This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/device/device_task.cpp
Patrick Mours f367f1e5a5 Cycles: Improve OptiX viewport denoising performance with CUDA rendering
With this patch Cycles recognizing when a logical OptiX and CUDA device represent the same
physical GPU and attempts to eliminate unnecessary tile copies for viewport rendering if that
is the case for all active devices. In addition, denoising is now no longer performed on the first
available OptiX device only, but instead it will try to match CUDA and OptiX
rendering/denoising devices exactly to maximize utilization.

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D7975
2020-06-10 14:12:13 +02:00

195 lines
4.1 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
#include "device/device_task.h"
#include "render/buffers.h"
#include "util/util_algorithm.h"
#include "util/util_time.h"
CCL_NAMESPACE_BEGIN
/* Device Task */
DeviceTask::DeviceTask(Type type_)
: type(type_),
x(0),
y(0),
w(0),
h(0),
rgba_byte(0),
rgba_half(0),
buffer(0),
sample(0),
num_samples(1),
shader_input(0),
shader_output(0),
shader_eval_type(0),
shader_filter(0),
shader_x(0),
shader_w(0),
buffers(nullptr)
{
last_update_time = time_dt();
}
int DeviceTask::get_subtask_count(int num, int max_size)
{
if (max_size != 0) {
int max_size_num;
if (type == SHADER) {
max_size_num = (shader_w + max_size - 1) / max_size;
}
else {
max_size = max(1, max_size / w);
max_size_num = (h + max_size - 1) / max_size;
}
num = max(max_size_num, num);
}
if (type == SHADER) {
num = min(shader_w, num);
}
else if (type == RENDER) {
}
else {
num = min(h, num);
}
return num;
}
void DeviceTask::split(list<DeviceTask> &tasks, int num, int max_size)
{
num = get_subtask_count(num, max_size);
if (type == SHADER) {
for (int i = 0; i < num; i++) {
int tx = shader_x + (shader_w / num) * i;
int tw = (i == num - 1) ? shader_w - i * (shader_w / num) : shader_w / num;
DeviceTask task = *this;
task.shader_x = tx;
task.shader_w = tw;
tasks.push_back(task);
}
}
else if (type == RENDER) {
for (int i = 0; i < num; i++)
tasks.push_back(*this);
}
else {
for (int i = 0; i < num; i++) {
int ty = y + (h / num) * i;
int th = (i == num - 1) ? h - i * (h / num) : h / num;
DeviceTask task = *this;
task.y = ty;
task.h = th;
tasks.push_back(task);
}
}
}
void DeviceTask::update_progress(RenderTile *rtile, int pixel_samples)
{
if (type == FILM_CONVERT)
return;
if (update_progress_sample) {
if (pixel_samples == -1) {
pixel_samples = shader_w;
}
update_progress_sample(pixel_samples, rtile ? rtile->sample : 0);
}
if (update_tile_sample) {
double current_time = time_dt();
if (current_time - last_update_time >= 1.0) {
update_tile_sample(*rtile);
last_update_time = current_time;
}
}
}
/* Adaptive Sampling */
AdaptiveSampling::AdaptiveSampling() : use(true), adaptive_step(0), min_samples(0)
{
}
/* Render samples in steps that align with the adaptive filtering. */
int AdaptiveSampling::align_static_samples(int samples) const
{
if (samples > adaptive_step) {
/* Make multiple of adaptive_step. */
while (samples % adaptive_step != 0) {
samples--;
}
}
else if (samples < adaptive_step) {
/* Make divisor of adaptive_step. */
while (adaptive_step % samples != 0) {
samples--;
}
}
return max(samples, 1);
}
/* Render samples in steps that align with the adaptive filtering, with the
* suggested number of samples dynamically changing. */
int AdaptiveSampling::align_dynamic_samples(int offset, int samples) const
{
/* Round so that we end up on multiples of adaptive_samples. */
samples += offset;
if (samples > adaptive_step) {
/* Make multiple of adaptive_step. */
while (samples % adaptive_step != 0) {
samples--;
}
}
samples -= offset;
return max(samples, 1);
}
bool AdaptiveSampling::need_filter(int sample) const
{
if (sample > min_samples) {
return (sample & (adaptive_step - 1)) == (adaptive_step - 1);
}
else {
return false;
}
}
CCL_NAMESPACE_END