This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/freestyle/intern/python/Interface0D/BPy_CurvePoint.cpp
Tamito Kajiyama f510faed6c Python API documentation updates: a description of class hierarchy
was added to the docstrings of most Python extension types.
2010-08-12 12:17:47 +00:00

279 lines
8.7 KiB
C++

#include "BPy_CurvePoint.h"
#include "../BPy_Convert.h"
#include "../Interface0D/BPy_SVertex.h"
#ifdef __cplusplus
extern "C" {
#endif
///////////////////////////////////////////////////////////////////////////////////////////
//------------------------INSTANCE METHODS ----------------------------------
static char CurvePoint___doc__[] =
"Class hierarchy: :class:`Interface0D` > :class:`CurvePoint`\n"
"\n"
"Class to represent a point of a curve. A CurvePoint can be any point\n"
"of a 1D curve (it doesn't have to be a vertex of the curve). Any\n"
":class:`Interface1D` is built upon ViewEdges, themselves built upon\n"
"FEdges. Therefore, a curve is basically a polyline made of a list of\n"
":class:`SVertex` objects. Thus, a CurvePoint is built by linearly\n"
"interpolating two :class:`SVertex` instances. CurvePoint can be used\n"
"as virtual points while querying 0D information along a curve at a\n"
"given resolution.\n"
"\n"
".. method:: __init__()\n"
"\n"
" Defult constructor.\n"
"\n"
".. method:: __init__(iBrother)\n"
"\n"
" Copy constructor.\n"
"\n"
" :arg iBrother: A CurvePoint object.\n"
" :type iBrother: :class:`CurvePoint`\n"
"\n"
".. method:: __init__(iA, iB, t2d)\n"
"\n"
" Builds a CurvePoint from two SVertex and an interpolation parameter.\n"
"\n"
" :arg iA: The first SVertex.\n"
" :type iA: :class:`SVertex`\n"
" :arg iB: The second SVertex.\n"
" :type iB: :class:`SVertex`\n"
" :arg t2d: A 2D interpolation parameter used to linearly interpolate\n"
" iA and iB.\n"
" :type t2d: float\n"
"\n"
".. method:: __init__(iA, iB, t2d)\n"
"\n"
" Builds a CurvePoint from two CurvePoint and an interpolation\n"
" parameter.\n"
"\n"
" :arg iA: The first CurvePoint.\n"
" :type iA: :class:`CurvePoint`\n"
" :arg iB: The second CurvePoint.\n"
" :type iB: :class:`CurvePoint`\n"
" :arg t2d: The 2D interpolation parameter used to linearly\n"
" interpolate iA and iB.\n"
" :type t2d: float\n";
static int CurvePoint___init__(BPy_CurvePoint *self, PyObject *args, PyObject *kwds)
{
PyObject *obj1 = 0, *obj2 = 0 , *obj3 = 0;
if (! PyArg_ParseTuple(args, "|OOO!", &obj1, &obj2, &PyFloat_Type, &obj3) )
return -1;
if( !obj1 ){
self->cp = new CurvePoint();
} else if( !obj2 && BPy_CurvePoint_Check(obj1) ) {
self->cp = new CurvePoint( *(((BPy_CurvePoint *) obj1)->cp) );
} else if( obj3 && BPy_SVertex_Check(obj1) && BPy_SVertex_Check(obj2) ) {
self->cp = new CurvePoint( ((BPy_SVertex *) obj1)->sv,
((BPy_SVertex *) obj2)->sv,
PyFloat_AsDouble( obj3 ) );
} else if( obj3 && BPy_CurvePoint_Check(obj1) && BPy_CurvePoint_Check(obj2) ) {
CurvePoint *cp1 = ((BPy_CurvePoint *) obj1)->cp;
CurvePoint *cp2 = ((BPy_CurvePoint *) obj2)->cp;
if( !cp1 || cp1->A() == 0 || cp1->B() == 0 ) {
PyErr_SetString(PyExc_TypeError, "argument 1 is an invalid CurvePoint object");
return -1;
}
if( !cp2 || cp2->A() == 0 || cp2->B() == 0 ) {
PyErr_SetString(PyExc_TypeError, "argument 2 is an invalid CurvePoint object");
return -1;
}
self->cp = new CurvePoint( cp1, cp2, PyFloat_AsDouble( obj3 ) );
} else {
PyErr_SetString(PyExc_TypeError, "invalid argument(s)");
return -1;
}
self->py_if0D.if0D = self->cp;
self->py_if0D.borrowed = 0;
return 0;
}
static char CurvePoint_A___doc__[] =
".. method:: A()\n"
"\n"
" Returns the first SVertex upon which the CurvePoint is built.\n"
"\n"
" :return: The first SVertex.\n"
" :rtype: :class:`SVertex`\n";
static PyObject * CurvePoint_A( BPy_CurvePoint *self ) {
SVertex *A = self->cp->A();
if( A )
return BPy_SVertex_from_SVertex( *A );
Py_RETURN_NONE;
}
static char CurvePoint_B___doc__[] =
".. method:: B()\n"
"\n"
" Returns the second SVertex upon which the CurvePoint is built.\n"
"\n"
" :return: The second SVertex.\n"
" :rtype: :class:`SVertex`\n";
static PyObject * CurvePoint_B( BPy_CurvePoint *self ) {
SVertex *B = self->cp->B();
if( B )
return BPy_SVertex_from_SVertex( *B );
Py_RETURN_NONE;
}
static char CurvePoint_t2d___doc__[] =
".. method:: t2d()\n"
"\n"
" Returns the 2D interpolation parameter.\n"
"\n"
" :return: The 2D interpolation parameter.\n"
" :rtype: float\n";
static PyObject * CurvePoint_t2d( BPy_CurvePoint *self ) {
return PyFloat_FromDouble( self->cp->t2d() );
}
static char CurvePoint_setA___doc__[] =
".. method:: setA(iA)\n"
"\n"
" Sets the first SVertex upon which to build the CurvePoint.\n"
"\n"
" :arg iA: The first SVertex.\n"
" :type iA: :class:`SVertex`\n";
static PyObject *CurvePoint_setA( BPy_CurvePoint *self , PyObject *args) {
PyObject *py_sv;
if(!( PyArg_ParseTuple(args, "O!", &SVertex_Type, &py_sv) ))
return NULL;
self->cp->setA( ((BPy_SVertex *) py_sv)->sv );
Py_RETURN_NONE;
}
static char CurvePoint_setB___doc__[] =
".. method:: setB(iB)\n"
"\n"
" Sets the first SVertex upon which to build the CurvePoint.\n"
"\n"
" :arg iB: The second SVertex.\n"
" :type iB: :class:`SVertex`\n";
static PyObject *CurvePoint_setB( BPy_CurvePoint *self , PyObject *args) {
PyObject *py_sv;
if(!( PyArg_ParseTuple(args, "O!", &SVertex_Type, &py_sv) ))
return NULL;
self->cp->setB( ((BPy_SVertex *) py_sv)->sv );
Py_RETURN_NONE;
}
static char CurvePoint_setT2d___doc__[] =
".. method:: setT2d(t)\n"
"\n"
" Sets the 2D interpolation parameter to use.\n"
"\n"
" :arg t: The 2D interpolation parameter.\n"
" :type t: float\n";
static PyObject *CurvePoint_setT2d( BPy_CurvePoint *self , PyObject *args) {
float t;
if(!( PyArg_ParseTuple(args, "f", &t) ))
return NULL;
self->cp->setT2d( t );
Py_RETURN_NONE;
}
static char CurvePoint_curvatureFredo___doc__[] =
".. method:: curvatureFredo()\n"
"\n"
" Returns the angle in radians.\n"
"\n"
" :return: The angle in radians.\n"
" :rtype: float\n";
static PyObject *CurvePoint_curvatureFredo( BPy_CurvePoint *self , PyObject *args) {
return PyFloat_FromDouble( self->cp->curvatureFredo() );
}
///bool operator== (const CurvePoint &b)
/*----------------------CurvePoint instance definitions ----------------------------*/
static PyMethodDef BPy_CurvePoint_methods[] = {
{"A", ( PyCFunction ) CurvePoint_A, METH_NOARGS, CurvePoint_A___doc__},
{"B", ( PyCFunction ) CurvePoint_B, METH_NOARGS, CurvePoint_B___doc__},
{"t2d", ( PyCFunction ) CurvePoint_t2d, METH_NOARGS, CurvePoint_t2d___doc__},
{"setA", ( PyCFunction ) CurvePoint_setA, METH_VARARGS, CurvePoint_setA___doc__},
{"setB", ( PyCFunction ) CurvePoint_setB, METH_VARARGS, CurvePoint_setB___doc__},
{"setT2d", ( PyCFunction ) CurvePoint_setT2d, METH_VARARGS, CurvePoint_setT2d___doc__},
{"curvatureFredo", ( PyCFunction ) CurvePoint_curvatureFredo, METH_NOARGS, CurvePoint_curvatureFredo___doc__},
{NULL, NULL, 0, NULL}
};
/*-----------------------BPy_CurvePoint type definition ------------------------------*/
PyTypeObject CurvePoint_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"CurvePoint", /* tp_name */
sizeof(BPy_CurvePoint), /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
CurvePoint___doc__, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
BPy_CurvePoint_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
&Interface0D_Type, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)CurvePoint___init__, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
};
///////////////////////////////////////////////////////////////////////////////////////////
#ifdef __cplusplus
}
#endif