This feature takes some inspiration from "RenderMan: An Advanced Path Tracing Architecture for Movie Rendering" and "A Hierarchical Automatic Stopping Condition for Monte Carlo Global Illumination" The basic principle is as follows: While samples are being added to a pixel, the adaptive sampler writes half of the samples to a separate buffer. This gives it two separate estimates of the same pixel, and by comparing their difference it estimates convergence. Once convergence drops below a given threshold, the pixel is considered done. When a pixel has not converged yet and needs more samples than the minimum, its immediate neighbors are also set to take more samples. This is done in order to more reliably detect sharp features such as caustics. A 3x3 box filter that is run periodically over the tile buffer is used for that purpose. After a tile has finished rendering, the values of all passes are scaled as if they were rendered with the full number of samples. This way, any code operating on these buffers, for example the denoiser, does not need to be changed for per-pixel sample counts. Reviewed By: brecht, #cycles Differential Revision: https://developer.blender.org/D4686
277 lines
9.5 KiB
C++
277 lines
9.5 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "device/device.h"
|
|
#include "render/background.h"
|
|
#include "render/integrator.h"
|
|
#include "render/film.h"
|
|
#include "render/jitter.h"
|
|
#include "render/light.h"
|
|
#include "render/scene.h"
|
|
#include "render/shader.h"
|
|
#include "render/sobol.h"
|
|
|
|
#include "kernel/kernel_types.h"
|
|
|
|
#include "util/util_foreach.h"
|
|
#include "util/util_logging.h"
|
|
#include "util/util_hash.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
NODE_DEFINE(Integrator)
|
|
{
|
|
NodeType *type = NodeType::add("integrator", create);
|
|
|
|
SOCKET_INT(min_bounce, "Min Bounce", 0);
|
|
SOCKET_INT(max_bounce, "Max Bounce", 7);
|
|
|
|
SOCKET_INT(max_diffuse_bounce, "Max Diffuse Bounce", 7);
|
|
SOCKET_INT(max_glossy_bounce, "Max Glossy Bounce", 7);
|
|
SOCKET_INT(max_transmission_bounce, "Max Transmission Bounce", 7);
|
|
SOCKET_INT(max_volume_bounce, "Max Volume Bounce", 7);
|
|
|
|
SOCKET_INT(transparent_min_bounce, "Transparent Min Bounce", 0);
|
|
SOCKET_INT(transparent_max_bounce, "Transparent Max Bounce", 7);
|
|
|
|
SOCKET_INT(ao_bounces, "AO Bounces", 0);
|
|
|
|
SOCKET_INT(volume_max_steps, "Volume Max Steps", 1024);
|
|
SOCKET_FLOAT(volume_step_size, "Volume Step Size", 0.1f);
|
|
|
|
SOCKET_BOOLEAN(caustics_reflective, "Reflective Caustics", true);
|
|
SOCKET_BOOLEAN(caustics_refractive, "Refractive Caustics", true);
|
|
SOCKET_FLOAT(filter_glossy, "Filter Glossy", 0.0f);
|
|
SOCKET_INT(seed, "Seed", 0);
|
|
SOCKET_FLOAT(sample_clamp_direct, "Sample Clamp Direct", 0.0f);
|
|
SOCKET_FLOAT(sample_clamp_indirect, "Sample Clamp Indirect", 0.0f);
|
|
SOCKET_BOOLEAN(motion_blur, "Motion Blur", false);
|
|
|
|
SOCKET_INT(aa_samples, "AA Samples", 0);
|
|
SOCKET_INT(diffuse_samples, "Diffuse Samples", 1);
|
|
SOCKET_INT(glossy_samples, "Glossy Samples", 1);
|
|
SOCKET_INT(transmission_samples, "Transmission Samples", 1);
|
|
SOCKET_INT(ao_samples, "AO Samples", 1);
|
|
SOCKET_INT(mesh_light_samples, "Mesh Light Samples", 1);
|
|
SOCKET_INT(subsurface_samples, "Subsurface Samples", 1);
|
|
SOCKET_INT(volume_samples, "Volume Samples", 1);
|
|
SOCKET_INT(start_sample, "Start Sample", 0);
|
|
|
|
SOCKET_FLOAT(adaptive_threshold, "Adaptive Threshold", 0.0f);
|
|
SOCKET_INT(adaptive_min_samples, "Adaptive Min Samples", 0);
|
|
|
|
SOCKET_BOOLEAN(sample_all_lights_direct, "Sample All Lights Direct", true);
|
|
SOCKET_BOOLEAN(sample_all_lights_indirect, "Sample All Lights Indirect", true);
|
|
SOCKET_FLOAT(light_sampling_threshold, "Light Sampling Threshold", 0.05f);
|
|
|
|
static NodeEnum method_enum;
|
|
method_enum.insert("path", PATH);
|
|
method_enum.insert("branched_path", BRANCHED_PATH);
|
|
SOCKET_ENUM(method, "Method", method_enum, PATH);
|
|
|
|
static NodeEnum sampling_pattern_enum;
|
|
sampling_pattern_enum.insert("sobol", SAMPLING_PATTERN_SOBOL);
|
|
sampling_pattern_enum.insert("cmj", SAMPLING_PATTERN_CMJ);
|
|
sampling_pattern_enum.insert("pmj", SAMPLING_PATTERN_PMJ);
|
|
SOCKET_ENUM(sampling_pattern, "Sampling Pattern", sampling_pattern_enum, SAMPLING_PATTERN_SOBOL);
|
|
|
|
return type;
|
|
}
|
|
|
|
Integrator::Integrator() : Node(node_type)
|
|
{
|
|
need_update = true;
|
|
}
|
|
|
|
Integrator::~Integrator()
|
|
{
|
|
}
|
|
|
|
void Integrator::device_update(Device *device, DeviceScene *dscene, Scene *scene)
|
|
{
|
|
if (!need_update)
|
|
return;
|
|
|
|
device_free(device, dscene);
|
|
|
|
KernelIntegrator *kintegrator = &dscene->data.integrator;
|
|
|
|
/* integrator parameters */
|
|
kintegrator->min_bounce = min_bounce + 1;
|
|
kintegrator->max_bounce = max_bounce + 1;
|
|
|
|
kintegrator->max_diffuse_bounce = max_diffuse_bounce + 1;
|
|
kintegrator->max_glossy_bounce = max_glossy_bounce + 1;
|
|
kintegrator->max_transmission_bounce = max_transmission_bounce + 1;
|
|
kintegrator->max_volume_bounce = max_volume_bounce + 1;
|
|
|
|
kintegrator->transparent_min_bounce = transparent_min_bounce + 1;
|
|
kintegrator->transparent_max_bounce = transparent_max_bounce + 1;
|
|
|
|
if (ao_bounces == 0) {
|
|
kintegrator->ao_bounces = INT_MAX;
|
|
}
|
|
else {
|
|
kintegrator->ao_bounces = ao_bounces - 1;
|
|
}
|
|
|
|
/* Transparent Shadows
|
|
* We only need to enable transparent shadows, if we actually have
|
|
* transparent shaders in the scene. Otherwise we can disable it
|
|
* to improve performance a bit. */
|
|
kintegrator->transparent_shadows = false;
|
|
foreach (Shader *shader, scene->shaders) {
|
|
/* keep this in sync with SD_HAS_TRANSPARENT_SHADOW in shader.cpp */
|
|
if ((shader->has_surface_transparent && shader->use_transparent_shadow) ||
|
|
shader->has_volume) {
|
|
kintegrator->transparent_shadows = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
kintegrator->volume_max_steps = volume_max_steps;
|
|
kintegrator->volume_step_size = volume_step_size;
|
|
|
|
kintegrator->caustics_reflective = caustics_reflective;
|
|
kintegrator->caustics_refractive = caustics_refractive;
|
|
kintegrator->filter_glossy = (filter_glossy == 0.0f) ? FLT_MAX : 1.0f / filter_glossy;
|
|
|
|
kintegrator->seed = hash_uint2(seed, 0);
|
|
|
|
kintegrator->use_ambient_occlusion = ((Pass::contains(scene->film->passes, PASS_AO)) ||
|
|
dscene->data.background.ao_factor != 0.0f);
|
|
|
|
kintegrator->sample_clamp_direct = (sample_clamp_direct == 0.0f) ? FLT_MAX :
|
|
sample_clamp_direct * 3.0f;
|
|
kintegrator->sample_clamp_indirect = (sample_clamp_indirect == 0.0f) ?
|
|
FLT_MAX :
|
|
sample_clamp_indirect * 3.0f;
|
|
|
|
kintegrator->branched = (method == BRANCHED_PATH);
|
|
kintegrator->volume_decoupled = device->info.has_volume_decoupled;
|
|
kintegrator->diffuse_samples = diffuse_samples;
|
|
kintegrator->glossy_samples = glossy_samples;
|
|
kintegrator->transmission_samples = transmission_samples;
|
|
kintegrator->ao_samples = ao_samples;
|
|
kintegrator->mesh_light_samples = mesh_light_samples;
|
|
kintegrator->subsurface_samples = subsurface_samples;
|
|
kintegrator->volume_samples = volume_samples;
|
|
kintegrator->start_sample = start_sample;
|
|
|
|
if (method == BRANCHED_PATH) {
|
|
kintegrator->sample_all_lights_direct = sample_all_lights_direct;
|
|
kintegrator->sample_all_lights_indirect = sample_all_lights_indirect;
|
|
}
|
|
else {
|
|
kintegrator->sample_all_lights_direct = false;
|
|
kintegrator->sample_all_lights_indirect = false;
|
|
}
|
|
|
|
kintegrator->sampling_pattern = sampling_pattern;
|
|
kintegrator->aa_samples = aa_samples;
|
|
if (aa_samples > 0 && adaptive_min_samples == 0) {
|
|
kintegrator->adaptive_min_samples = max(4, (int)sqrtf(aa_samples));
|
|
VLOG(1) << "Cycles adaptive sampling: automatic min samples = "
|
|
<< kintegrator->adaptive_min_samples;
|
|
}
|
|
else {
|
|
kintegrator->adaptive_min_samples = max(4, adaptive_min_samples);
|
|
}
|
|
if (aa_samples > 0 && adaptive_threshold == 0.0f) {
|
|
kintegrator->adaptive_threshold = max(0.001f, 1.0f / (float)aa_samples);
|
|
VLOG(1) << "Cycles adaptive sampling: automatic threshold = "
|
|
<< kintegrator->adaptive_threshold;
|
|
}
|
|
else {
|
|
kintegrator->adaptive_threshold = adaptive_threshold;
|
|
}
|
|
|
|
if (light_sampling_threshold > 0.0f) {
|
|
kintegrator->light_inv_rr_threshold = 1.0f / light_sampling_threshold;
|
|
}
|
|
else {
|
|
kintegrator->light_inv_rr_threshold = 0.0f;
|
|
}
|
|
|
|
/* sobol directions table */
|
|
int max_samples = 1;
|
|
|
|
if (method == BRANCHED_PATH) {
|
|
foreach (Light *light, scene->lights)
|
|
max_samples = max(max_samples, light->samples);
|
|
|
|
max_samples = max(max_samples,
|
|
max(diffuse_samples, max(glossy_samples, transmission_samples)));
|
|
max_samples = max(max_samples, max(ao_samples, max(mesh_light_samples, subsurface_samples)));
|
|
max_samples = max(max_samples, volume_samples);
|
|
}
|
|
|
|
uint total_bounces = max_bounce + transparent_max_bounce + 3 + VOLUME_BOUNDS_MAX +
|
|
max(BSSRDF_MAX_HITS, BSSRDF_MAX_BOUNCES);
|
|
|
|
max_samples *= total_bounces;
|
|
|
|
int dimensions = PRNG_BASE_NUM + max_samples * PRNG_BOUNCE_NUM;
|
|
dimensions = min(dimensions, SOBOL_MAX_DIMENSIONS);
|
|
|
|
if (sampling_pattern == SAMPLING_PATTERN_SOBOL) {
|
|
uint *directions = dscene->sample_pattern_lut.alloc(SOBOL_BITS * dimensions);
|
|
|
|
sobol_generate_direction_vectors((uint(*)[SOBOL_BITS])directions, dimensions);
|
|
|
|
dscene->sample_pattern_lut.copy_to_device();
|
|
}
|
|
else {
|
|
constexpr int sequence_size = NUM_PMJ_SAMPLES;
|
|
constexpr int num_sequences = NUM_PMJ_PATTERNS;
|
|
float2 *directions = (float2 *)dscene->sample_pattern_lut.alloc(sequence_size * num_sequences *
|
|
2);
|
|
TaskPool pool;
|
|
for (int j = 0; j < num_sequences; ++j) {
|
|
float2 *sequence = directions + j * sequence_size;
|
|
pool.push(
|
|
function_bind(&progressive_multi_jitter_02_generate_2D, sequence, sequence_size, j));
|
|
}
|
|
pool.wait_work();
|
|
dscene->sample_pattern_lut.copy_to_device();
|
|
}
|
|
|
|
need_update = false;
|
|
}
|
|
|
|
void Integrator::device_free(Device *, DeviceScene *dscene)
|
|
{
|
|
dscene->sample_pattern_lut.free();
|
|
}
|
|
|
|
bool Integrator::modified(const Integrator &integrator)
|
|
{
|
|
return !Node::equals(integrator);
|
|
}
|
|
|
|
void Integrator::tag_update(Scene *scene)
|
|
{
|
|
foreach (Shader *shader, scene->shaders) {
|
|
if (shader->has_integrator_dependency) {
|
|
scene->shader_manager->need_update = true;
|
|
break;
|
|
}
|
|
}
|
|
need_update = true;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|