This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/kernel_passes.h
Lukas Stockner dc1db0791e Cycles: Track specular throughput to account for reflection color in denoising albedo pass
To determine the albedo pass, Cycles currently follows the path until a predominantly
diffuse-ish material is hit and then takes the albedo there.
This works fine for normal mirrors, but as it completely ignores the color of the bounces
before that diffuse-ish material, it also means that any textures that are applied to the
specular-ish BSDFs won't affect the albedo pass at all.

Therefore, this patch changes that behaviour so that Cycles also keeps track of the
throughput of all specular-ish closures along the path so far and includes that in
the albedo pass.

This fixes part of the issue described in T73043. However, since it has an effect on the
albedo pass in most scenes, it could cause cause regressions, which is why I'm uploading
it as a patch instead of just committing as a fix.

Differential Revision: https://developer.blender.org/D6640
2020-02-06 03:37:48 +01:00

402 lines
16 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/kernel_id_passes.h"
CCL_NAMESPACE_BEGIN
#ifdef __DENOISING_FEATURES__
ccl_device_inline void kernel_write_denoising_shadow(KernelGlobals *kg,
ccl_global float *buffer,
int sample,
float path_total,
float path_total_shaded)
{
if (kernel_data.film.pass_denoising_data == 0)
return;
buffer += (sample & 1) ? DENOISING_PASS_SHADOW_B : DENOISING_PASS_SHADOW_A;
path_total = ensure_finite(path_total);
path_total_shaded = ensure_finite(path_total_shaded);
kernel_write_pass_float(buffer, path_total);
kernel_write_pass_float(buffer + 1, path_total_shaded);
float value = path_total_shaded / max(path_total, 1e-7f);
kernel_write_pass_float(buffer + 2, value * value);
}
ccl_device_inline void kernel_update_denoising_features(KernelGlobals *kg,
ShaderData *sd,
ccl_addr_space PathState *state,
PathRadiance *L)
{
if (state->denoising_feature_weight == 0.0f) {
return;
}
L->denoising_depth += ensure_finite(state->denoising_feature_weight * sd->ray_length);
/* Skip implicitly transparent surfaces. */
if (sd->flag & SD_HAS_ONLY_VOLUME) {
return;
}
float3 normal = make_float3(0.0f, 0.0f, 0.0f);
float3 diffuse_albedo = make_float3(0.0f, 0.0f, 0.0f);
float3 specular_albedo = make_float3(0.0f, 0.0f, 0.0f);
float sum_weight = 0.0f, sum_nonspecular_weight = 0.0f;
for (int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if (!CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
continue;
/* All closures contribute to the normal feature, but only diffuse-like ones to the albedo. */
normal += sc->N * sc->sample_weight;
sum_weight += sc->sample_weight;
float3 closure_albedo = sc->weight;
/* Closures that include a Fresnel term typically have weights close to 1 even though their
* actual contribution is significantly lower.
* To account for this, we scale their weight by the average fresnel factor (the same is also
* done for the sample weight in the BSDF setup, so we don't need to scale that here). */
if (CLOSURE_IS_BSDF_MICROFACET_FRESNEL(sc->type)) {
MicrofacetBsdf *bsdf = (MicrofacetBsdf *)sc;
closure_albedo *= bsdf->extra->fresnel_color;
}
else if (sc->type == CLOSURE_BSDF_PRINCIPLED_SHEEN_ID) {
PrincipledSheenBsdf *bsdf = (PrincipledSheenBsdf *)sc;
closure_albedo *= bsdf->avg_value;
}
if (bsdf_get_specular_roughness_squared(sc) > sqr(0.075f)) {
diffuse_albedo += closure_albedo;
sum_nonspecular_weight += sc->sample_weight;
}
else {
specular_albedo += closure_albedo;
}
}
/* Wait for next bounce if 75% or more sample weight belongs to specular-like closures. */
if ((sum_weight == 0.0f) || (sum_nonspecular_weight * 4.0f > sum_weight)) {
if (sum_weight != 0.0f) {
normal /= sum_weight;
}
/* Transform normal into camera space. */
const Transform worldtocamera = kernel_data.cam.worldtocamera;
normal = transform_direction(&worldtocamera, normal);
L->denoising_normal += ensure_finite3(state->denoising_feature_weight * normal);
L->denoising_albedo += ensure_finite3(state->denoising_feature_weight *
state->denoising_feature_throughput * diffuse_albedo);
state->denoising_feature_weight = 0.0f;
}
else {
state->denoising_feature_throughput *= specular_albedo;
}
}
#endif /* __DENOISING_FEATURES__ */
#ifdef __KERNEL_DEBUG__
ccl_device_inline void kernel_write_debug_passes(KernelGlobals *kg,
ccl_global float *buffer,
PathRadiance *L)
{
int flag = kernel_data.film.pass_flag;
if (flag & PASSMASK(BVH_TRAVERSED_NODES)) {
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_nodes,
L->debug_data.num_bvh_traversed_nodes);
}
if (flag & PASSMASK(BVH_TRAVERSED_INSTANCES)) {
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_instances,
L->debug_data.num_bvh_traversed_instances);
}
if (flag & PASSMASK(BVH_INTERSECTIONS)) {
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_intersections,
L->debug_data.num_bvh_intersections);
}
if (flag & PASSMASK(RAY_BOUNCES)) {
kernel_write_pass_float(buffer + kernel_data.film.pass_ray_bounces,
L->debug_data.num_ray_bounces);
}
}
#endif /* __KERNEL_DEBUG__ */
#ifdef __KERNEL_CPU__
# define WRITE_ID_SLOT(buffer, depth, id, matte_weight, name) \
kernel_write_id_pass_cpu(buffer, depth * 2, id, matte_weight, kg->coverage_##name)
ccl_device_inline size_t kernel_write_id_pass_cpu(
float *buffer, size_t depth, float id, float matte_weight, CoverageMap *map)
{
if (map) {
(*map)[id] += matte_weight;
return 0;
}
#else /* __KERNEL_CPU__ */
# define WRITE_ID_SLOT(buffer, depth, id, matte_weight, name) \
kernel_write_id_slots_gpu(buffer, depth * 2, id, matte_weight)
ccl_device_inline size_t kernel_write_id_slots_gpu(ccl_global float *buffer,
size_t depth,
float id,
float matte_weight)
{
#endif /* __KERNEL_CPU__ */
kernel_write_id_slots(buffer, depth, id, matte_weight);
return depth * 2;
}
ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg,
ccl_global float *buffer,
PathRadiance *L,
ShaderData *sd,
ccl_addr_space PathState *state,
float3 throughput)
{
#ifdef __PASSES__
int path_flag = state->flag;
if (!(path_flag & PATH_RAY_CAMERA))
return;
int flag = kernel_data.film.pass_flag;
int light_flag = kernel_data.film.light_pass_flag;
if (!((flag | light_flag) & PASS_ANY))
return;
if (!(path_flag & PATH_RAY_SINGLE_PASS_DONE)) {
if (!(sd->flag & SD_TRANSPARENT) || kernel_data.film.pass_alpha_threshold == 0.0f ||
average(shader_bsdf_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold) {
if (state->sample == 0) {
if (flag & PASSMASK(DEPTH)) {
float depth = camera_distance(kg, sd->P);
kernel_write_pass_float(buffer + kernel_data.film.pass_depth, depth);
}
if (flag & PASSMASK(OBJECT_ID)) {
float id = object_pass_id(kg, sd->object);
kernel_write_pass_float(buffer + kernel_data.film.pass_object_id, id);
}
if (flag & PASSMASK(MATERIAL_ID)) {
float id = shader_pass_id(kg, sd);
kernel_write_pass_float(buffer + kernel_data.film.pass_material_id, id);
}
}
if (flag & PASSMASK(NORMAL)) {
float3 normal = shader_bsdf_average_normal(kg, sd);
kernel_write_pass_float3(buffer + kernel_data.film.pass_normal, normal);
}
if (flag & PASSMASK(UV)) {
float3 uv = primitive_uv(kg, sd);
kernel_write_pass_float3(buffer + kernel_data.film.pass_uv, uv);
}
if (flag & PASSMASK(MOTION)) {
float4 speed = primitive_motion_vector(kg, sd);
kernel_write_pass_float4(buffer + kernel_data.film.pass_motion, speed);
kernel_write_pass_float(buffer + kernel_data.film.pass_motion_weight, 1.0f);
}
state->flag |= PATH_RAY_SINGLE_PASS_DONE;
}
}
if (kernel_data.film.cryptomatte_passes) {
const float matte_weight = average(throughput) *
(1.0f - average(shader_bsdf_transparency(kg, sd)));
if (matte_weight > 0.0f) {
ccl_global float *cryptomatte_buffer = buffer + kernel_data.film.pass_cryptomatte;
if (kernel_data.film.cryptomatte_passes & CRYPT_OBJECT) {
float id = object_cryptomatte_id(kg, sd->object);
cryptomatte_buffer += WRITE_ID_SLOT(
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, object);
}
if (kernel_data.film.cryptomatte_passes & CRYPT_MATERIAL) {
float id = shader_cryptomatte_id(kg, sd->shader);
cryptomatte_buffer += WRITE_ID_SLOT(
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, material);
}
if (kernel_data.film.cryptomatte_passes & CRYPT_ASSET) {
float id = object_cryptomatte_asset_id(kg, sd->object);
cryptomatte_buffer += WRITE_ID_SLOT(
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, asset);
}
}
}
if (light_flag & PASSMASK_COMPONENT(DIFFUSE))
L->color_diffuse += shader_bsdf_diffuse(kg, sd) * throughput;
if (light_flag & PASSMASK_COMPONENT(GLOSSY))
L->color_glossy += shader_bsdf_glossy(kg, sd) * throughput;
if (light_flag & PASSMASK_COMPONENT(TRANSMISSION))
L->color_transmission += shader_bsdf_transmission(kg, sd) * throughput;
if (light_flag & PASSMASK_COMPONENT(SUBSURFACE))
L->color_subsurface += shader_bsdf_subsurface(kg, sd) * throughput;
if (light_flag & PASSMASK(MIST)) {
/* bring depth into 0..1 range */
float mist_start = kernel_data.film.mist_start;
float mist_inv_depth = kernel_data.film.mist_inv_depth;
float depth = camera_distance(kg, sd->P);
float mist = saturate((depth - mist_start) * mist_inv_depth);
/* falloff */
float mist_falloff = kernel_data.film.mist_falloff;
if (mist_falloff == 1.0f)
;
else if (mist_falloff == 2.0f)
mist = mist * mist;
else if (mist_falloff == 0.5f)
mist = sqrtf(mist);
else
mist = powf(mist, mist_falloff);
/* modulate by transparency */
float3 alpha = shader_bsdf_alpha(kg, sd);
L->mist += (1.0f - mist) * average(throughput * alpha);
}
#endif
}
ccl_device_inline void kernel_write_light_passes(KernelGlobals *kg,
ccl_global float *buffer,
PathRadiance *L)
{
#ifdef __PASSES__
int light_flag = kernel_data.film.light_pass_flag;
if (!kernel_data.film.use_light_pass)
return;
if (light_flag & PASSMASK(DIFFUSE_INDIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_indirect, L->indirect_diffuse);
if (light_flag & PASSMASK(GLOSSY_INDIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_indirect, L->indirect_glossy);
if (light_flag & PASSMASK(TRANSMISSION_INDIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_indirect,
L->indirect_transmission);
if (light_flag & PASSMASK(SUBSURFACE_INDIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_indirect,
L->indirect_subsurface);
if (light_flag & PASSMASK(VOLUME_INDIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_volume_indirect, L->indirect_scatter);
if (light_flag & PASSMASK(DIFFUSE_DIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_direct, L->direct_diffuse);
if (light_flag & PASSMASK(GLOSSY_DIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_direct, L->direct_glossy);
if (light_flag & PASSMASK(TRANSMISSION_DIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_direct,
L->direct_transmission);
if (light_flag & PASSMASK(SUBSURFACE_DIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_direct,
L->direct_subsurface);
if (light_flag & PASSMASK(VOLUME_DIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_volume_direct, L->direct_scatter);
if (light_flag & PASSMASK(EMISSION))
kernel_write_pass_float3(buffer + kernel_data.film.pass_emission, L->emission);
if (light_flag & PASSMASK(BACKGROUND))
kernel_write_pass_float3(buffer + kernel_data.film.pass_background, L->background);
if (light_flag & PASSMASK(AO))
kernel_write_pass_float3(buffer + kernel_data.film.pass_ao, L->ao);
if (light_flag & PASSMASK(DIFFUSE_COLOR))
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_color, L->color_diffuse);
if (light_flag & PASSMASK(GLOSSY_COLOR))
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_color, L->color_glossy);
if (light_flag & PASSMASK(TRANSMISSION_COLOR))
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_color,
L->color_transmission);
if (light_flag & PASSMASK(SUBSURFACE_COLOR))
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_color, L->color_subsurface);
if (light_flag & PASSMASK(SHADOW)) {
float4 shadow = L->shadow;
shadow.w = kernel_data.film.pass_shadow_scale;
kernel_write_pass_float4(buffer + kernel_data.film.pass_shadow, shadow);
}
if (light_flag & PASSMASK(MIST))
kernel_write_pass_float(buffer + kernel_data.film.pass_mist, 1.0f - L->mist);
#endif
}
ccl_device_inline void kernel_write_result(KernelGlobals *kg,
ccl_global float *buffer,
int sample,
PathRadiance *L)
{
PROFILING_INIT(kg, PROFILING_WRITE_RESULT);
PROFILING_OBJECT(PRIM_NONE);
float alpha;
float3 L_sum = path_radiance_clamp_and_sum(kg, L, &alpha);
if (kernel_data.film.pass_flag & PASSMASK(COMBINED)) {
kernel_write_pass_float4(buffer, make_float4(L_sum.x, L_sum.y, L_sum.z, alpha));
}
kernel_write_light_passes(kg, buffer, L);
#ifdef __DENOISING_FEATURES__
if (kernel_data.film.pass_denoising_data) {
# ifdef __SHADOW_TRICKS__
kernel_write_denoising_shadow(kg,
buffer + kernel_data.film.pass_denoising_data,
sample,
average(L->path_total),
average(L->path_total_shaded));
# else
kernel_write_denoising_shadow(
kg, buffer + kernel_data.film.pass_denoising_data, sample, 0.0f, 0.0f);
# endif
if (kernel_data.film.pass_denoising_clean) {
float3 noisy, clean;
path_radiance_split_denoising(kg, L, &noisy, &clean);
kernel_write_pass_float3_variance(
buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR, noisy);
kernel_write_pass_float3_unaligned(buffer + kernel_data.film.pass_denoising_clean, clean);
}
else {
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data +
DENOISING_PASS_COLOR,
ensure_finite3(L_sum));
}
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data +
DENOISING_PASS_NORMAL,
L->denoising_normal);
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data +
DENOISING_PASS_ALBEDO,
L->denoising_albedo);
kernel_write_pass_float_variance(
buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_DEPTH, L->denoising_depth);
}
#endif /* __DENOISING_FEATURES__ */
#ifdef __KERNEL_DEBUG__
kernel_write_debug_passes(kg, buffer, L);
#endif
}
CCL_NAMESPACE_END