1
1
This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/blender/blender_python.cpp
Brecht Van Lommel fcc844f8fb BLI: use explicit task isolation, no longer part of parallel operations
After looking into task isolation issues with Sergey, we couldn't find the
reason behind the deadlocks that we are getting in T87938 and a Sprite Fright
file involving motion blur renders.

There is no apparent place where we adding or waiting on tasks in a task group
from different isolation regions, which is what is known to cause problems. Yet
it still hangs. Either we do not understand some limitation of TBB isolation,
or there is a bug in TBB, but we could not figure it out.

Instead the idea is to use isolation only where we know we need it: when
holding a mutex lock and then doing some multithreaded operation within that
locked region. Three places where we do this now:
* Generated images
* Cached BVH tree building
* OpenVDB lazy grid loading

Compared to the more automatic approach previously used, there is the downside
that it is easy to miss places where we need isolation. Yet doing it more
automatically is also causing unexpected issue and bugs that we found no
solution for, so this seems better.

Patch implemented by Sergey and me.

Differential Revision: https://developer.blender.org/D11603
2021-06-15 17:28:44 +02:00

1136 lines
34 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <Python.h>
#include "blender/CCL_api.h"
#include "blender/blender_device.h"
#include "blender/blender_session.h"
#include "blender/blender_sync.h"
#include "blender/blender_util.h"
#include "render/denoising.h"
#include "render/merge.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_md5.h"
#include "util/util_opengl.h"
#include "util/util_openimagedenoise.h"
#include "util/util_path.h"
#include "util/util_string.h"
#include "util/util_task.h"
#include "util/util_tbb.h"
#include "util/util_types.h"
#ifdef WITH_OSL
# include "render/osl.h"
# include <OSL/oslconfig.h>
# include <OSL/oslquery.h>
#endif
#ifdef WITH_OPENCL
# include "device/device_intern.h"
#endif
CCL_NAMESPACE_BEGIN
namespace {
/* Flag describing whether debug flags were synchronized from scene. */
bool debug_flags_set = false;
void *pylong_as_voidptr_typesafe(PyObject *object)
{
if (object == Py_None)
return NULL;
return PyLong_AsVoidPtr(object);
}
PyObject *pyunicode_from_string(const char *str)
{
/* Ignore errors if device API returns invalid UTF-8 strings. */
return PyUnicode_DecodeUTF8(str, strlen(str), "ignore");
}
/* Synchronize debug flags from a given Blender scene.
* Return truth when device list needs invalidation.
*/
bool debug_flags_sync_from_scene(BL::Scene b_scene)
{
DebugFlagsRef flags = DebugFlags();
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
/* Backup some settings for comparison. */
DebugFlags::OpenCL::DeviceType opencl_device_type = flags.opencl.device_type;
/* Synchronize shared flags. */
flags.viewport_static_bvh = get_enum(cscene, "debug_bvh_type");
/* Synchronize CPU flags. */
flags.cpu.avx2 = get_boolean(cscene, "debug_use_cpu_avx2");
flags.cpu.avx = get_boolean(cscene, "debug_use_cpu_avx");
flags.cpu.sse41 = get_boolean(cscene, "debug_use_cpu_sse41");
flags.cpu.sse3 = get_boolean(cscene, "debug_use_cpu_sse3");
flags.cpu.sse2 = get_boolean(cscene, "debug_use_cpu_sse2");
flags.cpu.bvh_layout = (BVHLayout)get_enum(cscene, "debug_bvh_layout");
flags.cpu.split_kernel = get_boolean(cscene, "debug_use_cpu_split_kernel");
/* Synchronize CUDA flags. */
flags.cuda.adaptive_compile = get_boolean(cscene, "debug_use_cuda_adaptive_compile");
flags.cuda.split_kernel = get_boolean(cscene, "debug_use_cuda_split_kernel");
/* Synchronize OptiX flags. */
flags.optix.cuda_streams = get_int(cscene, "debug_optix_cuda_streams");
flags.optix.curves_api = get_boolean(cscene, "debug_optix_curves_api");
/* Synchronize OpenCL device type. */
switch (get_enum(cscene, "debug_opencl_device_type")) {
case 0:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_NONE;
break;
case 1:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_ALL;
break;
case 2:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_DEFAULT;
break;
case 3:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_CPU;
break;
case 4:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_GPU;
break;
case 5:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_ACCELERATOR;
break;
}
/* Synchronize other OpenCL flags. */
flags.opencl.debug = get_boolean(cscene, "debug_use_opencl_debug");
flags.opencl.mem_limit = ((size_t)get_int(cscene, "debug_opencl_mem_limit")) * 1024 * 1024;
return flags.opencl.device_type != opencl_device_type;
}
/* Reset debug flags to default values.
* Return truth when device list needs invalidation.
*/
bool debug_flags_reset()
{
DebugFlagsRef flags = DebugFlags();
/* Backup some settings for comparison. */
DebugFlags::OpenCL::DeviceType opencl_device_type = flags.opencl.device_type;
flags.reset();
return flags.opencl.device_type != opencl_device_type;
}
} /* namespace */
void python_thread_state_save(void **python_thread_state)
{
*python_thread_state = (void *)PyEval_SaveThread();
}
void python_thread_state_restore(void **python_thread_state)
{
PyEval_RestoreThread((PyThreadState *)*python_thread_state);
*python_thread_state = NULL;
}
static const char *PyC_UnicodeAsByte(PyObject *py_str, PyObject **coerce)
{
const char *result = PyUnicode_AsUTF8(py_str);
if (result) {
/* 99% of the time this is enough but we better support non unicode
* chars since blender doesn't limit this.
*/
return result;
}
else {
PyErr_Clear();
if (PyBytes_Check(py_str)) {
return PyBytes_AS_STRING(py_str);
}
else if ((*coerce = PyUnicode_EncodeFSDefault(py_str))) {
return PyBytes_AS_STRING(*coerce);
}
else {
/* Clear the error, so Cycles can be at least used without
* GPU and OSL support,
*/
PyErr_Clear();
return "";
}
}
}
static PyObject *init_func(PyObject * /*self*/, PyObject *args)
{
PyObject *path, *user_path;
int headless;
if (!PyArg_ParseTuple(args, "OOi", &path, &user_path, &headless)) {
return NULL;
}
PyObject *path_coerce = NULL, *user_path_coerce = NULL;
path_init(PyC_UnicodeAsByte(path, &path_coerce),
PyC_UnicodeAsByte(user_path, &user_path_coerce));
Py_XDECREF(path_coerce);
Py_XDECREF(user_path_coerce);
BlenderSession::headless = headless;
DebugFlags().running_inside_blender = true;
VLOG(2) << "Debug flags initialized to:\n" << DebugFlags();
Py_RETURN_NONE;
}
static PyObject *exit_func(PyObject * /*self*/, PyObject * /*args*/)
{
ShaderManager::free_memory();
TaskScheduler::free_memory();
Device::free_memory();
Py_RETURN_NONE;
}
static PyObject *create_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pyengine, *pypreferences, *pydata, *pyscreen, *pyregion, *pyv3d, *pyrv3d;
int preview_osl;
if (!PyArg_ParseTuple(args,
"OOOOOOOi",
&pyengine,
&pypreferences,
&pydata,
&pyscreen,
&pyregion,
&pyv3d,
&pyrv3d,
&preview_osl)) {
return NULL;
}
/* RNA */
ID *bScreen = (ID *)PyLong_AsVoidPtr(pyscreen);
PointerRNA engineptr;
RNA_pointer_create(NULL, &RNA_RenderEngine, (void *)PyLong_AsVoidPtr(pyengine), &engineptr);
BL::RenderEngine engine(engineptr);
PointerRNA preferencesptr;
RNA_pointer_create(
NULL, &RNA_Preferences, (void *)PyLong_AsVoidPtr(pypreferences), &preferencesptr);
BL::Preferences preferences(preferencesptr);
PointerRNA dataptr;
RNA_main_pointer_create((Main *)PyLong_AsVoidPtr(pydata), &dataptr);
BL::BlendData data(dataptr);
PointerRNA regionptr;
RNA_pointer_create(bScreen, &RNA_Region, pylong_as_voidptr_typesafe(pyregion), &regionptr);
BL::Region region(regionptr);
PointerRNA v3dptr;
RNA_pointer_create(bScreen, &RNA_SpaceView3D, pylong_as_voidptr_typesafe(pyv3d), &v3dptr);
BL::SpaceView3D v3d(v3dptr);
PointerRNA rv3dptr;
RNA_pointer_create(bScreen, &RNA_RegionView3D, pylong_as_voidptr_typesafe(pyrv3d), &rv3dptr);
BL::RegionView3D rv3d(rv3dptr);
/* create session */
BlenderSession *session;
if (rv3d) {
/* interactive viewport session */
int width = region.width();
int height = region.height();
session = new BlenderSession(engine, preferences, data, v3d, rv3d, width, height);
}
else {
/* offline session or preview render */
session = new BlenderSession(engine, preferences, data, preview_osl);
}
return PyLong_FromVoidPtr(session);
}
static PyObject *free_func(PyObject * /*self*/, PyObject *value)
{
delete (BlenderSession *)PyLong_AsVoidPtr(value);
Py_RETURN_NONE;
}
static PyObject *render_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pydepsgraph;
if (!PyArg_ParseTuple(args, "OO", &pysession, &pydepsgraph))
return NULL;
BlenderSession *session = (BlenderSession *)PyLong_AsVoidPtr(pysession);
PointerRNA depsgraphptr;
RNA_pointer_create(NULL, &RNA_Depsgraph, (ID *)PyLong_AsVoidPtr(pydepsgraph), &depsgraphptr);
BL::Depsgraph b_depsgraph(depsgraphptr);
/* Allow Blender to execute other Python scripts. */
python_thread_state_save(&session->python_thread_state);
session->render(b_depsgraph);
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
/* pixel_array and result passed as pointers */
static PyObject *bake_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pydepsgraph, *pyobject;
const char *pass_type;
int pass_filter, width, height;
if (!PyArg_ParseTuple(args,
"OOOsiii",
&pysession,
&pydepsgraph,
&pyobject,
&pass_type,
&pass_filter,
&width,
&height))
return NULL;
BlenderSession *session = (BlenderSession *)PyLong_AsVoidPtr(pysession);
PointerRNA depsgraphptr;
RNA_pointer_create(NULL, &RNA_Depsgraph, PyLong_AsVoidPtr(pydepsgraph), &depsgraphptr);
BL::Depsgraph b_depsgraph(depsgraphptr);
PointerRNA objectptr;
RNA_id_pointer_create((ID *)PyLong_AsVoidPtr(pyobject), &objectptr);
BL::Object b_object(objectptr);
python_thread_state_save(&session->python_thread_state);
session->bake(b_depsgraph, b_object, pass_type, pass_filter, width, height);
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *draw_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pygraph, *pyv3d, *pyrv3d;
if (!PyArg_ParseTuple(args, "OOOO", &pysession, &pygraph, &pyv3d, &pyrv3d))
return NULL;
BlenderSession *session = (BlenderSession *)PyLong_AsVoidPtr(pysession);
if (PyLong_AsVoidPtr(pyrv3d)) {
/* 3d view drawing */
int viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
session->draw(viewport[2], viewport[3]);
}
Py_RETURN_NONE;
}
static PyObject *reset_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pydata, *pydepsgraph;
if (!PyArg_ParseTuple(args, "OOO", &pysession, &pydata, &pydepsgraph))
return NULL;
BlenderSession *session = (BlenderSession *)PyLong_AsVoidPtr(pysession);
PointerRNA dataptr;
RNA_main_pointer_create((Main *)PyLong_AsVoidPtr(pydata), &dataptr);
BL::BlendData b_data(dataptr);
PointerRNA depsgraphptr;
RNA_pointer_create(NULL, &RNA_Depsgraph, PyLong_AsVoidPtr(pydepsgraph), &depsgraphptr);
BL::Depsgraph b_depsgraph(depsgraphptr);
python_thread_state_save(&session->python_thread_state);
session->reset_session(b_data, b_depsgraph);
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *sync_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pydepsgraph;
if (!PyArg_ParseTuple(args, "OO", &pysession, &pydepsgraph))
return NULL;
BlenderSession *session = (BlenderSession *)PyLong_AsVoidPtr(pysession);
PointerRNA depsgraphptr;
RNA_pointer_create(NULL, &RNA_Depsgraph, PyLong_AsVoidPtr(pydepsgraph), &depsgraphptr);
BL::Depsgraph b_depsgraph(depsgraphptr);
python_thread_state_save(&session->python_thread_state);
session->synchronize(b_depsgraph);
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *available_devices_func(PyObject * /*self*/, PyObject *args)
{
const char *type_name;
if (!PyArg_ParseTuple(args, "s", &type_name)) {
return NULL;
}
DeviceType type = Device::type_from_string(type_name);
/* "NONE" is defined by the add-on, see: `CyclesPreferences.get_device_types`. */
if ((type == DEVICE_NONE) && (strcmp(type_name, "NONE") != 0)) {
PyErr_Format(PyExc_ValueError, "Device \"%s\" not known.", type_name);
return NULL;
}
uint mask = (type == DEVICE_NONE) ? DEVICE_MASK_ALL : DEVICE_MASK(type);
mask |= DEVICE_MASK_CPU;
vector<DeviceInfo> devices = Device::available_devices(mask);
PyObject *ret = PyTuple_New(devices.size());
for (size_t i = 0; i < devices.size(); i++) {
DeviceInfo &device = devices[i];
string type_name = Device::string_from_type(device.type);
PyObject *device_tuple = PyTuple_New(4);
PyTuple_SET_ITEM(device_tuple, 0, pyunicode_from_string(device.description.c_str()));
PyTuple_SET_ITEM(device_tuple, 1, pyunicode_from_string(type_name.c_str()));
PyTuple_SET_ITEM(device_tuple, 2, pyunicode_from_string(device.id.c_str()));
PyTuple_SET_ITEM(device_tuple, 3, PyBool_FromLong(device.has_peer_memory));
PyTuple_SET_ITEM(ret, i, device_tuple);
}
return ret;
}
#ifdef WITH_OSL
static PyObject *osl_update_node_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pydata, *pynodegroup, *pynode;
const char *filepath = NULL;
if (!PyArg_ParseTuple(args, "OOOs", &pydata, &pynodegroup, &pynode, &filepath))
return NULL;
/* RNA */
PointerRNA dataptr;
RNA_main_pointer_create((Main *)PyLong_AsVoidPtr(pydata), &dataptr);
BL::BlendData b_data(dataptr);
PointerRNA nodeptr;
RNA_pointer_create((ID *)PyLong_AsVoidPtr(pynodegroup),
&RNA_ShaderNodeScript,
(void *)PyLong_AsVoidPtr(pynode),
&nodeptr);
BL::ShaderNodeScript b_node(nodeptr);
/* update bytecode hash */
string bytecode = b_node.bytecode();
if (!bytecode.empty()) {
MD5Hash md5;
md5.append((const uint8_t *)bytecode.c_str(), bytecode.size());
b_node.bytecode_hash(md5.get_hex().c_str());
}
else
b_node.bytecode_hash("");
/* query from file path */
OSL::OSLQuery query;
if (!OSLShaderManager::osl_query(query, filepath))
Py_RETURN_FALSE;
/* add new sockets from parameters */
set<void *> used_sockets;
for (int i = 0; i < query.nparams(); i++) {
const OSL::OSLQuery::Parameter *param = query.getparam(i);
/* skip unsupported types */
if (param->varlenarray || param->isstruct || param->type.arraylen > 1)
continue;
/* determine socket type */
string socket_type;
BL::NodeSocket::type_enum data_type = BL::NodeSocket::type_VALUE;
float4 default_float4 = make_float4(0.0f, 0.0f, 0.0f, 1.0f);
float default_float = 0.0f;
int default_int = 0;
string default_string = "";
if (param->isclosure) {
socket_type = "NodeSocketShader";
data_type = BL::NodeSocket::type_SHADER;
}
else if (param->type.vecsemantics == TypeDesc::COLOR) {
socket_type = "NodeSocketColor";
data_type = BL::NodeSocket::type_RGBA;
if (param->validdefault) {
default_float4[0] = param->fdefault[0];
default_float4[1] = param->fdefault[1];
default_float4[2] = param->fdefault[2];
}
}
else if (param->type.vecsemantics == TypeDesc::POINT ||
param->type.vecsemantics == TypeDesc::VECTOR ||
param->type.vecsemantics == TypeDesc::NORMAL) {
socket_type = "NodeSocketVector";
data_type = BL::NodeSocket::type_VECTOR;
if (param->validdefault) {
default_float4[0] = param->fdefault[0];
default_float4[1] = param->fdefault[1];
default_float4[2] = param->fdefault[2];
}
}
else if (param->type.aggregate == TypeDesc::SCALAR) {
if (param->type.basetype == TypeDesc::INT) {
socket_type = "NodeSocketInt";
data_type = BL::NodeSocket::type_INT;
if (param->validdefault)
default_int = param->idefault[0];
}
else if (param->type.basetype == TypeDesc::FLOAT) {
socket_type = "NodeSocketFloat";
data_type = BL::NodeSocket::type_VALUE;
if (param->validdefault)
default_float = param->fdefault[0];
}
else if (param->type.basetype == TypeDesc::STRING) {
socket_type = "NodeSocketString";
data_type = BL::NodeSocket::type_STRING;
if (param->validdefault)
default_string = param->sdefault[0].string();
}
else
continue;
}
else
continue;
/* find socket socket */
BL::NodeSocket b_sock(PointerRNA_NULL);
if (param->isoutput) {
b_sock = b_node.outputs[param->name.string()];
/* remove if type no longer matches */
if (b_sock && b_sock.bl_idname() != socket_type) {
b_node.outputs.remove(b_data, b_sock);
b_sock = BL::NodeSocket(PointerRNA_NULL);
}
}
else {
b_sock = b_node.inputs[param->name.string()];
/* remove if type no longer matches */
if (b_sock && b_sock.bl_idname() != socket_type) {
b_node.inputs.remove(b_data, b_sock);
b_sock = BL::NodeSocket(PointerRNA_NULL);
}
}
if (!b_sock) {
/* create new socket */
if (param->isoutput)
b_sock = b_node.outputs.create(
b_data, socket_type.c_str(), param->name.c_str(), param->name.c_str());
else
b_sock = b_node.inputs.create(
b_data, socket_type.c_str(), param->name.c_str(), param->name.c_str());
/* set default value */
if (data_type == BL::NodeSocket::type_VALUE) {
set_float(b_sock.ptr, "default_value", default_float);
}
else if (data_type == BL::NodeSocket::type_INT) {
set_int(b_sock.ptr, "default_value", default_int);
}
else if (data_type == BL::NodeSocket::type_RGBA) {
set_float4(b_sock.ptr, "default_value", default_float4);
}
else if (data_type == BL::NodeSocket::type_VECTOR) {
set_float3(b_sock.ptr, "default_value", float4_to_float3(default_float4));
}
else if (data_type == BL::NodeSocket::type_STRING) {
set_string(b_sock.ptr, "default_value", default_string);
}
}
used_sockets.insert(b_sock.ptr.data);
}
/* remove unused parameters */
bool removed;
do {
removed = false;
for (BL::NodeSocket &b_input : b_node.inputs) {
if (used_sockets.find(b_input.ptr.data) == used_sockets.end()) {
b_node.inputs.remove(b_data, b_input);
removed = true;
break;
}
}
for (BL::NodeSocket &b_output : b_node.outputs) {
if (used_sockets.find(b_output.ptr.data) == used_sockets.end()) {
b_node.outputs.remove(b_data, b_output);
removed = true;
break;
}
}
} while (removed);
Py_RETURN_TRUE;
}
static PyObject *osl_compile_func(PyObject * /*self*/, PyObject *args)
{
const char *inputfile = NULL, *outputfile = NULL;
if (!PyArg_ParseTuple(args, "ss", &inputfile, &outputfile))
return NULL;
/* return */
if (!OSLShaderManager::osl_compile(inputfile, outputfile))
Py_RETURN_FALSE;
Py_RETURN_TRUE;
}
#endif
static PyObject *system_info_func(PyObject * /*self*/, PyObject * /*value*/)
{
string system_info = Device::device_capabilities();
return pyunicode_from_string(system_info.c_str());
}
#ifdef WITH_OPENCL
static PyObject *opencl_disable_func(PyObject * /*self*/, PyObject * /*value*/)
{
VLOG(2) << "Disabling OpenCL platform.";
DebugFlags().opencl.device_type = DebugFlags::OpenCL::DEVICE_NONE;
Py_RETURN_NONE;
}
static PyObject *opencl_compile_func(PyObject * /*self*/, PyObject *args)
{
PyObject *sequence = PySequence_Fast(args, "Arguments must be a sequence");
if (sequence == NULL) {
Py_RETURN_FALSE;
}
vector<string> parameters;
for (Py_ssize_t i = 0; i < PySequence_Fast_GET_SIZE(sequence); i++) {
PyObject *item = PySequence_Fast_GET_ITEM(sequence, i);
PyObject *item_as_string = PyObject_Str(item);
const char *parameter_string = PyUnicode_AsUTF8(item_as_string);
parameters.push_back(parameter_string);
Py_DECREF(item_as_string);
}
Py_DECREF(sequence);
if (device_opencl_compile_kernel(parameters)) {
Py_RETURN_TRUE;
}
else {
Py_RETURN_FALSE;
}
}
#endif
static bool image_parse_filepaths(PyObject *pyfilepaths, vector<string> &filepaths)
{
if (PyUnicode_Check(pyfilepaths)) {
const char *filepath = PyUnicode_AsUTF8(pyfilepaths);
filepaths.push_back(filepath);
return true;
}
PyObject *sequence = PySequence_Fast(pyfilepaths,
"File paths must be a string or sequence of strings");
if (sequence == NULL) {
return false;
}
for (Py_ssize_t i = 0; i < PySequence_Fast_GET_SIZE(sequence); i++) {
PyObject *item = PySequence_Fast_GET_ITEM(sequence, i);
const char *filepath = PyUnicode_AsUTF8(item);
if (filepath == NULL) {
PyErr_SetString(PyExc_ValueError, "File paths must be a string or sequence of strings.");
Py_DECREF(sequence);
return false;
}
filepaths.push_back(filepath);
}
Py_DECREF(sequence);
return true;
}
static PyObject *denoise_func(PyObject * /*self*/, PyObject *args, PyObject *keywords)
{
static const char *keyword_list[] = {
"preferences", "scene", "view_layer", "input", "output", "tile_size", "samples", NULL};
PyObject *pypreferences, *pyscene, *pyviewlayer;
PyObject *pyinput, *pyoutput = NULL;
int tile_size = 0, samples = 0;
if (!PyArg_ParseTupleAndKeywords(args,
keywords,
"OOOO|Oii",
(char **)keyword_list,
&pypreferences,
&pyscene,
&pyviewlayer,
&pyinput,
&pyoutput,
&tile_size,
&samples)) {
return NULL;
}
/* Get device specification from preferences and scene. */
PointerRNA preferencesptr;
RNA_pointer_create(
NULL, &RNA_Preferences, (void *)PyLong_AsVoidPtr(pypreferences), &preferencesptr);
BL::Preferences b_preferences(preferencesptr);
PointerRNA sceneptr;
RNA_id_pointer_create((ID *)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene b_scene(sceneptr);
DeviceInfo device = blender_device_info(b_preferences, b_scene, true);
/* Get denoising parameters from view layer. */
PointerRNA viewlayerptr;
RNA_pointer_create((ID *)PyLong_AsVoidPtr(pyscene),
&RNA_ViewLayer,
PyLong_AsVoidPtr(pyviewlayer),
&viewlayerptr);
PointerRNA cviewlayer = RNA_pointer_get(&viewlayerptr, "cycles");
DenoiseParams params;
params.radius = get_int(cviewlayer, "denoising_radius");
params.strength = get_float(cviewlayer, "denoising_strength");
params.feature_strength = get_float(cviewlayer, "denoising_feature_strength");
params.relative_pca = get_boolean(cviewlayer, "denoising_relative_pca");
params.neighbor_frames = get_int(cviewlayer, "denoising_neighbor_frames");
/* Parse file paths list. */
vector<string> input, output;
if (!image_parse_filepaths(pyinput, input)) {
return NULL;
}
if (pyoutput) {
if (!image_parse_filepaths(pyoutput, output)) {
return NULL;
}
}
else {
output = input;
}
if (input.empty()) {
PyErr_SetString(PyExc_ValueError, "No input file paths specified.");
return NULL;
}
if (input.size() != output.size()) {
PyErr_SetString(PyExc_ValueError, "Number of input and output file paths does not match.");
return NULL;
}
/* Create denoiser. */
Denoiser denoiser(device);
denoiser.params = params;
denoiser.input = input;
denoiser.output = output;
if (tile_size > 0) {
denoiser.tile_size = make_int2(tile_size, tile_size);
}
if (samples > 0) {
denoiser.samples_override = samples;
}
/* Run denoiser. */
if (!denoiser.run()) {
PyErr_SetString(PyExc_ValueError, denoiser.error.c_str());
return NULL;
}
Py_RETURN_NONE;
}
static PyObject *merge_func(PyObject * /*self*/, PyObject *args, PyObject *keywords)
{
static const char *keyword_list[] = {"input", "output", NULL};
PyObject *pyinput, *pyoutput = NULL;
if (!PyArg_ParseTupleAndKeywords(
args, keywords, "OO", (char **)keyword_list, &pyinput, &pyoutput)) {
return NULL;
}
/* Parse input list. */
vector<string> input;
if (!image_parse_filepaths(pyinput, input)) {
return NULL;
}
/* Parse output string. */
if (!PyUnicode_Check(pyoutput)) {
PyErr_SetString(PyExc_ValueError, "Output must be a string.");
return NULL;
}
string output = PyUnicode_AsUTF8(pyoutput);
/* Merge. */
ImageMerger merger;
merger.input = input;
merger.output = output;
if (!merger.run()) {
PyErr_SetString(PyExc_ValueError, merger.error.c_str());
return NULL;
}
Py_RETURN_NONE;
}
static PyObject *debug_flags_update_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pyscene;
if (!PyArg_ParseTuple(args, "O", &pyscene)) {
return NULL;
}
PointerRNA sceneptr;
RNA_id_pointer_create((ID *)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene b_scene(sceneptr);
if (debug_flags_sync_from_scene(b_scene)) {
VLOG(2) << "Tagging device list for update.";
Device::tag_update();
}
VLOG(2) << "Debug flags set to:\n" << DebugFlags();
debug_flags_set = true;
Py_RETURN_NONE;
}
static PyObject *debug_flags_reset_func(PyObject * /*self*/, PyObject * /*args*/)
{
if (debug_flags_reset()) {
VLOG(2) << "Tagging device list for update.";
Device::tag_update();
}
if (debug_flags_set) {
VLOG(2) << "Debug flags reset to:\n" << DebugFlags();
debug_flags_set = false;
}
Py_RETURN_NONE;
}
static PyObject *set_resumable_chunk_func(PyObject * /*self*/, PyObject *args)
{
int num_resumable_chunks, current_resumable_chunk;
if (!PyArg_ParseTuple(args, "ii", &num_resumable_chunks, &current_resumable_chunk)) {
Py_RETURN_NONE;
}
if (num_resumable_chunks <= 0) {
fprintf(stderr, "Cycles: Bad value for number of resumable chunks.\n");
abort();
Py_RETURN_NONE;
}
if (current_resumable_chunk < 1 || current_resumable_chunk > num_resumable_chunks) {
fprintf(stderr, "Cycles: Bad value for current resumable chunk number.\n");
abort();
Py_RETURN_NONE;
}
VLOG(1) << "Initialized resumable render: "
<< "num_resumable_chunks=" << num_resumable_chunks << ", "
<< "current_resumable_chunk=" << current_resumable_chunk;
BlenderSession::num_resumable_chunks = num_resumable_chunks;
BlenderSession::current_resumable_chunk = current_resumable_chunk;
printf("Cycles: Will render chunk %d of %d\n", current_resumable_chunk, num_resumable_chunks);
Py_RETURN_NONE;
}
static PyObject *set_resumable_chunk_range_func(PyObject * /*self*/, PyObject *args)
{
int num_chunks, start_chunk, end_chunk;
if (!PyArg_ParseTuple(args, "iii", &num_chunks, &start_chunk, &end_chunk)) {
Py_RETURN_NONE;
}
if (num_chunks <= 0) {
fprintf(stderr, "Cycles: Bad value for number of resumable chunks.\n");
abort();
Py_RETURN_NONE;
}
if (start_chunk < 1 || start_chunk > num_chunks) {
fprintf(stderr, "Cycles: Bad value for start chunk number.\n");
abort();
Py_RETURN_NONE;
}
if (end_chunk < 1 || end_chunk > num_chunks) {
fprintf(stderr, "Cycles: Bad value for start chunk number.\n");
abort();
Py_RETURN_NONE;
}
if (start_chunk > end_chunk) {
fprintf(stderr, "Cycles: End chunk should be higher than start one.\n");
abort();
Py_RETURN_NONE;
}
VLOG(1) << "Initialized resumable render: "
<< "num_resumable_chunks=" << num_chunks << ", "
<< "start_resumable_chunk=" << start_chunk << "end_resumable_chunk=" << end_chunk;
BlenderSession::num_resumable_chunks = num_chunks;
BlenderSession::start_resumable_chunk = start_chunk;
BlenderSession::end_resumable_chunk = end_chunk;
printf("Cycles: Will render chunks %d to %d of %d\n", start_chunk, end_chunk, num_chunks);
Py_RETURN_NONE;
}
static PyObject *clear_resumable_chunk_func(PyObject * /*self*/, PyObject * /*value*/)
{
VLOG(1) << "Clear resumable render";
BlenderSession::num_resumable_chunks = 0;
BlenderSession::current_resumable_chunk = 0;
Py_RETURN_NONE;
}
static PyObject *enable_print_stats_func(PyObject * /*self*/, PyObject * /*args*/)
{
BlenderSession::print_render_stats = true;
Py_RETURN_NONE;
}
static PyObject *get_device_types_func(PyObject * /*self*/, PyObject * /*args*/)
{
vector<DeviceType> device_types = Device::available_types();
bool has_cuda = false, has_optix = false, has_opencl = false;
foreach (DeviceType device_type, device_types) {
has_cuda |= (device_type == DEVICE_CUDA);
has_optix |= (device_type == DEVICE_OPTIX);
has_opencl |= (device_type == DEVICE_OPENCL);
}
PyObject *list = PyTuple_New(3);
PyTuple_SET_ITEM(list, 0, PyBool_FromLong(has_cuda));
PyTuple_SET_ITEM(list, 1, PyBool_FromLong(has_optix));
PyTuple_SET_ITEM(list, 2, PyBool_FromLong(has_opencl));
return list;
}
static PyObject *set_device_override_func(PyObject * /*self*/, PyObject *arg)
{
PyObject *override_string = PyObject_Str(arg);
string override = PyUnicode_AsUTF8(override_string);
Py_DECREF(override_string);
bool include_cpu = false;
const string cpu_suffix = "+CPU";
if (string_endswith(override, cpu_suffix)) {
include_cpu = true;
override = override.substr(0, override.length() - cpu_suffix.length());
}
if (override == "CPU") {
BlenderSession::device_override = DEVICE_MASK_CPU;
}
else if (override == "OPENCL") {
BlenderSession::device_override = DEVICE_MASK_OPENCL;
}
else if (override == "CUDA") {
BlenderSession::device_override = DEVICE_MASK_CUDA;
}
else if (override == "OPTIX") {
BlenderSession::device_override = DEVICE_MASK_OPTIX;
}
else {
printf("\nError: %s is not a valid Cycles device.\n", override.c_str());
Py_RETURN_FALSE;
}
if (include_cpu) {
BlenderSession::device_override = (DeviceTypeMask)(BlenderSession::device_override |
DEVICE_MASK_CPU);
}
Py_RETURN_TRUE;
}
static PyMethodDef methods[] = {
{"init", init_func, METH_VARARGS, ""},
{"exit", exit_func, METH_VARARGS, ""},
{"create", create_func, METH_VARARGS, ""},
{"free", free_func, METH_O, ""},
{"render", render_func, METH_VARARGS, ""},
{"bake", bake_func, METH_VARARGS, ""},
{"draw", draw_func, METH_VARARGS, ""},
{"sync", sync_func, METH_VARARGS, ""},
{"reset", reset_func, METH_VARARGS, ""},
#ifdef WITH_OSL
{"osl_update_node", osl_update_node_func, METH_VARARGS, ""},
{"osl_compile", osl_compile_func, METH_VARARGS, ""},
#endif
{"available_devices", available_devices_func, METH_VARARGS, ""},
{"system_info", system_info_func, METH_NOARGS, ""},
#ifdef WITH_OPENCL
{"opencl_disable", opencl_disable_func, METH_NOARGS, ""},
{"opencl_compile", opencl_compile_func, METH_VARARGS, ""},
#endif
/* Standalone denoising */
{"denoise", (PyCFunction)denoise_func, METH_VARARGS | METH_KEYWORDS, ""},
{"merge", (PyCFunction)merge_func, METH_VARARGS | METH_KEYWORDS, ""},
/* Debugging routines */
{"debug_flags_update", debug_flags_update_func, METH_VARARGS, ""},
{"debug_flags_reset", debug_flags_reset_func, METH_NOARGS, ""},
/* Statistics. */
{"enable_print_stats", enable_print_stats_func, METH_NOARGS, ""},
/* Resumable render */
{"set_resumable_chunk", set_resumable_chunk_func, METH_VARARGS, ""},
{"set_resumable_chunk_range", set_resumable_chunk_range_func, METH_VARARGS, ""},
{"clear_resumable_chunk", clear_resumable_chunk_func, METH_NOARGS, ""},
/* Compute Device selection */
{"get_device_types", get_device_types_func, METH_VARARGS, ""},
{"set_device_override", set_device_override_func, METH_O, ""},
{NULL, NULL, 0, NULL},
};
static struct PyModuleDef module = {
PyModuleDef_HEAD_INIT,
"_cycles",
"Blender cycles render integration",
-1,
methods,
NULL,
NULL,
NULL,
NULL,
};
CCL_NAMESPACE_END
void *CCL_python_module_init()
{
PyObject *mod = PyModule_Create(&ccl::module);
#ifdef WITH_OSL
/* TODO(sergey): This gives us library we've been linking against.
* In theory with dynamic OSL library it might not be
* accurate, but there's nothing in OSL API which we
* might use to get version in runtime.
*/
int curversion = OSL_LIBRARY_VERSION_CODE;
PyModule_AddObject(mod, "with_osl", Py_True);
Py_INCREF(Py_True);
PyModule_AddObject(
mod,
"osl_version",
Py_BuildValue("(iii)", curversion / 10000, (curversion / 100) % 100, curversion % 100));
PyModule_AddObject(
mod,
"osl_version_string",
PyUnicode_FromFormat(
"%2d, %2d, %2d", curversion / 10000, (curversion / 100) % 100, curversion % 100));
#else
PyModule_AddObject(mod, "with_osl", Py_False);
Py_INCREF(Py_False);
PyModule_AddStringConstant(mod, "osl_version", "unknown");
PyModule_AddStringConstant(mod, "osl_version_string", "unknown");
#endif
#ifdef WITH_CYCLES_DEBUG
PyModule_AddObject(mod, "with_cycles_debug", Py_True);
Py_INCREF(Py_True);
#else
PyModule_AddObject(mod, "with_cycles_debug", Py_False);
Py_INCREF(Py_False);
#endif
#ifdef WITH_NETWORK
PyModule_AddObject(mod, "with_network", Py_True);
Py_INCREF(Py_True);
#else /* WITH_NETWORK */
PyModule_AddObject(mod, "with_network", Py_False);
Py_INCREF(Py_False);
#endif /* WITH_NETWORK */
#ifdef WITH_EMBREE
PyModule_AddObject(mod, "with_embree", Py_True);
Py_INCREF(Py_True);
#else /* WITH_EMBREE */
PyModule_AddObject(mod, "with_embree", Py_False);
Py_INCREF(Py_False);
#endif /* WITH_EMBREE */
if (ccl::openimagedenoise_supported()) {
PyModule_AddObject(mod, "with_openimagedenoise", Py_True);
Py_INCREF(Py_True);
}
else {
PyModule_AddObject(mod, "with_openimagedenoise", Py_False);
Py_INCREF(Py_False);
}
return (void *)mod;
}