */
 | |
| 	(binaryfunc) 0,							/* __or__ */
 | |
| 	(coercion) Matrix_coerce,				/* __coerce__ */
 | |
| 	(unaryfunc) 0,							/* __int__ */
 | |
| 	(unaryfunc) 0,							/* __long__ */
 | |
| 	(unaryfunc) 0,							/* __float__ */
 | |
| 	(unaryfunc) 0,							/* __oct__ */
 | |
| 	(unaryfunc) 0,							/* __hex__ */
 | |
| };
 | |
| //------------------PY_OBECT DEFINITION--------------------------
 | |
| PyTypeObject matrix_Type = {
 | |
| 	PyObject_HEAD_INIT(NULL)				/* required python macro */
 | |
| 	0,										/*ob_size */
 | |
| 	"Matrix",								/*tp_name */
 | |
| 	sizeof(MatrixObject),					/*tp_basicsize */
 | |
| 	0,										/*tp_itemsize */
 | |
| 	(destructor) Matrix_dealloc,			/*tp_dealloc */
 | |
| 	(printfunc) 0,							/*tp_print */
 | |
| 	(getattrfunc) Matrix_getattr,			/*tp_getattr */
 | |
| 	(setattrfunc) Matrix_setattr,			/*tp_setattr */
 | |
| 	0,										/*tp_compare */
 | |
| 	(reprfunc) Matrix_repr,					/*tp_repr */
 | |
| 	&Matrix_NumMethods,						/*tp_as_number */
 | |
| 	&Matrix_SeqMethods,						/*tp_as_sequence */
 | |
| };
 | |
| //------------------------newMatrixObject (internal)-------------
 | |
| //creates a new matrix object
 | |
| //self->matrix     self->contiguous_ptr (reference to data.xxx)
 | |
| //       [0]------------->[0]
 | |
| //                        [1]
 | |
| //                        [2]
 | |
| //       [1]------------->[3]
 | |
| //                        [4]
 | |
| //                        [5]
 | |
| //	             ....
 | |
| //self->matrix[1][1] = self->contiguous_ptr[4] = self->data.xxx_data[4]
 | |
| /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | |
|  (i.e. it was allocated elsewhere by MEM_mallocN())
 | |
|   pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | |
|  (i.e. it must be created here with PyMEM_malloc())*/
 | |
| PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type)
 | |
| {
 | |
| 	MatrixObject *self;
 | |
| 	int x, row, col;
 | |
| 
 | |
| 	//matrix objects can be any 2-4row x 2-4col matrix
 | |
| 	if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_RuntimeError,
 | |
| 			"matrix(): row and column sizes must be between 2 and 4\n");
 | |
| 	}
 | |
| 
 | |
| 	matrix_Type.ob_type = &PyType_Type;
 | |
| 	self = PyObject_NEW(MatrixObject, &matrix_Type);
 | |
| 	self->data.blend_data = NULL;
 | |
| 	self->data.py_data = NULL;
 | |
| 	self->rowSize = rowSize;
 | |
| 	self->colSize = colSize;
 | |
| 	self->coerced_object = NULL;
 | |
| 
 | |
| 	if(type == Py_WRAP){
 | |
| 		self->data.blend_data = mat;
 | |
| 		self->contigPtr = self->data.blend_data;
 | |
| 		//create pointer array
 | |
| 		self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
 | |
| 		if(self->matrix == NULL) { //allocation failure
 | |
| 			return EXPP_ReturnPyObjError( PyExc_MemoryError,
 | |
| 				"matrix(): problem allocating pointer space\n");
 | |
| 		}
 | |
| 		//pointer array points to contigous memory
 | |
| 		for(x = 0; x < rowSize; x++) {
 | |
| 			self->matrix[x] = self->contigPtr + (x * colSize);
 | |
| 		}
 | |
| 		self->wrapped = Py_WRAP;
 | |
| 	}else if (type == Py_NEW){
 | |
| 		self->data.py_data = PyMem_Malloc(rowSize * colSize * sizeof(float));
 | |
| 		if(self->data.py_data == NULL) { //allocation failure
 | |
| 			return EXPP_ReturnPyObjError( PyExc_MemoryError,
 | |
| 				"matrix(): problem allocating pointer space\n");
 | |
| 		}
 | |
| 		self->contigPtr = self->data.py_data;
 | |
| 		//create pointer array
 | |
| 		self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
 | |
| 		if(self->matrix == NULL) { //allocation failure
 | |
| 			PyMem_Free(self->data.py_data);
 | |
| 			return EXPP_ReturnPyObjError( PyExc_MemoryError,
 | |
| 				"matrix(): problem allocating pointer space\n");
 | |
| 		}
 | |
| 		//pointer array points to contigous memory
 | |
| 		for(x = 0; x < rowSize; x++) {
 | |
| 			self->matrix[x] = self->contigPtr + (x * colSize);
 | |
| 		}
 | |
| 		//parse
 | |
| 		if(mat) {	//if a float array passed
 | |
| 			for(row = 0; row < rowSize; row++) {
 | |
| 				for(col = 0; col < colSize; col++) {
 | |
| 					self->matrix[row][col] = mat[(row * colSize) + col];
 | |
| 				}
 | |
| 			}
 | |
| 		} else { //or if no arguments are passed return identity matrix
 | |
| 			Matrix_Identity(self);
 | |
| 		}
 | |
| 		self->wrapped = Py_NEW;
 | |
| 	}else{ //bad type
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 |