This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/Mesh.c
Campbell Barton f231bd0d57 Many long standing memory leaks fixed in the BPY api.
Data from Armature.c and logic.c still leaks.

Mostly todo with PyList_Append adding a refcount and the bpython api not decrefing.

Also added some features needed to fix a bug in mesh_clean.py (ob.pinShape and ob.activeShape)
2007-05-25 16:43:25 +00:00

8248 lines
220 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender, partially based on NMesh.c API.
*
* Contributor(s): Ken Hughes
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Mesh.h" /*This must come first*/
#include "MEM_guardedalloc.h"
#include "DNA_key_types.h"
#include "DNA_armature_types.h"
#include "DNA_scene_types.h"
#include "DNA_oops_types.h"
#include "DNA_space_types.h"
#include "DNA_curve_types.h"
#include "DNA_meta_types.h"
#include "DNA_modifier_types.h"
#include "BDR_editface.h" /* make_tfaces */
#include "BDR_vpaint.h"
#include "BDR_editobject.h"
#include "BIF_editdeform.h"
#include "BIF_editkey.h" /* insert_meshkey */
#include "BIF_space.h" /* REMAKEIPO - insert_meshkey */
#include "BIF_editview.h"
#include "BIF_editmesh.h"
#include "BIF_meshtools.h"
#include "BKE_customdata.h"
#include "BKE_deform.h"
#include "BKE_displist.h"
#include "BKE_mesh.h"
#include "BKE_material.h"
#include "BKE_main.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_DerivedMesh.h"
#include "BKE_object.h"
#include "BKE_mball.h"
#include "BKE_utildefines.h"
#include "BKE_depsgraph.h"
#include "BSE_edit.h" /* for countall(); */
#include "BKE_curve.h" /* for copy_curve(); */
#include "BKE_modifier.h" /* for modifier_new(), modifier_copyData(); */
#include "BKE_idprop.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "blendef.h"
#include "mydevice.h"
#include "butspace.h" /* for mesh tools */
#include "Object.h"
#include "Key.h"
#include "Image.h"
#include "Material.h"
#include "Mathutils.h"
#include "IDProp.h"
#include "meshPrimitive.h"
#include "constant.h"
#include "gen_utils.h"
#include "gen_library.h"
#include "multires.h"
/* EXPP Mesh defines */
#define MESH_SMOOTHRESH 30
#define MESH_SMOOTHRESH_MIN 1
#define MESH_SMOOTHRESH_MAX 80
#define MESH_SUBDIV 1
#define MESH_SUBDIV_MIN 0
#define MESH_SUBDIV_MAX 6
#define MESH_HASFACEUV 0
#define MESH_HASMCOL 1
#define MESH_HASVERTUV 2
#define MESH_HASMULTIRES 3
#define MESH_MULTIRES_LEVEL 0
#define MESH_MULTIRES_EDGE 1
#define MESH_MULTIRES_PIN 2
#define MESH_MULTIRES_RENDER 3
#define MESH_TOOL_TOSPHERE 0
#define MESH_TOOL_VERTEXSMOOTH 1
#define MESH_TOOL_FLIPNORM 2
#define MESH_TOOL_SUBDIV 3
#define MESH_TOOL_REMDOUB 4
#define MESH_TOOL_FILL 5
#define MESH_TOOL_RECALCNORM 6
#define MESH_TOOL_TRI2QUAD 7
#define MESH_TOOL_QUAD2TRI 8
static PyObject *MVertSeq_CreatePyObject( Mesh * mesh );
static PyObject *MFaceSeq_CreatePyObject( Mesh * mesh );
static PyObject *MEdgeSeq_CreatePyObject( Mesh * mesh );
static PyObject *MFace_CreatePyObject( Mesh * mesh, int i );
static PyObject *MEdge_CreatePyObject( Mesh * mesh, int i );
/************************************************************************
*
* internal utilities
*
************************************************************************/
/*
* internal structures used for sorting edges and faces
*/
typedef struct SrchEdges {
unsigned int v[2]; /* indices for verts */
unsigned char swap; /* non-zero if verts swapped */
unsigned int index; /* index in original param list of this edge */
/* (will be used by findEdges) */
} SrchEdges;
typedef struct SrchFaces {
unsigned int v[4]; /* indices for verts */
unsigned int index; /* index in original param list of this edge */
unsigned char order; /* order of original verts, bitpacked */
} SrchFaces;
typedef struct FaceEdges {
unsigned int v[2]; /* search key (vert indices) */
unsigned int index; /* location in edge list */
unsigned char sel; /* selection state */
} FaceEdges;
/*
* compare edges by vertex indices
*/
int medge_comp( const void *va, const void *vb )
{
const unsigned int *a = ((SrchEdges *)va)->v;
const unsigned int *b = ((SrchEdges *)vb)->v;
/* compare first index for differences */
if (a[0] < b[0]) return -1;
else if (a[0] > b[0]) return 1;
/* if first indices equal, compare second index for differences */
else if (a[1] < b[1]) return -1;
else return (a[1] > b[1]);
}
/*
* compare edges by insert list indices
*/
int medge_index_comp( const void *va, const void *vb )
{
const SrchEdges *a = (SrchEdges *)va;
const SrchEdges *b = (SrchEdges *)vb;
/* compare list indices for differences */
if (a->index < b->index) return -1;
else return (a->index > b->index);
}
/*
* compare faces by vertex indices
*/
int mface_comp( const void *va, const void *vb )
{
const SrchFaces *a = va;
const SrchFaces *b = vb;
int i;
/* compare indices, first to last, for differences */
for( i = 0; i < 4; ++i ) {
if( a->v[i] < b->v[i] )
return -1;
if( a->v[i] > b->v[i] )
return 1;
}
/*
* don't think this needs be done; if order is different then either
* (a) the face is good, just reversed or has a different starting
* vertex, or (b) face is bad (for 4 verts) and there's a "twist"
*/
#if 0
/* if all the same verts, compare their order */
if( a->order < b->order )
return -1;
if( a->order > b->order )
return 1;
#endif
return 0;
}
/*
* compare faces by insert list indices
*/
int mface_index_comp( const void *va, const void *vb )
{
const SrchFaces *a = va;
const SrchFaces *b = vb;
/* compare indices, first to last, for differences */
if( a->index < b->index )
return -1;
if( a->index > b->index )
return 1;
return 0;
}
/*
* compare edges by vertex indices
*/
int faceedge_comp( const void *va, const void *vb )
{
const unsigned int *a = ((FaceEdges *)va)->v;
const unsigned int *b = ((FaceEdges *)vb)->v;
/* compare first index for differences */
if (a[0] < b[0]) return -1;
else if (a[0] > b[0]) return 1;
/* if first indices equal, compare second index for differences */
else if (a[1] < b[1]) return -1;
else return (a[1] > b[1]);
}
/*
* update the DAG for all objects linked to this mesh
*/
static void mesh_update( Mesh * mesh )
{
Object_updateDag( (void *) mesh );
}
/*
* delete vertices from mesh, then delete edges/keys/faces which used those
* vertices
*
* Deletion is done by "smart compaction"; groups of verts/edges/faces which
* remain in the list are copied to new list instead of one at a time. Since
* Blender has no realloc we would have to copy things anyway, so there's no
* point trying to fill empty entries with data from the end of the lists.
*
* vert_table is a lookup table for mapping old verts to new verts (after the
* vextex list has deleted vertices removed). Each entry contains the
* vertex's new index.
*/
static void delete_verts( Mesh *mesh, unsigned int *vert_table, int to_delete )
{
/*
* (1) allocate vertex table (initialize contents to 0)
* (2) mark each vertex being deleted in vertex table (= UINT_MAX)
* (3) update remaining table entries with "new" vertex index (after
* compaction)
* (4) allocate new vertex list
* (5) do "smart copy" of vertices from old to new
* * each moved vertex is entered into vertex table: if vertex i is
* moving to index j in new list
* vert_table[i] = j;
* (6) if keys, do "smart copy" of keys
* (7) process edge list
* update vert index
* delete edges which delete verts
* (7) allocate new edge list
* (8) do "smart copy" of edges
* (9) allocate new face list
* (10) do "smart copy" of face
*/
unsigned int *tmpvert;
CustomData vdata;
int i, count, state, dstindex, totvert;
totvert = mesh->totvert - to_delete;
CustomData_copy( &mesh->vdata, &vdata, CD_MASK_MESH, CD_CALLOC, totvert );
/*
* do "smart compaction" of the table; find and copy groups of vertices
* which are not being deleted
*/
dstindex = 0;
tmpvert = vert_table;
count = 0;
state = 1;
for( i = 0; i < mesh->totvert; ++i, ++tmpvert ) {
switch( state ) {
case 0: /* skipping verts */
if( *tmpvert == UINT_MAX ) {
++count;
} else {
count = 1;
state = 1;
}
break;
case 1: /* gathering verts */
if( *tmpvert != UINT_MAX ) {
++count;
} else {
if( count ) {
CustomData_copy_data( &mesh->vdata, &vdata, i-count,
dstindex, count );
dstindex += count;
}
count = 1;
state = 0;
}
}
}
/* if we were gathering verts at the end of the loop, copy those */
if( state && count )
CustomData_copy_data( &mesh->vdata, &vdata, i-count, dstindex, count );
/* delete old vertex list, install the new one, update vertex count */
CustomData_free( &mesh->vdata, mesh->totvert );
mesh->vdata = vdata;
mesh->totvert = totvert;
mesh_update_customdata_pointers( mesh );
}
static void delete_edges( Mesh *mesh, unsigned int *vert_table, int to_delete )
{
int i;
MEdge *tmpedge;
/* if not given, then mark and count edges to be deleted */
if( !to_delete ) {
tmpedge = mesh->medge;
for( i = mesh->totedge; i-- ; ++tmpedge )
if( vert_table[tmpedge->v1] == UINT_MAX ||
vert_table[tmpedge->v2] == UINT_MAX ) {
tmpedge->v1 = UINT_MAX;
++to_delete;
}
}
/* if there are edges to delete, handle it */
if( to_delete ) {
CustomData edata;
int count, state, dstindex, totedge;
/* allocate new edge list and populate */
totedge = mesh->totedge - to_delete;
CustomData_copy( &mesh->edata, &edata, CD_MASK_MESH, CD_CALLOC, totedge);
/*
* do "smart compaction" of the edges; find and copy groups of edges
* which are not being deleted
*/
dstindex = 0;
tmpedge = mesh->medge;
count = 0;
state = 1;
for( i = 0; i < mesh->totedge; ++i, ++tmpedge ) {
switch( state ) {
case 0: /* skipping edges */
if( tmpedge->v1 == UINT_MAX ) {
++count;
} else {
count = 1;
state = 1;
}
break;
case 1: /* gathering edges */
if( tmpedge->v1 != UINT_MAX ) {
++count;
} else {
if( count ) {
CustomData_copy_data( &mesh->edata, &edata, i-count,
dstindex, count );
dstindex += count;
}
count = 1;
state = 0;
}
}
/* if edge is good, update vertex indices */
}
/* copy any pending good edges */
if( state && count )
CustomData_copy_data( &mesh->edata, &edata, i-count, dstindex,
count );
/* delete old edge list, install the new one, update vertex count */
CustomData_free( &mesh->edata, mesh->totedge );
mesh->edata = edata;
mesh->totedge = totedge;
mesh_update_customdata_pointers( mesh );
}
/* if vertices were deleted, update edge's vertices */
if( vert_table ) {
tmpedge = mesh->medge;
for( i = mesh->totedge; i--; ++tmpedge ) {
tmpedge->v1 = vert_table[tmpedge->v1];
tmpedge->v2 = vert_table[tmpedge->v2];
}
}
}
/*
* Since all faces must have 3 or 4 verts, we can't have v3 or v4 be zero.
* If that happens during the deletion, we have to shuffle the vertices
* around; otherwise it can cause an Eeekadoodle or worse. If there are
* texture faces as well, they have to be shuffled as well.
*
* (code borrowed from test_index_face() in mesh.c, but since we know the
* faces already have correct number of vertices, this is a little faster)
*/
static void eeek_fix( MFace *mface, int len4 )
{
/* if 4 verts, then neither v3 nor v4 can be zero */
if( len4 ) {
if( !mface->v3 || !mface->v4 ) {
SWAP( int, mface->v1, mface->v3 );
SWAP( int, mface->v2, mface->v4 );
}
} else if( !mface->v3 ) {
/* if 2 verts, then just v3 cannot be zero (v4 MUST be zero) */
SWAP( int, mface->v1, mface->v2 );
SWAP( int, mface->v2, mface->v3 );
}
}
static void delete_faces( Mesh *mesh, unsigned int *vert_table, int to_delete )
{
int i;
MFace *tmpface;
/* if there are faces to delete, handle it */
if( to_delete ) {
CustomData fdata;
int count, state, dstindex, totface;
totface = mesh->totface - to_delete;
CustomData_copy( &mesh->fdata, &fdata, CD_MASK_MESH, CD_CALLOC, totface );
/*
* do "smart compaction" of the faces; find and copy groups of faces
* which are not being deleted
*/
dstindex = 0;
tmpface = mesh->mface;
count = 0;
state = 1;
for( i = 0; i < mesh->totface; ++i ) {
switch( state ) {
case 0: /* skipping faces */
if( tmpface->v1 == UINT_MAX ) {
++count;
} else {
count = 1;
state = 1;
}
break;
case 1: /* gathering faces */
if( tmpface->v1 != UINT_MAX ) {
++count;
} else {
if( count ) {
CustomData_copy_data( &mesh->fdata, &fdata, i-count,
dstindex, count );
dstindex += count;
}
count = 1;
state = 0;
}
}
++tmpface;
}
/* if we were gathering faces at the end of the loop, copy those */
if ( state && count )
CustomData_copy_data( &mesh->fdata, &fdata, i-count, dstindex,
count );
/* delete old face list, install the new one, update face count */
CustomData_free( &mesh->fdata, mesh->totface );
mesh->fdata = fdata;
mesh->totface = totface;
mesh_update_customdata_pointers( mesh );
}
/* if vertices were deleted, update face's vertices */
if( vert_table ) {
tmpface = mesh->mface;
for( i = 0; i<mesh->totface; ++i, ++tmpface ) {
int len4 = tmpface->v4;
tmpface->v1 = vert_table[tmpface->v1];
tmpface->v2 = vert_table[tmpface->v2];
tmpface->v3 = vert_table[tmpface->v3];
if(len4)
tmpface->v4 = vert_table[tmpface->v4];
else
tmpface->v4 = 0;
test_index_face( tmpface, &mesh->fdata, i, len4? 4: 3);
}
}
}
/*
* fill up vertex lookup table with old-to-new mappings
*
* returns the number of vertices marked for deletion
*/
static unsigned int make_vertex_table( unsigned int *vert_table, int count )
{
int i;
unsigned int *tmpvert = vert_table;
unsigned int to_delete = 0;
unsigned int new_index = 0;
/* fill the lookup table with old->new index mappings */
for( i = count; i; --i, ++tmpvert ) {
if( *tmpvert == UINT_MAX ) {
++to_delete;
} else {
*tmpvert = new_index;
++new_index;
}
}
return to_delete;
}
/************************************************************************
*
* Color attributes
*
************************************************************************/
/*
* get a color attribute
*/
static PyObject *MCol_getAttr( BPy_MCol * self, void *type )
{
unsigned char param;
PyObject *attr;
switch( (long)type ) {
case 'R': /* these are backwards, but that how it works */
param = self->color->b;
break;
case 'G':
param = self->color->g;
break;
case 'B': /* these are backwards, but that how it works */
param = self->color->r;
break;
case 'A':
param = self->color->a;
break;
default:
{
char errstr[1024];
sprintf( errstr, "undefined type '%d' in MCol_getAttr",
(int)((long)type & 0xff));
return EXPP_ReturnPyObjError( PyExc_RuntimeError, errstr );
}
}
attr = PyInt_FromLong( param );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed");
}
/*
* set a color attribute
*/
static int MCol_setAttr( BPy_MCol * self, PyObject * value, void * type )
{
unsigned char *param;
switch( (long)type ) {
case 'R': /* these are backwards, but that how it works */
param = (unsigned char *)&self->color->b;
break;
case 'G':
param = (unsigned char *)&self->color->g;
break;
case 'B': /* these are backwards, but that how it works */
param = (unsigned char *)&self->color->r;
break;
case 'A':
param = (unsigned char *)&self->color->a;
break;
default:
{
char errstr[1024];
sprintf( errstr, "undefined type '%d' in MCol_setAttr",
(int)((long)type & 0xff));
return EXPP_ReturnIntError( PyExc_RuntimeError, errstr );
}
}
return EXPP_setIValueClamped( value, param, 0, 255, 'b' );
}
/************************************************************************
*
* Python MCol_Type attributes get/set structure
*
************************************************************************/
static PyGetSetDef BPy_MCol_getseters[] = {
{"r",
(getter)MCol_getAttr, (setter)MCol_setAttr,
"red component",
(void *)'R'},
{"g",
(getter)MCol_getAttr, (setter)MCol_setAttr,
"green component",
(void *)'G'},
{"b",
(getter)MCol_getAttr, (setter)MCol_setAttr,
"blue component",
(void *)'B'},
{"a",
(getter)MCol_getAttr, (setter)MCol_setAttr,
"alpha component",
(void *)'A'},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
/*----------------------------object[]---------------------------
sequence accessor (get)*/
static PyObject *MCol_item(BPy_MCol * self, int i)
{
unsigned char param;
PyObject *attr;
switch (i) {
case 0:
param = self->color->b;
break;
case 1:
param = self->color->g;
break;
case 2:
param = self->color->r;
break;
case 3:
param = self->color->a;
break;
default:
return EXPP_ReturnPyObjError(PyExc_IndexError,
"vector[index] = x: assignment index out of range\n");
}
attr = PyInt_FromLong( param );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed");
}
/*----------------------------object[]-------------------------
sequence accessor (set)*/
static int MCol_ass_item(BPy_MCol * self, int i, PyObject * value)
{
unsigned char *param;
switch (i) {
case 0:
param = (unsigned char *)&self->color->b; /* reversed? why */
break;
case 1:
param = (unsigned char *)&self->color->g;
break;
case 2:
param = (unsigned char *)&self->color->r; /* reversed? why */
break;
case 3:
param = (unsigned char *)&self->color->a;
break;
default:
{
return EXPP_ReturnIntError( PyExc_RuntimeError, "Index out of range" );
}
}
return EXPP_setIValueClamped( value, param, 0, 255, 'b' );
}
/************************************************************************
*
* Python MCol_Type methods
*
************************************************************************/
static PyObject *MCol_repr( BPy_MCol * self )
{
return PyString_FromFormat( "[MCol %d %d %d %d]",
(int)self->color->b, (int)self->color->g,
(int)self->color->r, (int)self->color->a );
}
/*-----------------PROTCOL DECLARATIONS--------------------------*/
static PySequenceMethods MCol_SeqMethods = {
(inquiry) NULL, /* sq_length */
(binaryfunc) NULL, /* sq_concat */
(intargfunc) NULL, /* sq_repeat */
(intargfunc) MCol_item, /* sq_item */
(intintargfunc) NULL, /* sq_slice */
(intobjargproc) MCol_ass_item, /* sq_ass_item */
(intintobjargproc) NULL, /* sq_ass_slice */
};
/************************************************************************
*
* Python MCol_Type structure definition
*
************************************************************************/
PyTypeObject MCol_Type = {
PyObject_HEAD_INIT( NULL ) /* required py macro */
0, /* ob_size */
/* For printing, in format "<module>.<name>" */
"Blender MCol", /* char *tp_name; */
sizeof( BPy_MCol ), /* int tp_basicsize; */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
NULL, /* destructor tp_dealloc; */
NULL, /* printfunc tp_print; */
NULL, /* getattrfunc tp_getattr; */
NULL, /* setattrfunc tp_setattr; */
NULL, /* cmpfunc tp_compare; */
( reprfunc ) MCol_repr, /* reprfunc tp_repr; */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
&MCol_SeqMethods, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
NULL, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; Documentation string */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
NULL, /* getiterfunc tp_iter; */
NULL, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
NULL, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
BPy_MCol_getseters, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
static PyObject *MCol_CreatePyObject( MCol * color )
{
BPy_MCol *obj = PyObject_NEW( BPy_MCol, &MCol_Type );
if( !obj )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyObject_New() failed" );
obj->color = color;
return (PyObject *)obj;
}
/************************************************************************
*
* BPy_MVert attributes
*
************************************************************************/
static MVert * MVert_get_pointer( BPy_MVert * self )
{
if( BPy_MVert_Check( self ) ) {
if( self->index >= ((Mesh *)self->data)->totvert )
return (MVert *)EXPP_ReturnPyObjError( PyExc_RuntimeError,
"MVert is no longer valid" );
return &((Mesh *)self->data)->mvert[self->index];
}
else
return (MVert *)self->data;
}
/*
* get a vertex's coordinate
*/
static PyObject *MVert_getCoord( BPy_MVert * self )
{
MVert *v;
v = MVert_get_pointer( self );
if( !v )
return NULL;
return newVectorObject( v->co, 3, Py_WRAP );
}
/*
* set a vertex's coordinate
*/
static int MVert_setCoord( BPy_MVert * self, VectorObject * value )
{
int i;
MVert *v;
v = MVert_get_pointer( self );
if( !v )
return -1;
if( !VectorObject_Check( value ) || value->size != 3 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected vector argument of size 3" );
for( i=0; i<3 ; ++i)
v->co[i] = value->vec[i];
return 0;
}
/*
* get a vertex's index
*/
static PyObject *MVert_getIndex( BPy_MVert * self )
{
PyObject *attr;
if( self->index >= ((Mesh *)self->data)->totvert )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"MVert is no longer valid" );
attr = PyInt_FromLong( self->index );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
/*
* get a verts's hidden state
*/
static PyObject *MVert_getMFlagBits( BPy_MVert * self, void * type )
{
MVert *v;
v = MVert_get_pointer( self );
if( self->index >= ((Mesh *)self->data)->totvert )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"MVert is no longer valid" );
return EXPP_getBitfield( &v->flag, (int)((long)type & 0xff), 'b' );
}
/*
* set a verts's hidden state
*/
static int MVert_setMFlagBits( BPy_MVert * self, PyObject * value,
void * type )
{
MVert *v;
v = MVert_get_pointer( self );
if( self->index >= ((Mesh *)self->data)->totvert )
return EXPP_ReturnIntError( PyExc_RuntimeError,
"MVert is no longer valid" );
return EXPP_setBitfield( value, &v->flag,
(int)((long)type & 0xff), 'b' );
}
/*
* get a vertex's normal
*/
static PyObject *MVert_getNormal( BPy_MVert * self )
{
float no[3];
int i;
MVert *v;
v = MVert_get_pointer( self );
if( !v )
return NULL;
for( i = 0; i < 3; ++i )
no[i] = (float)(v->no[i] / 32767.0);
return newVectorObject( no, 3, Py_NEW );
}
/*
* set a vertex's normal
*/
static int MVert_setNormal( BPy_MVert * self, VectorObject * value )
{
int i;
MVert *v;
float normal[3];
v = MVert_get_pointer( self );
if( !v )
return -1;
if( !VectorObject_Check( value ) || value->size != 3 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected vector argument of size 3" );
for( i=0; i<3 ; ++i)
normal[i] = value->vec[i];
Normalize(normal);
for( i=0; i<3 ; ++i)
v->no[i] = (short)(normal[i]*32767.0);
return 0;
}
/*
* get a vertex's select status
*/
static PyObject *MVert_getSel( BPy_MVert *self )
{
MVert *v;
v = MVert_get_pointer( self );
if( !v )
return NULL;
return EXPP_getBitfield( &v->flag, SELECT, 'b' );
}
/*
* set a vertex's select status
*/
static int MVert_setSel( BPy_MVert *self, PyObject *value )
{
MVert *v = MVert_get_pointer( self );
Mesh *me = (Mesh *)self->data;
/*
* if vertex exists and setting status is OK, delete select storage
* of the edges and faces as well
*/
if( v && !EXPP_setBitfield( value, &v->flag, SELECT, 'b' ) ) {
if( me && me->mselect ) {
MEM_freeN( me->mselect );
me->mselect = NULL;
}
return 0;
}
return -1;
}
/*
* get a vertex's UV coordinates
*/
static PyObject *MVert_getUVco( BPy_MVert *self )
{
Mesh *me = (Mesh *)self->data;
if( !me->msticky )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"mesh has no 'sticky' coordinates" );
if( self->index >= ((Mesh *)self->data)->totvert )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"MVert is no longer valid" );
return newVectorObject( me->msticky[self->index].co, 2, Py_WRAP );
}
/*
* set a vertex's UV coordinates
*/
static int MVert_setUVco( BPy_MVert *self, PyObject *value )
{
float uvco[3] = {0.0, 0.0};
Mesh *me = (Mesh *)self->data;
struct MSticky *v;
int i;
/*
* at least for now, don't allow creation of sticky coordinates if they
* don't already exist
*/
if( !me->msticky )
return EXPP_ReturnIntError( PyExc_AttributeError,
"mesh has no 'sticky' coordinates" );
if( self->index >= ((Mesh *)self->data)->totvert )
return EXPP_ReturnIntError( PyExc_RuntimeError,
"MVert is no longer valid" );
if( VectorObject_Check( value ) ) {
VectorObject *vect = (VectorObject *)value;
if( vect->size != 2 )
return EXPP_ReturnIntError( PyExc_AttributeError,
"expected 2D vector" );
for( i = 0; i < vect->size; ++i )
uvco[i] = vect->vec[i];
} else if( !PyArg_ParseTuple( value, "ff",
&uvco[0], &uvco[1] ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected 2D vector" );
v = &me->msticky[self->index];
for( i = 0; i < 2; ++i )
v->co[i] = uvco[i];
return 0;
}
/************************************************************************
*
* Python MVert_Type attributes get/set structure
*
************************************************************************/
static PyGetSetDef BPy_MVert_getseters[] = {
{"co",
(getter)MVert_getCoord, (setter)MVert_setCoord,
"vertex's coordinate",
NULL},
{"index",
(getter)MVert_getIndex, (setter)NULL,
"vertex's index",
NULL},
{"no",
(getter)MVert_getNormal, (setter)MVert_setNormal,
"vertex's normal",
NULL},
{"sel",
(getter)MVert_getSel, (setter)MVert_setSel,
"vertex's select status",
NULL},
{"hide",
(getter)MVert_getMFlagBits, (setter)MVert_setMFlagBits,
"vert hidden in edit mode",
(void *)ME_HIDE},
{"uvco",
(getter)MVert_getUVco, (setter)MVert_setUVco,
"vertex's UV coordinates",
NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
static PyGetSetDef BPy_PVert_getseters[] = {
{"co",
(getter)MVert_getCoord, (setter)MVert_setCoord,
"vertex's coordinate",
NULL},
{"no",
(getter)MVert_getNormal, (setter)MVert_setNormal,
"vertex's normal",
NULL},
{"sel",
(getter)MVert_getSel, (setter)MVert_setSel,
"vertex's select status",
NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
/************************************************************************
*
* Python MVert_Type standard operations
*
************************************************************************/
static void MVert_dealloc( BPy_MVert * self )
{
if( BPy_PVert_Check( self ) ) /* free memory of thick objects */
MEM_freeN ( self->data );
PyObject_DEL( self );
}
static int MVert_compare( BPy_MVert * a, BPy_MVert * b )
{
return( a->data == b->data && a->index == b->index ) ? 0 : -1;
}
static PyObject *MVert_repr( BPy_MVert * self )
{
char format[512];
char index[24];
MVert *v;
v = MVert_get_pointer( self );
if( !v )
return NULL;
if( BPy_MVert_Check( self ) )
sprintf( index, "%d", self->index );
else
BLI_strncpy( index, "(None)", 24 );
sprintf( format, "[MVert (%f %f %f) (%f %f %f) %s]",
v->co[0], v->co[1], v->co[2], (float)(v->no[0] / 32767.0),
(float)(v->no[1] / 32767.0), (float)(v->no[2] / 32767.0),
index );
return PyString_FromString( format );
}
static long MVert_hash( BPy_MVert *self )
{
return (long)self->index;
}
/************************************************************************
*
* Python MVert_Type structure definition
*
************************************************************************/
PyTypeObject MVert_Type = {
PyObject_HEAD_INIT( NULL ) /* required py macro */
0, /* ob_size */
/* For printing, in format "<module>.<name>" */
"Blender MVert", /* char *tp_name; */
sizeof( BPy_MVert ), /* int tp_basicsize; */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
( destructor ) MVert_dealloc,/* destructor tp_dealloc; */
NULL, /* printfunc tp_print; */
NULL, /* getattrfunc tp_getattr; */
NULL, /* setattrfunc tp_setattr; */
( cmpfunc ) MVert_compare, /* cmpfunc tp_compare; */
( reprfunc ) MVert_repr, /* reprfunc tp_repr; */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
NULL, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
( hashfunc ) MVert_hash, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; Documentation string */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
NULL, /* getiterfunc tp_iter; */
NULL, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
NULL, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
BPy_MVert_getseters, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
/************************************************************************
*
* Python PVert_Type standard operations
*
************************************************************************/
static int PVert_compare( BPy_MVert * a, BPy_MVert * b )
{
return( a->data == b->data ) ? 0 : -1;
}
/************************************************************************
*
* Python PVert_Type structure definition
*
************************************************************************/
PyTypeObject PVert_Type = {
PyObject_HEAD_INIT( NULL ) /* required py macro */
0, /* ob_size */
/* For printing, in format "<module>.<name>" */
"Blender PVert", /* char *tp_name; */
sizeof( BPy_MVert ), /* int tp_basicsize; */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
( destructor ) MVert_dealloc,/* destructor tp_dealloc; */
NULL, /* printfunc tp_print; */
NULL, /* getattrfunc tp_getattr; */
NULL, /* setattrfunc tp_setattr; */
( cmpfunc ) PVert_compare, /* cmpfunc tp_compare; */
( reprfunc ) MVert_repr, /* reprfunc tp_repr; */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
NULL, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
( hashfunc ) MVert_hash, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; Documentation string */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
NULL, /* getiterfunc tp_iter; */
NULL, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
NULL, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
BPy_PVert_getseters, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
/*
* create 'thin' or 'thick' MVert objects
*
* there are two types of objects; thin (wrappers for mesh vertex) and thick
* (not contains in mesh). Thin objects are MVert_Type and thick are
* PVert_Type. For thin objects, data is a pointer to a Mesh and index
* is the vertex's index in mesh->mvert. For thick objects, data is a
* pointer to an MVert; index is unused.
*/
/*
* create a thin MVert object
*/
static PyObject *MVert_CreatePyObject( Mesh *mesh, int i )
{
BPy_MVert *obj = (BPy_MVert *)PyObject_NEW( BPy_MVert, &MVert_Type );
if( !obj )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyObject_New() failed" );
obj->index = i;
obj->data = mesh;
return (PyObject *)obj;
}
/*
* create a thick MVert object
*/
static PyObject *PVert_CreatePyObject( MVert *vert )
{
MVert *newvert;
BPy_MVert *obj = (BPy_MVert *)PyObject_NEW( BPy_MVert, &PVert_Type );
if( !obj )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyObject_New() failed" );
newvert = (MVert *)MEM_callocN( sizeof( MVert ), "MVert" );
if( !newvert )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"MEM_callocN() failed" );
memcpy( newvert, vert, sizeof( MVert ) );
obj->data = newvert;
return (PyObject *)obj;
}
/************************************************************************
*
* Vertex sequence
*
************************************************************************/
static int MVertSeq_len( BPy_MVertSeq * self )
{
return self->mesh->totvert;
}
/*
* retrive a single MVert from somewhere in the vertex list
*/
static PyObject *MVertSeq_item( BPy_MVertSeq * self, int i )
{
if( i < 0 || i >= self->mesh->totvert )
return EXPP_ReturnPyObjError( PyExc_IndexError,
"array index out of range" );
return MVert_CreatePyObject( self->mesh, i );
}
/*
* retrieve a slice of the vertex list (as a Python list)
*
* Python is nice enough to handle negative indices for us: if the user
* specifies -1, Python will pass us len()-1. So we can just check for
* indices in the range 0:len()-1. Of course, we should never actually
* return the high index, but up to one less.
*/
static PyObject *MVertSeq_slice( BPy_MVertSeq *self, int low, int high )
{
PyObject *list;
int i;
/*
* Python list slice operator returns empty list when asked for a slice
* outside the list, or if indices are reversed (low > high). Clamp
* our input to do the same.
*/
if( low < 0 ) low = 0;
if( high > self->mesh->totvert ) high = self->mesh->totvert;
if( low > high ) low = high;
list = PyList_New( high-low );
if( !list )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyList_New() failed" );
/*
* return Py_NEW copies of requested vertices
*/
for( i = low; i < high; ++i )
PyList_SET_ITEM( list, i-low,
PVert_CreatePyObject( (void *)&self->mesh->mvert[i] ) );
return list;
}
/*
* assign a single MVert to somewhere in the vertex list
*/
static int MVertSeq_assign_item( BPy_MVertSeq * self, int i,
BPy_MVert *v )
{
MVert *dst = &self->mesh->mvert[i];
MVert *src;
if( !v )
return EXPP_ReturnIntError( PyExc_IndexError,
"del() not supported" );
if( i < 0 || i >= self->mesh->totvert )
return EXPP_ReturnIntError( PyExc_IndexError,
"array index out of range" );
if( BPy_MVert_Check( v ) )
src = &((Mesh *)v->data)->mvert[v->index];
else
src = (MVert *)v->data;
memcpy( dst, src, sizeof(MVert) );
/* mesh_update( self->mesh );*/
return 0;
}
static int MVertSeq_assign_slice( BPy_MVertSeq *self, int low, int high,
PyObject *args )
{
int len, i;
if( !PyList_Check( args ) )
return EXPP_ReturnIntError( PyExc_IndexError,
"can only assign lists of MVerts" );
len = PyList_Size( args );
/*
* Python list slice assign operator allows for changing the size of the
* destination list, by replacement and appending....
*
* >>> l=[1,2,3,4]
* >>> m=[11,12,13,14]
* >>> l[5:7]=m
* >>> print l
* [1, 2, 3, 4, 11, 12, 13, 14]
* >>> l=[1,2,3,4]
* >>> l[2:3]=m
* >>> print l
* [1, 2, 11, 12, 13, 14, 4]
*
* We don't want the size of the list to change (at least not at time
* point in development) so we are a little more strict:
* - low and high indices must be in range [0:len()]
* - high-low == PyList_Size(v)
*/
if( low < 0 || high > self->mesh->totvert || low > high )
return EXPP_ReturnIntError( PyExc_IndexError,
"invalid slice range" );
if( high-low != len )
return EXPP_ReturnIntError( PyExc_IndexError,
"slice range and input list sizes must be equal" );
for( i = low; i < high; ++i )
{
BPy_MVert *v = (BPy_MVert *)PyList_GET_ITEM( args, i-low );
MVert *dst = &self->mesh->mvert[i];
MVert *src;
if( BPy_MVert_Check( v ) )
src = &((Mesh *)v->data)->mvert[v->index];
else
src = (MVert *)v->data;
memcpy( dst, src, sizeof(MVert) );
}
/* mesh_update( self->mesh );*/
return 0;
}
static PySequenceMethods MVertSeq_as_sequence = {
( inquiry ) MVertSeq_len, /* sq_length */
( binaryfunc ) 0, /* sq_concat */
( intargfunc ) 0, /* sq_repeat */
( intargfunc ) MVertSeq_item, /* sq_item */
( intintargfunc ) MVertSeq_slice, /* sq_slice */
( intobjargproc ) MVertSeq_assign_item, /* sq_ass_item */
( intintobjargproc ) MVertSeq_assign_slice, /* sq_ass_slice */
0,0,0,
};
/************************************************************************
*
* Python MVertSeq_Type iterator (iterates over vertices)
*
************************************************************************/
/*
* Initialize the interator index
*/
static PyObject *MVertSeq_getIter( BPy_MVertSeq * self )
{
if (self->iter==-1) { /* iteration for this pyobject is not yet used, just return self */
self->iter = 0;
return EXPP_incr_ret ( (PyObject *) self );
} else {
/* were alredy using this as an iterator, make a copy to loop on */
BPy_MVertSeq *seq = (BPy_MVertSeq *)MVertSeq_CreatePyObject(self->mesh);
seq->iter = 0;
return (PyObject *)seq;
}
}
/*
* Return next MVert.
*/
static PyObject *MVertSeq_nextIter( BPy_MVertSeq * self )
{
if( self->iter == self->mesh->totvert ) {
self->iter= -1; /* allow it to be used as an iterator again without creating a new BPy_MVertSeq */
return EXPP_ReturnPyObjError( PyExc_StopIteration,
"iterator at end" );
}
return MVert_CreatePyObject( self->mesh, self->iter++ );
}
/************************************************************************
*
* Python MVertSeq_Type methods
*
************************************************************************/
static PyObject *MVertSeq_extend( BPy_MVertSeq * self, PyObject *args )
{
int len, newlen;
int i,j;
PyObject *tmp;
MVert *newvert, *tmpvert;
Mesh *mesh = self->mesh;
CustomData vdata;
/* make sure we get a sequence of tuples of something */
switch( PySequence_Size( args ) ) {
case 1: /* better be a list or a tuple */
tmp = PyTuple_GET_ITEM( args, 0 );
if( !VectorObject_Check ( tmp ) ) {
if( !PySequence_Check ( tmp ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of sequence triplets" );
else if( !PySequence_Size ( tmp ) ) {
Py_RETURN_NONE;
}
args = tmp;
}
Py_INCREF( args ); /* so we can safely DECREF later */
break;
case 3:
tmp = PyTuple_GET_ITEM( args, 0 );
/* if first item is not a number, it's wrong */
if( !PyNumber_Check( tmp ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of sequence triplets" );
/* otherwise, put into a new tuple */
args = Py_BuildValue( "((OOO))", tmp,
PyTuple_GET_ITEM( args, 1 ), PyTuple_GET_ITEM( args, 2 ) );
if( !args )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Py_BuildValue() failed" );
break;
default: /* anything else is definitely wrong */
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of sequence triplets" );
}
/* if no verts given, return quietly */
len = PySequence_Size( args );
if( len == 0 ) {
Py_DECREF ( args );
Py_RETURN_NONE;
}
/* create custom vertex data arrays and copy existing vertices into it */
newlen = mesh->totvert + len;
CustomData_copy( &mesh->vdata, &vdata, CD_MASK_MESH, CD_DEFAULT, newlen );
CustomData_copy_data( &mesh->vdata, &vdata, 0, 0, mesh->totvert );
if ( !CustomData_has_layer( &vdata, CD_MVERT ) )
CustomData_add_layer( &vdata, CD_MVERT, CD_CALLOC, NULL, newlen );
newvert = CustomData_get_layer( &vdata, CD_MVERT );
/* scan the input list and insert the new vertices */
tmpvert = &newvert[mesh->totvert];
for( i = 0; i < len; ++i ) {
float co[3];
tmp = PySequence_GetItem( args, i );
if( VectorObject_Check( tmp ) ) {
if( ((VectorObject *)tmp)->size != 3 ) {
CustomData_free( &vdata, newlen );
Py_DECREF ( tmp );
Py_DECREF ( args );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected vector of size 3" );
}
for( j = 0; j < 3; ++j )
co[j] = ((VectorObject *)tmp)->vec[j];
} else if( PySequence_Check( tmp ) ) {
int ok=1;
PyObject *flt;
if( PySequence_Size( tmp ) != 3 )
ok = 0;
else
for( j = 0; ok && j < 3; ++j ) {
flt = PySequence_ITEM( tmp, j );
if( !PyNumber_Check ( flt ) )
ok = 0;
else
co[j] = (float)PyFloat_AsDouble( flt );
Py_DECREF( flt );
}
if( !ok ) {
CustomData_free( &vdata, newlen );
Py_DECREF ( args );
Py_DECREF ( tmp );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected sequence triplet of floats" );
}
} else {
CustomData_free( &vdata, newlen );
Py_DECREF ( args );
Py_DECREF ( tmp );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected sequence triplet of floats" );
}
Py_DECREF ( tmp );
/* add the coordinate to the new list */
memcpy( tmpvert->co, co, sizeof(co) );
tmpvert->flag |= SELECT;
/* TODO: anything else which needs to be done when we add a vert? */
/* probably not: NMesh's newvert() doesn't */
++tmpvert;
}
CustomData_free( &mesh->vdata, mesh->totvert );
mesh->vdata = vdata;
mesh_update_customdata_pointers( mesh );
/*
* if there are keys, have to fix those lists up
*/
if( mesh->key ) {
KeyBlock *currkey = mesh->key->block.first;
float *fp, *newkey;
while( currkey ) {
/* create key list, copy existing data if any */
newkey = MEM_callocN(mesh->key->elemsize*newlen, "keydata");
if( currkey->data ) {
memcpy( newkey, currkey->data,
mesh->totvert*mesh->key->elemsize );
MEM_freeN( currkey->data );
currkey->data = newkey;
}
/* add data for new vertices */
fp = (float *)((char *)currkey->data +
(mesh->key->elemsize*mesh->totvert));
tmpvert = mesh->mvert + mesh->totvert;
for( i = newlen - mesh->totvert; i > 0; --i ) {
VECCOPY(fp, tmpvert->co);
fp += 3;
tmpvert++;
}
currkey->totelem = newlen;
currkey = currkey->next;
}
}
/* set final vertex list size */
mesh->totvert = newlen;
mesh_update( mesh );
Py_DECREF ( args );
Py_RETURN_NONE;
}
static PyObject *MVertSeq_delete( BPy_MVertSeq * self, PyObject *args )
{
unsigned int *vert_table;
int vert_delete, face_count;
int i;
Mesh *mesh = self->mesh;
MFace *tmpface;
/*
* if input tuple contains a single sequence, use it as input instead;
* otherwise use the sequence as-is and check later that it contains
* one or more integers or MVerts
*/
if( PySequence_Size( args ) == 1 ) {
PyObject *tmp = PyTuple_GET_ITEM( args, 0 );
if( PySequence_Check( tmp ) )
args = tmp;
}
/* if sequence is empty, do nothing */
if( PySequence_Size( args ) == 0 ) {
Py_RETURN_NONE;
}
/* allocate vertex lookup table */
vert_table = (unsigned int *)MEM_callocN(
mesh->totvert*sizeof( unsigned int ), "vert_table" );
/* get the indices of vertices to be removed */
for( i = PySequence_Size( args ); i--; ) {
PyObject *tmp = PySequence_GetItem( args, i );
int index;
if( BPy_MVert_Check( tmp ) ) {
if( (void *)self->mesh != ((BPy_MVert*)tmp)->data ) {
MEM_freeN( vert_table );
Py_DECREF( tmp );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"MVert belongs to a different mesh" );
}
index = ((BPy_MVert*)tmp)->index;
} else if( PyInt_CheckExact( tmp ) ) {
index = PyInt_AsLong ( tmp );
} else {
MEM_freeN( vert_table );
Py_DECREF( tmp );
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of ints or MVerts" );
}
Py_DECREF( tmp );
if( index < 0 || index >= mesh->totvert ) {
MEM_freeN( vert_table );
return EXPP_ReturnPyObjError( PyExc_IndexError,
"array index out of range" );
}
vert_table[index] = UINT_MAX;
}
/* delete things, then clean up and return */
vert_delete = make_vertex_table( vert_table, mesh->totvert );
if( vert_delete )
delete_verts( mesh, vert_table, vert_delete );
/* calculate edges to delete, fix vertex indices */
delete_edges( mesh, vert_table, 0 );
/*
* find number of faces which contain any of the deleted vertices,
* and mark them, then delete them
*/
tmpface = mesh->mface;
face_count=0;
for( i = mesh->totface; i--; ++tmpface ) {
if( vert_table[tmpface->v1] == UINT_MAX ||
vert_table[tmpface->v2] == UINT_MAX ||
vert_table[tmpface->v3] == UINT_MAX ||
( tmpface->v4 && vert_table[tmpface->v4] == UINT_MAX ) ) {
tmpface->v1 = UINT_MAX;
++face_count;
}
}
delete_faces( mesh, vert_table, face_count );
/* clean up and exit */
MEM_freeN( vert_table );
mesh_update ( mesh );
Py_RETURN_NONE;
}
static PyObject *MVertSeq_selected( BPy_MVertSeq * self )
{
int i, count;
Mesh *mesh = self->mesh;
MVert *tmpvert;
PyObject *list;
/* first count selected edges (quicker than appending to PyList?) */
count = 0;
tmpvert = mesh->mvert;
for( i = 0; i < mesh->totvert; ++i, ++tmpvert )
if( tmpvert->flag & SELECT )
++count;
list = PyList_New( count );
if( !list )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyList_New() failed" );
/* next, insert selected edges into list */
count = 0;
tmpvert = mesh->mvert;
for( i = 0; i < mesh->totvert; ++i, ++tmpvert ) {
if( tmpvert->flag & SELECT ) {
PyObject *tmp = PyInt_FromLong( i );
if( !tmp ) {
Py_DECREF( list );
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
PyList_SET_ITEM( list, count, tmp );
++count;
}
}
return list;
}
static struct PyMethodDef BPy_MVertSeq_methods[] = {
{"extend", (PyCFunction)MVertSeq_extend, METH_VARARGS,
"add vertices to mesh"},
{"delete", (PyCFunction)MVertSeq_delete, METH_VARARGS,
"delete vertices from mesh"},
{"selected", (PyCFunction)MVertSeq_selected, METH_NOARGS,
"returns a list containing indices of selected vertices"},
{NULL, NULL, 0, NULL}
};
/************************************************************************
*
* Python MVertSeq_Type standard operations
*
************************************************************************/
/*****************************************************************************/
/* Python MVertSeq_Type structure definition: */
/*****************************************************************************/
PyTypeObject MVertSeq_Type = {
PyObject_HEAD_INIT( NULL ) /* required py macro */
0, /* ob_size */
/* For printing, in format "<module>.<name>" */
"Blender MVertSeq", /* char *tp_name; */
sizeof( BPy_MVertSeq ), /* int tp_basicsize; */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
NULL, /* destructor tp_dealloc; */
NULL, /* printfunc tp_print; */
NULL, /* getattrfunc tp_getattr; */
NULL, /* setattrfunc tp_setattr; */
NULL, /* cmpfunc tp_compare; */
NULL, /* reprfunc tp_repr; */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
&MVertSeq_as_sequence, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
NULL, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; Documentation string */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
( getiterfunc) MVertSeq_getIter, /* getiterfunc tp_iter; */
( iternextfunc ) MVertSeq_nextIter, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
BPy_MVertSeq_methods, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
NULL, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
/************************************************************************
*
* Edge attributes
*
************************************************************************/
static MEdge * MEdge_get_pointer( BPy_MEdge * self )
{
if( self->index >= self->mesh->totedge )
return (MEdge *)EXPP_ReturnPyObjError( PyExc_RuntimeError,
"MEdge is no longer valid" );
return &self->mesh->medge[self->index];
}
/*
* get an edge's crease value
*/
static PyObject *MEdge_getCrease( BPy_MEdge * self )
{
PyObject *attr;
MEdge *edge = MEdge_get_pointer( self );
if( !edge )
return NULL;
attr = PyInt_FromLong( edge->crease );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
/*
* set an edge's crease value
*/
static int MEdge_setCrease( BPy_MEdge * self, PyObject * value )
{
MEdge *edge = MEdge_get_pointer( self );
if( !edge )
return -1;
return EXPP_setIValueClamped( value, &edge->crease, 0, 255, 'b' );
}
/*
* get an edge's flag
*/
static PyObject *MEdge_getFlag( BPy_MEdge * self )
{
PyObject *attr;
MEdge *edge = MEdge_get_pointer( self );
if( !edge )
return NULL;
attr = PyInt_FromLong( edge->flag );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
/*
* set an edge's flag
*/
static int MEdge_setFlag( BPy_MEdge * self, PyObject * value )
{
short param;
static short bitmask = SELECT
| ME_EDGEDRAW
| ME_SEAM
| ME_FGON
| ME_HIDE
| ME_EDGERENDER
| ME_LOOSEEDGE
| ME_SEAM_LAST
| ME_SHARP;
MEdge *edge = MEdge_get_pointer( self );
if( !edge )
return -1;
if( !PyInt_CheckExact ( value ) ) {
char errstr[128];
sprintf ( errstr , "expected int bitmask of 0x%04x", bitmask );
return EXPP_ReturnIntError( PyExc_TypeError, errstr );
}
param = (short)PyInt_AS_LONG ( value );
if ( ( param & bitmask ) != param )
return EXPP_ReturnIntError( PyExc_ValueError,
"invalid bit(s) set in mask" );
edge->flag = param;
return 0;
}
/*
* get an edge's first vertex
*/
static PyObject *MEdge_getV1( BPy_MEdge * self )
{
MEdge *edge = MEdge_get_pointer( self );
if( !edge )
return NULL;
return MVert_CreatePyObject( self->mesh, edge->v1 );
}
/*
* set an edge's first vertex
*/
static int MEdge_setV1( BPy_MEdge * self, BPy_MVert * value )
{
MEdge *edge = MEdge_get_pointer( self );
if( !edge )
return -1;
if( !BPy_MVert_Check( value ) )
return EXPP_ReturnIntError( PyExc_TypeError, "expected an MVert" );
edge->v1 = value->index;
return 0;
}
/*
* get an edge's second vertex
*/
static PyObject *MEdge_getV2( BPy_MEdge * self )
{
MEdge *edge = MEdge_get_pointer( self );
if( !edge )
return NULL;
return MVert_CreatePyObject( self->mesh, edge->v2 );
}
/*
* set an edge's second vertex
*/
static int MEdge_setV2( BPy_MEdge * self, BPy_MVert * value )
{
MEdge *edge = MEdge_get_pointer( self );
if( !edge )
return -1;
if( !BPy_MVert_Check( value ) )
return EXPP_ReturnIntError( PyExc_TypeError, "expected an MVert" );
edge->v2 = value->index;
return 0;
}
/*
* get an edge's index
*/
static PyObject *MEdge_getIndex( BPy_MEdge * self )
{
PyObject *attr;
if( !MEdge_get_pointer( self ) )
return NULL;
attr = PyInt_FromLong( self->index );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
/*
* get an edge's flag
*/
static PyObject *MEdge_getMFlagBits( BPy_MEdge * self, void * type )
{
MEdge *edge = MEdge_get_pointer( self );
if( !edge )
return NULL;
return EXPP_getBitfield( &edge->flag, (int)((long)type & 0xff), 'b' );
}
/*
* get an edge's length
*/
static PyObject *MEdge_getLength( BPy_MEdge * self )
{
MEdge *edge = MEdge_get_pointer( self );
double dot = 0.0f;
float tmpf;
int i;
float *v1, *v2;
/* get the 2 edges vert locations */
v1= (&((Mesh *)self->mesh)->mvert[edge->v1])->co;
v2= (&((Mesh *)self->mesh)->mvert[edge->v2])->co;
if( !edge )
return NULL;
for( i = 0; i < 3; i++ ) {
tmpf = v1[i] - v2[i];
dot += tmpf*tmpf;
}
return PyFloat_FromDouble( sqrt( dot ) );
}
/*
* get an key for using in a dictionary or set key
*/
static PyObject *MEdge_getKey( BPy_MEdge * self )
{
MEdge *edge = MEdge_get_pointer( self );
PyObject *attr = PyTuple_New( 2 );
if (edge->v1 > edge->v2) {
PyTuple_SetItem( attr, 0, PyInt_FromLong(edge->v2) );
PyTuple_SetItem( attr, 1, PyInt_FromLong(edge->v1) );
} else {
PyTuple_SetItem( attr, 0, PyInt_FromLong(edge->v1) );
PyTuple_SetItem( attr, 1, PyInt_FromLong(edge->v2) );
}
return attr;
}
/*
* set an edge's select state
*/
static int MEdge_setSel( BPy_MEdge * self,PyObject * value,
void * type_unused )
{
MEdge *edge = MEdge_get_pointer( self );
int param = PyObject_IsTrue( value );
Mesh *me;
if( !edge )
return -1;
if( param == -1 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected true/false argument" );
me = self->mesh;
if( param ) {
edge->flag |= SELECT;
me->mvert[edge->v1].flag |= SELECT;
me->mvert[edge->v2].flag |= SELECT;
}
else {
edge->flag &= ~SELECT;
me->mvert[edge->v1].flag &= ~SELECT;
me->mvert[edge->v2].flag &= ~SELECT;
}
if( self->mesh->mselect ) {
MEM_freeN( self->mesh->mselect );
self->mesh->mselect = NULL;
}
return 0;
}
/************************************************************************
*
* Python MEdge_Type attributes get/set structure
*
************************************************************************/
static PyGetSetDef BPy_MEdge_getseters[] = {
{"crease",
(getter)MEdge_getCrease, (setter)MEdge_setCrease,
"edge's crease value",
NULL},
{"flag",
(getter)MEdge_getFlag, (setter)MEdge_setFlag,
"edge's flags",
NULL},
{"v1",
(getter)MEdge_getV1, (setter)MEdge_setV1,
"edge's first vertex",
NULL},
{"v2",
(getter)MEdge_getV2, (setter)MEdge_setV2,
"edge's second vertex",
NULL},
{"index",
(getter)MEdge_getIndex, (setter)NULL,
"edge's index",
NULL},
{"sel",
(getter)MEdge_getMFlagBits, (setter)MEdge_setSel,
"edge selected in edit mode",
(void *)SELECT},
{"length",
(getter)MEdge_getLength, (setter)NULL,
"edge's length, read only",
NULL},
{"key",
(getter)MEdge_getKey, (setter)NULL,
"edge's key for using with sets or dictionaries, read only",
NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
/************************************************************************
*
* Python MEdge_Type iterator (iterates over vertices)
*
************************************************************************/
/*
* Initialize the interator index
*/
static PyObject *MEdge_getIter( BPy_MEdge * self )
{
if (self->iter==-1) { /* not alredy used to iterator on, just use self */
self->iter = 0;
return EXPP_incr_ret ( (PyObject *) self );
} else { /* alredy being iterated on, return a copy */
BPy_MEdge *seq = (BPy_MEdge *)MEdge_CreatePyObject(self->mesh, self->index);
seq->iter = 0;
return (PyObject *)seq;
}
}
/*
* Return next MVert. Throw an exception after the second vertex.
*/
static PyObject *MEdge_nextIter( BPy_MEdge * self )
{
if( self->iter == 2 ) {
self->iter = -1;
return EXPP_ReturnPyObjError( PyExc_StopIteration,
"iterator at end" );
}
self->iter++;
if( self->iter == 1 )
return MEdge_getV1( self );
else
return MEdge_getV2( self );
}
/************************************************************************
*
* Python MEdge_Type standard operations
*
************************************************************************/
static int MEdge_compare( BPy_MEdge * a, BPy_MEdge * b )
{
return( a->mesh == b->mesh && a->index == b->index ) ? 0 : -1;
}
static PyObject *MEdge_repr( BPy_MEdge * self )
{
struct MEdge *edge = MEdge_get_pointer( self );
if( !edge )
return NULL;
return PyString_FromFormat( "[MEdge (%d %d) %d %d]",
(int)edge->v1, (int)edge->v2, (int)edge->crease,
(int)self->index );
}
static long MEdge_hash( BPy_MEdge *self )
{
return (long)self->index;
}
/************************************************************************
*
* Python MEdge_Type structure definition
*
************************************************************************/
PyTypeObject MEdge_Type = {
PyObject_HEAD_INIT( NULL ) /* required py macro */
0, /* ob_size */
/* For printing, in format "<module>.<name>" */
"Blender MEdge", /* char *tp_name; */
sizeof( BPy_MEdge ), /* int tp_basicsize; */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
NULL, /* destructor tp_dealloc; */
NULL, /* printfunc tp_print; */
NULL, /* getattrfunc tp_getattr; */
NULL, /* setattrfunc tp_setattr; */
( cmpfunc ) MEdge_compare, /* cmpfunc tp_compare; */
( reprfunc ) MEdge_repr, /* reprfunc tp_repr; */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
NULL, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
( hashfunc ) MEdge_hash, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; Documentation string */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
( getiterfunc) MEdge_getIter, /* getiterfunc tp_iter; */
( iternextfunc ) MEdge_nextIter, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
NULL, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
BPy_MEdge_getseters, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
static PyObject *MEdge_CreatePyObject( Mesh * mesh, int i )
{
BPy_MEdge *obj = PyObject_NEW( BPy_MEdge, &MEdge_Type );
if( !obj )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyObject_New() failed" );
obj->mesh = mesh;
obj->index = i;
obj->iter = -1;
return (PyObject *)obj;
}
/************************************************************************
*
* Edge sequence
*
************************************************************************/
static int MEdgeSeq_len( BPy_MEdgeSeq * self )
{
return self->mesh->totedge;
}
static PyObject *MEdgeSeq_item( BPy_MEdgeSeq * self, int i )
{
if( i < 0 || i >= self->mesh->totedge )
return EXPP_ReturnPyObjError( PyExc_IndexError,
"array index out of range" );
return MEdge_CreatePyObject( self->mesh, i );
}
static PySequenceMethods MEdgeSeq_as_sequence = {
( inquiry ) MEdgeSeq_len, /* sq_length */
( binaryfunc ) 0, /* sq_concat */
( intargfunc ) 0, /* sq_repeat */
( intargfunc ) MEdgeSeq_item, /* sq_item */
( intintargfunc ) 0, /* sq_slice */
( intobjargproc ) 0, /* sq_ass_item */
( intintobjargproc ) 0, /* sq_ass_slice */
0,0,0,
};
/************************************************************************
*
* Python MEdgeSeq_Type iterator (iterates over edges)
*
************************************************************************/
/*
* Initialize the interator index
*/
static PyObject *MEdgeSeq_getIter( BPy_MEdgeSeq * self )
{
if (self->iter==-1) { /* iteration for this pyobject is not yet used, just return self */
self->iter = 0;
return EXPP_incr_ret ( (PyObject *) self );
} else {
BPy_MEdgeSeq *seq = (BPy_MEdgeSeq *)MEdgeSeq_CreatePyObject(self->mesh);
seq->iter = 0;
return (PyObject *)seq;
}
}
/*
* Return next MEdge.
*/
static PyObject *MEdgeSeq_nextIter( BPy_MEdgeSeq * self )
{
if( self->iter == self->mesh->totedge ) {
self->iter= -1;
return EXPP_ReturnPyObjError( PyExc_StopIteration,
"iterator at end" );
}
return MEdge_CreatePyObject( self->mesh, self->iter++ );
}
/************************************************************************
*
* Python MEdgeSeq_Type methods
*
************************************************************************/
/*
* Create edges from tuples of vertices. Duplicate new edges, or
* edges which already exist,
*/
static PyObject *MEdgeSeq_extend( BPy_MEdgeSeq * self, PyObject *args )
{
int len, nverts;
int i, j, ok;
int new_edge_count, good_edges;
SrchEdges *oldpair, *newpair, *tmppair, *tmppair2;
PyObject *tmp;
BPy_MVert *e[4];
MEdge *tmpedge;
Mesh *mesh = self->mesh;
/* make sure we get a tuple of sequences of something */
switch( PySequence_Size( args ) ) {
case 1:
/* if a sequence... */
tmp = PyTuple_GET_ITEM( args, 0 );
if( PySequence_Check( tmp ) ) {
PyObject *tmp2;
/* ignore empty sequences */
if( !PySequence_Size( tmp ) ) {
Py_RETURN_NONE;
}
/* if another sequence, use it */
tmp2 = PySequence_ITEM( tmp, 0 );
if( PySequence_Check( tmp2 ) )
args = tmp;
Py_INCREF( args );
Py_DECREF( tmp2 );
} else
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of sequence pairs" );
break;
case 2:
case 3:
case 4: /* two to four args may be individual verts */
tmp = PyTuple_GET_ITEM( args, 0 );
/*
* if first item isn't a sequence, then assume it's a bunch of MVerts
* and wrap inside a tuple
*/
if( !PySequence_Check( tmp ) ) {
args = Py_BuildValue( "(O)", args );
if( !args )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Py_BuildValue() failed" );
/*
* otherwise, assume it already a bunch of sequences so use as-is
*/
} else {
Py_INCREF( args ); /* so we can safely DECREF later */
}
break;
default: /* anything else is definitely wrong */
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of sequence pairs" );
}
/* make sure there is something to add */
len = PySequence_Size( args );
if( len == 0 ) {
Py_DECREF ( args );
Py_RETURN_NONE;
}
/* verify the param list and get a total count of number of edges */
new_edge_count = 0;
for( i = 0; i < len; ++i ) {
tmp = PySequence_GetItem( args, i );
/* not a tuple of MVerts... error */
if( !PySequence_Check( tmp ) ) {
Py_DECREF( tmp );
Py_DECREF( args );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected sequence of MVert sequences" );
}
/* not the right number of MVerts... error */
nverts = PySequence_Size( tmp );
if( nverts < 2 || nverts > 4 ) {
Py_DECREF( tmp );
Py_DECREF( args );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected 2 to 4 MVerts per sequence" );
}
if( EXPP_check_sequence_consistency( tmp, &MVert_Type ) == 1 ) {
/* get MVerts, check they're from this mesh */
ok = 1;
for( j = 0; ok && j < nverts; ++j ) {
e[0] = (BPy_MVert *)PySequence_GetItem( tmp, j );
if( (void *)e[0]->data != (void *)self->mesh )
ok = 0;
Py_DECREF( e[0] );
}
Py_DECREF( tmp );
/* not MVerts from another mesh ... error */
if( !ok ) {
Py_DECREF( args );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"vertices are from a different mesh" );
}
} else {
ok = 0;
for( j = 0; ok == 0 && j < nverts; ++j ) {
PyObject *item = PySequence_ITEM( tmp, j );
if( !PyInt_CheckExact( item ) )
ok = 1;
else {
int index = PyInt_AsLong ( item );
if( index < 0 || index >= self->mesh->totvert )
ok = 2;
}
Py_DECREF( item );
}
Py_DECREF( tmp );
/* not ints or outside of vertex list ... error */
if( ok ) {
Py_DECREF( args );
if( ok == 1 )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected an integer index" );
else
return EXPP_ReturnPyObjError( PyExc_KeyError,
"index out of range" );
}
}
if( nverts == 2 )
++new_edge_count; /* if only two vert, then add only edge */
else
new_edge_count += nverts; /* otherwise, one edge per vert */
}
/* OK, commit to allocating the search structures */
newpair = (SrchEdges *)MEM_callocN( sizeof(SrchEdges)*new_edge_count,
"MEdgePairs" );
/* scan the input list and build the new edge pair list */
len = PySequence_Size( args );
tmppair = newpair;
new_edge_count = 0;
for( i = 0; i < len; ++i ) {
int edge_count;
int eedges[4];
tmp = PySequence_GetItem( args, i );
nverts = PySequence_Size( tmp );
/* get new references for the vertices */
for(j = 0; j < nverts; ++j ) {
PyObject *item = PySequence_ITEM( tmp, j );
if( BPy_MVert_Check( item ) ) {
eedges[j] = ((BPy_MVert *)item)->index;
} else {
eedges[j] = PyInt_AsLong ( item );
}
Py_DECREF( item );
}
Py_DECREF( tmp );
if( nverts == 2 )
edge_count = 1; /* again, two verts give just one edge */
else
edge_count = nverts;
/* now add the edges to the search list */
for( j = 0; j < edge_count; ++j ) {
int k = j+1;
if( k == nverts ) /* final edge */
k = 0;
/* sort verts into search list, skip if two are the same */
if( eedges[j] != eedges[k] ) {
if( eedges[j] < eedges[k] ) {
tmppair->v[0] = eedges[j];
tmppair->v[1] = eedges[k];
tmppair->swap = 0;
} else {
tmppair->v[0] = eedges[k];
tmppair->v[1] = eedges[j];
tmppair->swap = 1;
}
tmppair->index = new_edge_count;
++new_edge_count;
tmppair++;
}
}
}
/* sort the new edge pairs */
qsort( newpair, new_edge_count, sizeof(SrchEdges), medge_comp );
/*
* find duplicates in the new list and mark. if it's a duplicate,
* then mark by setting second vert index to 0 (a real edge won't have
* second vert index of 0 since verts are sorted)
*/
good_edges = new_edge_count; /* all edges are good at this point */
tmppair = newpair; /* "last good edge" */
tmppair2 = &tmppair[1]; /* "current candidate edge" */
for( i = 0; i < new_edge_count; ++i ) {
if( tmppair->v[0] != tmppair2->v[0] ||
tmppair->v[1] != tmppair2->v[1] )
tmppair = tmppair2; /* last != current, so current == last */
else {
tmppair2->v[1] = 0; /* last == current, so mark as duplicate */
--good_edges; /* one less good edge */
}
tmppair2++;
}
/* if mesh has edges, see if any of the new edges are already in it */
if( mesh->totedge ) {
oldpair = (SrchEdges *)MEM_callocN( sizeof(SrchEdges)*mesh->totedge,
"MEdgePairs" );
/*
* build a search list of new edges (don't need to update "swap"
* field, since we're not creating edges here)
*/
tmppair = oldpair;
tmpedge = mesh->medge;
for( i = 0; i < mesh->totedge; ++i ) {
if( tmpedge->v1 < tmpedge->v2 ) {
tmppair->v[0] = tmpedge->v1;
tmppair->v[1] = tmpedge->v2;
} else {
tmppair->v[0] = tmpedge->v2;
tmppair->v[1] = tmpedge->v1;
}
++tmpedge;
++tmppair;
}
/* sort the old edge pairs */
qsort( oldpair, mesh->totedge, sizeof(SrchEdges), medge_comp );
/* eliminate new edges already in the mesh */
tmppair = newpair;
for( i = new_edge_count; i-- ; ) {
if( tmppair->v[1] ) {
if( bsearch( tmppair, oldpair, mesh->totedge,
sizeof(SrchEdges), medge_comp ) ) {
tmppair->v[1] = 0; /* mark as duplicate */
--good_edges;
}
}
tmppair++;
}
MEM_freeN( oldpair );
}
/* if any new edges are left, add to list */
if( good_edges ) {
CustomData edata;
int totedge = mesh->totedge+good_edges;
/* create custom edge data arrays and copy existing edges into it */
CustomData_copy( &mesh->edata, &edata, CD_MASK_MESH, CD_DEFAULT, totedge );
CustomData_copy_data( &mesh->edata, &edata, 0, 0, mesh->totedge );
if ( !CustomData_has_layer( &edata, CD_MEDGE ) )
CustomData_add_layer( &edata, CD_MEDGE, CD_CALLOC, NULL, totedge );
/* replace old with new data */
CustomData_free( &mesh->edata, mesh->totedge );
mesh->edata = edata;
mesh_update_customdata_pointers( mesh );
/* resort edges into original order */
qsort( newpair, new_edge_count, sizeof(SrchEdges), medge_index_comp );
/* point to the first edge we're going to add */
tmpedge = &mesh->medge[mesh->totedge];
tmppair = newpair;
/* as we find a good edge, add it */
while( good_edges ) {
if( tmppair->v[1] ) { /* not marked as duplicate ! */
if( !tmppair->swap ) {
tmpedge->v1 = tmppair->v[0];
tmpedge->v2 = tmppair->v[1];
} else {
tmpedge->v1 = tmppair->v[1];
tmpedge->v2 = tmppair->v[0];
}
tmpedge->flag = ME_EDGEDRAW | ME_EDGERENDER | SELECT;
mesh->totedge++;
--good_edges;
++tmpedge;
}
tmppair++;
}
}
/* clean up and leave */
mesh_update( mesh );
MEM_freeN( newpair );
Py_DECREF ( args );
Py_RETURN_NONE;
}
static PyObject *MEdgeSeq_delete( BPy_MEdgeSeq * self, PyObject *args )
{
Mesh *mesh = self->mesh;
MEdge *srcedge;
MFace *srcface;
unsigned int *vert_table, *del_table, *edge_table;
int i, len;
int face_count, edge_count, vert_count;
/*
* if input tuple contains a single sequence, use it as input instead;
* otherwise use the sequence as-is and check later that it contains
* one or more integers or MVerts
*/
if( PySequence_Size( args ) == 1 ) {
PyObject *tmp = PyTuple_GET_ITEM( args, 0 );
if( PySequence_Check( tmp ) )
args = tmp;
}
/* if sequence is empty, do nothing */
len = PySequence_Size( args );
if( len == 0 ) {
Py_RETURN_NONE;
}
edge_table = (unsigned int *)MEM_callocN( len*sizeof( unsigned int ),
"edge_table" );
/* get the indices of edges to be removed */
for( i = len; i--; ) {
PyObject *tmp = PySequence_GetItem( args, i );
if( BPy_MEdge_Check( tmp ) )
edge_table[i] = ((BPy_MEdge *)tmp)->index;
else if( PyInt_CheckExact( tmp ) )
edge_table[i] = PyInt_AsLong ( tmp );
else {
MEM_freeN( edge_table );
Py_DECREF( tmp );
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of ints or MEdges" );
}
Py_DECREF( tmp );
/* if index out-of-range, throw exception */
if( edge_table[i] >= (unsigned int)mesh->totedge ) {
MEM_freeN( edge_table );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"array index out of range" );
}
}
/*
* build two tables: first table marks vertices which belong to an edge
* which is being deleted
*/
del_table = (unsigned int *)MEM_callocN(
mesh->totvert*sizeof( unsigned int ), "vert_table" );
/*
* Borrow a trick from editmesh code: for each edge to be deleted, mark
* its vertices as well. Then go through face list and look for two
* consecutive marked vertices.
*/
/* mark each edge that's to be deleted */
srcedge = mesh->medge;
for( i = len; i--; ) {
unsigned int idx = edge_table[i];
del_table[srcedge[idx].v1] = UINT_MAX;
del_table[srcedge[idx].v2] = UINT_MAX;
srcedge[idx].v1 = UINT_MAX;
}
/*
* second table is used for vertices which become orphaned (belong to no
* edges) and need to be deleted; it's also the normal lookup table for
* old->new vertex indices
*/
vert_table = (unsigned int *)MEM_mallocN(
mesh->totvert*sizeof( unsigned int ), "vert_table" );
/* assume all edges will be deleted (fills with UINT_MAX) */
memset( vert_table, UCHAR_MAX, mesh->totvert*sizeof( unsigned int ) );
/* unmark vertices of each "good" edge; count each "bad" edge */
edge_count = 0;
for( i = mesh->totedge; i--; ++srcedge )
if( srcedge->v1 != UINT_MAX )
vert_table[srcedge->v1] = vert_table[srcedge->v2] = 0;
else
++edge_count;
/*
* find faces which no longer have all edges
*/
face_count = 0;
srcface = mesh->mface;
for( i = 0; i < mesh->totface; ++i, ++srcface ) {
int len = srcface->v4 ? 4 : 3;
unsigned int id[4];
int del;
id[0] = del_table[srcface->v1];
id[1] = del_table[srcface->v2];
id[2] = del_table[srcface->v3];
id[3] = del_table[srcface->v4];
del = ( id[0] == UINT_MAX && id[1] == UINT_MAX ) ||
( id[1] == UINT_MAX && id[2] == UINT_MAX );
if( !del ) {
if( len == 3 )
del = ( id[2] == UINT_MAX && id[0] == UINT_MAX );
else
del = ( id[2] == UINT_MAX && id[3] == UINT_MAX ) ||
( id[3] == UINT_MAX && id[0] == UINT_MAX );
}
if( del ) {
srcface->v1 = UINT_MAX;
++face_count;
}
}
/* fix the vertex lookup table, if any verts to delete, do so now */
vert_count = make_vertex_table( vert_table, mesh->totvert );
if( vert_count )
delete_verts( mesh, vert_table, vert_count );
/* delete faces which have a deleted edge */
delete_faces( mesh, vert_table, face_count );
/* now delete the edges themselves */
delete_edges( mesh, vert_table, edge_count );
/* clean up and return */
MEM_freeN( del_table );
MEM_freeN( vert_table );
MEM_freeN( edge_table );
mesh_update ( mesh );
Py_RETURN_NONE;
}
static PyObject *MEdgeSeq_collapse( BPy_MEdgeSeq * self, PyObject *args )
{
MEdge *srcedge;
unsigned int *edge_table;
float (*vert_list)[3];
int i, len;
Base *base, *basact;
Mesh *mesh = self->mesh;
Object *object = NULL;
PyObject *tmp;
/*
* when using removedoublesflag(), we need to switch to editmode, so
* nobody else can be using it
*/
if( G.obedit )
return EXPP_ReturnPyObjError(PyExc_RuntimeError,
"can't use collapse() while in edit mode" );
/* make sure we get a tuple of sequences of something */
switch( PySequence_Size( args ) ) {
case 1:
/* if a sequence... */
tmp = PyTuple_GET_ITEM( args, 0 );
if( PySequence_Check( tmp ) ) {
PyObject *tmp2;
/* ignore empty sequences */
if( !PySequence_Size( tmp ) ) {
Py_RETURN_NONE;
}
/* if another sequence, use it */
tmp2 = PySequence_ITEM( tmp, 0 );
if( PySequence_Check( tmp2 ) )
args = tmp;
Py_INCREF( args );
Py_DECREF( tmp2 );
} else
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of sequence pairs" );
break;
case 2: /* two args may be individual edges/verts */
tmp = PyTuple_GET_ITEM( args, 0 );
/*
* if first item isn't a sequence, then assume it's a bunch of MVerts
* and wrap inside a tuple
*/
if( !PySequence_Check( tmp ) ) {
args = Py_BuildValue( "(O)", args );
if( !args )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Py_BuildValue() failed" );
/*
* otherwise, assume it already a bunch of sequences so use as-is
*/
} else {
Py_INCREF( args ); /* so we can safely DECREF later */
}
break;
default: /* anything else is definitely wrong */
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of sequence pairs" );
}
/* if sequence is empty, do nothing */
len = PySequence_Size( args );
if( len == 0 ) {
Py_RETURN_NONE;
}
/* allocate table of edge indices and new vertex values */
edge_table = (unsigned int *)MEM_callocN( len*sizeof( unsigned int ),
"edge_table" );
vert_list = (float (*)[3])MEM_callocN( 3*len*sizeof( float ),
"vert_list" );
/* get the indices of edges to be collapsed and new vert locations */
for( i = len; i--; ) {
PyObject *tmp1;
PyObject *tmp2;
tmp = PySequence_GetItem( args, i );
/* if item isn't sequence of size 2, error */
if( !PySequence_Check( tmp ) || PySequence_Size( tmp ) != 2 ) {
MEM_freeN( edge_table );
MEM_freeN( vert_list );
Py_DECREF( tmp );
Py_DECREF( args );
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of (MEdges, vector)" );
}
/* if items aren't a MEdge/int and vector, error */
tmp1 = PySequence_GetItem( tmp, 0 );
tmp2 = PySequence_GetItem( tmp, 1 );
Py_DECREF( tmp );
if( !(BPy_MEdge_Check( tmp1 ) || PyInt_CheckExact( tmp1 )) ||
!VectorObject_Check ( tmp2 ) ) {
MEM_freeN( edge_table );
MEM_freeN( vert_list );
Py_DECREF( tmp1 );
Py_DECREF( tmp2 );
Py_DECREF( args );
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of (MEdges, vector)" );
}
/* store edge index, new vertex location */
if( PyInt_CheckExact( tmp1 ) )
edge_table[i] = PyInt_AsLong ( tmp1 );
else
edge_table[i] = ((BPy_MEdge *)tmp1)->index;
memcpy( vert_list[i], ((VectorObject *)tmp2)->vec,
3*sizeof( float ) );
Py_DECREF( tmp1 );
Py_DECREF( tmp2 );
/* if index out-of-range, throw exception */
if( edge_table[i] >= (unsigned int)mesh->totedge ) {
MEM_freeN( edge_table );
MEM_freeN( vert_list );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"edge index out of range" );
}
}
/*
* simple algorithm:
* (1) deselect all verts
* (2) for each edge
* (2a) replace both verts with the new vert
* (2b) select both verts
* (3) call removedoublesflag()
*/
/* (1) deselect all verts */
for( i = mesh->totvert; i--; )
mesh->mvert[i].flag &= ~SELECT;
/* (2) replace edge's verts and select them */
for( i = len; i--; ) {
srcedge = &mesh->medge[edge_table[i]];
memcpy( &mesh->mvert[srcedge->v1].co, vert_list[i], 3*sizeof( float ) );
memcpy( &mesh->mvert[srcedge->v2].co, vert_list[i], 3*sizeof( float ) );
mesh->mvert[srcedge->v1].flag |= SELECT;
mesh->mvert[srcedge->v2].flag |= SELECT;
}
/* (3) call removedoublesflag() */
for( base = FIRSTBASE; base; base = base->next ) {
if( base->object->type == OB_MESH &&
base->object->data == self->mesh ) {
object = base->object;
break;
}
}
basact = BASACT;
BASACT = base;
removedoublesflag( 1, 0.0 );
/* make mesh's object active, enter mesh edit mode */
G.obedit = object;
/* exit edit mode, free edit mesh */
load_editMesh();
free_editMesh(G.editMesh);
BASACT = basact;
/* clean up and exit */
Py_DECREF( args );
MEM_freeN( vert_list );
MEM_freeN( edge_table );
mesh_update ( mesh );
Py_RETURN_NONE;
}
static PyObject *MEdgeSeq_selected( BPy_MEdgeSeq * self )
{
int i, count;
Mesh *mesh = self->mesh;
MEdge *tmpedge;
PyObject *list;
/* first count selected edges (quicker than appending to PyList?) */
count = 0;
tmpedge = mesh->medge;
for( i = 0; i < mesh->totedge; ++i, ++tmpedge )
if( (mesh->mvert[tmpedge->v1].flag & SELECT) &&
(mesh->mvert[tmpedge->v2].flag & SELECT) )
++count;
list = PyList_New( count );
if( !list )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyList_New() failed" );
/* next, insert selected edges into list */
count = 0;
tmpedge = mesh->medge;
for( i = 0; i < mesh->totedge; ++i, ++tmpedge ) {
if( (mesh->mvert[tmpedge->v1].flag & SELECT) &&
(mesh->mvert[tmpedge->v2].flag & SELECT) ) {
PyObject *tmp = PyInt_FromLong( i );
if( !tmp ) {
Py_DECREF( list );
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
PyList_SET_ITEM( list, count, tmp );
++count;
}
}
return list;
}
static struct PyMethodDef BPy_MEdgeSeq_methods[] = {
{"extend", (PyCFunction)MEdgeSeq_extend, METH_VARARGS,
"add edges to mesh"},
{"delete", (PyCFunction)MEdgeSeq_delete, METH_VARARGS,
"delete edges from mesh"},
{"selected", (PyCFunction)MEdgeSeq_selected, METH_NOARGS,
"returns a list containing indices of selected edges"},
{"collapse", (PyCFunction)MEdgeSeq_collapse, METH_VARARGS,
"collapse one or more edges to a vertex"},
{NULL, NULL, 0, NULL}
};
/************************************************************************
*
* Python MEdgeSeq_Type standard operators
*
************************************************************************/
/*****************************************************************************/
/* Python MEdgeSeq_Type structure definition: */
/*****************************************************************************/
PyTypeObject MEdgeSeq_Type = {
PyObject_HEAD_INIT( NULL ) /* required py macro */
0, /* ob_size */
/* For printing, in format "<module>.<name>" */
"Blender MEdgeSeq", /* char *tp_name; */
sizeof( BPy_MEdgeSeq ), /* int tp_basicsize; */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
NULL, /* destructor tp_dealloc; */
NULL, /* printfunc tp_print; */
NULL, /* getattrfunc tp_getattr; */
NULL, /* setattrfunc tp_setattr; */
NULL, /* cmpfunc tp_compare; */
NULL, /* reprfunc tp_repr; */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
&MEdgeSeq_as_sequence, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
NULL, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; Documentation string */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
( getiterfunc) MEdgeSeq_getIter, /* getiterfunc tp_iter; */
( iternextfunc ) MEdgeSeq_nextIter, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
BPy_MEdgeSeq_methods, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
NULL, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
/************************************************************************
*
* Face attributes
*
************************************************************************/
static MFace * MFace_get_pointer( BPy_MFace * self )
{
if( self->index >= self->mesh->totface )
return (MFace *)EXPP_ReturnPyObjError( PyExc_RuntimeError,
"MFace is no longer valid" );
return &self->mesh->mface[self->index];
}
/*
* get a face's vertices
*/
static PyObject *MFace_getVerts( BPy_MFace * self )
{
PyObject *attr;
MFace *face = MFace_get_pointer( self );
if( !face )
return NULL;
attr = PyTuple_New( face->v4 ? 4 : 3 );
if( !attr )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyTuple_New() failed" );
PyTuple_SetItem( attr, 0, MVert_CreatePyObject( self->mesh, face->v1 ) );
PyTuple_SetItem( attr, 1, MVert_CreatePyObject( self->mesh, face->v2 ) );
PyTuple_SetItem( attr, 2, MVert_CreatePyObject( self->mesh, face->v3 ) );
if( face->v4 )
PyTuple_SetItem( attr, 3, MVert_CreatePyObject( self->mesh,
face->v4 ) );
return attr;
}
/*
* set a face's vertices
*/
static int MFace_setVerts( BPy_MFace * self, PyObject * args )
{
BPy_MVert *v1, *v2, *v3, *v4 = NULL;
MFace *face = MFace_get_pointer( self );
if( !face )
return -1;
if( !PyArg_ParseTuple ( args, "O!O!O!|O!", &MVert_Type, &v1,
&MVert_Type, &v2, &MVert_Type, &v3, &MVert_Type, &v4 ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected tuple of 3 or 4 MVerts" );
face->v1 = v1->index;
face->v2 = v2->index;
face->v3 = v3->index;
if( v4 )
face->v4 = v4->index;
return 0;
}
/*
* get face's material index
*/
static PyObject *MFace_getMat( BPy_MFace * self )
{
PyObject *attr;
MFace *face = MFace_get_pointer( self );
if( !face )
return NULL;
attr = PyInt_FromLong( face->mat_nr );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
/*
* set face's material index
*/
static int MFace_setMat( BPy_MFace * self, PyObject * value )
{
MFace *face = MFace_get_pointer( self );
if( !face )
return -1;
return EXPP_setIValueRange( value, &face->mat_nr, 0, 15, 'b' );
}
/*
* get a face's index
*/
static PyObject *MFace_getIndex( BPy_MFace * self )
{
PyObject *attr;
MFace *face = MFace_get_pointer( self );
if( !face )
return NULL;
attr = PyInt_FromLong( self->index );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
/*
* get face's normal index
*/
static PyObject *MFace_getNormal( BPy_MFace * self )
{
float *vert[4];
float no[3];
MFace *face = MFace_get_pointer( self );
if( !face )
return NULL;
if( (int)face->v1 >= self->mesh->totvert ||
(int)face->v2 >= self->mesh->totvert ||
(int)face->v3 >= self->mesh->totvert ||
(int)face->v4 >= self->mesh->totvert )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"one or more MFace vertices are no longer valid" );
vert[0] = self->mesh->mvert[face->v1].co;
vert[1] = self->mesh->mvert[face->v2].co;
vert[2] = self->mesh->mvert[face->v3].co;
if( face->v4 ) {
vert[3] = self->mesh->mvert[face->v4].co;
CalcNormFloat4( vert[0], vert[1], vert[2], vert[3], no );
} else
CalcNormFloat( vert[0], vert[1], vert[2], no );
return newVectorObject( no, 3, Py_NEW );
}
/*
* get face's center location
*/
static PyObject *MFace_getCent( BPy_MFace * self )
{
float *vert[4];
float cent[3]= {0,0,0};
int i=3, j, k;
MFace *face = MFace_get_pointer( self );
if( !face )
return NULL;
if( (int)face->v1 >= self->mesh->totvert ||
(int)face->v2 >= self->mesh->totvert ||
(int)face->v3 >= self->mesh->totvert ||
(int)face->v4 >= self->mesh->totvert )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"one or more MFace vertices are no longer valid" );
vert[0] = self->mesh->mvert[face->v1].co;
vert[1] = self->mesh->mvert[face->v2].co;
vert[2] = self->mesh->mvert[face->v3].co;
if( face->v4 ) {
vert[3] = self->mesh->mvert[face->v4].co;
i=4;
}
for (j=0;j<i;j++) {
for (k=0;k<3;k++) {
cent[k]+=vert[j][k];
}
}
for (j=0;j<3;j++) {
cent[j]=cent[j]/i;
}
return newVectorObject( cent, 3, Py_NEW );
}
/*
* get face's area
*/
static PyObject *MFace_getArea( BPy_MFace * self )
{
float *v1,*v2,*v3,*v4;
MFace *face = MFace_get_pointer( self );
if( !face )
return NULL;
if( (int)face->v1 >= self->mesh->totvert ||
(int)face->v2 >= self->mesh->totvert ||
(int)face->v3 >= self->mesh->totvert ||
(int)face->v4 >= self->mesh->totvert )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"one or more MFace vertices are no longer valid" );
v1 = self->mesh->mvert[face->v1].co;
v2 = self->mesh->mvert[face->v2].co;
v3 = self->mesh->mvert[face->v3].co;
if( face->v4 ) {
v4 = self->mesh->mvert[face->v4].co;
return PyFloat_FromDouble( AreaQ3Dfl(v1, v2, v3, v4));
} else
return PyFloat_FromDouble( AreaT3Dfl(v1, v2, v3));
}
/*
* get one of a face's mface flag bits
*/
static PyObject *MFace_getMFlagBits( BPy_MFace * self, void * type )
{
MFace *face = MFace_get_pointer( self );
if( !face )
return NULL;
return EXPP_getBitfield( &face->flag, (int)((long)type & 0xff), 'b' );
}
/*
* set one of a face's mface flag bits
*/
static int MFace_setMFlagBits( BPy_MFace * self, PyObject * value,
void * type )
{
MFace *face = MFace_get_pointer( self );
if( !face )
return -1;
return EXPP_setBitfield( value, &face->flag,
(int)((long)type & 0xff), 'b' );
}
static int MFace_setSelect( BPy_MFace * self, PyObject * value,
void * type_unused )
{
MFace *face = MFace_get_pointer( self );
int param = PyObject_IsTrue( value );
Mesh *me;
if( !face )
return -1;
if( param == -1 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected true/false argument" );
me = self->mesh;
if( param ) {
face->flag |= ME_FACE_SEL;
me->mvert[face->v1].flag |= SELECT;
me->mvert[face->v2].flag |= SELECT;
me->mvert[face->v3].flag |= SELECT;
if( face->v4 )
me->mvert[face->v4].flag |= SELECT;
}
else {
face->flag &= ~ME_FACE_SEL;
me->mvert[face->v1].flag &= ~SELECT;
me->mvert[face->v2].flag &= ~SELECT;
me->mvert[face->v3].flag &= ~SELECT;
if( face->v4 )
me->mvert[face->v4].flag &= ~SELECT;
}
if( self->mesh->mselect ) {
MEM_freeN( self->mesh->mselect );
self->mesh->mselect = NULL;
}
return 0;
}
/*
* get face's texture image
*/
static PyObject *MFace_getImage( BPy_MFace *self )
{
MTFace *face;
if( !self->mesh->mtface )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"face has no texture values" );
if( !MFace_get_pointer( self ) )
return NULL;
face = &self->mesh->mtface[self->index];
if( face->tpage )
return Image_CreatePyObject( face->tpage );
else
Py_RETURN_NONE;
}
/*
* change or clear face's texture image
*/
static int MFace_setImage( BPy_MFace *self, PyObject *value )
{
MTFace *face;
if( !MFace_get_pointer( self ) )
return -1;
if( value && value != Py_None && !BPy_Image_Check( value ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected image object or None" );
if( !self->mesh->mtface )
#if 0
return EXPP_ReturnIntError( PyExc_ValueError,
"face has no texture values" );
#else
make_tfaces( self->mesh );
#endif
face = &self->mesh->mtface[self->index];
if( value == NULL || value == Py_None )
face->tpage = NULL; /* should memory be freed? */
else {
face->tpage = ( ( BPy_Image * ) value )->image;
face->mode |= TF_TEX;
}
return 0;
}
#define MFACE_FLAG_BITMASK ( TF_SELECT | TF_ACTIVE | TF_SEL1 | \
TF_SEL2 | TF_SEL3 | TF_SEL4 | TF_HIDE )
/*
* get face's texture flag
*/
static PyObject *MFace_getFlag( BPy_MFace *self )
{
if( !self->mesh->mtface )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"face has no texture values" );
if( !MFace_get_pointer( self ) )
return NULL;
return PyInt_FromLong( (long) ( self->mesh->mtface[self->index].flag
& MFACE_FLAG_BITMASK ) );
}
/*
* set face's texture flag
*/
static int MFace_setFlag( BPy_MFace *self, PyObject *value )
{
int param;
if( !self->mesh->mtface )
return EXPP_ReturnIntError( PyExc_ValueError,
"face has no texture values" );
if( !MFace_get_pointer( self ) )
return -1;
if( !PyInt_CheckExact ( value ) ) {
char errstr[128];
sprintf ( errstr , "expected int bitmask of 0x%04x", MFACE_FLAG_BITMASK );
return EXPP_ReturnIntError( PyExc_TypeError, errstr );
}
param = PyInt_AS_LONG ( value );
/* only one face can be active, so don't allow that here */
if( param & TF_ACTIVE )
param &= ~TF_ACTIVE;
if( ( param & MFACE_FLAG_BITMASK ) != param )
return EXPP_ReturnIntError( PyExc_ValueError,
"invalid bit(s) set in mask" );
/* merge active setting with other new params */
param |= (self->mesh->mtface[self->index].flag & TF_ACTIVE);
self->mesh->mtface[self->index].flag = (char)param;
return 0;
}
/*
* get face's texture mode
*/
static PyObject *MFace_getMode( BPy_MFace *self )
{
PyObject *attr;
if( !self->mesh->mtface )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"face has no texture values" );
if( !MFace_get_pointer( self ) )
return NULL;
attr = PyInt_FromLong( self->mesh->mtface[self->index].mode );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
/*
* set face's texture mode
*/
static int MFace_setMode( BPy_MFace *self, PyObject *value )
{
int param;
static short bitmask = TF_DYNAMIC
| TF_TEX
| TF_SHAREDVERT
| TF_LIGHT
| TF_SHAREDCOL
| TF_TILES
| TF_BILLBOARD
| TF_TWOSIDE
| TF_INVISIBLE
| TF_OBCOL
| TF_BILLBOARD2
| TF_SHADOW
| TF_BMFONT;
if( !self->mesh->mtface )
return EXPP_ReturnIntError( PyExc_ValueError,
"face has no texture values" );
if( !MFace_get_pointer( self ) )
return -1;
if( !PyInt_CheckExact ( value ) ) {
char errstr[128];
sprintf ( errstr , "expected int bitmask of 0x%04x", bitmask );
return EXPP_ReturnIntError( PyExc_TypeError, errstr );
}
param = PyInt_AS_LONG ( value );
if( param == 0xffff ) /* if param is ALL, set everything but HALO */
param = bitmask ^ TF_BILLBOARD;
else if( ( param & bitmask ) != param )
return EXPP_ReturnIntError( PyExc_ValueError,
"invalid bit(s) set in mask" );
/* Blender UI doesn't allow these on at the same time */
if( ( param & (TF_BILLBOARD | TF_BILLBOARD2) ) ==
(TF_BILLBOARD | TF_BILLBOARD2) )
return EXPP_ReturnIntError( PyExc_ValueError,
"HALO and BILLBOARD cannot be enabled simultaneously" );
self->mesh->mtface[self->index].mode = (short)param;
return 0;
}
/*
* get face's texture transparency setting
*/
static PyObject *MFace_getTransp( BPy_MFace *self )
{
PyObject *attr;
if( !self->mesh->mtface )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"face has no texture values" );
if( !MFace_get_pointer( self ) )
return NULL;
attr = PyInt_FromLong( self->mesh->mtface[self->index].transp );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
/*
* set face's texture transparency setting
*/
static int MFace_setTransp( BPy_MFace *self, PyObject *value )
{
if( !self->mesh->mtface )
return EXPP_ReturnIntError( PyExc_ValueError,
"face has no texture values" );
if( !MFace_get_pointer( self ) )
return -1;
return EXPP_setIValueRange( value,
&self->mesh->mtface[self->index].transp, TF_SOLID, TF_SUB, 'b' );
}
/*
* get a face's texture UV coord values
*/
static PyObject *MFace_getUV( BPy_MFace * self )
{
MTFace *face;
PyObject *attr;
int length, i;
if( !self->mesh->mtface )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"face has no texture values" );
if( !MFace_get_pointer( self ) )
return NULL;
face = &self->mesh->mtface[self->index];
length = self->mesh->mface[self->index].v4 ? 4 : 3;
attr = PyTuple_New( length );
if( !attr )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyTuple_New() failed" );
for( i=0; i<length; ++i ) {
PyObject *vector = newVectorObject( face->uv[i], 2, Py_WRAP );
if( !vector )
return NULL;
PyTuple_SetItem( attr, i, vector );
}
return attr;
}
/*
* set a face's texture UV coord values
*/
static int MFace_setUV( BPy_MFace * self, PyObject * value )
{
MTFace *face;
int length, i;
if( !MFace_get_pointer( self ) )
return -1;
if( !PySequence_Check( value ) ||
EXPP_check_sequence_consistency( value, &vector_Type ) != 1 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected sequence of vectors" );
length = self->mesh->mface[self->index].v4 ? 4 : 3;
if( length != PySequence_Size( value ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"size of vertex and UV sequences differ" );
if( !self->mesh->mtface )
#if 0
return EXPP_ReturnIntError( PyExc_ValueError,
"face has no texture values" );
#else
make_tfaces( self->mesh );
#endif
face = &self->mesh->mtface[self->index];
for( i=0; i<length; ++i ) {
VectorObject *vector = (VectorObject *)PySequence_ITEM( value, i );
face->uv[i][0] = vector->vec[0];
face->uv[i][1] = vector->vec[1];
Py_DECREF( vector );
}
return 0;
}
/*
* get a face's texture UV coord select state
*/
static PyObject *MFace_getUVSel( BPy_MFace * self )
{
MTFace *face;
PyObject *attr;
int length, i, mask;
if( !self->mesh->mtface )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"face has no texture values" );
if( !MFace_get_pointer( self ) )
return NULL;
face = &self->mesh->mtface[self->index];
length = self->mesh->mface[self->index].v4 ? 4 : 3;
attr = PyTuple_New( length );
if( !attr )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyTuple_New() failed" );
/* get coord select state, one bit at a time */
mask = TF_SEL1;
for( i=0; i<length; ++i, mask <<= 1 ) {
PyObject *value = PyInt_FromLong( face->flag & mask ? 1 : 0 );
if( !value ) {
Py_DECREF( attr );
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
PyTuple_SetItem( attr, i, value );
}
return attr;
}
/*
* set a face's texture UV coord select state
*/
static int MFace_setUVSel( BPy_MFace * self, PyObject * value )
{
MTFace *face;
int length, i, mask;
if( !MFace_get_pointer( self ) )
return -1;
if( !PySequence_Check( value ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a tuple of integers" );
length = self->mesh->mface[self->index].v4 ? 4 : 3;
if( length != PySequence_Size( value ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"size of vertex and UV lists differ" );
if( !self->mesh->mtface )
#if 0
return EXPP_ReturnIntError( PyExc_ValueError,
"face has no texture values" );
#else
make_tfaces( self->mesh );
#endif
/* set coord select state, one bit at a time */
face = &self->mesh->mtface[self->index];
mask = TF_SEL1;
for( i=0; i<length; ++i, mask <<= 1 ) {
PyObject *tmp = PySequence_GetItem( value, i ); /* adds a reference, remove below */
if( !PyInt_CheckExact( tmp ) ) {
Py_DECREF(tmp);
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a tuple of integers" );
}
if( PyInt_AsLong( tmp ) )
face->flag |= mask;
else
face->flag &= ~mask;
Py_DECREF(tmp);
}
return 0;
}
/*
* get a face's vertex colors. note that if mesh->mtfaces is defined, then
* it takes precedent over mesh->mcol
*/
static PyObject *MFace_getCol( BPy_MFace * self )
{
PyObject *attr;
int length, i;
MCol * mcol;
/* if there's no mesh color vectors or texture faces, nothing to do */
if( !self->mesh->mcol )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"face has no vertex colors" );
if( !MFace_get_pointer( self ) )
return NULL;
mcol = &self->mesh->mcol[self->index*4];
length = self->mesh->mface[self->index].v4 ? 4 : 3;
attr = PyTuple_New( length );
if( !attr )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyTuple_New() failed" );
for( i=0; i<length; ++i ) {
PyObject *color = MCol_CreatePyObject( &mcol[i] );
if( !color )
return NULL;
PyTuple_SetItem( attr, i, color );
}
return attr;
}
/*
* set a face's vertex colors
*/
static int MFace_setCol( BPy_MFace * self, PyObject *value )
{
int length, i;
MCol * mcol;
/* if there's no mesh color vectors or texture faces, nothing to do */
if( !self->mesh->mcol )
return EXPP_ReturnIntError( PyExc_ValueError,
"face has no vertex colors" );
if( !MFace_get_pointer( self ) )
return -1;
mcol = &self->mesh->mcol[self->index*4];
length = self->mesh->mface[self->index].v4 ? 4 : 3;
if( !PyList_Check( value ) && !PyTuple_Check( value ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a sequence of MCols" );
if( EXPP_check_sequence_consistency( value, &MCol_Type ) != 1 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a sequence of MCols" );
if( PySequence_Size( value ) != length )
return EXPP_ReturnIntError( PyExc_ValueError,
"incorrect number of colors for this face" );
for( i=0; i<length; ++i ) {
BPy_MCol *obj = (BPy_MCol *)PySequence_ITEM( value, i );
mcol[i].r = obj->color->r;
mcol[i].g = obj->color->g;
mcol[i].b = obj->color->b;
mcol[i].a = obj->color->a;
Py_DECREF( obj );
}
return 0;
}
/*
* get edge keys for using in a dictionary or set key
*/
static PyObject *MFace_getEdgeKeys( BPy_MFace * self )
{
MFace *face = MFace_get_pointer( self );
PyObject *attr, *edpair;
if (face->v4) {
attr = PyTuple_New( 4 );
edpair = PyTuple_New( 2 );
if (face->v1 > face->v2) {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v2) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v1) );
} else {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v1) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v2) );
}
PyTuple_SetItem( attr, 0, edpair );
edpair = PyTuple_New( 2 );
if (face->v2 > face->v3) {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v3) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v2) );
} else {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v2) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v3) );
}
PyTuple_SetItem( attr, 1, edpair );
edpair = PyTuple_New( 2 );
if (face->v3 > face->v4) {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v4) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v3) );
} else {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v3) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v4) );
}
PyTuple_SetItem( attr, 2, edpair );
edpair = PyTuple_New( 2 );
if (face->v4 > face->v1) {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v1) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v4) );
} else {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v4) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v1) );
}
PyTuple_SetItem( attr, 3, edpair );
} else {
attr = PyTuple_New( 3 );
edpair = PyTuple_New( 2 );
if (face->v1 > face->v2) {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v2) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v1) );
} else {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v1) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v2) );
}
PyTuple_SetItem( attr, 0, edpair );
edpair = PyTuple_New( 2 );
if (face->v2 > face->v3) {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v3) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v2) );
} else {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v2) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v3) );
}
PyTuple_SetItem( attr, 1, edpair );
edpair = PyTuple_New( 2 );
if (face->v3 > face->v1) {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v1) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v3) );
} else {
PyTuple_SetItem( edpair, 0, PyInt_FromLong(face->v3) );
PyTuple_SetItem( edpair, 1, PyInt_FromLong(face->v1) );
}
PyTuple_SetItem( attr, 2, edpair );
}
return attr;
}
/************************************************************************
*
* Python MFace_Type attributes get/set structure
*
************************************************************************/
static PyGetSetDef BPy_MFace_getseters[] = {
{"verts",
(getter)MFace_getVerts, (setter)MFace_setVerts,
"face's vertices",
NULL},
{"v",
(getter)MFace_getVerts, (setter)MFace_setVerts,
"deprecated: see 'verts'",
NULL},
{"mat",
(getter)MFace_getMat, (setter)MFace_setMat,
"face's material index",
NULL},
{"index",
(getter)MFace_getIndex, (setter)NULL,
"face's index",
NULL},
{"no",
(getter)MFace_getNormal, (setter)NULL,
"face's normal",
NULL},
{"cent",
(getter)MFace_getCent, (setter)NULL,
"face's center",
NULL},
{"area",
(getter)MFace_getArea, (setter)NULL,
"face's 3D area",
NULL},
{"hide",
(getter)MFace_getMFlagBits, (setter)MFace_setMFlagBits,
"face hidden in edit mode",
(void *)ME_HIDE},
{"sel",
(getter)MFace_getMFlagBits, (setter)MFace_setSelect,
"face selected in edit mode",
(void *)ME_FACE_SEL},
{"smooth",
(getter)MFace_getMFlagBits, (setter)MFace_setMFlagBits,
"face smooth enabled",
(void *)ME_SMOOTH},
/* attributes for texture faces (mostly, I think) */
{"col",
(getter)MFace_getCol, (setter)MFace_setCol,
"face's vertex colors",
NULL},
{"flag",
(getter)MFace_getFlag, (setter)MFace_setFlag,
"flags associated with texture faces",
NULL},
{"image",
(getter)MFace_getImage, (setter)MFace_setImage,
"image associated with texture faces",
NULL},
{"mode",
(getter)MFace_getMode, (setter)MFace_setMode,
"modes associated with texture faces",
NULL},
{"transp",
(getter)MFace_getTransp, (setter)MFace_setTransp,
"transparency of texture faces",
NULL},
{"uv",
(getter)MFace_getUV, (setter)MFace_setUV,
"face's UV coordinates",
NULL},
{"uvSel",
(getter)MFace_getUVSel, (setter)MFace_setUVSel,
"face's UV coordinates select status",
NULL},
{"edge_keys",
(getter)MFace_getEdgeKeys, (setter)NULL,
"for each edge this face uses return an ordered tuple edge pair that can be used as a key in a dictionary or set",
NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
/************************************************************************
*
* Python MFace_Type iterator (iterates over vertices)
*
************************************************************************/
/*
* Initialize the interator index
*/
static PyObject *MFace_getIter( BPy_MFace * self )
{
if (self->iter==-1) {
self->iter = 0;
return EXPP_incr_ret ( (PyObject *) self );
} else {
BPy_MFace *seq= (BPy_MFace *)MFace_CreatePyObject(self->mesh, self->index);
seq->iter = 0;
return (PyObject *) seq;
}
}
/*
* Return next MVert. Throw an exception after the final vertex.
*/
static PyObject *MFace_nextIter( BPy_MFace * self )
{
struct MFace *face = &self->mesh->mface[self->index];
int len = self->mesh->mface[self->index].v4 ? 4 : 3;
if( self->iter == len ) {
self->iter = -1;
return EXPP_ReturnPyObjError( PyExc_StopIteration,
"iterator at end" );
}
++self->iter;
switch ( self->iter ) {
case 1:
return MVert_CreatePyObject( self->mesh, face->v1 );
case 2:
return MVert_CreatePyObject( self->mesh, face->v2 );
case 3:
return MVert_CreatePyObject( self->mesh, face->v3 );
default :
return MVert_CreatePyObject( self->mesh, face->v4 );
}
}
/************************************************************************
*
* Python MFace_Type methods
*
************************************************************************/
/************************************************************************
*
* Python MFace_Type standard operations
*
************************************************************************/
static int MFace_compare( BPy_MFace * a, BPy_MFace * b )
{
return( a->mesh == b->mesh && a->index == b->index ) ? 0 : -1;
}
static PyObject *MFace_repr( BPy_MFace* self )
{
MFace *face = MFace_get_pointer( self );
if( !face )
return NULL;
if( face->v4 )
return PyString_FromFormat( "[MFace (%d %d %d %d) %d]",
(int)face->v1, (int)face->v2,
(int)face->v3, (int)face->v4, (int)self->index );
else
return PyString_FromFormat( "[MFace (%d %d %d) %d]",
(int)face->v1, (int)face->v2,
(int)face->v3, (int)self->index );
}
static long MFace_hash( BPy_MFace *self )
{
return (long)self->index;
}
static int MFace_len( BPy_MFace * self )
{
if( self->index >= self->mesh->totface )
return 0;
return self->mesh->mface[self->index].v4 ? 4 : 3;
}
static PySequenceMethods MFace_as_sequence = {
( inquiry ) MFace_len, /* sq_length */
( binaryfunc ) 0, /* sq_concat */
( intargfunc ) 0, /* sq_repeat */
( intargfunc ) 0, /* sq_item */
( intintargfunc ) 0, /* sq_slice */
( intobjargproc ) 0, /* sq_ass_item */
( intintobjargproc ) 0, /* sq_ass_slice */
0,0,0,
};
/************************************************************************
*
* Python MFace_Type structure definition
*
************************************************************************/
PyTypeObject MFace_Type = {
PyObject_HEAD_INIT( NULL ) /* required py macro */
0, /* ob_size */
/* For printing, in format "<module>.<name>" */
"Blender MFace", /* char *tp_name; */
sizeof( BPy_MFace ), /* int tp_basicsize; */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
NULL, /* destructor tp_dealloc; */
NULL, /* printfunc tp_print; */
NULL, /* getattrfunc tp_getattr; */
NULL, /* setattrfunc tp_setattr; */
( cmpfunc ) MFace_compare, /* cmpfunc tp_compare; */
( reprfunc ) MFace_repr, /* reprfunc tp_repr; */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
&MFace_as_sequence, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
( hashfunc ) MFace_hash, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; Documentation string */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
( getiterfunc ) MFace_getIter, /* getiterfunc tp_iter; */
( iternextfunc ) MFace_nextIter, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
NULL, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
BPy_MFace_getseters, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
static PyObject *MFace_CreatePyObject( Mesh * mesh, int i )
{
BPy_MFace *obj = PyObject_NEW( BPy_MFace, &MFace_Type );
if( !obj )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyObject_New() failed" );
obj->mesh = mesh;
obj->index = i;
obj->iter= -1;
return (PyObject *)obj;
}
/************************************************************************
*
* Face sequence
*
************************************************************************/
static int MFaceSeq_len( BPy_MFaceSeq * self )
{
return self->mesh->totface;
}
static PyObject *MFaceSeq_item( BPy_MFaceSeq * self, int i )
{
if( i < 0 || i >= self->mesh->totface )
return EXPP_ReturnPyObjError( PyExc_IndexError,
"array index out of range" );
return MFace_CreatePyObject( self->mesh, i );
}
static PySequenceMethods MFaceSeq_as_sequence = {
( inquiry ) MFaceSeq_len, /* sq_length */
( binaryfunc ) 0, /* sq_concat */
( intargfunc ) 0, /* sq_repeat */
( intargfunc ) MFaceSeq_item, /* sq_item */
( intintargfunc ) 0, /* sq_slice */
( intobjargproc ) 0, /* sq_ass_item */
( intintobjargproc ) 0, /* sq_ass_slice */
0,0,0,
};
/************************************************************************
*
* Python MFaceSeq_Type iterator (iterates over faces)
*
************************************************************************/
/*
* Initialize the interator index
*/
static PyObject *MFaceSeq_getIter( BPy_MFaceSeq * self )
{
if (self->iter==-1) {
self->iter = 0;
return EXPP_incr_ret ( (PyObject *) self );
} else {
BPy_MFaceSeq *seq = (BPy_MFaceSeq *)MFaceSeq_CreatePyObject(self->mesh);
seq->iter = 0;
return (PyObject *)seq;
}
}
/*
* Return next MFace.
*/
static PyObject *MFaceSeq_nextIter( BPy_MFaceSeq * self )
{
if( self->iter == self->mesh->totface ) {
self->iter= -1; /* not being used in a seq */
return EXPP_ReturnPyObjError( PyExc_StopIteration,
"iterator at end" );
}
return MFace_CreatePyObject( self->mesh, self->iter++ );
}
/************************************************************************
*
* Python MFaceSeq_Type methods
*
************************************************************************/
static PyObject *MFaceSeq_extend( BPy_MEdgeSeq * self, PyObject *args,
PyObject *keywds )
{
/*
* (a) check input for valid edge objects, faces which consist of
* only three or four edges
* (b) check input to be sure edges form a closed face (each edge
* contains verts in two other different edges?)
*
* (1) build list of new faces; remove duplicates
* * use existing "v4=0 rule" for 3-vert faces
* (2) build list of existing faces for searching
* (3) from new face list, remove existing faces:
*/
int len, nverts;
int i, j, k, new_face_count;
int good_faces;
SrchFaces *oldpair, *newpair, *tmppair, *tmppair2;
PyObject *tmp;
MFace *tmpface;
Mesh *mesh = self->mesh;
int ignore_dups = 0;
PyObject *return_list = NULL;
/* before we try to add faces, add edges; if it fails; exit */
tmp = MEdgeSeq_extend( self, args );
if( !tmp )
return NULL;
Py_DECREF( tmp );
/* process any keyword arguments */
if( keywds ) {
PyObject *res = PyDict_GetItemString( keywds, "ignoreDups" );
if( res )
ignore_dups = PyObject_IsTrue( res );
res = PyDict_GetItemString( keywds, "indexList" );
if( res && PyObject_IsTrue( res ) )
return_list = PyList_New( 0 );
}
/* make sure we get a tuple of sequences of something */
switch( PySequence_Size( args ) ) {
case 1: /* better be a sequence or a tuple */
/* if a sequence... */
tmp = PyTuple_GET_ITEM( args, 0 );
if( PySequence_Check( tmp ) ) {
PyObject *tmp2;
/* ignore empty sequences */
if( !PySequence_Size( tmp ) ) {
Py_RETURN_NONE;
}
/* if another sequence, use it */
tmp2 = PySequence_ITEM( tmp, 0 );
if( PySequence_Check( tmp2 ) )
args = tmp;
Py_INCREF( args );
Py_DECREF( tmp2 );
} else
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of sequence pairs" );
break;
case 2:
case 3:
case 4: /* two to four args may be individual verts */
tmp = PyTuple_GET_ITEM( args, 0 );
/*
* if first item isn't a sequence, then assume it's a bunch of MVerts
* and wrap inside a tuple
*/
if( !PySequence_Check( tmp ) ) {
args = Py_BuildValue( "(O)", args );
if( !args )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Py_BuildValue() failed" );
/*
* otherwise, assume it already a bunch of sequences so use as-is
*/
} else {
Py_INCREF( args ); /* so we can safely DECREF later */
}
break;
default: /* anything else is definitely wrong */
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of sequence pairs" );
}
/* if nothing to add, just exit */
len = PySequence_Size( args );
if( len == 0 ) {
Py_DECREF( args );
Py_RETURN_NONE;
}
/*
* Since we call MEdgeSeq_extend first, we already know the input list
* is valid. Here we just need to count the total number of faces.
*/
new_face_count = 0;
for( i = 0; i < len; ++i ) {
tmp = PySequence_ITEM( args, i );
nverts = PySequence_Size( tmp );
if( return_list || nverts != 2 )
++new_face_count; /* new faces must have 3 or 4 verts */
Py_DECREF( tmp );
}
/* OK, commit to allocating the search structures */
newpair = (SrchFaces *)MEM_callocN( sizeof(SrchFaces)*new_face_count,
"MFacePairs" );
/* scan the input list and build the new face pair list */
len = PySequence_Size( args );
tmppair = newpair;
for( i = 0; i < len; ++i ) {
MFace tmpface;
unsigned int vert[4]={0,0,0,0};
unsigned char order[4]={0,1,2,3};
tmp = PySequence_GetItem( args, i );
nverts = PySequence_Size( tmp );
if( nverts == 2 ) { /* again, ignore 2-vert tuples */
if( return_list ) /* if returning indices, mark as deleted */
tmppair->v[1] = 0;
Py_DECREF( tmp );
continue;
}
/*
* get the face's vertices' indexes
*/
for( j = 0; j < nverts; ++j ) {
PyObject *item = PySequence_ITEM( tmp, j );
if( BPy_MVert_Check( item ) )
vert[j] = ((BPy_MVert *)item)->index;
else
vert[j] = PyInt_AsLong( item );
Py_DECREF( item );
}
Py_DECREF( tmp );
tmpface.v1 = vert[0];
tmpface.v2 = vert[1];
tmpface.v3 = vert[2];
tmpface.v4 = vert[3];
/*
* go through some contortions to guarantee the third and fourth
* vertices are not index 0
*/
eeek_fix( &tmpface, nverts == 4 );
vert[0] = tmpface.v1;
vert[1] = tmpface.v2;
vert[2] = tmpface.v3;
if( nverts == 3 )
vert[3] = tmppair->v[3] = 0;
else
vert[3] = tmpface.v4;
/*
* sort the verts before placing in pair list. the order of
* vertices in the face is very important, so keep track of
* the original order
*/
for( j = nverts-1; j >= 0; --j ) {
for( k = 0; k < j; ++k ) {
if( vert[k] > vert[k+1] ) {
SWAP( int, vert[k], vert[k+1] );
SWAP( char, order[k], order[k+1] );
} else if( vert[k] == vert[k+1] ) {
break;
}
}
if( k < j )
break;
tmppair->v[j] = vert[j];
}
if( j >= 0 ) { /* a duplicate vertex found */
if( return_list ) { /* if returning index list */
tmppair->v[1] = 0; /* mark as deleted */
} else {
--new_face_count; /* otherwise skip */
continue;
}
}
tmppair->index = i;
/* pack order into a byte */
tmppair->order = order[0]|(order[1]<<2)|(order[2]<<4)|(order[3]<<6);
++tmppair;
}
/*
* find duplicates in the new list and mark. if it's a duplicate,
* then mark by setting second vert index to 0 (a real edge won't have
* second vert index of 0 since verts are sorted)
*/
good_faces = new_face_count; /* assume all faces good to start */
tmppair = newpair; /* "last good edge" */
tmppair2 = &tmppair[1]; /* "current candidate edge" */
if( !ignore_dups ) {
/* sort the new face pairs */
qsort( newpair, new_face_count, sizeof(SrchFaces), mface_comp );
for( i = 0; i < new_face_count; ++i ) {
if( mface_comp( tmppair, tmppair2 ) )
tmppair = tmppair2; /* last != current, so current == last */
else {
tmppair2->v[1] = 0; /* last == current, so mark as duplicate */
--good_faces; /* one less good face */
}
tmppair2++;
}
}
/* if mesh has faces, see if any of the new faces are already in it */
if( mesh->totface && !ignore_dups ) {
oldpair = (SrchFaces *)MEM_callocN( sizeof(SrchFaces)*mesh->totface,
"MFacePairs" );
tmppair = oldpair;
tmpface = mesh->mface;
for( i = 0; i < mesh->totface; ++i ) {
unsigned char order[4]={0,1,2,3};
int verts[4];
verts[0]=tmpface->v1;
verts[1]=tmpface->v2;
verts[2]=tmpface->v3;
verts[3]=tmpface->v4;
len = ( tmpface->v4 ) ? 3 : 2;
tmppair->v[3] = 0; /* for triangular faces */
/* sort the verts before placing in pair list here too */
for( j = len; j >= 0; --j ) {
for( k = 0; k < j; ++k )
if( verts[k] > verts[k+1] ) {
SWAP( int, verts[k], verts[k+1] );
SWAP( unsigned char, order[k], order[k+1] );
}
tmppair->v[j] = verts[j];
}
/* pack order into a byte */
tmppair->order = order[0]|(order[1]<<2)|(order[2]<<4)|(order[3]<<6);
++tmppair;
++tmpface;
}
/* sort the old face pairs */
qsort( oldpair, mesh->totface, sizeof(SrchFaces), mface_comp );
/* eliminate new faces already in the mesh */
tmppair = newpair;
for( i = good_faces; i ; ) {
if( tmppair->v[1] ) {
if( bsearch( tmppair, oldpair, mesh->totface,
sizeof(SrchFaces), mface_comp ) ) {
tmppair->v[1] = 0; /* mark as duplicate */
--good_faces;
}
--i;
}
tmppair++;
}
MEM_freeN( oldpair );
}
/* if any new faces are left, add to list */
if( good_faces || return_list ) {
int totface = mesh->totface+good_faces; /* new face count */
CustomData fdata;
CustomData_copy( &mesh->fdata, &fdata, CD_MASK_MESH, CD_DEFAULT, totface );
CustomData_copy_data( &mesh->fdata, &fdata, 0, 0, mesh->totface );
if ( !CustomData_has_layer( &fdata, CD_MFACE ) )
CustomData_add_layer( &fdata, CD_MFACE, CD_CALLOC, NULL, totface );
CustomData_free( &mesh->fdata, mesh->totface );
mesh->fdata = fdata;
mesh_update_customdata_pointers( mesh );
/* sort the faces back into their original input list order */
if( !ignore_dups )
qsort( newpair, new_face_count, sizeof(SrchFaces),
mface_index_comp );
/* point to the first face we're going to add */
tmpface = &mesh->mface[mesh->totface];
tmppair = newpair;
if( return_list )
good_faces = new_face_count; /* assume all faces good to start */
/* as we find a good face, add it */
while ( good_faces ) {
if( tmppair->v[1] ) {
int i;
unsigned int index[4];
unsigned char order = tmppair->order;
/* unpack the order of the vertices */
for( i = 0; i < 4; ++i ) {
index[(order & 0x03)] = i;
order >>= 2;
}
/* now place vertices in the proper order */
tmpface->v1 = tmppair->v[index[0]];
tmpface->v2 = tmppair->v[index[1]];
tmpface->v3 = tmppair->v[index[2]];
tmpface->v4 = tmppair->v[index[3]];
tmpface->flag = ME_FACE_SEL;
if( return_list ) {
tmp = PyInt_FromLong( mesh->totface );
PyList_Append( return_list, tmp );
Py_DECREF(tmp);
}
mesh->totface++;
++tmpface;
--good_faces;
} else if( return_list ) {
PyList_Append( return_list, Py_None );
--good_faces;
}
tmppair++;
}
}
/* clean up and leave */
mesh_update( mesh );
Py_DECREF ( args );
MEM_freeN( newpair );
if( return_list )
return return_list;
else
Py_RETURN_NONE;
}
struct fourEdges
{
FaceEdges *v[4];
};
static PyObject *MFaceSeq_delete( BPy_MFaceSeq * self, PyObject *args )
{
unsigned int *face_table;
int i, len;
Mesh *mesh = self->mesh;
MFace *tmpface;
int face_count;
int edge_also = 0;
/* check for valid inputs */
if( PySequence_Size( args ) != 2 ||
!PyArg_ParseTuple( args, "iO", &edge_also, &args ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected and int and a sequence of ints or MFaces" );
if( !PyList_Check( args ) && !PyTuple_Check( args ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected and int and a sequence of ints or MFaces" );
/* see how many args we need to parse */
len = PySequence_Size( args );
if( len < 1 )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"sequence must contain at least one int or MFace" );
face_table = (unsigned int *)MEM_callocN( len*sizeof( unsigned int ),
"face_table" );
/* get the indices of faces to be removed */
for( i = len; i--; ) {
PyObject *tmp = PySequence_GetItem( args, i );
if( BPy_MFace_Check( tmp ) )
face_table[i] = ((BPy_MFace *)tmp)->index;
else if( PyInt_CheckExact( tmp ) )
face_table[i] = PyInt_AsLong( tmp );
else {
MEM_freeN( face_table );
Py_DECREF( tmp );
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of ints or MFaces" );
}
Py_DECREF( tmp );
/* if index out-of-range, throw exception */
if( face_table[i] >= (unsigned int)mesh->totface ) {
MEM_freeN( face_table );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"array index out of range" );
}
}
if( edge_also ) {
/*
* long version
*
* (1) build sorted table of all edges
* (2) construct face->edge lookup table for all faces
* face->e1 = mesh->medge[i]
* (3) (delete sorted table)
* (4) mark all edges as live
* (5) mark all edges for deleted faces as dead
* (6) mark all edges for remaining faces as live
* (7) delete all dead edges
* (8) (delete face lookup table)
*
*/
FaceEdges *edge_table, *tmp_et;
MEdge *tmpedge;
FaceEdges **face_edges;
FaceEdges **tmp_fe;
struct fourEdges *fface;
int edge_count;
edge_table = MEM_mallocN( mesh->totedge*sizeof( FaceEdges ),
"edge_table" );
tmpedge = mesh->medge;
tmp_et = edge_table;
for( i = 0; i < mesh->totedge; ++i ) {
if( tmpedge->v1 < tmpedge->v2 ) {
tmp_et->v[0] = tmpedge->v1;
tmp_et->v[1] = tmpedge->v2;
} else {
tmp_et->v[0] = tmpedge->v2;
tmp_et->v[1] = tmpedge->v1;
}
tmp_et->index = i;
tmp_et->sel = 1; /* select each edge */
++tmpedge;
++tmp_et;
}
/* sort the edge pairs */
qsort( edge_table, mesh->totedge, sizeof(FaceEdges), faceedge_comp );
/* build face translation table, lookup edges */
face_edges = MEM_callocN( 4*sizeof(FaceEdges*)*mesh->totface,
"face_edges" );
tmp_fe = face_edges;
tmpface = mesh->mface;
for( i = mesh->totface; i--; ++tmpface ) {
FaceEdges *ptrs[4];
unsigned int verts[4];
int j,k;
FaceEdges target;
int len=tmpface->v4 ? 4 : 3;
ptrs[3] = NULL;
verts[0] = tmpface->v1;
verts[1] = tmpface->v2;
verts[2] = tmpface->v3;
if( len == 4 )
verts[3] = tmpface->v4;
for( j = 0; j < len; ++j ) {
k = (j+1) % len;
if( verts[j] < verts[k] ) {
target.v[0] = verts[j];
target.v[1] = verts[k];
} else {
target.v[0] = verts[k];
target.v[1] = verts[j];
}
ptrs[j] = bsearch( &target, edge_table, mesh->totedge,
sizeof(FaceEdges), faceedge_comp );
}
for( j = 0; j < 4; ++j, ++tmp_fe )
*tmp_fe = ptrs[j];
}
/* for each face, deselect each edge */
tmpface = mesh->mface;
face_count = 0;
for( i = len; i--; ) {
if( tmpface[face_table[i]].v1 != UINT_MAX ) {
fface = (void *)face_edges;
fface += face_table[i];
fface->v[0]->sel = 0;
fface->v[1]->sel = 0;
fface->v[2]->sel = 0;
if( fface->v[3] )
fface->v[3]->sel = 0;
tmpface[face_table[i]].v1 = UINT_MAX;
++face_count;
}
}
/* for each face, deselect each edge */
tmpface = mesh->mface;
fface = (struct fourEdges *)face_edges;
for( i = mesh->totface; i--; ++tmpface, ++fface ) {
if( tmpface->v1 != UINT_MAX ) {
FaceEdges (*face)[4];
face = (void *)face_edges;
face += face_table[i];
fface->v[0]->sel = 1;
fface->v[1]->sel = 1;
fface->v[2]->sel = 1;
if( fface->v[3] )
fface->v[3]->sel = 1;
}
}
/* now mark the selected edges for deletion */
edge_count = 0;
for( i = 0; i < mesh->totedge; ++i ) {
if( !edge_table[i].sel ) {
mesh->medge[edge_table[i].index].v1 = UINT_MAX;
++edge_count;
}
}
if( edge_count )
delete_edges( mesh, NULL, edge_count );
MEM_freeN( face_edges );
MEM_freeN( edge_table );
} else {
/* mark faces to delete */
tmpface = mesh->mface;
face_count = 0;
for( i = len; i--; )
if( tmpface[face_table[i]].v1 != UINT_MAX ) {
tmpface[face_table[i]].v1 = UINT_MAX;
++face_count;
}
}
/* delete faces which have a deleted edge */
delete_faces( mesh, NULL, face_count );
/* clean up and return */
MEM_freeN( face_table );
mesh_update ( mesh );
Py_RETURN_NONE;
}
static PyObject *MFaceSeq_selected( BPy_MFaceSeq * self )
{
int i, count;
Mesh *mesh = self->mesh;
MFace *tmpface;
PyObject *list;
/* first count selected faces (quicker than appending to PyList?) */
count = 0;
tmpface = mesh->mface;
for( i = 0; i < mesh->totface; ++i, ++tmpface )
if( tmpface->flag & ME_FACE_SEL )
++count;
list = PyList_New( count );
if( !list )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyList_New() failed" );
/* next, insert selected faces into list */
count = 0;
tmpface = mesh->mface;
for( i = 0; i < mesh->totface; ++i, ++tmpface ) {
if( tmpface->flag & ME_FACE_SEL ) {
PyObject *tmp = PyInt_FromLong( i );
if( !tmp ) {
Py_DECREF( list );
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
PyList_SET_ITEM( list, count, tmp );
++count;
}
}
return list;
}
static struct PyMethodDef BPy_MFaceSeq_methods[] = {
{"extend", (PyCFunction)MFaceSeq_extend, METH_VARARGS|METH_KEYWORDS,
"add faces to mesh"},
{"delete", (PyCFunction)MFaceSeq_delete, METH_VARARGS,
"delete faces from mesh"},
{"selected", (PyCFunction)MFaceSeq_selected, METH_NOARGS,
"returns a list containing indices of selected faces"},
{NULL, NULL, 0, NULL}
};
/************************************************************************
*
* Python MFaceSeq_Type standard operations
*
************************************************************************/
/*****************************************************************************/
/* Python MFaceSeq_Type structure definition: */
/*****************************************************************************/
PyTypeObject MFaceSeq_Type = {
PyObject_HEAD_INIT( NULL ) /* required py macro */
0, /* ob_size */
/* For printing, in format "<module>.<name>" */
"Blender MFaceSeq", /* char *tp_name; */
sizeof( BPy_MFaceSeq ), /* int tp_basicsize; */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
NULL, /* destructor tp_dealloc; */
NULL, /* printfunc tp_print; */
NULL, /* getattrfunc tp_getattr; */
NULL, /* setattrfunc tp_setattr; */
NULL, /* cmpfunc tp_compare; */
NULL, /* reprfunc tp_repr; */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
&MFaceSeq_as_sequence, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
NULL, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; Documentation string */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
( getiterfunc )MFaceSeq_getIter, /* getiterfunc tp_iter; */
( iternextfunc )MFaceSeq_nextIter, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
BPy_MFaceSeq_methods, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
NULL, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
/************************************************************************
*
* Python BPy_Mesh methods
*
************************************************************************/
static PyObject *Mesh_calcNormals( BPy_Mesh * self )
{
Mesh *mesh = self->mesh;
mesh_calc_normals( mesh->mvert, mesh->totvert, mesh->mface,
mesh->totface, NULL );
Py_RETURN_NONE;
}
static PyObject *Mesh_vertexShade( BPy_Mesh * self )
{
Base *base = FIRSTBASE;
if( G.obedit )
return EXPP_ReturnPyObjError(PyExc_RuntimeError,
"can't shade vertices while in edit mode" );
while( base ) {
if( base->object->type == OB_MESH &&
base->object->data == self->mesh ) {
base->flag |= SELECT;
set_active_base( base );
make_vertexcol(1);
countall();
Py_RETURN_NONE;
}
base = base->next;
}
return EXPP_ReturnPyObjError(PyExc_RuntimeError,
"object not found in baselist!" );
}
/*
* force display list update
*/
static PyObject *Mesh_Update( BPy_Mesh * self, PyObject *args, PyObject *kwd )
{
char *blockname= NULL;
static char *kwlist[] = {"key", NULL};
if( !PyArg_ParseTupleAndKeywords(args, kwd, "|s", kwlist, &blockname) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"Expected nothing or the name of a shapeKey");
if (blockname) {
Mesh *me = self->mesh;
MVert *mv = me->mvert;
Key *key= me->key;
KeyBlock *kb;
float (*co)[3];
int i;
if (!key)
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Cannot update the key for this mesh, it has no shape keys");
for (kb = key->block.first; kb; kb=kb->next)
if (strcmp(blockname, kb->name))
break;
if (!kb)
return EXPP_ReturnPyObjError( PyExc_ValueError,
"This requested key to update does not exist");
printf("KEYBLOCKNAME %s\n", kb->name);
for(i=0, co= kb->data; i<me->totvert; i++, mv++, co++)
VECCOPY(*co, mv->co);
} else {
/* Normal operation */
mesh_update( self->mesh );
}
Py_RETURN_NONE;
}
/*
* search for a single edge in mesh's edge list
*/
static PyObject *Mesh_findEdge( BPy_Mesh * self, PyObject *args )
{
int i;
unsigned int v1, v2;
PyObject *tmp;
MEdge *edge = self->mesh->medge;
if( EXPP_check_sequence_consistency( args, &MVert_Type ) == 1 &&
PySequence_Size( args ) == 2 ) {
tmp = PyTuple_GET_ITEM( args, 0 );
v1 = ((BPy_MVert *)tmp)->index;
tmp = PyTuple_GET_ITEM( args, 1 );
v2 = ((BPy_MVert *)tmp)->index;
} else if( PyArg_ParseTuple( args, "ii", &v1, &v2 ) ) {
if( (int)v1 >= self->mesh->totvert || (int)v2 >= self->mesh->totvert )
return EXPP_ReturnPyObjError( PyExc_IndexError,
"index out of range" );
} else
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"expected tuple of two ints or MVerts" );
for( i = 0; i < self->mesh->totedge; ++i ) {
if( ( edge->v1 == v1 && edge->v2 == v2 )
|| ( edge->v1 == v2 && edge->v2 == v1 ) ) {
tmp = PyInt_FromLong( i );
if( tmp )
return tmp;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
++edge;
}
Py_RETURN_NONE;
}
/*
* search for a group of edges in mesh's edge list
*/
static PyObject *Mesh_findEdges( PyObject * self, PyObject *args )
{
int len;
int i;
SrchEdges *oldpair, *tmppair, target, *result;
PyObject *list, *tmp;
BPy_MVert *v1, *v2;
unsigned int index1, index2;
MEdge *tmpedge;
Mesh *mesh = ((BPy_Mesh *)self)->mesh;
/* if no edges, nothing to do */
if( !mesh->totedge )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"mesh has no edges" );
/* make sure we get a sequence of tuples of something */
tmp = PyTuple_GET_ITEM( args, 0 );
switch( PySequence_Size ( args ) ) {
case 1: /* better be a list or a tuple */
if( !PySequence_Check ( tmp ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of tuple int or MVert pairs" );
args = tmp;
Py_INCREF( args ); /* so we can safely DECREF later */
break;
case 2: /* take any two args and put into a tuple */
if( PyTuple_Check( tmp ) )
Py_INCREF( args ); /* if first arg is a tuple, assume both are */
else {
args = Py_BuildValue( "((OO))", tmp, PyTuple_GET_ITEM( args, 1 ) );
if( !args )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Py_BuildValue() failed" );
}
break;
default: /* anything else is definitely wrong */
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of tuple pairs" );
}
len = PySequence_Size( args );
if( len == 0 ) {
Py_DECREF( args );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected at least one tuple" );
}
/* if a single edge, handle the simpler way */
if( len == 1 ) {
PyObject *result;
tmp = PySequence_GetItem( args, 0 );
result = Mesh_findEdge( (BPy_Mesh *)self, tmp );
Py_DECREF( tmp );
Py_DECREF( args );
return result;
}
/* build a list of all edges so we can search */
oldpair = (SrchEdges *)MEM_callocN( sizeof(SrchEdges)*mesh->totedge,
"MEdgePairs" );
tmppair = oldpair;
tmpedge = mesh->medge;
for( i = 0; i < mesh->totedge; ++i ) {
if( tmpedge->v1 < tmpedge->v2 ) {
tmppair->v[0] = tmpedge->v1;
tmppair->v[1] = tmpedge->v2;
} else {
tmppair->v[0] = tmpedge->v2;
tmppair->v[1] = tmpedge->v1;
}
tmppair->index = i;
++tmpedge;
++tmppair;
}
/* sort the old edge pairs */
qsort( oldpair, mesh->totedge, sizeof(SrchEdges), medge_comp );
list = PyList_New( len );
if( !len )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyList_New() failed" );
/* scan the input list, find vert pairs, then search the edge list */
for( i = 0; i < len; ++i ) {
tmp = PySequence_GetItem( args, i );
if( !PyTuple_Check( tmp ) || PyTuple_Size( tmp ) != 2 ) {
MEM_freeN( oldpair );
Py_DECREF( tmp );
Py_DECREF( args );
Py_DECREF( list );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected tuple pair" );
}
/* get objects, check that they are both MVerts of this mesh */
v1 = (BPy_MVert *)PyTuple_GET_ITEM( tmp, 0 );
v2 = (BPy_MVert *)PyTuple_GET_ITEM( tmp, 1 );
Py_DECREF ( tmp );
if( BPy_MVert_Check( v1 ) && BPy_MVert_Check( v2 ) ) {
if( v1->data != (void *)mesh || v2->data != (void *)mesh ) {
MEM_freeN( oldpair );
Py_DECREF( args );
Py_DECREF( list );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"one or both MVerts do not belong to this mesh" );
}
index1 = v1->index;
index2 = v2->index;
} else if( PyInt_CheckExact( v1 ) && PyInt_CheckExact( v2 ) ) {
index1 = PyInt_AsLong( (PyObject *)v1 );
index2 = PyInt_AsLong( (PyObject *)v2 );
if( (int)index1 >= mesh->totvert
|| (int)index2 >= mesh->totvert ) {
MEM_freeN( oldpair );
Py_DECREF( args );
Py_DECREF( list );
return EXPP_ReturnPyObjError( PyExc_IndexError,
"index out of range" );
}
} else {
MEM_freeN( oldpair );
Py_DECREF( args );
Py_DECREF( list );
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected tuple to contain MVerts" );
}
/* sort verts into order */
if( index1 < index2 ) {
target.v[0] = index1;
target.v[1] = index2;
} else {
target.v[0] = index2;
target.v[1] = index1;
}
/* search edge list for a match; result is index or None */
result = bsearch( &target, oldpair, mesh->totedge,
sizeof(SrchEdges), medge_comp );
if( result )
tmp = PyInt_FromLong( result->index );
else
tmp = EXPP_incr_ret( Py_None );
if( !tmp ) {
MEM_freeN( oldpair );
Py_DECREF( args );
Py_DECREF( list );
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
PyList_SET_ITEM( list, i, tmp );
}
MEM_freeN( oldpair );
Py_DECREF ( args );
return list;
}
/*
* replace mesh data with mesh data from another object
*/
static PyObject *Mesh_getFromObject( BPy_Mesh * self, PyObject * args )
{
Object *ob = NULL;
PyObject *object_arg;
ID tmpid;
Mesh *tmpmesh;
Curve *tmpcu = NULL;
DerivedMesh *dm;
Object *tmpobj = NULL;
int cage = 0, render = 0, i;
if( !PyArg_ParseTuple( args, "O|ii", &object_arg, &cage, &render ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected object or string and optional integer arguments" );
if ( PyString_Check( object_arg ) ) {
char *name;
name = PyString_AsString ( object_arg );
ob = ( Object * ) GetIdFromList( &( G.main->object ), name );
if( !ob )
return EXPP_ReturnPyObjError( PyExc_AttributeError, name );
} else if ( BPy_Object_Check(object_arg) ) {
ob = (( BPy_Object * ) object_arg)->object;
} else {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected object or string and optional integer arguments" );
}
if( cage != 0 && cage != 1 )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"cage value must be 0 or 1" );
/* perform the mesh extraction based on type */
switch (ob->type) {
case OB_FONT:
case OB_CURVE:
case OB_SURF:
/* copies object and modifiers (but not the data) */
tmpobj= copy_object( ob );
tmpcu = (Curve *)tmpobj->data;
tmpcu->id.us--;
/* if getting the original caged mesh, delete object modifiers */
if( cage )
object_free_modifiers(tmpobj);
/* copies the data */
tmpobj->data = copy_curve( (Curve *) ob->data );
#if 0
/* copy_curve() sets disp.first null, so currently not need */
{
Curve *cu;
cu = (Curve *)tmpobj->data;
if( cu->disp.first )
MEM_freeN( cu->disp.first );
cu->disp.first = NULL;
}
#endif
/* get updated display list, and convert to a mesh */
makeDispListCurveTypes( tmpobj, 0 );
nurbs_to_mesh( tmpobj );
tmpmesh = tmpobj->data;
free_libblock_us( &G.main->object, tmpobj );
break;
case OB_MBALL:
/* metaballs don't have modifiers, so just convert to mesh */
ob = find_basis_mball( ob );
tmpmesh = add_mesh("Mesh");
mball_to_mesh( &ob->disp, tmpmesh );
break;
case OB_MESH:
/* copies object and modifiers (but not the data) */
if (cage) {
/* copies the data */
tmpmesh = copy_mesh( ob->data );
/* if not getting the original caged mesh, get final derived mesh */
} else {
/* Make a dummy mesh, saves copying */
/* Write the display mesh into the dummy mesh */
if (render)
dm = mesh_create_derived_render( ob, CD_MASK_MESH );
else
dm = mesh_create_derived_view( ob, CD_MASK_MESH );
tmpmesh = add_mesh( "Mesh" );
DM_to_mesh( dm, tmpmesh );
dm->release( dm );
}
break;
default:
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"Object does not have geometry data" );
}
/* free mesh data in the original */
free_mesh( self->mesh );
/* save a copy of our ID, dup the temporary mesh, restore the ID */
tmpid = self->mesh->id;
memcpy( self->mesh, tmpmesh, sizeof( Mesh ) );
self->mesh->id = tmpid;
/* if mesh has keys, make sure they point back to this mesh */
if( self->mesh->key )
self->mesh->key->from = (ID *)self->mesh;
/* Copy materials to new object */
switch (ob->type) {
case OB_SURF:
self->mesh->totcol = tmpcu->totcol;
/* free old material list (if it exists) and adjust user counts */
if( tmpcu->mat ) {
for( i = tmpcu->totcol; i-- > 0; ) {
/* are we an object material or data based? */
if (ob->colbits & 1<<i) {
self->mesh->mat[i] = ob->mat[i];
ob->mat[i]->id.us++;
tmpmesh->mat[i]->id.us--;
} else {
self->mesh->mat[i] = tmpcu->mat[i];
if (self->mesh->mat[i]) {
tmpmesh->mat[i]->id.us++;
}
}
}
}
break;
#if 0
/* Crashes when assigning the new material, not sure why */
case OB_MBALL:
tmpmb = (MetaBall *)ob->data;
self->mesh->totcol = tmpmb->totcol;
/* free old material list (if it exists) and adjust user counts */
if( tmpmb->mat ) {
for( i = tmpmb->totcol; i-- > 0; ) {
self->mesh->mat[i] = tmpmb->mat[i]; /* CRASH HERE ??? */
if (self->mesh->mat[i]) {
tmpmb->mat[i]->id.us++;
}
}
}
break;
#endif
case OB_MESH:
if (!cage) {
Mesh *origmesh= ob->data;
self->mesh->flag= origmesh->flag;
self->mesh->mat = MEM_dupallocN(origmesh->mat);
self->mesh->totcol = origmesh->totcol;
self->mesh->smoothresh= origmesh->smoothresh;
if( origmesh->mat ) {
for( i = origmesh->totcol; i-- > 0; ) {
/* are we an object material or data based? */
if (ob->colbits & 1<<i) {
self->mesh->mat[i] = ob->mat[i];
if (ob->mat[i])
ob->mat[i]->id.us++;
if (origmesh->mat[i])
origmesh->mat[i]->id.us--;
} else {
self->mesh->mat[i] = origmesh->mat[i];
if (origmesh->mat[i])
origmesh->mat[i]->id.us++;
}
}
}
}
break;
} /* end copy materials */
/* remove the temporary mesh */
BLI_remlink( &G.main->mesh, tmpmesh );
MEM_freeN( tmpmesh );
/* make sure materials get updated in objects */
test_object_materials( ( ID * ) self->mesh );
mesh_update( self->mesh );
Py_RETURN_NONE;
}
/*
* apply a transform to the mesh's vertices
*
* WARNING: unlike NMesh, this method ALWAYS changes the original mesh
*/
static PyObject *Mesh_transform( BPy_Mesh *self, PyObject *args, PyObject *kwd )
{
Mesh *mesh = self->mesh;
MVert *mvert;
/*PyObject *pymat = NULL;*/
MatrixObject *bpymat=NULL;
int i, recalc_normals = 0, selected_only = 0;
static char *kwlist[] = {"matrix", "recalc_normals", "selected_only", NULL};
if( !PyArg_ParseTupleAndKeywords(args, kwd, "|O!ii", kwlist,
&matrix_Type, &bpymat, &recalc_normals, &selected_only) ) {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"matrix must be a 4x4 transformation matrix\n"
"for example as returned by object.matrixWorld\n"
"and optionaly keyword bools, recalc_normals and selected_only\n");
}
if (!bpymat)
return EXPP_ReturnPyObjError( PyExc_TypeError,
"the first argument must be a matrix or\n"
"matrix passed as a keyword argument\n");
/*bpymat = ( MatrixObject * ) pymat;*/
if( bpymat->colSize != 4 || bpymat->rowSize != 4 )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"matrix must be a 4x4 transformation matrix\n"
"for example as returned by object.getMatrix()" );
/* loop through all the verts and transform by the supplied matrix */
mvert = mesh->mvert;
if (selected_only) {
for( i = 0; i < mesh->totvert; i++, mvert++ ) {
if (mvert->flag & SELECT) {
Mat4MulVecfl( (float(*)[4])*bpymat->matrix, mvert->co );
}
}
} else {
for( i = 0; i < mesh->totvert; i++, mvert++ ) {
Mat4MulVecfl( (float(*)[4])*bpymat->matrix, mvert->co );
}
}
if( recalc_normals ) {
/* loop through all the verts and transform normals by the inverse
* of the transpose of the supplied matrix */
float invmat[4][4], vec[3], nx, ny, nz;
/*
* we only need to invert a 3x3 submatrix, because the 4th component of
* affine vectors is 0, but Mat4Invert reports non invertible matrices
*/
if (!Mat4Invert((float(*)[4])*invmat, (float(*)[4])*bpymat->matrix))
return EXPP_ReturnPyObjError (PyExc_AttributeError,
"given matrix is not invertible");
/*
* since normal is stored as shorts, convert to float
*/
mvert = mesh->mvert;
for( i = 0; i < mesh->totvert; i++, mvert++ ) {
nx= vec[0] = (float)(mvert->no[0] / 32767.0);
ny= vec[1] = (float)(mvert->no[1] / 32767.0);
nz= vec[2] = (float)(mvert->no[2] / 32767.0);
vec[0] = nx*invmat[0][0] + ny*invmat[0][1] + nz*invmat[0][2];
vec[1] = nx*invmat[1][0] + ny*invmat[1][1] + nz*invmat[1][2];
vec[2] = nx*invmat[2][0] + ny*invmat[2][1] + nz*invmat[2][2];
Normalize( vec );
mvert->no[0] = (short)(vec[0] * 32767.0);
mvert->no[1] = (short)(vec[1] * 32767.0);
mvert->no[2] = (short)(vec[2] * 32767.0);
}
}
Py_RETURN_NONE;
}
static PyObject *Mesh_addVertGroup( PyObject * self, PyObject * args )
{
char *groupStr;
struct Object *object;
if( !PyArg_ParseTuple( args, "s", &groupStr ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string argument" );
if( ( ( BPy_Mesh * ) self )->object == NULL )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"mesh not linked to an object" );
object = ( ( BPy_Mesh * ) self )->object;
/* add_defgroup_name clamps the name to 32, make sure that dosnt change */
add_defgroup_name( object, groupStr );
EXPP_allqueue( REDRAWBUTSALL, 1 );
Py_RETURN_NONE;
}
static PyObject *Mesh_removeVertGroup( PyObject * self, PyObject * args )
{
char *groupStr;
struct Object *object;
int nIndex;
bDeformGroup *pGroup;
if( !PyArg_ParseTuple( args, "s", &groupStr ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string argument" );
if( ( ( BPy_Mesh * ) self )->object == NULL )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"mesh must be linked to an object first..." );
object = ( ( BPy_Mesh * ) self )->object;
pGroup = get_named_vertexgroup( object, groupStr );
if( pGroup == NULL )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"group does not exist!" );
nIndex = get_defgroup_num( object, pGroup );
if( nIndex == -1 )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"no deform groups assigned to mesh" );
nIndex++;
object->actdef = (unsigned short)nIndex;
del_defgroup( object );
EXPP_allqueue( REDRAWBUTSALL, 1 );
Py_RETURN_NONE;
}
extern void add_vert_defnr( Object * ob, int def_nr, int vertnum, float weight,
int assignmode );
extern void remove_vert_def_nr (Object *ob, int def_nr, int vertnum);
static PyObject *Mesh_assignVertsToGroup( BPy_Mesh * self, PyObject * args )
{
char *groupStr;
int nIndex;
bDeformGroup *pGroup;
PyObject *listObject;
int tempInt;
int x;
int assignmode = WEIGHT_REPLACE;
float weight = 1.0;
Object *object = self->object;
Mesh *mesh = self->mesh;
if( !object )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"mesh must be linked to an object first" );
if( ((Mesh *)object->data) != mesh )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"object no longer linked to this mesh" );
if( !PyArg_ParseTuple ( args, "sO!fi", &groupStr, &PyList_Type,
&listObject, &weight, &assignmode) ) {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string, list, float, string arguments" );
}
pGroup = get_named_vertexgroup( object, groupStr );
if( pGroup == NULL )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"group does not exist!" );
nIndex = get_defgroup_num( object, pGroup );
if( nIndex == -1 )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"no deform groups assigned to mesh" );
if( assignmode != WEIGHT_REPLACE && assignmode != WEIGHT_ADD &&
assignmode != WEIGHT_SUBTRACT )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"bad assignment mode" );
/* makes a set of dVerts corresponding to the mVerts */
if( !mesh->dvert )
create_dverts( &mesh->id );
/* loop list adding verts to group */
for( x = 0; x < PyList_Size( listObject ); x++ ) {
if( !PyArg_Parse ( PyList_GetItem( listObject, x ), "i", &tempInt ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"python list integer not parseable" );
if( tempInt < 0 || tempInt >= mesh->totvert )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"bad vertex index in list" );
add_vert_defnr( object, nIndex, tempInt, weight, assignmode );
}
Py_RETURN_NONE;
}
static PyObject *Mesh_removeVertsFromGroup( BPy_Mesh * self, PyObject * args )
{
/* not passing a list will remove all verts from group */
char *groupStr;
int nIndex;
Object *object;
Mesh *mesh;
bDeformGroup *pGroup;
PyObject *listObject = NULL;
int tempInt;
int i;
object = self->object;
mesh = self->mesh;
if( !object )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"mesh must be linked to an object first" );
if( ((Mesh *)object->data) != mesh )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"object no longer linked to this mesh" );
if( !PyArg_ParseTuple
( args, "s|O!", &groupStr, &PyList_Type, &listObject ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string and optional list argument" );
if( !mesh->dvert )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"this mesh contains no deform vertices" );
pGroup = get_named_vertexgroup( object, groupStr );
if( pGroup == NULL )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"group does not exist!" );
nIndex = get_defgroup_num( object, pGroup );
if( nIndex == -1 )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"no deform groups assigned to mesh" );
/* get out of edit mode */
if( G.obedit ) {
load_editMesh();
free_editMesh(G.editMesh);
G.obedit = NULL;
}
if( !listObject ) /* no list given */
for( i = 0; i < mesh->totvert; i++ )
remove_vert_def_nr( object, nIndex, i );
else /* loop list removing verts to group */
for( i = 0; i < PyList_Size( listObject ); i++ ) {
if( !PyArg_Parse( PyList_GetItem( listObject, i ), "i", &tempInt ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"python list integer not parseable" );
if( tempInt < 0 || tempInt >= mesh->totvert )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"bad vertex index in list" );
remove_vert_def_nr( object, nIndex, tempInt );
}
Py_RETURN_NONE;
}
static PyObject *Mesh_getVertsFromGroup( BPy_Mesh* self, PyObject * args )
{
/*
* not passing a list will return all verts from group
* passing indecies not part of the group will not return data in pyList
* can be used as a index/group check for a vertex
*/
char *groupStr;
int nIndex;
bDeformGroup *pGroup;
MDeformVert *dvert;
int i, k, count;
PyObject *vertexList;
Object *object;
Mesh *mesh;
PyObject *tempVertexList;
int num = 0;
int weightRet = 0;
PyObject *listObject = NULL;
object = self->object;
mesh = self->mesh;
if( !object )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"mesh must be linked to an object first" );
if( ((Mesh *)object->data) != mesh )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"object no longer linked to this mesh" );
if( !PyArg_ParseTuple( args, "s|iO!", &groupStr, &weightRet,
&PyList_Type, &listObject ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string and optional int and list arguments" );
if( weightRet < 0 || weightRet > 1 )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"return weights flag must be 0 or 1" );
if( !mesh->dvert )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"this mesh contains no deform vertices" );
pGroup = get_named_vertexgroup( object, groupStr );
if( !pGroup )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"group does not exist!" );
nIndex = get_defgroup_num( object, pGroup );
if( nIndex == -1 )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"no deform groups assigned to mesh" );
/* temporary list */
tempVertexList = PyList_New( mesh->totvert );
if( !tempVertexList )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"getVertsFromGroup: can't create pylist!" );
count = 0;
if( !listObject ) { /* do entire group */
dvert = mesh->dvert;
for( num = 0; num < mesh->totvert; num++, ++dvert ) {
for( i = 0; i < dvert->totweight; i++ ) {
if( dvert->dw[i].def_nr == nIndex ) {
PyObject *attr;
if( weightRet )
attr = Py_BuildValue( "(i,f)", num,
dvert->dw[i].weight );
else
attr = PyInt_FromLong ( num );
PyList_SetItem( tempVertexList, count, attr );
count++;
}
}
}
} else { /* do individual vertices */
for( i = 0; i < PyList_Size( listObject ); i++ ) {
PyObject *attr = NULL;
if( !PyArg_Parse( PyList_GetItem( listObject, i ), "i", &num ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"python list integer not parseable" );
if( num < 0 || num >= mesh->totvert )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"bad vertex index in list" );
dvert = mesh->dvert + num;
for( k = 0; k < dvert->totweight; k++ ) {
if( dvert->dw[k].def_nr == nIndex ) {
if( weightRet )
attr = Py_BuildValue( "(i,f)", num,
dvert->dw[k].weight );
else
attr = PyInt_FromLong ( num );
PyList_SetItem( tempVertexList, count, attr );
count++;
}
}
}
}
/* only return what we need */
vertexList = PyList_GetSlice( tempVertexList, 0, count );
Py_DECREF( tempVertexList );
return vertexList;
}
static PyObject *Mesh_renameVertGroup( BPy_Mesh * self, PyObject * args )
{
char *oldGr = NULL;
char *newGr = NULL;
bDeformGroup *defGroup;
Object *object;
Mesh *mesh;
object = self->object;
mesh = self->mesh;
if( !object )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"mesh must be linked to an object first" );
if( ((Mesh *)object->data) != mesh )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"object no longer linked to this mesh" );
if( !PyArg_ParseTuple( args, "ss", &oldGr, &newGr ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected two string arguments" );
defGroup = get_named_vertexgroup( object, oldGr );
if( !defGroup )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't find the vertex group" );
PyOS_snprintf( defGroup->name, 32, newGr );
unique_vertexgroup_name( defGroup, object );
Py_RETURN_NONE;
}
static PyObject *Mesh_getVertGroupNames( BPy_Mesh * self )
{
bDeformGroup *defGroup;
PyObject *list;
Object *obj = self->object;
Mesh *mesh = self->mesh;
int count;
if( !obj )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"mesh must be linked to an object first" );
if( ((Mesh *)obj->data) != mesh )
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"object no longer linked to this mesh" );
if( !obj )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"This mesh must be linked to an object" );
count = 0;
for( defGroup = obj->defbase.first; defGroup; defGroup = defGroup->next )
++count;
list = PyList_New( count );
count = 0;
for( defGroup = obj->defbase.first; defGroup; defGroup = defGroup->next )
PyList_SET_ITEM( list, count++,
PyString_FromString( defGroup->name ) );
return list;
}
static PyObject *Mesh_getVertexInfluences( BPy_Mesh * self, PyObject * args )
{
int index;
PyObject *influence_list = NULL;
Object *object = self->object;
Mesh *me = self->mesh;
/* Get a reference to the mesh object wrapped in here. */
if( !object )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"This mesh must be linked to an object" );
/* Parse the parameters: only on integer (vertex index) */
if( !PyArg_ParseTuple( args, "i", &index ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected int argument (index of the vertex)" );
/* check for valid index */
if( index < 0 || index >= me->totvert )
return EXPP_ReturnPyObjError( PyExc_IndexError,
"vertex index out of range" );
influence_list = PyList_New( 0 );
/* Proceed only if we have vertex deformation information */
if( me->dvert ) {
int i;
MDeformWeight *sweight = NULL;
/* Number of bones influencing the vertex */
int totinfluences = me->dvert[index].totweight;
/* Get the reference of the first weight structure */
sweight = me->dvert[index].dw;
/* Build the list only with weights and names of the influent bones */
for( i = 0; i < totinfluences; i++, sweight++ ) {
bDeformGroup *defgroup = BLI_findlink( &object->defbase,
sweight->def_nr );
if( defgroup )
PyList_Append( influence_list, Py_BuildValue( "[sf]",
defgroup->name, sweight->weight ) );
}
}
return influence_list;
}
static PyObject *Mesh_removeAllKeys( BPy_Mesh * self )
{
Mesh *mesh = self->mesh;
if( !mesh || !mesh->key )
Py_RETURN_FALSE;
mesh->key->id.us--;
mesh->key = NULL;
Py_RETURN_TRUE;
}
static PyObject *Mesh_insertKey( BPy_Mesh * self, PyObject * args )
{
Mesh *mesh = self->mesh;
int fra = -1, oldfra = -1;
char *type = NULL;
short typenum;
if (mesh->mr)
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Shape Keys cannot be added to meshes with multires" );
if( !PyArg_ParseTuple( args, "|is", &fra, &type ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected nothing or an int and optionally a string as arguments" );
if( !type || !strcmp( type, "relative" ) )
typenum = 1;
else if( !strcmp( type, "absolute" ) )
typenum = 2;
else
return EXPP_ReturnPyObjError( PyExc_AttributeError,
"if given, type should be 'relative' or 'absolute'" );
if( fra > 0 ) {
fra = EXPP_ClampInt( fra, 1, MAXFRAME );
oldfra = G.scene->r.cfra;
G.scene->r.cfra = fra;
}
insert_meshkey( mesh, typenum );
allspace(REMAKEIPO, 0);
if( fra > 0 )
G.scene->r.cfra = oldfra;
Py_RETURN_NONE;
}
/* Custom Data Layers */
static PyObject * Mesh_addCustomLayer_internal(Mesh *me, PyObject * args, int type)
{
char *name = NULL;
CustomData *data = &me->fdata;
if( !PyArg_ParseTuple( args, "|s", &name ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a string or nothing" );
if (strlen(name)>31)
return EXPP_ReturnPyObjError( PyExc_ValueError,
"error, maximum name length is 31" );
if (name)
CustomData_add_layer_named(data, type, CD_DEFAULT,
NULL, me->totface, name);
else
CustomData_add_layer(data, type, CD_DEFAULT,
NULL, me->totface);
mesh_update_customdata_pointers(me);
Py_RETURN_NONE;
}
static PyObject *Mesh_addUVLayer( BPy_Mesh * self, PyObject * args )
{
return Mesh_addCustomLayer_internal(self->mesh, args, CD_MTFACE);
}
static PyObject *Mesh_addColorLayer( BPy_Mesh * self, PyObject * args )
{
return Mesh_addCustomLayer_internal(self->mesh, args, CD_MCOL);
}
static PyObject *Mesh_removeLayer_internal( BPy_Mesh * self, PyObject * args, int type )
{
Mesh *me = self->mesh;
CustomData *data = &me->fdata;
char *name;
int i;
if( !PyArg_ParseTuple( args, "s", &name ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected string argument" );
if (strlen(name)>31)
return EXPP_ReturnPyObjError( PyExc_ValueError,
"error, maximum name length is 31" );
i = CustomData_get_named_layer_index(data, type, name);
if (i==-1)
return EXPP_ReturnPyObjError(PyExc_ValueError,
"No matching layers to remove" );
CustomData_free_layer(data, type, me->totface, i);
mesh_update_customdata_pointers(me);
/* No more Color or UV layers left ?
switch modes if this is the active object */
if (!CustomData_has_layer(data, type)) {
if (me == get_mesh(OBACT)) {
if(type == CD_MCOL && (G.f & G_VERTEXPAINT))
G.f &= ~G_VERTEXPAINT; /* get out of vertexpaint mode */
if(type == CD_MTFACE && (G.f & G_FACESELECT))
set_faceselect(); /* get out of faceselect mode */
}
}
Py_RETURN_NONE;
}
static PyObject *Mesh_removeUVLayer( BPy_Mesh * self, PyObject * args )
{
return Mesh_removeLayer_internal(self, args, CD_MTFACE);
}
static PyObject *Mesh_removeColorLayer( BPy_Mesh * self, PyObject * args )
{
return Mesh_removeLayer_internal(self, args, CD_MCOL);
}
static PyObject *Mesh_renameLayer_internal( BPy_Mesh * self, PyObject * args, int type )
{
CustomData *data;
CustomDataLayer *layer;
Mesh *mesh = self->mesh;
int i;
char *name_from, *name_to;
data = &mesh->fdata;
if( !PyArg_ParseTuple( args, "ss", &name_from, &name_to ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected 2 strings" );
if (strlen(name_from)>31 || strlen(name_to)>31)
return EXPP_ReturnPyObjError( PyExc_ValueError,
"error, maximum name length is 31" );
i = CustomData_get_named_layer_index(data, type, name_from);
if (i==-1)
return EXPP_ReturnPyObjError( PyExc_ValueError,
"layer name was not found" );
layer = &data->layers[i];
strcpy(layer->name, name_to); /* we alredy know the string sizes are under 32 */
CustomData_set_layer_unique_name(data, i);
Py_RETURN_NONE;
}
static PyObject *Mesh_renameUVLayer( BPy_Mesh * self, PyObject * args )
{
return Mesh_renameLayer_internal( self, args, CD_MTFACE );
}
static PyObject *Mesh_renameColorLayer( BPy_Mesh * self, PyObject * args )
{
return Mesh_renameLayer_internal( self, args, CD_MCOL );
}
static PyObject *Mesh_getLayerNames_internal( BPy_Mesh * self, int type )
{
CustomData *data;
CustomDataLayer *layer;
PyObject *str, *list = PyList_New( 0 );
Mesh *mesh = self->mesh;
int i;
data = &mesh->fdata;
/* see if there is a duplicate */
for(i=0; i<data->totlayer; i++) {
layer = &data->layers[i];
if(layer->type == type) {
str = PyString_FromString(layer->name);
PyList_Append( list, str );
Py_DECREF(str);
}
}
return list;
}
static PyObject *Mesh_getUVLayerNames( BPy_Mesh * self )
{
return Mesh_getLayerNames_internal(self, CD_MTFACE);
}
static PyObject *Mesh_getColorLayerNames( BPy_Mesh * self )
{
return Mesh_getLayerNames_internal(self, CD_MCOL);
}
/* used by activeUVLayer and activeColorLayer attrs */
static PyObject *Mesh_getActiveLayer( BPy_Mesh * self, void *type )
{
CustomData *data = &self->mesh->fdata;
int layer_type = (int)type;
int i;
if (layer_type < 0) { /* hack, if negative, its the renderlayer.*/
layer_type = -layer_type;
i = CustomData_get_render_layer_index(data, layer_type);
} else {
i = CustomData_get_active_layer_index(data, layer_type);
}
if (i == -1) /* so -1 is for no active layer 0+ for an active layer */
Py_RETURN_NONE;
else {
return PyString_FromString( data->layers[i].name);
}
}
static int Mesh_setActiveLayer( BPy_Mesh * self, PyObject * value, void *type )
{
CustomData *data = &self->mesh->fdata;
char *name;
int i,ok,n,layer_type = (int)type, render=0;
if( !PyString_Check( value ) )
return EXPP_ReturnIntError( PyExc_ValueError,
"expected a string argument" );
if (layer_type<0) {
layer_type = -layer_type;
render = 1;
}
name = PyString_AsString( value );
ok = 0;
n = 0;
for(i=0; i < data->totlayer; ++i) {
if(data->layers[i].type == layer_type) {
if (strcmp(data->layers[i].name, name)==0) {
ok = 1;
break;
}
n++;
}
}
if (!ok)
return EXPP_ReturnIntError( PyExc_ValueError,
"layer name does not exist" );
if (render) {
CustomData_set_layer_render(data, layer_type, n);
} else {
CustomData_set_layer_active(data, layer_type, n);
mesh_update_customdata_pointers(self->mesh);
}
return 0;
}
/* multires */
static PyObject *Mesh_getMultiresLevelCount( BPy_Mesh * self )
{
int i;
if (!self->mesh->mr)
i=0;
else
i= self->mesh->mr->level_count;
return PyInt_FromLong(i);
}
static PyObject *Mesh_getMultires( BPy_Mesh * self, void *type )
{
int i=0;
if (self->mesh->mr) {
switch ((int)type) {
case MESH_MULTIRES_LEVEL:
i = self->mesh->mr->newlvl;
break;
case MESH_MULTIRES_EDGE:
i = self->mesh->mr->edgelvl;
break;
case MESH_MULTIRES_PIN:
i = self->mesh->mr->pinlvl;
break;
case MESH_MULTIRES_RENDER:
i = self->mesh->mr->renderlvl;
break;
}
}
return PyInt_FromLong(i);
}
static int Mesh_setMultires( BPy_Mesh * self, PyObject *value, void *type )
{
int i;
if( !PyInt_CheckExact( value ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected integer argument" );
if (!self->object)
return EXPP_ReturnIntError( PyExc_RuntimeError,
"This mesh must be linked to an object" );
if (!self->mesh->mr)
return EXPP_ReturnIntError( PyExc_RuntimeError,
"the mesh has no multires data" );
if (!self->mesh->mr->level_count)
return EXPP_ReturnIntError( PyExc_RuntimeError,
"multires data has no levels added" );
i = PyInt_AsLong(value);
if (i<1||i>self->mesh->mr->level_count)
return EXPP_ReturnIntError( PyExc_TypeError,
"value out of range" );
switch ((int)type) {
case MESH_MULTIRES_LEVEL:
self->mesh->mr->newlvl = i;
multires_set_level(self->object, self->mesh, 0);
break;
case MESH_MULTIRES_EDGE:
self->mesh->mr->edgelvl = i;
multires_edge_level_update(self->object, self->mesh);
break;
case MESH_MULTIRES_PIN:
self->mesh->mr->pinlvl = i;
break;
case MESH_MULTIRES_RENDER:
self->mesh->mr->renderlvl = i;
break;
}
return 0;
}
/* end multires */
static PyObject *Mesh_Tools( BPy_Mesh * self, int type, void **args )
{
Base *base;
int result;
Object *object = NULL;
PyObject *attr = NULL;
/* if already in edit mode, exit */
if( G.obedit )
return EXPP_ReturnPyObjError(PyExc_RuntimeError,
"can't use mesh tools while in edit mode" );
for( base = FIRSTBASE; base; base = base->next ) {
if( base->object->type == OB_MESH &&
base->object->data == self->mesh ) {
object = base->object;
break;
}
}
if( !object )
return EXPP_ReturnPyObjError(PyExc_RuntimeError,
"can't find an object for the mesh" );
if( object->type != OB_MESH )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"Object specified is not a mesh." );
/* make mesh's object active, enter mesh edit mode */
G.obedit = object;
make_editMesh();
/* apply operation, then exit edit mode */
switch( type ) {
case MESH_TOOL_TOSPHERE:
vertices_to_sphere();
break;
case MESH_TOOL_VERTEXSMOOTH:
vertexsmooth();
break;
case MESH_TOOL_FLIPNORM:
/* would be simple to rewrite this to not use edit mesh */
/* see flipface() */
flip_editnormals();
break;
case MESH_TOOL_SUBDIV:
esubdivideflag( 1, 0.0, *((int *)args[0]), 1, 0 );
break;
case MESH_TOOL_REMDOUB:
result = removedoublesflag( 1, *((float *)args[0]) );
attr = PyInt_FromLong( result );
if( !attr )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
break;
case MESH_TOOL_FILL:
fill_mesh();
break;
case MESH_TOOL_RECALCNORM:
righthandfaces( *((int *)args[0]) );
break;
case MESH_TOOL_TRI2QUAD:
join_triangles();
break;
case MESH_TOOL_QUAD2TRI:
convert_to_triface( *((int *)args[0]) );
break;
}
/* exit edit mode, free edit mesh */
load_editMesh();
free_editMesh(G.editMesh);
if(G.f & G_FACESELECT)
EXPP_allqueue( REDRAWIMAGE, 0 );
if(G.f & G_WEIGHTPAINT)
mesh_octree_table(G.obedit, NULL, 'e');
G.obedit = NULL;
DAG_object_flush_update(G.scene, object, OB_RECALC_DATA);
if( attr )
return attr;
Py_RETURN_NONE;
}
/*
* "Subdivide" function
*/
static PyObject *Mesh_subdivide( BPy_Mesh * self, PyObject * args )
{
int beauty = 0;
void *params = &beauty;
if( !PyArg_ParseTuple( args, "|i", &beauty ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected nothing or an int argument" );
return Mesh_Tools( self, MESH_TOOL_SUBDIV, &params );
}
/*
* "Smooth" function
*/
static PyObject *Mesh_smooth( BPy_Mesh * self )
{
return Mesh_Tools( self, MESH_TOOL_VERTEXSMOOTH, NULL );
}
/*
* "Remove doubles" function
*/
static PyObject *Mesh_removeDoubles( BPy_Mesh * self, PyObject *args )
{
float limit;
void *params = &limit;
if( !PyArg_ParseTuple( args, "f", &limit ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected float argument" );
limit = EXPP_ClampFloat( limit, 0.0f, 1.0f );
return Mesh_Tools( self, MESH_TOOL_REMDOUB, &params );
}
/*
* "recalc normals" function
*/
static PyObject *Mesh_recalcNormals( BPy_Mesh * self, PyObject *args )
{
int direction = 0;
void *params = &direction;
if( !PyArg_ParseTuple( args, "|i", &direction ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected nothing or an int in range [0,1]" );
if( direction < 0 || direction > 1 )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected int in range [0,1]" );
/* righthandfaces(1) = outward, righthandfaces(2) = inward */
++direction;
return Mesh_Tools( self, MESH_TOOL_RECALCNORM, &params );
}
/*
* "Quads to Triangles" function
*/
static PyObject *Mesh_quad2tri( BPy_Mesh * self, PyObject *args )
{
int kind = 0;
void *params = &kind;
if( !PyArg_ParseTuple( args, "|i", &kind ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected nothing or an int in range [0,1]" );
if( kind < 0 || kind > 1 )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected int in range [0,1]" );
return Mesh_Tools( self, MESH_TOOL_QUAD2TRI, &params );
}
/*
* "Triangles to Quads" function
*/
static PyObject *Mesh_tri2quad( BPy_Mesh * self )
{
return Mesh_Tools( self, MESH_TOOL_TRI2QUAD, NULL );
}
/*
* "Flip normals" function
*/
static PyObject *Mesh_flipNormals( BPy_Mesh * self )
{
return Mesh_Tools( self, MESH_TOOL_FLIPNORM, NULL );
}
/*
* "To sphere" function
*/
static PyObject *Mesh_toSphere( BPy_Mesh * self )
{
return Mesh_Tools( self, MESH_TOOL_TOSPHERE, NULL );
}
/*
* "Fill" (scan fill) function
*/
static PyObject *Mesh_fill( BPy_Mesh * self )
{
return Mesh_Tools( self, MESH_TOOL_FILL, NULL );
}
/*
* "pointInside" function
*/
static short pointInside_internal(float *vec, float *v1, float *v2, float *v3 )
{
float a,a1,a2,a3, /*areas, used for point in tri test */
z,w1,w2,w3,wtot;
float bounds[5];
/*min,max*/
bounds[0] = MIN3(v1[0], v2[0], v3[0]);
bounds[1] = MAX3(v1[0], v2[0], v3[0]);
bounds[2] = MIN3(v1[1], v2[1], v3[1]);
bounds[3] = MAX3(v1[1], v2[1], v3[1]);
/*bounds[4] = MIN3(v1[2], v2[2], v3[2]); - ZMIN isnt used*/
bounds[4] = MAX3(v1[2], v2[2], v3[2]); /* reuse 4 index as the max */
if ( /* is the vertex in the bounds of the face? */
(bounds[0] < vec[0] && vec[0] < bounds[1]) &&
(bounds[2] < vec[1] && vec[1] < bounds[3]) &&
(bounds[4] < vec[2]) /* the vector must be above the face on the Z axis */
)
{
/* these areas are used for calculating the Z value where the vector is over the face */
a = AreaF2Dfl(v1, v2, v3);
w1=a1= AreaF2Dfl(vec, v2, v3);
if (a1>a) return 0; /*outside*/
w2=a2= AreaF2Dfl(v1, vec, v3);
if (a1+a2>a) return 0; /*outside*/
w3=a3= AreaF2Dfl(v1, v2, vec);
if ((a1+a2+a3) - 0.000001 > a) return 0; /*outside*/
wtot = w1+w2+w3;
if (!wtot) return 0;
w1/=wtot; w2/=wtot; w3/=wtot;
z =((v1[2] * (w2+w3)) +
(v2[2] * (w1+w3)) +
(v3[2] * (w1+w2))) * 0.5;
/* only return true if the face is above vec*/
if (vec[2] > z )
return 1;
}
return 0;
}
static PyObject *Mesh_pointInside( BPy_Mesh * self, PyObject *args )
{
VectorObject *vec = NULL;
Mesh *mesh = self->mesh;
MFace *mf = mesh->mface;
MVert *mvert = mesh->mvert;
int i;
int isect_count=0;
if(!PyArg_ParseTuple(args, "O!", &vector_Type, &vec))
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected one or 2 vector types" );
if(vec->size < 3)
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Mesh.pointInside(vec) expects a 3D vector objects\n");
for( i = 0; i < mesh->totface; ++mf, ++i ) {
if (pointInside_internal(vec->vec, mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co))
isect_count++;
else if (mf->v4 && pointInside_internal(vec->vec,mvert[mf->v1].co, mvert[mf->v3].co, mvert[mf->v4].co))
isect_count++;
}
if (isect_count % 2)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
/*
* "__copy__" return a copy of the mesh
*/
static PyObject *Mesh_copy( BPy_Mesh * self )
{
BPy_Mesh *obj;
obj = (BPy_Mesh *)PyObject_NEW( BPy_Mesh, &Mesh_Type );
if( !obj )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyObject_New() failed" );
obj->mesh = copy_mesh( self->mesh );
obj->mesh->id.us= 0;
obj->object = NULL;
obj->new = 1;
return (PyObject *)obj;
}
static struct PyMethodDef BPy_Mesh_methods[] = {
{"calcNormals", (PyCFunction)Mesh_calcNormals, METH_NOARGS,
"all recalculate vertex normals"},
{"vertexShade", (PyCFunction)Mesh_vertexShade, METH_VARARGS,
"color vertices based on the current lighting setup"},
{"findEdges", (PyCFunction)Mesh_findEdges, METH_VARARGS,
"find indices of an multiple edges in the mesh"},
{"getFromObject", (PyCFunction)Mesh_getFromObject, METH_VARARGS,
"Get a mesh by name"},
{"update", (PyCFunction)Mesh_Update, METH_VARARGS | METH_KEYWORDS,
"Update display lists after changes to mesh"},
{"transform", (PyCFunction)Mesh_transform, METH_VARARGS | METH_KEYWORDS,
"Applies a transformation matrix to mesh's vertices"},
{"addVertGroup", (PyCFunction)Mesh_addVertGroup, METH_VARARGS,
"Assign vertex group name to the object linked to the mesh"},
{"removeVertGroup", (PyCFunction)Mesh_removeVertGroup, METH_VARARGS,
"Delete vertex group name from the object linked to the mesh"},
{"assignVertsToGroup", (PyCFunction)Mesh_assignVertsToGroup, METH_VARARGS,
"Assigns vertices to a vertex group"},
{"removeVertsFromGroup", (PyCFunction)Mesh_removeVertsFromGroup, METH_VARARGS,
"Removes vertices from a vertex group"},
{"getVertsFromGroup", (PyCFunction)Mesh_getVertsFromGroup, METH_VARARGS,
"Get index and optional weight for vertices in vertex group"},
{"renameVertGroup", (PyCFunction)Mesh_renameVertGroup, METH_VARARGS,
"Rename an existing vertex group"},
{"getVertGroupNames", (PyCFunction)Mesh_getVertGroupNames, METH_NOARGS,
"Get names of vertex groups"},
{"getVertexInfluences", (PyCFunction)Mesh_getVertexInfluences, METH_VARARGS,
"Get list of the influences of bones for a given mesh vertex"},
/* Shape Keys */
{"removeAllKeys", (PyCFunction)Mesh_removeAllKeys, METH_NOARGS,
"Remove all the shape keys from a mesh"},
{"insertKey", (PyCFunction)Mesh_insertKey, METH_VARARGS,
"(frame = None, type = 'relative') - inserts a Mesh key at the given frame"},
/* Mesh tools */
{"smooth", (PyCFunction)Mesh_smooth, METH_NOARGS,
"Flattens angle of selected faces (experimental)"},
{"flipNormals", (PyCFunction)Mesh_flipNormals, METH_NOARGS,
"Toggles the direction of selected face's normals (experimental)"},
{"toSphere", (PyCFunction)Mesh_toSphere, METH_NOARGS,
"Moves selected vertices outward in a spherical shape (experimental)"},
{"fill", (PyCFunction)Mesh_fill, METH_NOARGS,
"Scan fill a closed edge loop (experimental)"},
{"triangleToQuad", (PyCFunction)Mesh_tri2quad, METH_VARARGS,
"Convert selected triangles to quads (experimental)"},
{"quadToTriangle", (PyCFunction)Mesh_quad2tri, METH_VARARGS,
"Convert selected quads to triangles (experimental)"},
{"subdivide", (PyCFunction)Mesh_subdivide, METH_VARARGS,
"Subdivide selected edges in a mesh (experimental)"},
{"remDoubles", (PyCFunction)Mesh_removeDoubles, METH_VARARGS,
"Removes duplicates from selected vertices (experimental)"},
{"recalcNormals", (PyCFunction)Mesh_recalcNormals, METH_VARARGS,
"Recalculates inside or outside normals (experimental)"},
{"pointInside", (PyCFunction)Mesh_pointInside, METH_VARARGS,
"Recalculates inside or outside normals (experimental)"},
/* mesh custom data layers */
{"addUVLayer", (PyCFunction)Mesh_addUVLayer, METH_VARARGS,
"adds a UV layer to this mesh"},
{"addColorLayer", (PyCFunction)Mesh_addColorLayer, METH_VARARGS,
"adds a color layer to this mesh "},
{"removeUVLayer", (PyCFunction)Mesh_removeUVLayer, METH_VARARGS,
"removes a UV layer to this mesh"},
{"removeColorLayer", (PyCFunction)Mesh_removeColorLayer, METH_VARARGS,
"removes a color layer to this mesh"},
{"getUVLayerNames", (PyCFunction)Mesh_getUVLayerNames, METH_NOARGS,
"Get names of UV layers"},
{"getColorLayerNames", (PyCFunction)Mesh_getColorLayerNames, METH_NOARGS,
"Get names of Color layers"},
{"renameUVLayer", (PyCFunction)Mesh_renameUVLayer, METH_VARARGS,
"Rename a UV Layer"},
{"renameColorLayer", (PyCFunction)Mesh_renameColorLayer, METH_VARARGS,
"Rename a Color Layer"},
/* python standard class functions */
{"__copy__", (PyCFunction)Mesh_copy, METH_NOARGS,
"Return a copy of the mesh"},
{"copy", (PyCFunction)Mesh_copy, METH_NOARGS,
"Return a copy of the mesh"},
{NULL, NULL, 0, NULL}
};
/************************************************************************
*
* Python BPy_Mesh attributes
*
************************************************************************/
static PyObject *MVertSeq_CreatePyObject( Mesh * mesh )
{
BPy_MVertSeq *obj = PyObject_NEW( BPy_MVertSeq, &MVertSeq_Type);
obj->mesh = mesh;
/*
an iter of -1 means this seq has not been used as an iterator yet
once it is, then any other calls on getIter will return a new copy of BPy_MVertSeq
This means you can loop do nested loops with the same iterator without worrying about
the iter variable being used twice and messing up the loops.
*/
obj->iter = -1;
return (PyObject *)obj;
}
static PyObject *Mesh_getVerts( BPy_Mesh * self )
{
return MVertSeq_CreatePyObject(self->mesh);
}
static int Mesh_setVerts( BPy_Mesh * self, PyObject * args )
{
MVert *dst;
MVert *src;
int i;
/* special case if None: delete the mesh */
if( args == NULL || args == Py_None ) {
Mesh *me = self->mesh;
free_mesh( me );
me->mvert = NULL; me->medge = NULL; me->mface = NULL;
me->mtface = NULL; me->dvert = NULL; me->mcol = NULL;
me->msticky = NULL; me->mat = NULL; me->bb = NULL;
me->totvert = me->totedge = me->totface = me->totcol = 0;
mesh_update( me );
return 0;
}
if( PyList_Check( args ) ) {
if( EXPP_check_sequence_consistency( args, &MVert_Type ) != 1 &&
EXPP_check_sequence_consistency( args, &PVert_Type ) != 1 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a list of MVerts" );
if( PyList_Size( args ) != self->mesh->totvert )
return EXPP_ReturnIntError( PyExc_TypeError,
"list must have the same number of vertices as the mesh" );
dst = self->mesh->mvert;
for( i = 0; i < PyList_Size( args ); ++i ) {
BPy_MVert *v = (BPy_MVert *)PyList_GET_ITEM( args, i );
if( BPy_MVert_Check( v ) )
src = &((Mesh *)v->data)->mvert[v->index];
else
src = (MVert *)v->data;
memcpy( dst, src, sizeof(MVert) );
++dst;
}
} else if( args->ob_type == &MVertSeq_Type ) {
Mesh *mesh = ( (BPy_MVertSeq *) args)->mesh;
if( mesh->totvert != self->mesh->totvert )
return EXPP_ReturnIntError( PyExc_TypeError,
"vertex sequences must have the same number of vertices" );
memcpy( self->mesh->mvert, mesh->mvert, mesh->totvert*sizeof(MVert) );
} else
return EXPP_ReturnIntError( PyExc_TypeError,
"expected a list or sequence of MVerts" );
return 0;
}
static PyObject *MEdgeSeq_CreatePyObject( Mesh *mesh )
{
BPy_MEdgeSeq *obj = PyObject_NEW( BPy_MEdgeSeq, &MEdgeSeq_Type);
obj->mesh = mesh;
obj->iter = -1; /* iterator not yet used */
return (PyObject *)obj;
}
static PyObject *Mesh_getEdges( BPy_Mesh * self )
{
return MEdgeSeq_CreatePyObject(self->mesh);
}
static PyObject *MFaceSeq_CreatePyObject( Mesh * mesh )
{
BPy_MFaceSeq *obj= PyObject_NEW( BPy_MFaceSeq, &MFaceSeq_Type);
obj->mesh = mesh;
obj->iter = -1; /* iterator not yet used */
return (PyObject *)obj;
}
static PyObject *Mesh_getFaces( BPy_Mesh * self )
{
return MFaceSeq_CreatePyObject( self->mesh );
}
static PyObject *Mesh_getMaterials( BPy_Mesh *self )
{
return EXPP_PyList_fromMaterialList( self->mesh->mat,
self->mesh->totcol, 1 );
}
static int Mesh_setMaterials( BPy_Mesh *self, PyObject * value )
{
Material **matlist;
int len;
if( !PySequence_Check( value ) ||
!EXPP_check_sequence_consistency( value, &Material_Type ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"list should only contain materials or None)" );
len = PyList_Size( value );
if( len > 16 )
return EXPP_ReturnIntError( PyExc_TypeError,
"list can't have more than 16 materials" );
/* free old material list (if it exists) and adjust user counts */
if( self->mesh->mat ) {
Mesh *me = self->mesh;
int i;
for( i = me->totcol; i-- > 0; )
if( me->mat[i] )
me->mat[i]->id.us--;
MEM_freeN( me->mat );
}
/* build the new material list, increment user count, store it */
matlist = EXPP_newMaterialList_fromPyList( value );
EXPP_incr_mats_us( matlist, len );
self->mesh->mat = matlist;
self->mesh->totcol = (short)len;
/**@ This is another ugly fix due to the weird material handling of blender.
* it makes sure that object material lists get updated (by their length)
* according to their data material lists, otherwise blender crashes.
* It just stupidly runs through all objects...BAD BAD BAD.
*/
test_object_materials( ( ID * ) self->mesh );
return 0;
}
static PyObject *Mesh_getMaxSmoothAngle( BPy_Mesh * self )
{
PyObject *attr = PyInt_FromLong( self->mesh->smoothresh );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
static int Mesh_setMaxSmoothAngle( BPy_Mesh *self, PyObject *value )
{
return EXPP_setIValueClamped( value, &self->mesh->smoothresh,
MESH_SMOOTHRESH_MIN,
MESH_SMOOTHRESH_MAX, 'h' );
}
static PyObject *Mesh_getSubDivLevels( BPy_Mesh * self )
{
PyObject *attr = Py_BuildValue( "(h,h)",
self->mesh->subdiv, self->mesh->subdivr );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Py_BuildValue() failed" );
}
static int Mesh_setSubDivLevels( BPy_Mesh *self, PyObject *value )
{
int subdiv[2];
int i;
PyObject *tmp;
if( !PyTuple_Check( value ) || PyTuple_Size( value ) != 2 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected (int, int) as argument" );
for( i = 0; i < 2; i++ ) {
tmp = PyTuple_GET_ITEM( value, i );
if( !PyInt_Check( tmp ) )
return EXPP_ReturnIntError ( PyExc_TypeError,
"expected a list [int, int] as argument" );
subdiv[i] = EXPP_ClampInt( PyInt_AsLong( tmp ),
MESH_SUBDIV_MIN,
MESH_SUBDIV_MAX );
}
self->mesh->subdiv = (short)subdiv[0];
self->mesh->subdivr = (short)subdiv[1];
return 0;
}
static PyObject *Mesh_getFlag( BPy_Mesh * self, void *type )
{
PyObject *attr;
switch( (long)type ) {
case MESH_HASFACEUV:
attr = self->mesh->mtface ? EXPP_incr_ret_True() :
EXPP_incr_ret_False();
break;
case MESH_HASMCOL:
attr = self->mesh->mcol ? EXPP_incr_ret_True() :
EXPP_incr_ret_False();
break;
case MESH_HASVERTUV:
attr = self->mesh->msticky ? EXPP_incr_ret_True() :
EXPP_incr_ret_False();
break;
case MESH_HASMULTIRES:
attr = self->mesh->mr ? EXPP_incr_ret_True() :
EXPP_incr_ret_False();
break;
default:
attr = NULL;
}
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get attribute" );
}
static int Mesh_setFlag( BPy_Mesh * self, PyObject *value, void *type )
{
int param;
Mesh *mesh = self->mesh;
param = PyObject_IsTrue( value );
if( param == -1 )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected int argument in range [0,1]" );
/* sticky is independent of faceUV and vertUV */
switch( (long)type ) {
case MESH_HASFACEUV:
if( !param ) {
if( mesh->mtface ) {
CustomData_free_layers( &mesh->fdata, CD_MTFACE, mesh->totface );
mesh->mtface = NULL;
}
} else if( !mesh->mtface ) {
if( !mesh->totface )
return EXPP_ReturnIntError( PyExc_RuntimeError,
"mesh has no faces" );
make_tfaces( mesh );
}
return 0;
case MESH_HASMCOL:
if( !param ) {
if( mesh->mcol ) {
CustomData_free_layers( &mesh->fdata, CD_MCOL, mesh->totface );
mesh->mcol = NULL;
}
} else if( !mesh->mcol ) {
/* TODO: mesh_create_shadedColors */
mesh->mcol = CustomData_add_layer( &mesh->fdata, CD_MCOL,
CD_DEFAULT, NULL, mesh->totface );
}
return 0;
case MESH_HASVERTUV:
if( !param ) {
if( mesh->msticky ) {
CustomData_free_layer_active( &mesh->vdata, CD_MSTICKY, mesh->totvert );
mesh->msticky = NULL;
}
} else {
if( !mesh->msticky ) {
mesh->msticky = CustomData_add_layer( &mesh->vdata, CD_MSTICKY,
CD_CALLOC, NULL, mesh->totvert );
memset( mesh->msticky, 255, mesh->totvert*sizeof( MSticky ) );
/* TODO: rework RE_make_sticky() so we can calculate */
}
}
return 0;
case MESH_HASMULTIRES:
if (!self->object)
return EXPP_ReturnIntError( PyExc_RuntimeError,
"This mesh must be linked to an object" );
if( !param ) {
if ( mesh->mr ) {
multires_delete(self->object, mesh);
}
} else {
if ( !mesh->mr ) {
if (mesh->key)
return EXPP_ReturnIntError( PyExc_RuntimeError,
"Cannot enable multires for a mesh with shape keys" );
multires_make(self->object, mesh);
}
}
return 0;
default:
return EXPP_ReturnIntError( PyExc_RuntimeError,
"couldn't get attribute" );
}
}
static PyObject *Mesh_getMode( BPy_Mesh * self )
{
PyObject *attr = PyInt_FromLong( self->mesh->flag );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"couldn't get Mesh.mode attribute" );
}
static int Mesh_setMode( BPy_Mesh *self, PyObject *value )
{
short param;
static short bitmask = ME_ISDONE | ME_NOPUNOFLIP | ME_TWOSIDED |
ME_UVEFFECT | ME_VCOLEFFECT | ME_AUTOSMOOTH | ME_SMESH |
ME_SUBSURF | ME_OPT_EDGES;
if( !PyInt_CheckExact ( value ) ) {
char errstr[128];
sprintf ( errstr , "expected int bitmask of 0x%04x", bitmask );
return EXPP_ReturnIntError( PyExc_TypeError, errstr );
}
param = (short)PyInt_AS_LONG ( value );
if( ( param & bitmask ) != param )
return EXPP_ReturnIntError( PyExc_ValueError,
"invalid bit(s) set in mask" );
self->mesh->flag = param;
return 0;
}
static PyObject *Mesh_getKey( BPy_Mesh * self )
{
if( self->mesh->key )
return Key_CreatePyObject(self->mesh->key);
else
Py_RETURN_NONE;
}
static PyObject *Mesh_getActiveFace( BPy_Mesh * self )
{
MTFace *face;
int i, totface;
if( !self->mesh->mtface )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"face has no texture values" );
face = self->mesh->mtface;
totface = self->mesh->totface;
for( i = 0; i < totface; ++face, ++i )
if( face->flag & TF_ACTIVE ) {
PyObject *attr = PyInt_FromLong( i );
if( attr )
return attr;
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyInt_FromLong() failed" );
}
Py_RETURN_NONE;
}
static int Mesh_setActiveFace( BPy_Mesh * self, PyObject * value )
{
MTFace *face;
int param;
/* if no texture faces, error */
if( !self->mesh->mtface )
return EXPP_ReturnIntError( PyExc_ValueError,
"face has no texture values" );
/* if param isn't an int, error */
if( !PyInt_CheckExact( value ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"expected an int argument" );
/* check for a valid index */
param = PyInt_AsLong( value );
if( param < 0 || param > self->mesh->totface )
return EXPP_ReturnIntError( PyExc_TypeError,
"face index out of range" );
face = self->mesh->mtface;
/* if requested face isn't already active, then inactivate all
* faces and activate the requested one */
if( !( face[param].flag & TF_ACTIVE ) ) {
int i;
for( i = self->mesh->totface; i > 0; ++face, --i )
face->flag &= ~TF_ACTIVE;
self->mesh->mtface[param].flag |= TF_ACTIVE;
}
return 0;
}
static PyObject *Mesh_getActiveGroup( BPy_Mesh * self )
{
bDeformGroup *defGroup;
Object *object = self->object;
if( !object )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"This mesh must be linked to an object" );
if( object->actdef ) {
defGroup = BLI_findlink( &object->defbase, object->actdef-1 );
return PyString_FromString( defGroup->name );
}
Py_RETURN_NONE;
}
static int Mesh_setActiveGroup( BPy_Mesh * self, PyObject * arg )
{
char *name;
int tmp;
Object *object = self->object;
if( !object )
return EXPP_ReturnIntError( PyExc_RuntimeError,
"This mesh must be linked to an object" );
if( !PyString_Check( arg ) )
return EXPP_ReturnIntError( PyExc_AttributeError,
"expected a string argument" );
name = PyString_AsString( arg );
tmp = object->actdef;
vertexgroup_select_by_name( object, name );
if( !object->actdef ) {
object->actdef = tmp;
return EXPP_ReturnIntError( PyExc_ValueError,
"vertex group not found" );
}
return 0;
}
static PyObject *Mesh_getTexMesh( BPy_Mesh * self )
{
Mesh *texme= self->mesh->texcomesh;
if (texme)
return Mesh_CreatePyObject( texme, NULL );
else
Py_RETURN_NONE;
}
static int Mesh_setTexMesh( BPy_Mesh * self, PyObject * value )
{
int ret = GenericLib_assignData(value, (void **) &self->mesh->texcomesh, 0, 1, ID_ME, 0);
if (ret==0 && value!=Py_None) /*This must be a mesh type*/
(( BPy_Mesh * ) value)->new= 0;
return 0;
}
static int Mesh_setSel( BPy_Mesh * self, PyObject * arg )
{
int i;
Mesh *me = self->mesh;
MVert *mvert = me->mvert;
MEdge *medge = me->medge;
MFace *mface = me->mface;
if( PyObject_IsTrue( arg ) ) {
for( i = 0; i < me->totvert; ++mvert, ++i )
mvert->flag |= SELECT;
for( i = 0; i < me->totedge; ++medge, ++i )
medge->flag |= SELECT;
for( i = 0; i < me->totface; ++mface, ++i )
mface->flag |= ME_FACE_SEL;
} else {
for( i = 0; i < me->totvert; ++mvert, ++i )
mvert->flag &= ~SELECT;
for( i = 0; i < me->totedge; ++medge, ++i )
medge->flag &= ~SELECT;
for( i = 0; i < me->totface; ++mface, ++i )
mface->flag &= ~ME_FACE_SEL;
}
return 0;
}
static int Mesh_setHide( BPy_Mesh * self, PyObject * arg )
{
int i;
Mesh *me = self->mesh;
MVert *mvert = me->mvert;
MEdge *medge = me->medge;
MFace *mface = me->mface;
if( PyObject_IsTrue( arg ) ) {
for( i = 0; i < me->totvert; ++mvert, ++i )
mvert->flag |= ME_HIDE;
for( i = 0; i < me->totedge; ++medge, ++i )
medge->flag |= ME_HIDE;
for( i = 0; i < me->totface; ++mface, ++i )
mface->flag |= ME_HIDE;
} else {
for( i = 0; i < me->totvert; ++mvert, ++i )
mvert->flag &= ~ME_HIDE;
for( i = 0; i < me->totedge; ++medge, ++i )
medge->flag &= ~ME_HIDE;
for( i = 0; i < me->totface; ++mface, ++i )
mface->flag &= ~ME_HIDE;
}
return 0;
}
/************************************************************************
*
* Python Mesh_Type standard operations
*
************************************************************************/
static void Mesh_dealloc( BPy_Mesh * self )
{
Mesh *mesh = self->mesh;
/* if the mesh is new and has no users, delete it */
if( self->new && !mesh->id.us )
free_libblock( &G.main->mesh, mesh );
PyObject_DEL( self );
}
static int Mesh_compare( BPy_Mesh * a, BPy_Mesh * b )
{
return ( a->mesh == b->mesh ) ? 0 : -1;
}
static PyObject *Mesh_repr( BPy_Mesh * self )
{
return PyString_FromFormat( "[Mesh \"%s\"]",
self->mesh->id.name + 2 );
}
/*****************************************************************************/
/* Python Mesh_Type attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef BPy_Mesh_getseters[] = {
GENERIC_LIB_GETSETATTR,
{"verts",
(getter)Mesh_getVerts, (setter)Mesh_setVerts,
"The mesh's vertices (MVert)",
NULL},
{"edges",
(getter)Mesh_getEdges, (setter)NULL,
"The mesh's edge data (MEdge)",
NULL},
{"faces",
(getter)Mesh_getFaces, (setter)NULL,
"The mesh's face data (MFace)",
NULL},
{"materials",
(getter)Mesh_getMaterials, (setter)Mesh_setMaterials,
"List of the mesh's materials",
NULL},
{"degr",
(getter)Mesh_getMaxSmoothAngle, (setter)Mesh_setMaxSmoothAngle,
"The max angle for auto smoothing",
NULL},
{"maxSmoothAngle",
(getter)Mesh_getMaxSmoothAngle, (setter)Mesh_setMaxSmoothAngle,
"deprecated: see 'degr'",
NULL},
{"subDivLevels",
(getter)Mesh_getSubDivLevels, (setter)Mesh_setSubDivLevels,
"The display and rendering subdivision levels",
NULL},
{"mode",
(getter)Mesh_getMode, (setter)Mesh_setMode,
"The mesh's mode bitfield",
NULL},
{"key",
(getter)Mesh_getKey, (setter)NULL,
"The mesh's key",
NULL},
{"faceUV",
(getter)Mesh_getFlag, (setter)Mesh_setFlag,
"UV-mapped textured faces enabled",
(void *)MESH_HASFACEUV},
{"vertexColors",
(getter)Mesh_getFlag, (setter)Mesh_setFlag,
"Vertex colors for the mesh enabled",
(void *)MESH_HASMCOL},
{"vertexUV",
(getter)Mesh_getFlag, (setter)Mesh_setFlag,
"'Sticky' flag for per vertex UV coordinates enabled",
(void *)MESH_HASVERTUV},
{"multires",
(getter)Mesh_getFlag, (setter)Mesh_setFlag,
"'Sticky' flag for per vertex UV coordinates enabled",
(void *)MESH_HASMULTIRES},
{"activeFace",
(getter)Mesh_getActiveFace, (setter)Mesh_setActiveFace,
"Index of the mesh's active texture face (in UV editor)",
NULL},
{"activeGroup",
(getter)Mesh_getActiveGroup, (setter)Mesh_setActiveGroup,
"Active group for the mesh",
NULL},
/* uv layers */
{"activeColorLayer",
(getter)Mesh_getActiveLayer, (setter)Mesh_setActiveLayer,
"Name of the active UV layer",
(void *)CD_MCOL},
{"activeUVLayer",
(getter)Mesh_getActiveLayer, (setter)Mesh_setActiveLayer,
"Name of the active vertex color layer",
(void *)CD_MTFACE},
/* hack flip CD_MCOL so it uses the render setting */
{"renderColorLayer",
(getter)Mesh_getActiveLayer, (setter)Mesh_setActiveLayer,
"Name of the render UV layer",
(void *)-CD_MCOL},
{"renderUVLayer",
(getter)Mesh_getActiveLayer, (setter)Mesh_setActiveLayer,
"Name of the render vertex color layer",
(void *)-CD_MTFACE},
/* Multires */
{"multiresLevelCount",
(getter)Mesh_getMultiresLevelCount, (setter)NULL,
"The total number of multires levels",
NULL},
{"multiresDrawLevel",
(getter)Mesh_getMultires, (setter)Mesh_setMultires,
"The current multires display level",
(void *)MESH_MULTIRES_LEVEL},
{"multiresEdgeLevel",
(getter)Mesh_getMultires, (setter)Mesh_setMultires,
"The current multires edge level",
(void *)MESH_MULTIRES_EDGE},
{"multiresPinLevel",
(getter)Mesh_getMultires, (setter)Mesh_setMultires,
"The current multires pin level",
(void *)MESH_MULTIRES_PIN},
{"multiresRenderLevel",
(getter)Mesh_getMultires, (setter)Mesh_setMultires,
"The current multires render level",
(void *)MESH_MULTIRES_RENDER},
{"texMesh",
(getter)Mesh_getTexMesh, (setter)Mesh_setTexMesh,
"The meshes tex mesh proxy texture coord mesh",
NULL},
{"sel",
(getter)NULL, (setter)Mesh_setSel,
"Select/deselect all verts, edges, faces in the mesh",
NULL},
{"hide",
(getter)NULL, (setter)Mesh_setHide,
"Hide/unhide all verts, edges, faces in the mesh",
NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
/*****************************************************************************/
/* Python Mesh_Type structure definition: */
/*****************************************************************************/
PyTypeObject Mesh_Type = {
PyObject_HEAD_INIT( NULL ) /* required py macro */
0, /* ob_size */
/* For printing, in format "<module>.<name>" */
"Blender Mesh", /* char *tp_name; */
sizeof( BPy_Mesh ), /* int tp_basicsize; */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
( destructor ) Mesh_dealloc,/* destructor tp_dealloc; */
NULL, /* printfunc tp_print; */
NULL, /* getattrfunc tp_getattr; */
NULL, /* setattrfunc tp_setattr; */
( cmpfunc ) Mesh_compare, /* cmpfunc tp_compare; */
( reprfunc ) Mesh_repr, /* reprfunc tp_repr; */
/* Method suites for standard classes */
NULL, /* PyNumberMethods *tp_as_number; */
NULL, /* PySequenceMethods *tp_as_sequence; */
NULL, /* PyMappingMethods *tp_as_mapping; */
/* More standard operations (here for binary compatibility) */
( hashfunc ) GenericLib_hash, /* hashfunc tp_hash; */
NULL, /* ternaryfunc tp_call; */
NULL, /* reprfunc tp_str; */
NULL, /* getattrofunc tp_getattro; */
NULL, /* setattrofunc tp_setattro; */
/* Functions to access object as input/output buffer */
NULL, /* PyBufferProcs *tp_as_buffer; */
/*** Flags to define presence of optional/expanded features ***/
Py_TPFLAGS_DEFAULT, /* long tp_flags; */
NULL, /* char *tp_doc; Documentation string */
/*** Assigned meaning in release 2.0 ***/
/* call function for all accessible objects */
NULL, /* traverseproc tp_traverse; */
/* delete references to contained objects */
NULL, /* inquiry tp_clear; */
/*** Assigned meaning in release 2.1 ***/
/*** rich comparisons ***/
NULL, /* richcmpfunc tp_richcompare; */
/*** weak reference enabler ***/
0, /* long tp_weaklistoffset; */
/*** Added in release 2.2 ***/
/* Iterators */
NULL, /* getiterfunc tp_iter; */
NULL, /* iternextfunc tp_iternext; */
/*** Attribute descriptor and subclassing stuff ***/
BPy_Mesh_methods, /* struct PyMethodDef *tp_methods; */
NULL, /* struct PyMemberDef *tp_members; */
BPy_Mesh_getseters, /* struct PyGetSetDef *tp_getset; */
NULL, /* struct _typeobject *tp_base; */
NULL, /* PyObject *tp_dict; */
NULL, /* descrgetfunc tp_descr_get; */
NULL, /* descrsetfunc tp_descr_set; */
0, /* long tp_dictoffset; */
NULL, /* initproc tp_init; */
NULL, /* allocfunc tp_alloc; */
NULL, /* newfunc tp_new; */
/* Low-level free-memory routine */
NULL, /* freefunc tp_free; */
/* For PyObject_IS_GC */
NULL, /* inquiry tp_is_gc; */
NULL, /* PyObject *tp_bases; */
/* method resolution order */
NULL, /* PyObject *tp_mro; */
NULL, /* PyObject *tp_cache; */
NULL, /* PyObject *tp_subclasses; */
NULL, /* PyObject *tp_weaklist; */
NULL
};
/*
* get one or all mesh data objects
*/
static PyObject *M_Mesh_Get( PyObject * self_unused, PyObject * args )
{
char *name = NULL;
Mesh *mesh = NULL;
BPy_Mesh* obj;
if( !PyArg_ParseTuple( args, "|s", &name ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected zero or one string arguments" );
if( name ) {
mesh = ( Mesh * ) GetIdFromList( &( G.main->mesh ), name );
if( !mesh ) {
char error_msg[64];
PyOS_snprintf( error_msg, sizeof( error_msg ),
"Mesh \"%s\" not found", name );
return ( EXPP_ReturnPyObjError
( PyExc_NameError, error_msg ) );
}
return Mesh_CreatePyObject( mesh, NULL );
} else { /* () - return a list with all meshes in the scene */
PyObject *meshlist;
Link *link;
int index = 0;
meshlist = PyList_New( BLI_countlist( &( G.main->mesh ) ) );
if( !meshlist )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create PyList" );
link = G.main->mesh.first;
index = 0;
while( link ) {
obj = ( BPy_Mesh * ) Mesh_CreatePyObject( ( Mesh * )link, NULL );
PyList_SetItem( meshlist, index, ( PyObject * ) obj );
index++;
link = link->next;
}
return meshlist;
}
}
/*
* create a new mesh data object
*/
static PyObject *M_Mesh_New( PyObject * self_unused, PyObject * args )
{
char *name = "Mesh";
Mesh *mesh;
BPy_Mesh *obj;
if( !PyArg_ParseTuple( args, "|s", &name ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected nothing or a string as argument" );
obj = (BPy_Mesh *)PyObject_NEW( BPy_Mesh, &Mesh_Type );
if( !obj )
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"PyObject_New() failed" );
mesh = add_mesh(name); /* doesn't return NULL now, but might someday */
if( !mesh ) {
Py_DECREF ( obj );
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"FATAL: could not create mesh object" );
}
/* Bound box set to null needed because a new mesh is initialized
with a bounding box of -1 -1 -1 -1 -1 -1
if its not set to null the bounding box is not re-calculated
when ob.getBoundBox() is called.*/
MEM_freeN(mesh->bb);
mesh->bb= NULL;
mesh->id.us = 0;
obj->mesh = mesh;
obj->object = NULL;
obj->new = 1;
return (PyObject *)obj;
}
/*
* creates a new MVert for users to manipulate
*/
static PyObject *M_Mesh_MVert( PyObject * self_unused, PyObject * args )
{
int i;
MVert vert;
/* initialize the new vert's data */
memset( &vert, 0, sizeof( MVert ) );
/*
* accept either a 3D vector or tuple of three floats
*/
if( PyTuple_Size ( args ) == 1 ) {
PyObject *tmp = PyTuple_GET_ITEM( args, 0 );
if( !VectorObject_Check( tmp ) || ((VectorObject *)tmp)->size != 3 )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected three floats or vector of size 3" );
for( i = 0; i < 3; ++i )
vert.co[i] = ((VectorObject *)tmp)->vec[i];
} else if( !PyArg_ParseTuple ( args, "fff",
&vert.co[0], &vert.co[1], &vert.co[2] ) )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"expected three floats or vector of size 3" );
/* make a new MVert from the data */
return PVert_CreatePyObject( &vert );
}
static PyObject *M_Mesh_Modes( PyObject * self_unused, PyObject * args )
{
int modes = 0;
if( !G.scene ) {
Py_RETURN_NONE;
}
if( !PyArg_ParseTuple( args, "|i", &modes ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected optional int as argument" );
if( modes > ( SCE_SELECT_VERTEX | SCE_SELECT_EDGE | SCE_SELECT_FACE ) )
return EXPP_ReturnPyObjError( PyExc_ValueError,
"value out of range" );
if( modes > 0 )
G.scene->selectmode = (short)modes;
return PyInt_FromLong( G.scene->selectmode );
}
static struct PyMethodDef M_Mesh_methods[] = {
{"New", (PyCFunction)M_Mesh_New, METH_VARARGS,
"Create a new mesh"},
{"Get", (PyCFunction)M_Mesh_Get, METH_VARARGS,
"Get a mesh by name"},
{"MVert", (PyCFunction)M_Mesh_MVert, METH_VARARGS,
"Create a new MVert"},
{"Mode", (PyCFunction)M_Mesh_Modes, METH_VARARGS,
"Get/set edit selection mode(s)"},
{NULL, NULL, 0, NULL},
};
static PyObject *M_Mesh_ModesDict( void )
{
PyObject *Modes = PyConstant_New( );
if( Modes ) {
BPy_constant *d = ( BPy_constant * ) Modes;
PyConstant_Insert( d, "NOVNORMALSFLIP",
PyInt_FromLong( ME_NOPUNOFLIP ) );
PyConstant_Insert( d, "TWOSIDED", PyInt_FromLong( ME_TWOSIDED ) );
PyConstant_Insert( d, "AUTOSMOOTH",
PyInt_FromLong( ME_AUTOSMOOTH ) );
}
return Modes;
}
/* Set constants for face drawing mode -- see drawmesh.c */
static PyObject *M_Mesh_FaceModesDict( void )
{
PyObject *FM = PyConstant_New( );
if( FM ) {
BPy_constant *d = ( BPy_constant * ) FM;
PyConstant_Insert( d, "BILLBOARD",
PyInt_FromLong( TF_BILLBOARD2 ) );
PyConstant_Insert( d, "ALL", PyInt_FromLong( 0xffff ) );
PyConstant_Insert( d, "HALO", PyInt_FromLong( TF_BILLBOARD ) );
PyConstant_Insert( d, "DYNAMIC", PyInt_FromLong( TF_DYNAMIC ) );
PyConstant_Insert( d, "INVISIBLE", PyInt_FromLong( TF_INVISIBLE ) );
PyConstant_Insert( d, "LIGHT", PyInt_FromLong( TF_LIGHT ) );
PyConstant_Insert( d, "OBCOL", PyInt_FromLong( TF_OBCOL ) );
PyConstant_Insert( d, "SHADOW", PyInt_FromLong( TF_SHADOW ) );
PyConstant_Insert( d, "TEXT", PyInt_FromLong( TF_BMFONT ) );
PyConstant_Insert( d, "SHAREDVERT", PyInt_FromLong( TF_SHAREDVERT ) );
PyConstant_Insert( d, "SHAREDCOL", PyInt_FromLong( TF_SHAREDCOL ) );
PyConstant_Insert( d, "TEX", PyInt_FromLong( TF_TEX ) );
PyConstant_Insert( d, "TILES", PyInt_FromLong( TF_TILES ) );
PyConstant_Insert( d, "TWOSIDE", PyInt_FromLong( TF_TWOSIDE ) );
}
return FM;
}
static PyObject *M_Mesh_FaceFlagsDict( void )
{
PyObject *FF = PyConstant_New( );
if( FF ) {
BPy_constant *d = ( BPy_constant * ) FF;
PyConstant_Insert( d, "SELECT", PyInt_FromLong( TF_SELECT ) );
PyConstant_Insert( d, "HIDE", PyInt_FromLong( TF_HIDE ) );
PyConstant_Insert( d, "ACTIVE", PyInt_FromLong( TF_ACTIVE ) );
}
return FF;
}
static PyObject *M_Mesh_FaceTranspModesDict( void )
{
PyObject *FTM = PyConstant_New( );
if( FTM ) {
BPy_constant *d = ( BPy_constant * ) FTM;
PyConstant_Insert( d, "SOLID", PyInt_FromLong( TF_SOLID ) );
PyConstant_Insert( d, "ADD", PyInt_FromLong( TF_ADD ) );
PyConstant_Insert( d, "ALPHA", PyInt_FromLong( TF_ALPHA ) );
PyConstant_Insert( d, "SUB", PyInt_FromLong( TF_SUB ) );
}
return FTM;
}
static PyObject *M_Mesh_EdgeFlagsDict( void )
{
PyObject *EF = PyConstant_New( );
if( EF ) {
BPy_constant *d = ( BPy_constant * ) EF;
PyConstant_Insert(d, "SELECT", PyInt_FromLong( SELECT ) );
PyConstant_Insert(d, "EDGEDRAW", PyInt_FromLong( ME_EDGEDRAW ) );
PyConstant_Insert(d, "EDGERENDER", PyInt_FromLong( ME_EDGERENDER ) );
PyConstant_Insert(d, "SEAM", PyInt_FromLong( ME_SEAM ) );
PyConstant_Insert(d, "FGON", PyInt_FromLong( ME_FGON ) );
PyConstant_Insert(d, "LOOSE", PyInt_FromLong( ME_LOOSEEDGE ) );
PyConstant_Insert(d, "SHARP", PyInt_FromLong( ME_SHARP ) );
}
return EF;
}
static PyObject *M_Mesh_VertAssignDict( void )
{
PyObject *Vert = PyConstant_New( );
if( Vert ) {
BPy_constant *d = ( BPy_constant * ) Vert;
PyConstant_Insert(d, "ADD", PyInt_FromLong(WEIGHT_ADD));
PyConstant_Insert(d, "REPLACE", PyInt_FromLong(WEIGHT_REPLACE));
PyConstant_Insert(d, "SUBTRACT", PyInt_FromLong(WEIGHT_SUBTRACT));
}
return Vert;
}
static PyObject *M_Mesh_SelectModeDict( void )
{
PyObject *Mode = PyConstant_New( );
if( Mode ) {
BPy_constant *d = ( BPy_constant * ) Mode;
PyConstant_Insert(d, "VERTEX", PyInt_FromLong(SCE_SELECT_VERTEX));
PyConstant_Insert(d, "EDGE", PyInt_FromLong(SCE_SELECT_EDGE));
PyConstant_Insert(d, "FACE", PyInt_FromLong(SCE_SELECT_FACE));
}
return Mode;
}
static char M_Mesh_doc[] = "The Blender.Mesh submodule";
PyObject *Mesh_Init( void )
{
PyObject *submodule;
PyObject *Modes = M_Mesh_ModesDict( );
PyObject *FaceFlags = M_Mesh_FaceFlagsDict( );
PyObject *FaceModes = M_Mesh_FaceModesDict( );
PyObject *FaceTranspModes = M_Mesh_FaceTranspModesDict( );
PyObject *EdgeFlags = M_Mesh_EdgeFlagsDict( );
PyObject *AssignModes = M_Mesh_VertAssignDict( );
PyObject *SelectModes = M_Mesh_SelectModeDict( );
if( PyType_Ready( &MCol_Type ) < 0 )
return NULL;
if( PyType_Ready( &MVert_Type ) < 0 )
return NULL;
if( PyType_Ready( &PVert_Type ) < 0 )
return NULL;
if( PyType_Ready( &MVertSeq_Type ) < 0 )
return NULL;
if( PyType_Ready( &MEdge_Type ) < 0 )
return NULL;
if( PyType_Ready( &MEdgeSeq_Type ) < 0 )
return NULL;
if( PyType_Ready( &MFace_Type ) < 0 )
return NULL;
if( PyType_Ready( &MFaceSeq_Type ) < 0 )
return NULL;
if( PyType_Ready( &Mesh_Type ) < 0 )
return NULL;
submodule =
Py_InitModule3( "Blender.Mesh", M_Mesh_methods, M_Mesh_doc );
PyDict_SetItemString( PyModule_GetDict( submodule ),
"Primitives", MeshPrimitives_Init( ) );
if( Modes )
PyModule_AddObject( submodule, "Modes", Modes );
if( FaceFlags )
PyModule_AddObject( submodule, "FaceFlags", FaceFlags );
if( FaceModes )
PyModule_AddObject( submodule, "FaceModes", FaceModes );
if( FaceTranspModes )
PyModule_AddObject( submodule, "FaceTranspModes",
FaceTranspModes );
if( EdgeFlags )
PyModule_AddObject( submodule, "EdgeFlags", EdgeFlags );
if( AssignModes )
PyModule_AddObject( submodule, "AssignModes", AssignModes );
if( SelectModes )
PyModule_AddObject( submodule, "SelectModes", SelectModes );
return submodule;
}
/* These are needed by Object.c */
PyObject *Mesh_CreatePyObject( Mesh * me, Object *obj )
{
BPy_Mesh *nmesh = PyObject_NEW( BPy_Mesh, &Mesh_Type );
if( !nmesh )
return EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create BPy_Mesh object" );
nmesh->mesh = me;
nmesh->object = obj;
nmesh->new = 0;
G.totmesh++;
return ( PyObject * ) nmesh;
}
Mesh *Mesh_FromPyObject( PyObject * pyobj, Object *obj )
{
BPy_Mesh *blen_obj;
blen_obj = ( BPy_Mesh * ) pyobj;
if (obj)
blen_obj->object = obj;
return blen_obj->mesh;
}