This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/ikplugin/intern/iksolver_plugin.c
Campbell Barton de13d0a80c doxygen: add newline after \file
While \file doesn't need an argument, it can't have another doxy
command after it.
2019-02-18 08:22:12 +11:00

601 lines
18 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
* Original author: Benoit Bolsee
*/
/** \file
* \ingroup ikplugin
*/
#include "MEM_guardedalloc.h"
#include "BIK_api.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BKE_armature.h"
#include "BKE_constraint.h"
#include "DNA_object_types.h"
#include "DNA_action_types.h"
#include "DNA_constraint_types.h"
#include "DNA_armature_types.h"
#include "IK_solver.h"
#include "iksolver_plugin.h"
#include <string.h> /* memcpy */
#define USE_NONUNIFORM_SCALE
/* ********************** THE IK SOLVER ******************* */
/* allocates PoseTree, and links that to root bone/channel */
/* Note: detecting the IK chain is duplicate code... in drawarmature.c and in transform_conversions.c */
static void initialize_posetree(struct Object *UNUSED(ob), bPoseChannel *pchan_tip)
{
bPoseChannel *curchan, *pchan_root = NULL, *chanlist[256], **oldchan;
PoseTree *tree;
PoseTarget *target;
bConstraint *con;
bKinematicConstraint *data;
int a, t, segcount = 0, size, newsize, *oldparent, parent;
/* find IK constraint, and validate it */
for (con = pchan_tip->constraints.first; con; con = con->next) {
if (con->type == CONSTRAINT_TYPE_KINEMATIC) {
data = (bKinematicConstraint *)con->data;
if (data->flag & CONSTRAINT_IK_AUTO) break;
if (data->tar == NULL) continue;
if (data->tar->type == OB_ARMATURE && data->subtarget[0] == 0) continue;
if ((con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) == 0 && (con->enforce != 0.0f)) break;
}
}
if (con == NULL) return;
/* exclude tip from chain? */
if (!(data->flag & CONSTRAINT_IK_TIP))
pchan_tip = pchan_tip->parent;
/* Find the chain's root & count the segments needed */
for (curchan = pchan_tip; curchan; curchan = curchan->parent) {
pchan_root = curchan;
curchan->flag |= POSE_CHAIN; // don't forget to clear this
chanlist[segcount] = curchan;
segcount++;
if (segcount == data->rootbone || segcount > 255) break; // 255 is weak
}
if (!segcount) return;
/* setup the chain data */
/* we make tree-IK, unless all existing targets are in this chain */
for (tree = pchan_root->iktree.first; tree; tree = tree->next) {
for (target = tree->targets.first; target; target = target->next) {
curchan = tree->pchan[target->tip];
if (curchan->flag & POSE_CHAIN)
curchan->flag &= ~POSE_CHAIN;
else
break;
}
if (target) break;
}
/* create a target */
target = MEM_callocN(sizeof(PoseTarget), "posetarget");
target->con = con;
pchan_tip->flag &= ~POSE_CHAIN;
if (tree == NULL) {
/* make new tree */
tree = MEM_callocN(sizeof(PoseTree), "posetree");
tree->type = CONSTRAINT_TYPE_KINEMATIC;
tree->iterations = data->iterations;
tree->totchannel = segcount;
tree->stretch = (data->flag & CONSTRAINT_IK_STRETCH);
tree->pchan = MEM_callocN(segcount * sizeof(void *), "ik tree pchan");
tree->parent = MEM_callocN(segcount * sizeof(int), "ik tree parent");
for (a = 0; a < segcount; a++) {
tree->pchan[a] = chanlist[segcount - a - 1];
tree->parent[a] = a - 1;
}
target->tip = segcount - 1;
/* AND! link the tree to the root */
BLI_addtail(&pchan_root->iktree, tree);
}
else {
tree->iterations = MAX2(data->iterations, tree->iterations);
tree->stretch = tree->stretch && !(data->flag & CONSTRAINT_IK_STRETCH);
/* skip common pose channels and add remaining*/
size = MIN2(segcount, tree->totchannel);
a = t = 0;
while (a < size && t < tree->totchannel) {
/* locate first matching channel */
for (; t < tree->totchannel && tree->pchan[t] != chanlist[segcount - a - 1]; t++) ;
if (t >= tree->totchannel)
break;
for (; a < size && t < tree->totchannel && tree->pchan[t] == chanlist[segcount - a - 1]; a++, t++) ;
}
segcount = segcount - a;
target->tip = tree->totchannel + segcount - 1;
if (segcount > 0) {
for (parent = a - 1; parent < tree->totchannel; parent++)
if (tree->pchan[parent] == chanlist[segcount - 1]->parent)
break;
/* shouldn't happen, but could with dependency cycles */
if (parent == tree->totchannel)
parent = a - 1;
/* resize array */
newsize = tree->totchannel + segcount;
oldchan = tree->pchan;
oldparent = tree->parent;
tree->pchan = MEM_callocN(newsize * sizeof(void *), "ik tree pchan");
tree->parent = MEM_callocN(newsize * sizeof(int), "ik tree parent");
memcpy(tree->pchan, oldchan, sizeof(void *) * tree->totchannel);
memcpy(tree->parent, oldparent, sizeof(int) * tree->totchannel);
MEM_freeN(oldchan);
MEM_freeN(oldparent);
/* add new pose channels at the end, in reverse order */
for (a = 0; a < segcount; a++) {
tree->pchan[tree->totchannel + a] = chanlist[segcount - a - 1];
tree->parent[tree->totchannel + a] = tree->totchannel + a - 1;
}
tree->parent[tree->totchannel] = parent;
tree->totchannel = newsize;
}
/* move tree to end of list, for correct evaluation order */
BLI_remlink(&pchan_root->iktree, tree);
BLI_addtail(&pchan_root->iktree, tree);
}
/* add target to the tree */
BLI_addtail(&tree->targets, target);
/* mark root channel having an IK tree */
pchan_root->flag |= POSE_IKTREE;
}
/* transform from bone(b) to bone(b+1), store in chan_mat */
static void make_dmats(bPoseChannel *pchan)
{
if (pchan->parent) {
float iR_parmat[4][4];
invert_m4_m4(iR_parmat, pchan->parent->pose_mat);
mul_m4_m4m4(pchan->chan_mat, iR_parmat, pchan->pose_mat); // delta mat
}
else {
copy_m4_m4(pchan->chan_mat, pchan->pose_mat);
}
}
/* applies IK matrix to pchan, IK is done separated */
/* formula: pose_mat(b) = pose_mat(b-1) * diffmat(b-1, b) * ik_mat(b) */
/* to make this work, the diffmats have to be precalculated! Stored in chan_mat */
static void where_is_ik_bone(bPoseChannel *pchan, float ik_mat[3][3]) // nr = to detect if this is first bone
{
float vec[3], ikmat[4][4];
copy_m4_m3(ikmat, ik_mat);
if (pchan->parent)
mul_m4_m4m4(pchan->pose_mat, pchan->parent->pose_mat, pchan->chan_mat);
else
copy_m4_m4(pchan->pose_mat, pchan->chan_mat);
#ifdef USE_NONUNIFORM_SCALE
/* apply IK mat, but as if the bones have uniform scale since the IK solver
* is not aware of non-uniform scale */
float scale[3];
mat4_to_size(scale, pchan->pose_mat);
normalize_v3_length(pchan->pose_mat[0], scale[1]);
normalize_v3_length(pchan->pose_mat[2], scale[1]);
#endif
mul_m4_m4m4(pchan->pose_mat, pchan->pose_mat, ikmat);
#ifdef USE_NONUNIFORM_SCALE
float ik_scale[3];
mat3_to_size(ik_scale, ik_mat);
normalize_v3_length(pchan->pose_mat[0], scale[0] * ik_scale[0]);
normalize_v3_length(pchan->pose_mat[2], scale[2] * ik_scale[2]);
#endif
/* calculate head */
copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]);
/* calculate tail */
copy_v3_v3(vec, pchan->pose_mat[1]);
mul_v3_fl(vec, pchan->bone->length);
add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
pchan->flag |= POSE_DONE;
}
/* called from within the core BKE_pose_where_is loop, all animsystems and constraints
* were executed & assigned. Now as last we do an IK pass */
static void execute_posetree(struct Depsgraph *depsgraph, struct Scene *scene, Object *ob, PoseTree *tree)
{
float R_parmat[3][3], identity[3][3];
float iR_parmat[3][3];
float R_bonemat[3][3];
float goalrot[3][3], goalpos[3];
float rootmat[4][4], imat[4][4];
float goal[4][4], goalinv[4][4];
float irest_basis[3][3], full_basis[3][3];
float end_pose[4][4], world_pose[4][4];
float basis[3][3], rest_basis[3][3], start[3], *ikstretch = NULL;
float resultinf = 0.0f;
int a, flag, hasstretch = 0, resultblend = 0;
bPoseChannel *pchan;
IK_Segment *seg, *parent, **iktree, *iktarget;
IK_Solver *solver;
PoseTarget *target;
bKinematicConstraint *data, *poleangledata = NULL;
Bone *bone;
if (tree->totchannel == 0)
return;
iktree = MEM_mallocN(sizeof(void *) * tree->totchannel, "ik tree");
for (a = 0; a < tree->totchannel; a++) {
float length;
pchan = tree->pchan[a];
bone = pchan->bone;
/* set DoF flag */
flag = 0;
if (!(pchan->ikflag & BONE_IK_NO_XDOF) && !(pchan->ikflag & BONE_IK_NO_XDOF_TEMP))
flag |= IK_XDOF;
if (!(pchan->ikflag & BONE_IK_NO_YDOF) && !(pchan->ikflag & BONE_IK_NO_YDOF_TEMP))
flag |= IK_YDOF;
if (!(pchan->ikflag & BONE_IK_NO_ZDOF) && !(pchan->ikflag & BONE_IK_NO_ZDOF_TEMP))
flag |= IK_ZDOF;
if (tree->stretch && (pchan->ikstretch > 0.0f)) {
flag |= IK_TRANS_YDOF;
hasstretch = 1;
}
seg = iktree[a] = IK_CreateSegment(flag);
/* find parent */
if (a == 0)
parent = NULL;
else
parent = iktree[tree->parent[a]];
IK_SetParent(seg, parent);
/* get the matrix that transforms from prevbone into this bone */
copy_m3_m4(R_bonemat, pchan->pose_mat);
/* gather transformations for this IK segment */
if (pchan->parent)
copy_m3_m4(R_parmat, pchan->parent->pose_mat);
else
unit_m3(R_parmat);
/* bone offset */
if (pchan->parent && (a > 0))
sub_v3_v3v3(start, pchan->pose_head, pchan->parent->pose_tail);
else
/* only root bone (a = 0) has no parent */
start[0] = start[1] = start[2] = 0.0f;
/* change length based on bone size */
length = bone->length * len_v3(R_bonemat[1]);
/* basis must be pure rotation */
normalize_m3(R_bonemat);
normalize_m3(R_parmat);
/* compute rest basis and its inverse */
copy_m3_m3(rest_basis, bone->bone_mat);
transpose_m3_m3(irest_basis, bone->bone_mat);
/* compute basis with rest_basis removed */
invert_m3_m3(iR_parmat, R_parmat);
mul_m3_m3m3(full_basis, iR_parmat, R_bonemat);
mul_m3_m3m3(basis, irest_basis, full_basis);
/* transform offset into local bone space */
mul_m3_v3(iR_parmat, start);
IK_SetTransform(seg, start, rest_basis, basis, length);
if (pchan->ikflag & BONE_IK_XLIMIT)
IK_SetLimit(seg, IK_X, pchan->limitmin[0], pchan->limitmax[0]);
if (pchan->ikflag & BONE_IK_YLIMIT)
IK_SetLimit(seg, IK_Y, pchan->limitmin[1], pchan->limitmax[1]);
if (pchan->ikflag & BONE_IK_ZLIMIT)
IK_SetLimit(seg, IK_Z, pchan->limitmin[2], pchan->limitmax[2]);
IK_SetStiffness(seg, IK_X, pchan->stiffness[0]);
IK_SetStiffness(seg, IK_Y, pchan->stiffness[1]);
IK_SetStiffness(seg, IK_Z, pchan->stiffness[2]);
if (tree->stretch && (pchan->ikstretch > 0.0f)) {
const float ikstretch_sq = SQUARE(pchan->ikstretch);
/* this function does its own clamping */
IK_SetStiffness(seg, IK_TRANS_Y, 1.0f - ikstretch_sq);
IK_SetLimit(seg, IK_TRANS_Y, IK_STRETCH_STIFF_MIN, IK_STRETCH_STIFF_MAX);
}
}
solver = IK_CreateSolver(iktree[0]);
/* set solver goals */
/* first set the goal inverse transform, assuming the root of tree was done ok! */
pchan = tree->pchan[0];
if (pchan->parent) {
/* transform goal by parent mat, so this rotation is not part of the
* segment's basis. otherwise rotation limits do not work on the
* local transform of the segment itself. */
copy_m4_m4(rootmat, pchan->parent->pose_mat);
/* However, we do not want to get (i.e. reverse) parent's scale, as it generates [#31008]
* kind of nasty bugs... */
normalize_m4(rootmat);
}
else
unit_m4(rootmat);
copy_v3_v3(rootmat[3], pchan->pose_head);
mul_m4_m4m4(imat, ob->obmat, rootmat);
invert_m4_m4(goalinv, imat);
for (target = tree->targets.first; target; target = target->next) {
float polepos[3];
int poleconstrain = 0;
data = (bKinematicConstraint *)target->con->data;
/* 1.0=ctime, we pass on object for auto-ik (owner-type here is object, even though
* strictly speaking, it is a posechannel)
*/
BKE_constraint_target_matrix_get(depsgraph, scene, target->con, 0, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);
/* and set and transform goal */
mul_m4_m4m4(goal, goalinv, rootmat);
copy_v3_v3(goalpos, goal[3]);
copy_m3_m4(goalrot, goal);
normalize_m3(goalrot);
/* same for pole vector target */
if (data->poletar) {
BKE_constraint_target_matrix_get(depsgraph, scene, target->con, 1, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);
if (data->flag & CONSTRAINT_IK_SETANGLE) {
/* don't solve IK when we are setting the pole angle */
break;
}
else {
mul_m4_m4m4(goal, goalinv, rootmat);
copy_v3_v3(polepos, goal[3]);
poleconstrain = 1;
/* for pole targets, we blend the result of the ik solver
* instead of the target position, otherwise we can't get
* a smooth transition */
resultblend = 1;
resultinf = target->con->enforce;
if (data->flag & CONSTRAINT_IK_GETANGLE) {
poleangledata = data;
data->flag &= ~CONSTRAINT_IK_GETANGLE;
}
}
}
/* do we need blending? */
if (!resultblend && target->con->enforce != 1.0f) {
float q1[4], q2[4], q[4];
float fac = target->con->enforce;
float mfac = 1.0f - fac;
pchan = tree->pchan[target->tip];
/* end effector in world space */
copy_m4_m4(end_pose, pchan->pose_mat);
copy_v3_v3(end_pose[3], pchan->pose_tail);
mul_m4_series(world_pose, goalinv, ob->obmat, end_pose);
/* blend position */
goalpos[0] = fac * goalpos[0] + mfac * world_pose[3][0];
goalpos[1] = fac * goalpos[1] + mfac * world_pose[3][1];
goalpos[2] = fac * goalpos[2] + mfac * world_pose[3][2];
/* blend rotation */
mat3_to_quat(q1, goalrot);
mat4_to_quat(q2, world_pose);
interp_qt_qtqt(q, q1, q2, mfac);
quat_to_mat3(goalrot, q);
}
iktarget = iktree[target->tip];
if ((data->flag & CONSTRAINT_IK_POS) && data->weight != 0.0f) {
if (poleconstrain)
IK_SolverSetPoleVectorConstraint(solver, iktarget, goalpos,
polepos, data->poleangle, (poleangledata == data));
IK_SolverAddGoal(solver, iktarget, goalpos, data->weight);
}
if ((data->flag & CONSTRAINT_IK_ROT) && (data->orientweight != 0.0f))
if ((data->flag & CONSTRAINT_IK_AUTO) == 0)
IK_SolverAddGoalOrientation(solver, iktarget, goalrot,
data->orientweight);
}
/* solve */
IK_Solve(solver, 0.0f, tree->iterations);
if (poleangledata)
poleangledata->poleangle = IK_SolverGetPoleAngle(solver);
IK_FreeSolver(solver);
/* gather basis changes */
tree->basis_change = MEM_mallocN(sizeof(float[3][3]) * tree->totchannel, "ik basis change");
if (hasstretch)
ikstretch = MEM_mallocN(sizeof(float) * tree->totchannel, "ik stretch");
for (a = 0; a < tree->totchannel; a++) {
IK_GetBasisChange(iktree[a], tree->basis_change[a]);
if (hasstretch) {
/* have to compensate for scaling received from parent */
float parentstretch, stretch;
pchan = tree->pchan[a];
parentstretch = (tree->parent[a] >= 0) ? ikstretch[tree->parent[a]] : 1.0f;
if (tree->stretch && (pchan->ikstretch > 0.0f)) {
float trans[3], length;
IK_GetTranslationChange(iktree[a], trans);
length = pchan->bone->length * len_v3(pchan->pose_mat[1]);
ikstretch[a] = (length == 0.0f) ? 1.0f : (trans[1] + length) / length;
}
else
ikstretch[a] = 1.0;
stretch = (parentstretch == 0.0f) ? 1.0f : ikstretch[a] / parentstretch;
mul_v3_fl(tree->basis_change[a][0], stretch);
mul_v3_fl(tree->basis_change[a][1], stretch);
mul_v3_fl(tree->basis_change[a][2], stretch);
}
if (resultblend && resultinf != 1.0f) {
unit_m3(identity);
blend_m3_m3m3(tree->basis_change[a], identity,
tree->basis_change[a], resultinf);
}
IK_FreeSegment(iktree[a]);
}
MEM_freeN(iktree);
if (ikstretch) MEM_freeN(ikstretch);
}
static void free_posetree(PoseTree *tree)
{
BLI_freelistN(&tree->targets);
if (tree->pchan) MEM_freeN(tree->pchan);
if (tree->parent) MEM_freeN(tree->parent);
if (tree->basis_change) MEM_freeN(tree->basis_change);
MEM_freeN(tree);
}
///----------------------------------------
/// Plugin API for legacy iksolver
void iksolver_initialize_tree(struct Depsgraph *UNUSED(depsgraph), struct Scene *UNUSED(scene), struct Object *ob, float UNUSED(ctime))
{
bPoseChannel *pchan;
for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
if (pchan->constflag & PCHAN_HAS_IK) // flag is set on editing constraints
initialize_posetree(ob, pchan); // will attach it to root!
}
ob->pose->flag &= ~POSE_WAS_REBUILT;
}
void iksolver_execute_tree(struct Depsgraph *depsgraph, struct Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
while (pchan_root->iktree.first) {
PoseTree *tree = pchan_root->iktree.first;
int a;
/* stop on the first tree that isn't a standard IK chain */
if (tree->type != CONSTRAINT_TYPE_KINEMATIC)
return;
/* 4. walk over the tree for regular solving */
for (a = 0; a < tree->totchannel; a++) {
if (!(tree->pchan[a]->flag & POSE_DONE)) // successive trees can set the flag
BKE_pose_where_is_bone(depsgraph, scene, ob, tree->pchan[a], ctime, 1);
/* tell blender that this channel was controlled by IK, it's cleared on each BKE_pose_where_is() */
tree->pchan[a]->flag |= POSE_CHAIN;
}
/* 5. execute the IK solver */
execute_posetree(depsgraph, scene, ob, tree);
/* 6. apply the differences to the channels,
* we need to calculate the original differences first */
for (a = 0; a < tree->totchannel; a++) {
make_dmats(tree->pchan[a]);
}
for (a = 0; a < tree->totchannel; a++) {
/* sets POSE_DONE */
where_is_ik_bone(tree->pchan[a], tree->basis_change[a]);
}
/* 7. and free */
BLI_remlink(&pchan_root->iktree, tree);
free_posetree(tree);
}
}
void iksolver_release_tree(struct Scene *UNUSED(scene), struct Object *ob, float UNUSED(ctime))
{
iksolver_clear_data(ob->pose);
}
void iksolver_clear_data(bPose *pose)
{
for (bPoseChannel *pchan = pose->chanbase.first; pchan; pchan = pchan->next) {
if ((pchan->flag & POSE_IKTREE) == 0)
continue;
while (pchan->iktree.first) {
PoseTree *tree = pchan->iktree.first;
/* stop on the first tree that isn't a standard IK chain */
if (tree->type != CONSTRAINT_TYPE_KINEMATIC)
break;
BLI_remlink(&pchan->iktree, tree);
free_posetree(tree);
}
}
}