This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/mesh_remesh_voxel.c
Sybren A. Stüvel 371ddda4d0 Cleanup: Clang-Tidy readability-redundant-preprocessor fixes
Remove redundantly nested `#if` and `#ifdef` statements.

One nested `#if 0` block was left untouched, as it's in particle code
that's no longer maintained. Furthermore, that block also has some
explanation as to the differences between the enabled & disabled parts.

One nested `#if 0` construct was completely removed, leaving only the
actually used bit of code. There was no explanation as to the usefulness
of the disabled code, and it hasn't been touched in years.

No functional changes.
2020-09-04 11:26:26 +02:00

547 lines
18 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2019 by Blender Foundation
* All rights reserved.
*/
/** \file
* \ingroup bke
*/
#include <ctype.h>
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "BKE_bvhutils.h"
#include "BKE_customdata.h"
#include "BKE_editmesh.h"
#include "BKE_lib_id.h"
#include "BKE_mesh.h"
#include "BKE_mesh_remesh_voxel.h" /* own include */
#include "BKE_mesh_runtime.h"
#include "bmesh_tools.h"
#ifdef WITH_OPENVDB
# include "openvdb_capi.h"
#endif
#ifdef WITH_QUADRIFLOW
# include "quadriflow_capi.hpp"
#endif
#ifdef WITH_OPENVDB
struct OpenVDBLevelSet *BKE_mesh_remesh_voxel_ovdb_mesh_to_level_set_create(
Mesh *mesh, struct OpenVDBTransform *transform)
{
BKE_mesh_runtime_looptri_recalc(mesh);
const MLoopTri *looptri = BKE_mesh_runtime_looptri_ensure(mesh);
MVertTri *verttri = MEM_callocN(sizeof(*verttri) * BKE_mesh_runtime_looptri_len(mesh),
"remesh_looptri");
BKE_mesh_runtime_verttri_from_looptri(
verttri, mesh->mloop, looptri, BKE_mesh_runtime_looptri_len(mesh));
unsigned int totfaces = BKE_mesh_runtime_looptri_len(mesh);
unsigned int totverts = mesh->totvert;
float *verts = (float *)MEM_malloc_arrayN(totverts * 3, sizeof(float), "remesh_input_verts");
unsigned int *faces = (unsigned int *)MEM_malloc_arrayN(
totfaces * 3, sizeof(unsigned int), "remesh_intput_faces");
for (unsigned int i = 0; i < totverts; i++) {
MVert *mvert = &mesh->mvert[i];
verts[i * 3] = mvert->co[0];
verts[i * 3 + 1] = mvert->co[1];
verts[i * 3 + 2] = mvert->co[2];
}
for (unsigned int i = 0; i < totfaces; i++) {
MVertTri *vt = &verttri[i];
faces[i * 3] = vt->tri[0];
faces[i * 3 + 1] = vt->tri[1];
faces[i * 3 + 2] = vt->tri[2];
}
struct OpenVDBLevelSet *level_set = OpenVDBLevelSet_create(false, NULL);
OpenVDBLevelSet_mesh_to_level_set(level_set, verts, faces, totverts, totfaces, transform);
MEM_freeN(verts);
MEM_freeN(faces);
MEM_freeN(verttri);
return level_set;
}
Mesh *BKE_mesh_remesh_voxel_ovdb_volume_to_mesh_nomain(struct OpenVDBLevelSet *level_set,
double isovalue,
double adaptivity,
bool relax_disoriented_triangles)
{
struct OpenVDBVolumeToMeshData output_mesh;
OpenVDBLevelSet_volume_to_mesh(
level_set, &output_mesh, isovalue, adaptivity, relax_disoriented_triangles);
Mesh *mesh = BKE_mesh_new_nomain(output_mesh.totvertices,
0,
0,
(output_mesh.totquads * 4) + (output_mesh.tottriangles * 3),
output_mesh.totquads + output_mesh.tottriangles);
for (int i = 0; i < output_mesh.totvertices; i++) {
copy_v3_v3(mesh->mvert[i].co, &output_mesh.vertices[i * 3]);
}
MPoly *mp = mesh->mpoly;
MLoop *ml = mesh->mloop;
for (int i = 0; i < output_mesh.totquads; i++, mp++, ml += 4) {
mp->loopstart = (int)(ml - mesh->mloop);
mp->totloop = 4;
ml[0].v = output_mesh.quads[i * 4 + 3];
ml[1].v = output_mesh.quads[i * 4 + 2];
ml[2].v = output_mesh.quads[i * 4 + 1];
ml[3].v = output_mesh.quads[i * 4];
}
for (int i = 0; i < output_mesh.tottriangles; i++, mp++, ml += 3) {
mp->loopstart = (int)(ml - mesh->mloop);
mp->totloop = 3;
ml[0].v = output_mesh.triangles[i * 3 + 2];
ml[1].v = output_mesh.triangles[i * 3 + 1];
ml[2].v = output_mesh.triangles[i * 3];
}
BKE_mesh_calc_edges(mesh, false, false);
BKE_mesh_calc_normals(mesh);
MEM_freeN(output_mesh.quads);
MEM_freeN(output_mesh.vertices);
if (output_mesh.tottriangles > 0) {
MEM_freeN(output_mesh.triangles);
}
return mesh;
}
#endif
#ifdef WITH_QUADRIFLOW
static Mesh *BKE_mesh_remesh_quadriflow(Mesh *input_mesh,
int target_faces,
int seed,
bool preserve_sharp,
bool preserve_boundary,
bool adaptive_scale,
void *update_cb,
void *update_cb_data)
{
/* Ensure that the triangulated mesh data is up to data */
BKE_mesh_runtime_looptri_recalc(input_mesh);
const MLoopTri *looptri = BKE_mesh_runtime_looptri_ensure(input_mesh);
/* Gather the required data for export to the internal quadiflow mesh format */
MVertTri *verttri = MEM_callocN(sizeof(*verttri) * BKE_mesh_runtime_looptri_len(input_mesh),
"remesh_looptri");
BKE_mesh_runtime_verttri_from_looptri(
verttri, input_mesh->mloop, looptri, BKE_mesh_runtime_looptri_len(input_mesh));
unsigned int totfaces = BKE_mesh_runtime_looptri_len(input_mesh);
unsigned int totverts = input_mesh->totvert;
float *verts = (float *)MEM_malloc_arrayN(totverts * 3, sizeof(float), "remesh_input_verts");
unsigned int *faces = (unsigned int *)MEM_malloc_arrayN(
totfaces * 3, sizeof(unsigned int), "remesh_intput_faces");
for (unsigned int i = 0; i < totverts; i++) {
MVert *mvert = &input_mesh->mvert[i];
verts[i * 3] = mvert->co[0];
verts[i * 3 + 1] = mvert->co[1];
verts[i * 3 + 2] = mvert->co[2];
}
for (unsigned int i = 0; i < totfaces; i++) {
MVertTri *vt = &verttri[i];
faces[i * 3] = vt->tri[0];
faces[i * 3 + 1] = vt->tri[1];
faces[i * 3 + 2] = vt->tri[2];
}
/* Fill out the required input data */
QuadriflowRemeshData qrd;
qrd.totfaces = totfaces;
qrd.totverts = totverts;
qrd.verts = verts;
qrd.faces = faces;
qrd.target_faces = target_faces;
qrd.preserve_sharp = preserve_sharp;
qrd.preserve_boundary = preserve_boundary;
qrd.adaptive_scale = adaptive_scale;
qrd.minimum_cost_flow = 0;
qrd.aggresive_sat = 0;
qrd.rng_seed = seed;
qrd.out_faces = NULL;
/* Run the remesher */
QFLOW_quadriflow_remesh(&qrd, update_cb, update_cb_data);
MEM_freeN(verts);
MEM_freeN(faces);
MEM_freeN(verttri);
if (qrd.out_faces == NULL) {
/* The remeshing was canceled */
return NULL;
}
if (qrd.out_totfaces == 0) {
/* Meshing failed */
MEM_freeN(qrd.out_faces);
MEM_freeN(qrd.out_verts);
return NULL;
}
/* Construct the new output mesh */
Mesh *mesh = BKE_mesh_new_nomain(
qrd.out_totverts, 0, 0, (qrd.out_totfaces * 4), qrd.out_totfaces);
for (int i = 0; i < qrd.out_totverts; i++) {
copy_v3_v3(mesh->mvert[i].co, &qrd.out_verts[i * 3]);
}
MPoly *mp = mesh->mpoly;
MLoop *ml = mesh->mloop;
for (int i = 0; i < qrd.out_totfaces; i++, mp++, ml += 4) {
mp->loopstart = (int)(ml - mesh->mloop);
mp->totloop = 4;
ml[0].v = qrd.out_faces[i * 4];
ml[1].v = qrd.out_faces[i * 4 + 1];
ml[2].v = qrd.out_faces[i * 4 + 2];
ml[3].v = qrd.out_faces[i * 4 + 3];
}
BKE_mesh_calc_edges(mesh, false, false);
BKE_mesh_calc_normals(mesh);
MEM_freeN(qrd.out_faces);
MEM_freeN(qrd.out_verts);
return mesh;
}
#endif
Mesh *BKE_mesh_remesh_quadriflow_to_mesh_nomain(Mesh *mesh,
int target_faces,
int seed,
bool preserve_sharp,
bool preserve_boundary,
bool adaptive_scale,
void *update_cb,
void *update_cb_data)
{
Mesh *new_mesh = NULL;
#ifdef WITH_QUADRIFLOW
if (target_faces <= 0) {
target_faces = -1;
}
new_mesh = BKE_mesh_remesh_quadriflow(mesh,
target_faces,
seed,
preserve_sharp,
preserve_boundary,
adaptive_scale,
update_cb,
update_cb_data);
#else
UNUSED_VARS(mesh,
target_faces,
seed,
preserve_sharp,
preserve_boundary,
adaptive_scale,
update_cb,
update_cb_data);
#endif
return new_mesh;
}
Mesh *BKE_mesh_remesh_voxel_to_mesh_nomain(Mesh *mesh,
float voxel_size,
float adaptivity,
float isovalue)
{
Mesh *new_mesh = NULL;
#ifdef WITH_OPENVDB
struct OpenVDBLevelSet *level_set;
struct OpenVDBTransform *xform = OpenVDBTransform_create();
OpenVDBTransform_create_linear_transform(xform, (double)voxel_size);
level_set = BKE_mesh_remesh_voxel_ovdb_mesh_to_level_set_create(mesh, xform);
new_mesh = BKE_mesh_remesh_voxel_ovdb_volume_to_mesh_nomain(
level_set, (double)isovalue, (double)adaptivity, false);
OpenVDBLevelSet_free(level_set);
OpenVDBTransform_free(xform);
#else
UNUSED_VARS(mesh, voxel_size, adaptivity, isovalue);
#endif
return new_mesh;
}
void BKE_mesh_remesh_reproject_paint_mask(Mesh *target, Mesh *source)
{
BVHTreeFromMesh bvhtree = {
.nearest_callback = NULL,
};
BKE_bvhtree_from_mesh_get(&bvhtree, source, BVHTREE_FROM_VERTS, 2);
MVert *target_verts = CustomData_get_layer(&target->vdata, CD_MVERT);
float *target_mask;
if (CustomData_has_layer(&target->vdata, CD_PAINT_MASK)) {
target_mask = CustomData_get_layer(&target->vdata, CD_PAINT_MASK);
}
else {
target_mask = CustomData_add_layer(
&target->vdata, CD_PAINT_MASK, CD_CALLOC, NULL, target->totvert);
}
float *source_mask;
if (CustomData_has_layer(&source->vdata, CD_PAINT_MASK)) {
source_mask = CustomData_get_layer(&source->vdata, CD_PAINT_MASK);
}
else {
source_mask = CustomData_add_layer(
&source->vdata, CD_PAINT_MASK, CD_CALLOC, NULL, source->totvert);
}
for (int i = 0; i < target->totvert; i++) {
float from_co[3];
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
copy_v3_v3(from_co, target_verts[i].co);
BLI_bvhtree_find_nearest(bvhtree.tree, from_co, &nearest, bvhtree.nearest_callback, &bvhtree);
if (nearest.index != -1) {
target_mask[i] = source_mask[nearest.index];
}
}
free_bvhtree_from_mesh(&bvhtree);
}
void BKE_remesh_reproject_sculpt_face_sets(Mesh *target, Mesh *source)
{
BVHTreeFromMesh bvhtree = {
.nearest_callback = NULL,
};
const MPoly *target_polys = CustomData_get_layer(&target->pdata, CD_MPOLY);
const MVert *target_verts = CustomData_get_layer(&target->vdata, CD_MVERT);
const MLoop *target_loops = CustomData_get_layer(&target->ldata, CD_MLOOP);
int *target_face_sets;
if (CustomData_has_layer(&target->pdata, CD_SCULPT_FACE_SETS)) {
target_face_sets = CustomData_get_layer(&target->pdata, CD_SCULPT_FACE_SETS);
}
else {
target_face_sets = CustomData_add_layer(
&target->pdata, CD_SCULPT_FACE_SETS, CD_CALLOC, NULL, target->totpoly);
}
int *source_face_sets;
if (CustomData_has_layer(&source->pdata, CD_SCULPT_FACE_SETS)) {
source_face_sets = CustomData_get_layer(&source->pdata, CD_SCULPT_FACE_SETS);
}
else {
source_face_sets = CustomData_add_layer(
&source->pdata, CD_SCULPT_FACE_SETS, CD_CALLOC, NULL, source->totpoly);
}
const MLoopTri *looptri = BKE_mesh_runtime_looptri_ensure(source);
BKE_bvhtree_from_mesh_get(&bvhtree, source, BVHTREE_FROM_LOOPTRI, 2);
for (int i = 0; i < target->totpoly; i++) {
float from_co[3];
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
const MPoly *mpoly = &target_polys[i];
BKE_mesh_calc_poly_center(mpoly, &target_loops[mpoly->loopstart], target_verts, from_co);
BLI_bvhtree_find_nearest(bvhtree.tree, from_co, &nearest, bvhtree.nearest_callback, &bvhtree);
if (nearest.index != -1) {
target_face_sets[i] = source_face_sets[looptri[nearest.index].poly];
}
else {
target_face_sets[i] = 1;
}
}
free_bvhtree_from_mesh(&bvhtree);
}
void BKE_remesh_reproject_vertex_paint(Mesh *target, Mesh *source)
{
BVHTreeFromMesh bvhtree = {
.nearest_callback = NULL,
};
BKE_bvhtree_from_mesh_get(&bvhtree, source, BVHTREE_FROM_VERTS, 2);
int tot_color_layer = CustomData_number_of_layers(&source->vdata, CD_PROP_COLOR);
for (int layer_n = 0; layer_n < tot_color_layer; layer_n++) {
const char *layer_name = CustomData_get_layer_name(&source->vdata, CD_PROP_COLOR, layer_n);
CustomData_add_layer_named(
&target->vdata, CD_PROP_COLOR, CD_CALLOC, NULL, target->totvert, layer_name);
MPropCol *target_color = CustomData_get_layer_n(&target->vdata, CD_PROP_COLOR, layer_n);
MVert *target_verts = CustomData_get_layer(&target->vdata, CD_MVERT);
MPropCol *source_color = CustomData_get_layer_n(&source->vdata, CD_PROP_COLOR, layer_n);
for (int i = 0; i < target->totvert; i++) {
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist_sq = FLT_MAX;
BLI_bvhtree_find_nearest(
bvhtree.tree, target_verts[i].co, &nearest, bvhtree.nearest_callback, &bvhtree);
if (nearest.index != -1) {
copy_v4_v4(target_color[i].color, source_color[nearest.index].color);
}
}
}
free_bvhtree_from_mesh(&bvhtree);
}
struct Mesh *BKE_mesh_remesh_voxel_fix_poles(struct Mesh *mesh)
{
const BMAllocTemplate allocsize = BMALLOC_TEMPLATE_FROM_ME(mesh);
BMesh *bm;
bm = BM_mesh_create(&allocsize,
&((struct BMeshCreateParams){
.use_toolflags = true,
}));
BM_mesh_bm_from_me(bm,
mesh,
(&(struct BMeshFromMeshParams){
.calc_face_normal = true,
}));
BMVert *v;
BMEdge *ed, *ed_next;
BMFace *f, *f_next;
BMIter iter_a, iter_b;
/* Merge 3 edge poles vertices that exist in the same face */
BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_TAG, false);
BM_ITER_MESH_MUTABLE (f, f_next, &iter_a, bm, BM_FACES_OF_MESH) {
BMVert *v1, *v2;
v1 = NULL;
v2 = NULL;
BM_ITER_ELEM (v, &iter_b, f, BM_VERTS_OF_FACE) {
if (BM_vert_edge_count(v) == 3) {
if (v1) {
v2 = v;
}
else {
v1 = v;
}
}
}
if (v1 && v2 && (v1 != v2) && !BM_edge_exists(v1, v2)) {
BM_face_kill(bm, f);
BMEdge *e = BM_edge_create(bm, v1, v2, NULL, BM_CREATE_NOP);
BM_elem_flag_set(e, BM_ELEM_TAG, true);
}
}
BM_ITER_MESH_MUTABLE (ed, ed_next, &iter_a, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(ed, BM_ELEM_TAG)) {
float co[3];
mid_v3_v3v3(co, ed->v1->co, ed->v2->co);
BMVert *vc = BM_edge_collapse(bm, ed, ed->v1, true, true);
copy_v3_v3(vc->co, co);
}
}
/* Delete faces with a 3 edge pole in all their vertices */
BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_TAG, false);
BM_ITER_MESH (f, &iter_a, bm, BM_FACES_OF_MESH) {
bool dissolve = true;
BM_ITER_ELEM (v, &iter_b, f, BM_VERTS_OF_FACE) {
if (BM_vert_edge_count(v) != 3) {
dissolve = false;
}
}
if (dissolve) {
BM_ITER_ELEM (v, &iter_b, f, BM_VERTS_OF_FACE) {
BM_elem_flag_set(v, BM_ELEM_TAG, true);
}
}
}
BM_mesh_delete_hflag_context(bm, BM_ELEM_TAG, DEL_VERTS);
BM_ITER_MESH (ed, &iter_a, bm, BM_EDGES_OF_MESH) {
if (BM_edge_face_count(ed) != 2) {
BM_elem_flag_set(ed, BM_ELEM_TAG, true);
}
}
BM_mesh_edgenet(bm, false, true);
/* Smooth the result */
for (int i = 0; i < 4; i++) {
BM_ITER_MESH (v, &iter_a, bm, BM_VERTS_OF_MESH) {
float co[3];
zero_v3(co);
BM_ITER_ELEM (ed, &iter_b, v, BM_EDGES_OF_VERT) {
BMVert *vert = BM_edge_other_vert(ed, v);
add_v3_v3(co, vert->co);
}
mul_v3_fl(co, 1.0f / (float)BM_vert_edge_count(v));
mid_v3_v3v3(v->co, v->co, co);
}
}
BM_mesh_normals_update(bm);
BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false);
BM_mesh_elem_hflag_enable_all(bm, BM_FACE, BM_ELEM_TAG, false);
BMO_op_callf(bm,
(BMO_FLAG_DEFAULTS & ~BMO_FLAG_RESPECT_HIDE),
"recalc_face_normals faces=%hf",
BM_ELEM_TAG);
BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_TAG, false);
Mesh *result = BKE_mesh_from_bmesh_nomain(bm,
(&(struct BMeshToMeshParams){
.calc_object_remap = false,
}),
mesh);
BKE_id_free(NULL, mesh);
BM_mesh_free(bm);
return result;
}