(inverted, normalized, transposed) making an inverted copy of an objects matrix used to be.. (2.42) imat= Mathutils.Matrix(ob.matrixWorld) imat.invert() # inverted.. I added but now removed imat= ob.matrixWorld.inverted() # with copy (current functionality)... imat= ob.matrixWorld.copy().invert()
		
			
				
	
	
		
			981 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			981 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * $Id$
 | 
						|
 * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version. The Blender
 | 
						|
 * Foundation also sells licenses for use in proprietary software under
 | 
						|
 * the Blender License.  See http://www.blender.org/BL/ for information
 | 
						|
 * about this.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * 
 | 
						|
 * Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes
 | 
						|
 *
 | 
						|
 * ***** END GPL/BL DUAL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
#include "Mathutils.h"
 | 
						|
 | 
						|
#include "BLI_blenlib.h"
 | 
						|
#include "BKE_utildefines.h"
 | 
						|
#include "BLI_arithb.h"
 | 
						|
#include "gen_utils.h"
 | 
						|
 | 
						|
 | 
						|
/*-------------------------DOC STRINGS ---------------------------*/
 | 
						|
char Vector_Zero_doc[] = "() - set all values in the vector to 0";
 | 
						|
char Vector_Normalize_doc[] = "() - normalize the vector";
 | 
						|
char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
 | 
						|
char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
 | 
						|
char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
 | 
						|
char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
 | 
						|
char Vector_toPoint_doc[] = "() - create a new Point Object from this vector";
 | 
						|
char Vector_ToTrackQuat_doc[] = "(track, up) - extract a quaternion from the vector and the track and up axis";
 | 
						|
char Vector_copy_doc[] = "() - return a copy of the vector";
 | 
						|
/*-----------------------METHOD DEFINITIONS ----------------------*/
 | 
						|
struct PyMethodDef Vector_methods[] = {
 | 
						|
	{"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
 | 
						|
	{"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc},
 | 
						|
	{"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc},
 | 
						|
	{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
 | 
						|
	{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
 | 
						|
	{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
 | 
						|
	{"toPoint", (PyCFunction) Vector_toPoint, METH_NOARGS, Vector_toPoint_doc},
 | 
						|
	{"toTrackQuat", ( PyCFunction ) Vector_ToTrackQuat, METH_VARARGS, Vector_ToTrackQuat_doc},
 | 
						|
	{"copy", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc},
 | 
						|
	{"__copy__", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc},
 | 
						|
	{NULL, NULL, 0, NULL}
 | 
						|
};
 | 
						|
/*-----------------------------METHODS----------------------------
 | 
						|
  --------------------------Vector.toPoint()----------------------
 | 
						|
  create a new point object to represent this vector */
 | 
						|
PyObject *Vector_toPoint(VectorObject * self)
 | 
						|
{
 | 
						|
	float coord[3];
 | 
						|
	int x;
 | 
						|
 | 
						|
	if(self->size < 2 || self->size > 3) {
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
			"Vector.toPoint(): inappropriate vector size - expects 2d or 3d vector\n");
 | 
						|
	} 
 | 
						|
	for(x = 0; x < self->size; x++){
 | 
						|
		coord[x] = self->vec[x];
 | 
						|
	}
 | 
						|
	
 | 
						|
	return newPointObject(coord, self->size, Py_NEW);
 | 
						|
}
 | 
						|
/*----------------------------Vector.zero() ----------------------
 | 
						|
  set the vector data to 0,0,0 */
 | 
						|
PyObject *Vector_Zero(VectorObject * self)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	for(x = 0; x < self->size; x++) {
 | 
						|
		self->vec[x] = 0.0f;
 | 
						|
	}
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
/*----------------------------Vector.normalize() -----------------
 | 
						|
  normalize the vector data to a unit vector */
 | 
						|
PyObject *Vector_Normalize(VectorObject * self)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	float norm = 0.0f;
 | 
						|
 | 
						|
	for(x = 0; x < self->size; x++) {
 | 
						|
		norm += self->vec[x] * self->vec[x];
 | 
						|
	}
 | 
						|
	norm = (float) sqrt(norm);
 | 
						|
	for(x = 0; x < self->size; x++) {
 | 
						|
		self->vec[x] /= norm;
 | 
						|
	}
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*----------------------------Vector.resize2D() ------------------
 | 
						|
  resize the vector to x,y */
 | 
						|
PyObject *Vector_Resize2D(VectorObject * self)
 | 
						|
{
 | 
						|
	if(self->data.blend_data){
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | 
						|
			"vector.resize2d(): cannot resize wrapped data - only python vectors\n");
 | 
						|
	}
 | 
						|
 | 
						|
	self->data.py_data = 
 | 
						|
		PyMem_Realloc(self->data.py_data, (sizeof(float) * 2));
 | 
						|
	if(self->data.py_data == NULL) {
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | 
						|
			"vector.resize2d(): problem allocating pointer space\n\n");
 | 
						|
	}
 | 
						|
	self->vec = self->data.py_data;  /*force*/
 | 
						|
	self->size = 2;
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
/*----------------------------Vector.resize3D() ------------------
 | 
						|
  resize the vector to x,y,z */
 | 
						|
PyObject *Vector_Resize3D(VectorObject * self)
 | 
						|
{
 | 
						|
	if(self->data.blend_data){
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | 
						|
			"vector.resize3d(): cannot resize wrapped data - only python vectors\n");
 | 
						|
	}
 | 
						|
 | 
						|
	self->data.py_data = 
 | 
						|
		PyMem_Realloc(self->data.py_data, (sizeof(float) * 3));
 | 
						|
	if(self->data.py_data == NULL) {
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | 
						|
			"vector.resize3d(): problem allocating pointer space\n\n");
 | 
						|
	}
 | 
						|
	self->vec = self->data.py_data;  /*force*/
 | 
						|
	if(self->size == 2){
 | 
						|
		self->data.py_data[2] = 0.0f;
 | 
						|
	}
 | 
						|
	self->size = 3;
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
/*----------------------------Vector.resize4D() ------------------
 | 
						|
  resize the vector to x,y,z,w */
 | 
						|
PyObject *Vector_Resize4D(VectorObject * self)
 | 
						|
{
 | 
						|
	if(self->data.blend_data){
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | 
						|
			"vector.resize4d(): cannot resize wrapped data - only python vectors\n");
 | 
						|
	}
 | 
						|
 | 
						|
	self->data.py_data = 
 | 
						|
		PyMem_Realloc(self->data.py_data, (sizeof(float) * 4));
 | 
						|
	if(self->data.py_data == NULL) {
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | 
						|
			"vector.resize4d(): problem allocating pointer space\n\n");
 | 
						|
	}
 | 
						|
	self->vec = self->data.py_data;  /*force*/
 | 
						|
	if(self->size == 2){
 | 
						|
		self->data.py_data[2] = 0.0f;
 | 
						|
		self->data.py_data[3] = 1.0f;
 | 
						|
	}else if(self->size == 3){
 | 
						|
		self->data.py_data[3] = 1.0f;
 | 
						|
	}
 | 
						|
	self->size = 4;
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
/*----------------------------Vector.toTrackQuat(track, up) ----------------------
 | 
						|
  extract a quaternion from the vector and the track and up axis */
 | 
						|
PyObject *Vector_ToTrackQuat( VectorObject * self, PyObject * args )
 | 
						|
{
 | 
						|
	float vec[3];
 | 
						|
	char *strack, *sup;
 | 
						|
	short track = 2, up = 1;
 | 
						|
 | 
						|
	if( !PyArg_ParseTuple ( args, "|ss", &strack, &sup ) ) {
 | 
						|
		return EXPP_ReturnPyObjError( PyExc_TypeError, 
 | 
						|
			"expected optional two strings\n" );
 | 
						|
	}
 | 
						|
	if (self->size != 3) {
 | 
						|
		return EXPP_ReturnPyObjError( PyExc_TypeError, "only for 3D vectors\n" );
 | 
						|
	}
 | 
						|
 | 
						|
	if (strack) {
 | 
						|
		if (strlen(strack) == 2) {
 | 
						|
			if (strack[0] == '-') {
 | 
						|
				switch(strack[1]) {
 | 
						|
					case 'X':
 | 
						|
					case 'x':
 | 
						|
						track = 3;
 | 
						|
						break;
 | 
						|
					case 'Y':
 | 
						|
					case 'y':
 | 
						|
						track = 4;
 | 
						|
						break;
 | 
						|
					case 'z':
 | 
						|
					case 'Z':
 | 
						|
						track = 5;
 | 
						|
						break;
 | 
						|
					default:
 | 
						|
						return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
										  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
								  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if (strlen(strack) == 1) {
 | 
						|
			switch(strack[0]) {
 | 
						|
			case '-':
 | 
						|
			case 'X':
 | 
						|
			case 'x':
 | 
						|
				track = 0;
 | 
						|
				break;
 | 
						|
			case 'Y':
 | 
						|
			case 'y':
 | 
						|
				track = 1;
 | 
						|
				break;
 | 
						|
			case 'z':
 | 
						|
			case 'Z':
 | 
						|
				track = 2;
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
								  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
							  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (sup) {
 | 
						|
		if (strlen(sup) == 1) {
 | 
						|
			switch(*sup) {
 | 
						|
			case 'X':
 | 
						|
			case 'x':
 | 
						|
				up = 0;
 | 
						|
				break;
 | 
						|
			case 'Y':
 | 
						|
			case 'y':
 | 
						|
				up = 1;
 | 
						|
				break;
 | 
						|
			case 'z':
 | 
						|
			case 'Z':
 | 
						|
				up = 2;
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
								  "only X, Y or Z for up axis\n" );
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
							  "only X, Y or Z for up axis\n" );
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (track == up) {
 | 
						|
			return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
						      "Can't have the same axis for track and up\n" );
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
		flip vector around, since vectoquat expect a vector from target to tracking object 
 | 
						|
		and the python function expects the inverse (a vector to the target).
 | 
						|
	*/
 | 
						|
	vec[0] = -self->vec[0];
 | 
						|
	vec[1] = -self->vec[1];
 | 
						|
	vec[2] = -self->vec[2];
 | 
						|
 | 
						|
	return newQuaternionObject(vectoquat(vec, track, up), Py_NEW);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*----------------------------Vector.copy() --------------------------------------
 | 
						|
  return a copy of the vector */
 | 
						|
PyObject *Vector_copy(VectorObject * self)
 | 
						|
{
 | 
						|
	return newVectorObject(self->vec, self->size, Py_NEW);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------dealloc()(internal) ----------------
 | 
						|
  free the py_object */
 | 
						|
static void Vector_dealloc(VectorObject * self)
 | 
						|
{
 | 
						|
	Py_XDECREF(self->coerced_object);
 | 
						|
	/*only free py_data*/
 | 
						|
	if(self->data.py_data){
 | 
						|
		PyMem_Free(self->data.py_data);
 | 
						|
	}
 | 
						|
	PyObject_DEL(self);
 | 
						|
}
 | 
						|
/*----------------------------getattr()(internal) ----------------
 | 
						|
  object.attribute access (get)*/
 | 
						|
static PyObject *Vector_getattr(VectorObject * self, char *name)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	double dot = 0.0f;
 | 
						|
 | 
						|
	if(STREQ(name,"x")){
 | 
						|
		return PyFloat_FromDouble(self->vec[0]);
 | 
						|
	}else if(STREQ(name, "y")){
 | 
						|
		return PyFloat_FromDouble(self->vec[1]);
 | 
						|
	}else if(STREQ(name, "z")){
 | 
						|
		if(self->size > 2){
 | 
						|
			return PyFloat_FromDouble(self->vec[2]);
 | 
						|
		}else{
 | 
						|
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
				"vector.z: error, cannot get this axis for a 2D vector\n");
 | 
						|
		}
 | 
						|
	}else if(STREQ(name, "w")){
 | 
						|
		if(self->size > 3){
 | 
						|
			return PyFloat_FromDouble(self->vec[3]);
 | 
						|
		}else{
 | 
						|
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
				"vector.w: error, cannot get this axis for a 3D vector\n");
 | 
						|
		}
 | 
						|
	}else if(STREQ2(name, "length", "magnitude")) {
 | 
						|
		for(x = 0; x < self->size; x++){
 | 
						|
			dot += (self->vec[x] * self->vec[x]);
 | 
						|
		}
 | 
						|
		return PyFloat_FromDouble(sqrt(dot));
 | 
						|
	}
 | 
						|
	if(STREQ(name, "wrapped")){
 | 
						|
		if(self->wrapped == Py_WRAP)
 | 
						|
			return EXPP_incr_ret((PyObject *)Py_True);
 | 
						|
		else 
 | 
						|
			return EXPP_incr_ret((PyObject *)Py_False);
 | 
						|
	}
 | 
						|
	return Py_FindMethod(Vector_methods, (PyObject *) self, name);
 | 
						|
}
 | 
						|
/*----------------------------setattr()(internal) ----------------
 | 
						|
  object.attribute access (set) */
 | 
						|
static int Vector_setattr(VectorObject * self, char *name, PyObject * v)
 | 
						|
{
 | 
						|
	PyObject *f = NULL;
 | 
						|
 | 
						|
	f = PyNumber_Float(v);
 | 
						|
	if(f == NULL) { /* parsed item not a number */
 | 
						|
		return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
			"vector.attribute = x: argument not a number\n");
 | 
						|
	}
 | 
						|
 | 
						|
	if(STREQ(name,"x")){
 | 
						|
		self->vec[0] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
	}else if(STREQ(name, "y")){
 | 
						|
		self->vec[1] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
	}else if(STREQ(name, "z")){
 | 
						|
		if(self->size > 2){
 | 
						|
			self->vec[2] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
		}else{
 | 
						|
			Py_DECREF(f);
 | 
						|
			return EXPP_ReturnIntError(PyExc_AttributeError,
 | 
						|
				"vector.z = x:  error, cannot set this axis for a 2D vector\n");
 | 
						|
		}
 | 
						|
	}else if(STREQ(name, "w")){
 | 
						|
		if(self->size > 3){
 | 
						|
			self->vec[3] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
		}else{
 | 
						|
			Py_DECREF(f);
 | 
						|
			return EXPP_ReturnIntError(PyExc_AttributeError,
 | 
						|
				"vector.w = x: error, cannot set this axis for a 2D vector\n");
 | 
						|
		}
 | 
						|
	}else{
 | 
						|
		Py_DECREF(f);
 | 
						|
		return EXPP_ReturnIntError(PyExc_AttributeError,
 | 
						|
				"vector.attribute = x: unknown attribute\n");
 | 
						|
	}
 | 
						|
 | 
						|
	Py_DECREF(f);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
/*----------------------------print object (internal)-------------
 | 
						|
  print the object to screen */
 | 
						|
static PyObject *Vector_repr(VectorObject * self)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	char buffer[48], str[1024];
 | 
						|
 | 
						|
	BLI_strncpy(str,"[",1024);
 | 
						|
	for(i = 0; i < self->size; i++){
 | 
						|
		if(i < (self->size - 1)){
 | 
						|
			sprintf(buffer, "%.6f, ", self->vec[i]);
 | 
						|
			strcat(str,buffer);
 | 
						|
		}else{
 | 
						|
			sprintf(buffer, "%.6f", self->vec[i]);
 | 
						|
			strcat(str,buffer);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	strcat(str, "](vector)");
 | 
						|
 | 
						|
	return PyString_FromString(str);
 | 
						|
}
 | 
						|
/*---------------------SEQUENCE PROTOCOLS------------------------
 | 
						|
  ----------------------------len(object)------------------------
 | 
						|
  sequence length*/
 | 
						|
static int Vector_len(VectorObject * self)
 | 
						|
{
 | 
						|
	return self->size;
 | 
						|
}
 | 
						|
/*----------------------------object[]---------------------------
 | 
						|
  sequence accessor (get)*/
 | 
						|
static PyObject *Vector_item(VectorObject * self, int i)
 | 
						|
{
 | 
						|
	if(i < 0 || i >= self->size)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_IndexError,
 | 
						|
		"vector[index]: out of range\n");
 | 
						|
 | 
						|
	return Py_BuildValue("f", self->vec[i]);
 | 
						|
 | 
						|
}
 | 
						|
/*----------------------------object[]-------------------------
 | 
						|
  sequence accessor (set)*/
 | 
						|
static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
 | 
						|
{
 | 
						|
	PyObject *f = NULL;
 | 
						|
 | 
						|
	f = PyNumber_Float(ob);
 | 
						|
	if(f == NULL) { /* parsed item not a number */
 | 
						|
		return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
			"vector[index] = x: index argument not a number\n");
 | 
						|
	}
 | 
						|
 | 
						|
	if(i < 0 || i >= self->size){
 | 
						|
		Py_DECREF(f);
 | 
						|
		return EXPP_ReturnIntError(PyExc_IndexError,
 | 
						|
			"vector[index] = x: assignment index out of range\n");
 | 
						|
	}
 | 
						|
	self->vec[i] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
	Py_DECREF(f);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
/*----------------------------object[z:y]------------------------
 | 
						|
  sequence slice (get) */
 | 
						|
static PyObject *Vector_slice(VectorObject * self, int begin, int end)
 | 
						|
{
 | 
						|
	PyObject *list = NULL;
 | 
						|
	int count;
 | 
						|
 | 
						|
	CLAMP(begin, 0, self->size);
 | 
						|
	CLAMP(end, 0, self->size);
 | 
						|
	begin = MIN2(begin,end);
 | 
						|
 | 
						|
	list = PyList_New(end - begin);
 | 
						|
	for(count = begin; count < end; count++) {
 | 
						|
		PyList_SetItem(list, count - begin,
 | 
						|
				PyFloat_FromDouble(self->vec[count]));
 | 
						|
	}
 | 
						|
 | 
						|
	return list;
 | 
						|
}
 | 
						|
/*----------------------------object[z:y]------------------------
 | 
						|
  sequence slice (set) */
 | 
						|
static int Vector_ass_slice(VectorObject * self, int begin, int end,
 | 
						|
			     PyObject * seq)
 | 
						|
{
 | 
						|
	int i, y, size = 0;
 | 
						|
	float vec[4];
 | 
						|
	PyObject *v, *f;
 | 
						|
 | 
						|
	CLAMP(begin, 0, self->size);
 | 
						|
	CLAMP(end, 0, self->size);
 | 
						|
	begin = MIN2(begin,end);
 | 
						|
 | 
						|
	size = PySequence_Length(seq);
 | 
						|
	if(size != (end - begin)){
 | 
						|
		return EXPP_ReturnIntError(PyExc_TypeError,
 | 
						|
			"vector[begin:end] = []: size mismatch in slice assignment\n");
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < size; i++) {
 | 
						|
		v = PySequence_GetItem(seq, i);
 | 
						|
		if (v == NULL) { /* Failed to read sequence */
 | 
						|
			return EXPP_ReturnIntError(PyExc_RuntimeError, 
 | 
						|
				"vector[begin:end] = []: unable to read sequence\n");
 | 
						|
		}
 | 
						|
 | 
						|
		f = PyNumber_Float(v);
 | 
						|
		if(f == NULL) { /* parsed item not a number */
 | 
						|
			Py_DECREF(v);
 | 
						|
			return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
				"vector[begin:end] = []: sequence argument not a number\n");
 | 
						|
		}
 | 
						|
 | 
						|
		vec[i] = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
		EXPP_decr2(f,v);
 | 
						|
	}
 | 
						|
	/*parsed well - now set in vector*/
 | 
						|
	for(y = 0; y < size; y++){
 | 
						|
		self->vec[begin + y] = vec[y];
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
/*------------------------NUMERIC PROTOCOLS----------------------
 | 
						|
  ------------------------obj + obj------------------------------
 | 
						|
  addition*/
 | 
						|
static PyObject *Vector_add(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	int x, size;
 | 
						|
	float vec[4];
 | 
						|
	VectorObject *vec1 = NULL, *vec2 = NULL;
 | 
						|
	PointObject *pt = NULL;
 | 
						|
 | 
						|
	vec1 = (VectorObject*)v1;
 | 
						|
	vec2 = (VectorObject*)v2;
 | 
						|
 | 
						|
	if(!vec1->coerced_object){
 | 
						|
		if(vec2->coerced_object){
 | 
						|
			if(PointObject_Check(vec2->coerced_object)){  /*VECTOR + POINT*/
 | 
						|
				/*Point translation*/
 | 
						|
				pt = (PointObject*)vec2->coerced_object;
 | 
						|
				size = vec1->size;
 | 
						|
				if(pt->size == size){
 | 
						|
					for(x = 0; x < size; x++){
 | 
						|
						vec[x] = vec1->vec[x] + pt->coord[x];
 | 
						|
					}	
 | 
						|
				}else{
 | 
						|
					return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
						"Vector addition: arguments are the wrong size....\n");
 | 
						|
				}
 | 
						|
				return newPointObject(vec, size, Py_NEW);
 | 
						|
			}
 | 
						|
		}else{ /*VECTOR + VECTOR*/
 | 
						|
			if(vec1->size != vec2->size){
 | 
						|
				return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
				"Vector addition: vectors must have the same dimensions for this operation\n");
 | 
						|
			}
 | 
						|
			size = vec1->size;
 | 
						|
			for(x = 0; x < size; x++) {
 | 
						|
				vec[x] = vec1->vec[x] +	vec2->vec[x];
 | 
						|
			}
 | 
						|
			return newVectorObject(vec, size, Py_NEW);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
		"Vector addition: arguments not valid for this operation....\n");
 | 
						|
}
 | 
						|
/*------------------------obj - obj------------------------------
 | 
						|
  subtraction*/
 | 
						|
static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	int x, size;
 | 
						|
	float vec[4];
 | 
						|
	VectorObject *vec1 = NULL, *vec2 = NULL;
 | 
						|
 | 
						|
	vec1 = (VectorObject*)v1;
 | 
						|
	vec2 = (VectorObject*)v2;
 | 
						|
 | 
						|
	if(vec1->coerced_object || vec2->coerced_object){
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
			"Vector subtraction: arguments not valid for this operation....\n");
 | 
						|
	}
 | 
						|
	if(vec1->size != vec2->size){
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
		"Vector subtraction: vectors must have the same dimensions for this operation\n");
 | 
						|
	}
 | 
						|
 | 
						|
	size = vec1->size;
 | 
						|
	for(x = 0; x < size; x++) {
 | 
						|
		vec[x] = vec1->vec[x] -	vec2->vec[x];
 | 
						|
	}
 | 
						|
 | 
						|
	return newVectorObject(vec, size, Py_NEW);
 | 
						|
}
 | 
						|
/*------------------------obj * obj------------------------------
 | 
						|
  mulplication*/
 | 
						|
static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	int x, size;
 | 
						|
	float vec[4], scalar;
 | 
						|
	double dot = 0.0f;
 | 
						|
	VectorObject *vec1 = NULL, *vec2 = NULL;
 | 
						|
	PyObject *f = NULL, *retObj = NULL;
 | 
						|
	MatrixObject *mat = NULL;
 | 
						|
	QuaternionObject *quat = NULL;
 | 
						|
 | 
						|
	vec1 = (VectorObject*)v1;
 | 
						|
	vec2 = (VectorObject*)v2;
 | 
						|
 | 
						|
	if(vec1->coerced_object){
 | 
						|
		if (PyFloat_Check(vec1->coerced_object) || 
 | 
						|
			PyInt_Check(vec1->coerced_object)){	/* FLOAT/INT * VECTOR */
 | 
						|
			f = PyNumber_Float(vec1->coerced_object);
 | 
						|
			if(f == NULL) { /* parsed item not a number */
 | 
						|
				return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
					"Vector multiplication: arguments not acceptable for this operation\n");
 | 
						|
			}
 | 
						|
 | 
						|
			scalar = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
			size = vec2->size;
 | 
						|
			for(x = 0; x < size; x++) {
 | 
						|
				vec[x] = vec2->vec[x] *	scalar;
 | 
						|
			}
 | 
						|
			Py_DECREF(f);
 | 
						|
			return newVectorObject(vec, size, Py_NEW);
 | 
						|
		}
 | 
						|
	}else{
 | 
						|
		if(vec2->coerced_object){
 | 
						|
			if(MatrixObject_Check(vec2->coerced_object)){ /*VECTOR * MATRIX*/
 | 
						|
				mat = (MatrixObject*)vec2->coerced_object;
 | 
						|
				return retObj = row_vector_multiplication(vec1, mat);
 | 
						|
			}else if (PyFloat_Check(vec2->coerced_object) || 
 | 
						|
				PyInt_Check(vec2->coerced_object)){	/* VECTOR * FLOAT/INT */
 | 
						|
				f = PyNumber_Float(vec2->coerced_object);
 | 
						|
				if(f == NULL) { /* parsed item not a number */
 | 
						|
					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
						"Vector multiplication: arguments not acceptable for this operation\n");
 | 
						|
				}
 | 
						|
 | 
						|
				scalar = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
				size = vec1->size;
 | 
						|
				for(x = 0; x < size; x++) {
 | 
						|
					vec[x] = vec1->vec[x] *	scalar;
 | 
						|
				}
 | 
						|
				Py_DECREF(f);
 | 
						|
				return newVectorObject(vec, size, Py_NEW);
 | 
						|
			}else if(QuaternionObject_Check(vec2->coerced_object)){  /*VECTOR * QUATERNION*/
 | 
						|
				quat = (QuaternionObject*)vec2->coerced_object;
 | 
						|
				if(vec1->size != 3){
 | 
						|
					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
						"Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
 | 
						|
				}
 | 
						|
				return quat_rotation((PyObject*)vec1, (PyObject*)quat);
 | 
						|
			}
 | 
						|
		}else{  /*VECTOR * VECTOR*/
 | 
						|
			if(vec1->size != vec2->size){
 | 
						|
				return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
					"Vector multiplication: vectors must have the same dimensions for this operation\n");
 | 
						|
			}
 | 
						|
			size = vec1->size;
 | 
						|
			/*dot product*/
 | 
						|
			for(x = 0; x < size; x++) {
 | 
						|
				dot += vec1->vec[x] * vec2->vec[x];
 | 
						|
			}
 | 
						|
			return PyFloat_FromDouble(dot);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
		"Vector multiplication: arguments not acceptable for this operation\n");
 | 
						|
}
 | 
						|
 | 
						|
/*------------------------obj / obj------------------------------
 | 
						|
  divide*/
 | 
						|
static PyObject *Vector_div(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	int x, size;
 | 
						|
	float vec[4], scalar;
 | 
						|
 | 
						|
	VectorObject *vec1 = NULL, *vec2 = NULL;
 | 
						|
	PyObject *f = NULL;
 | 
						|
 | 
						|
	
 | 
						|
	if(!VectorObject_Check(v1)) { /* not a vector */
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
			"Vector division: Vector must be divided by a float\n");
 | 
						|
	}
 | 
						|
	
 | 
						|
	vec1 = (VectorObject*)v1; /* vector */
 | 
						|
	vec2 = (VectorObject*)v2; /* fliat/int, somehow we need to use a vector to acess it */
 | 
						|
	
 | 
						|
	f = PyNumber_Float(vec2->coerced_object); /* why do we need to go through coerced_object - Cam */
 | 
						|
	if(f == NULL) { /* parsed item not a number*/
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
			"Vector division: Vector must be divided by a float\n");
 | 
						|
	}
 | 
						|
 | 
						|
	scalar = (float)PyFloat_AS_DOUBLE(f);
 | 
						|
	Py_DECREF(f);
 | 
						|
	
 | 
						|
	if(scalar==0.0) { /* not a vector */
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_ZeroDivisionError, 
 | 
						|
			"Vector division: divide by zero error.\n");
 | 
						|
	}
 | 
						|
	
 | 
						|
	if (PyFloat_Check(vec2->coerced_object) || 
 | 
						|
		PyInt_Check(vec2->coerced_object)){	/* VECTOR / (FLOAT or INT)*/
 | 
						|
		
 | 
						|
		size = vec1->size;
 | 
						|
		for(x = 0; x < size; x++) {
 | 
						|
			vec[x] = vec1->vec[x] /	scalar;
 | 
						|
		}
 | 
						|
		return newVectorObject(vec, size, Py_NEW);
 | 
						|
	}
 | 
						|
	
 | 
						|
	return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
		"Vector division: arguments not acceptable for this operation\n");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*-------------------------- -obj -------------------------------
 | 
						|
  returns the negative of this object*/
 | 
						|
static PyObject *Vector_neg(VectorObject *self)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	float vec[4];
 | 
						|
	for(x = 0; x < self->size; x++){
 | 
						|
		vec[x] = -self->vec[x];
 | 
						|
	}
 | 
						|
 | 
						|
	return newVectorObject(vec, self->size, Py_NEW);
 | 
						|
}
 | 
						|
/*------------------------coerce(obj, obj)-----------------------
 | 
						|
  coercion of unknown types to type VectorObject for numeric protocols
 | 
						|
  Coercion() is called whenever a math operation has 2 operands that
 | 
						|
 it doesn't understand how to evaluate. 2+Matrix for example. We want to 
 | 
						|
 evaluate some of these operations like: (vector * 2), however, for math
 | 
						|
 to proceed, the unknown operand must be cast to a type that python math will
 | 
						|
 understand. (e.g. in the case above case, 2 must be cast to a vector and 
 | 
						|
 then call vector.multiply(vector, scalar_cast_as_vector)*/
 | 
						|
static int Vector_coerce(PyObject ** v1, PyObject ** v2)
 | 
						|
{
 | 
						|
	if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) || 
 | 
						|
			QuaternionObject_Check(*v2) || PointObject_Check(*v2)) {
 | 
						|
		PyObject *coerced = EXPP_incr_ret(*v2);
 | 
						|
		*v2 = newVectorObject(NULL,3,Py_NEW);
 | 
						|
		((VectorObject*)*v2)->coerced_object = coerced;
 | 
						|
		Py_INCREF (*v1);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
		"vector.coerce(): unknown operand - can't coerce for numeric protocols");
 | 
						|
}
 | 
						|
/*------------------------tp_doc*/
 | 
						|
static char VectorObject_doc[] = "This is a wrapper for vector objects.";
 | 
						|
/*------------------------vec_magnitude (internal)*/
 | 
						|
static double vec_magnitude(float *data, int size)
 | 
						|
{
 | 
						|
	double dot = 0.0f;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for(i=0; i<size; i++){
 | 
						|
		dot += data[i];
 | 
						|
	}
 | 
						|
	return (double)sqrt(dot);
 | 
						|
}
 | 
						|
/*------------------------tp_richcmpr
 | 
						|
  returns -1 execption, 0 false, 1 true */
 | 
						|
PyObject* Vector_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
 | 
						|
{
 | 
						|
	VectorObject *vecA = NULL, *vecB = NULL;
 | 
						|
	int result = 0;
 | 
						|
	float epsilon = .000001f;
 | 
						|
	double lenA,lenB;
 | 
						|
 | 
						|
	if (!VectorObject_Check(objectA) || !VectorObject_Check(objectB)){
 | 
						|
		if (comparison_type == Py_NE){
 | 
						|
			return EXPP_incr_ret(Py_True); 
 | 
						|
		}else{
 | 
						|
			return EXPP_incr_ret(Py_False);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	vecA = (VectorObject*)objectA;
 | 
						|
	vecB = (VectorObject*)objectB;
 | 
						|
 | 
						|
	if (vecA->size != vecB->size){
 | 
						|
		if (comparison_type == Py_NE){
 | 
						|
			return EXPP_incr_ret(Py_True); 
 | 
						|
		}else{
 | 
						|
			return EXPP_incr_ret(Py_False);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	switch (comparison_type){
 | 
						|
		case Py_LT:
 | 
						|
			lenA = vec_magnitude(vecA->vec, vecA->size);
 | 
						|
			lenB = vec_magnitude(vecB->vec, vecB->size);
 | 
						|
			if( lenA < lenB ){
 | 
						|
				result = 1;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case Py_LE:
 | 
						|
			lenA = vec_magnitude(vecA->vec, vecA->size);
 | 
						|
			lenB = vec_magnitude(vecB->vec, vecB->size);
 | 
						|
			if( lenA < lenB ){
 | 
						|
				result = 1;
 | 
						|
			}else{
 | 
						|
				result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case Py_EQ:
 | 
						|
			result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1);
 | 
						|
			break;
 | 
						|
		case Py_NE:
 | 
						|
			result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1);
 | 
						|
			if (result == 0){
 | 
						|
				result = 1;
 | 
						|
			}else{
 | 
						|
				result = 0;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case Py_GT:
 | 
						|
			lenA = vec_magnitude(vecA->vec, vecA->size);
 | 
						|
			lenB = vec_magnitude(vecB->vec, vecB->size);
 | 
						|
			if( lenA > lenB ){
 | 
						|
				result = 1;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case Py_GE:
 | 
						|
			lenA = vec_magnitude(vecA->vec, vecA->size);
 | 
						|
			lenB = vec_magnitude(vecB->vec, vecB->size);
 | 
						|
			if( lenA > lenB ){
 | 
						|
				result = 1;
 | 
						|
			}else{
 | 
						|
				result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			printf("The result of the comparison could not be evaluated");
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (result == 1){
 | 
						|
		return EXPP_incr_ret(Py_True);
 | 
						|
	}else{
 | 
						|
		return EXPP_incr_ret(Py_False);
 | 
						|
	}
 | 
						|
}
 | 
						|
/*-----------------PROTCOL DECLARATIONS--------------------------*/
 | 
						|
static PySequenceMethods Vector_SeqMethods = {
 | 
						|
	(inquiry) Vector_len,						/* sq_length */
 | 
						|
	(binaryfunc) 0,								/* sq_concat */
 | 
						|
	(intargfunc) 0,								/* sq_repeat */
 | 
						|
	(intargfunc) Vector_item,					/* sq_item */
 | 
						|
	(intintargfunc) Vector_slice,				/* sq_slice */
 | 
						|
	(intobjargproc) Vector_ass_item,			/* sq_ass_item */
 | 
						|
	(intintobjargproc) Vector_ass_slice,		/* sq_ass_slice */
 | 
						|
};
 | 
						|
static PyNumberMethods Vector_NumMethods = {
 | 
						|
	(binaryfunc) Vector_add,					/* __add__ */
 | 
						|
	(binaryfunc) Vector_sub,					/* __sub__ */
 | 
						|
	(binaryfunc) Vector_mul,					/* __mul__ */
 | 
						|
	(binaryfunc) Vector_div,					/* __div__ */
 | 
						|
	(binaryfunc) 0,								/* __mod__ */
 | 
						|
	(binaryfunc) 0,								/* __divmod__ */
 | 
						|
	(ternaryfunc) 0,							/* __pow__ */
 | 
						|
	(unaryfunc) Vector_neg,						/* __neg__ */
 | 
						|
	(unaryfunc) 0,								/* __pos__ */
 | 
						|
	(unaryfunc) 0,								/* __abs__ */
 | 
						|
	(inquiry) 0,								/* __nonzero__ */
 | 
						|
	(unaryfunc) 0,								/* __invert__ */
 | 
						|
	(binaryfunc) 0,								/* __lshift__ */
 | 
						|
	(binaryfunc) 0,								/* __rshift__ */
 | 
						|
	(binaryfunc) 0,								/* __and__ */
 | 
						|
	(binaryfunc) 0,								/* __xor__ */
 | 
						|
	(binaryfunc) 0,								/* __or__ */
 | 
						|
	(coercion)  Vector_coerce,					/* __coerce__ */
 | 
						|
	(unaryfunc) 0,								/* __int__ */
 | 
						|
	(unaryfunc) 0,								/* __long__ */
 | 
						|
	(unaryfunc) 0,								/* __float__ */
 | 
						|
	(unaryfunc) 0,								/* __oct__ */
 | 
						|
	(unaryfunc) 0,								/* __hex__ */
 | 
						|
 | 
						|
};
 | 
						|
/*------------------PY_OBECT DEFINITION--------------------------*/
 | 
						|
PyTypeObject vector_Type = {
 | 
						|
	PyObject_HEAD_INIT(NULL)		/*tp_head*/
 | 
						|
	0,								/*tp_internal*/
 | 
						|
	"vector",						/*tp_name*/
 | 
						|
	sizeof(VectorObject),			/*tp_basicsize*/
 | 
						|
	0,								/*tp_itemsize*/
 | 
						|
	(destructor)Vector_dealloc,		/*tp_dealloc*/
 | 
						|
	0,								/*tp_print*/
 | 
						|
	(getattrfunc)Vector_getattr,	/*tp_getattr*/
 | 
						|
	(setattrfunc) Vector_setattr,	/*tp_setattr*/
 | 
						|
	0,								/*tp_compare*/
 | 
						|
	(reprfunc) Vector_repr,			/*tp_repr*/
 | 
						|
	&Vector_NumMethods,				/*tp_as_number*/
 | 
						|
	&Vector_SeqMethods,				/*tp_as_sequence*/
 | 
						|
	0,								/*tp_as_mapping*/
 | 
						|
	0,								/*tp_hash*/
 | 
						|
	0,								/*tp_call*/
 | 
						|
	0,								/*tp_str*/
 | 
						|
	0,								/*tp_getattro*/
 | 
						|
	0,								/*tp_setattro*/
 | 
						|
	0,								/*tp_as_buffer*/
 | 
						|
	Py_TPFLAGS_DEFAULT,				/*tp_flags*/
 | 
						|
	VectorObject_doc,				/*tp_doc*/
 | 
						|
	0,								/*tp_traverse*/
 | 
						|
	0,								/*tp_clear*/
 | 
						|
	(richcmpfunc)Vector_richcmpr,	/*tp_richcompare*/
 | 
						|
	0,								/*tp_weaklistoffset*/
 | 
						|
	0,								/*tp_iter*/
 | 
						|
	0,								/*tp_iternext*/
 | 
						|
	0,								/*tp_methods*/
 | 
						|
	0,								/*tp_members*/
 | 
						|
	0,								/*tp_getset*/
 | 
						|
	0,								/*tp_base*/
 | 
						|
	0,								/*tp_dict*/
 | 
						|
	0,								/*tp_descr_get*/
 | 
						|
	0,								/*tp_descr_set*/
 | 
						|
	0,								/*tp_dictoffset*/
 | 
						|
	0,								/*tp_init*/
 | 
						|
	0,								/*tp_alloc*/
 | 
						|
	0,								/*tp_new*/
 | 
						|
	0,								/*tp_free*/
 | 
						|
	0,								/*tp_is_gc*/
 | 
						|
	0,								/*tp_bases*/
 | 
						|
	0,								/*tp_mro*/
 | 
						|
	0,								/*tp_cache*/
 | 
						|
	0,								/*tp_subclasses*/
 | 
						|
	0,								/*tp_weaklist*/
 | 
						|
	0								/*tp_del*/
 | 
						|
};
 | 
						|
 | 
						|
/*------------------------newVectorObject (internal)-------------
 | 
						|
  creates a new vector object
 | 
						|
  pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | 
						|
 (i.e. it was allocated elsewhere by MEM_mallocN())
 | 
						|
  pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | 
						|
 (i.e. it must be created here with PyMEM_malloc())*/
 | 
						|
PyObject *newVectorObject(float *vec, int size, int type)
 | 
						|
{
 | 
						|
	VectorObject *self;
 | 
						|
	int x;
 | 
						|
 | 
						|
	vector_Type.ob_type = &PyType_Type;
 | 
						|
	self = PyObject_NEW(VectorObject, &vector_Type);
 | 
						|
	self->data.blend_data = NULL;
 | 
						|
	self->data.py_data = NULL;
 | 
						|
	if(size > 4 || size < 2)
 | 
						|
		return NULL;
 | 
						|
	self->size = size;
 | 
						|
	self->coerced_object = NULL;
 | 
						|
 | 
						|
	if(type == Py_WRAP){
 | 
						|
		self->data.blend_data = vec;
 | 
						|
		self->vec = self->data.blend_data;
 | 
						|
		self->wrapped = Py_WRAP;
 | 
						|
	}else if (type == Py_NEW){
 | 
						|
		self->data.py_data = PyMem_Malloc(size * sizeof(float));
 | 
						|
		self->vec = self->data.py_data;
 | 
						|
		if(!vec) { /*new empty*/
 | 
						|
			for(x = 0; x < size; x++){
 | 
						|
				self->vec[x] = 0.0f;
 | 
						|
			}
 | 
						|
			if(size == 4)  /* do the homogenous thing */
 | 
						|
				self->vec[3] = 1.0f;
 | 
						|
		}else{
 | 
						|
			for(x = 0; x < size; x++){
 | 
						|
				self->vec[x] = vec[x];
 | 
						|
			}
 | 
						|
		}
 | 
						|
		self->wrapped = Py_NEW;
 | 
						|
	}else{ /*bad type*/
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return (PyObject *) self;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  #############################DEPRECATED################################
 | 
						|
  #######################################################################
 | 
						|
  ----------------------------Vector.negate() --------------------
 | 
						|
  set the vector to it's negative -x, -y, -z */
 | 
						|
PyObject *Vector_Negate(VectorObject * self)
 | 
						|
{
 | 
						|
	int x;
 | 
						|
	for(x = 0; x < self->size; x++) {
 | 
						|
		self->vec[x] = -(self->vec[x]);
 | 
						|
	}
 | 
						|
	/*printf("Vector.negate(): Deprecated: use -vector instead\n");*/
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
/*###################################################################
 | 
						|
  ###########################DEPRECATED##############################*/
 | 
						|
 |