This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/util/util_math_float4.h
Patrick Mours 26687dda5a Fix T71344: Optix render errors with motion blur and unknown bone constraint relationship
The OptiX SRT motion expects a motion defined by translation,
rotation, shear and scale, but the matrix decomposition code in
Cycles was not able to extract shear information and instead
produced a stretch matrix with the information baked in. This
caused conflicting transforms between traversal and shading
and lead to render artifacts.
This patch changes the matrix decomposition to produce factors
inline with what OptiX expects to fix that.

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D6605
2020-01-22 15:49:14 +01:00

483 lines
13 KiB
C++

/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __UTIL_MATH_FLOAT4_H__
#define __UTIL_MATH_FLOAT4_H__
#ifndef __UTIL_MATH_H__
# error "Do not include this file directly, include util_types.h instead."
#endif
CCL_NAMESPACE_BEGIN
/*******************************************************************************
* Declaration.
*/
#ifndef __KERNEL_OPENCL__
ccl_device_inline float4 operator-(const float4 &a);
ccl_device_inline float4 operator*(const float4 &a, const float4 &b);
ccl_device_inline float4 operator*(const float4 &a, float f);
ccl_device_inline float4 operator*(float f, const float4 &a);
ccl_device_inline float4 operator/(const float4 &a, float f);
ccl_device_inline float4 operator/(const float4 &a, const float4 &b);
ccl_device_inline float4 operator+(const float4 &a, const float f);
ccl_device_inline float4 operator+(const float4 &a, const float4 &b);
ccl_device_inline float4 operator-(const float4 &a, const float f);
ccl_device_inline float4 operator-(const float4 &a, const float4 &b);
ccl_device_inline float4 operator+=(float4 &a, const float4 &b);
ccl_device_inline float4 operator*=(float4 &a, const float4 &b);
ccl_device_inline float4 operator*=(float4 &a, float f);
ccl_device_inline float4 operator/=(float4 &a, float f);
ccl_device_inline int4 operator<(const float4 &a, const float4 &b);
ccl_device_inline int4 operator>=(const float4 &a, const float4 &b);
ccl_device_inline int4 operator<=(const float4 &a, const float4 &b);
ccl_device_inline bool operator==(const float4 &a, const float4 &b);
ccl_device_inline float distance(const float4 &a, const float4 &b);
ccl_device_inline float dot(const float4 &a, const float4 &b);
ccl_device_inline float len_squared(const float4 &a);
ccl_device_inline float4 rcp(const float4 &a);
ccl_device_inline float4 sqrt(const float4 &a);
ccl_device_inline float4 sqr(const float4 &a);
ccl_device_inline float4 cross(const float4 &a, const float4 &b);
ccl_device_inline bool is_zero(const float4 &a);
ccl_device_inline float average(const float4 &a);
ccl_device_inline float len(const float4 &a);
ccl_device_inline float4 normalize(const float4 &a);
ccl_device_inline float4 safe_normalize(const float4 &a);
ccl_device_inline float4 min(const float4 &a, const float4 &b);
ccl_device_inline float4 max(const float4 &a, const float4 &b);
ccl_device_inline float4 clamp(const float4 &a, const float4 &mn, const float4 &mx);
ccl_device_inline float4 fabs(const float4 &a);
ccl_device_inline float4 floor(const float4 &a);
ccl_device_inline float4 mix(const float4 &a, const float4 &b, float t);
#endif /* !__KERNEL_OPENCL__*/
ccl_device_inline float4 safe_divide_float4_float(const float4 a, const float b);
#ifdef __KERNEL_SSE__
template<size_t index_0, size_t index_1, size_t index_2, size_t index_3>
__forceinline const float4 shuffle(const float4 &b);
template<size_t index_0, size_t index_1, size_t index_2, size_t index_3>
__forceinline const float4 shuffle(const float4 &a, const float4 &b);
template<> __forceinline const float4 shuffle<0, 1, 0, 1>(const float4 &b);
template<> __forceinline const float4 shuffle<0, 1, 0, 1>(const float4 &a, const float4 &b);
template<> __forceinline const float4 shuffle<2, 3, 2, 3>(const float4 &a, const float4 &b);
# ifdef __KERNEL_SSE3__
template<> __forceinline const float4 shuffle<0, 0, 2, 2>(const float4 &b);
template<> __forceinline const float4 shuffle<1, 1, 3, 3>(const float4 &b);
# endif
#endif /* __KERNEL_SSE__ */
#ifndef __KERNEL_GPU__
ccl_device_inline float4 select(const int4 &mask, const float4 &a, const float4 &b);
ccl_device_inline float4 reduce_min(const float4 &a);
ccl_device_inline float4 reduce_max(const float4 &a);
ccl_device_inline float4 reduce_add(const float4 &a);
#endif /* !__KERNEL_GPU__ */
/*******************************************************************************
* Definition.
*/
#ifndef __KERNEL_OPENCL__
ccl_device_inline float4 operator-(const float4 &a)
{
# ifdef __KERNEL_SSE__
__m128 mask = _mm_castsi128_ps(_mm_set1_epi32(0x80000000));
return float4(_mm_xor_ps(a.m128, mask));
# else
return make_float4(-a.x, -a.y, -a.z, -a.w);
# endif
}
ccl_device_inline float4 operator*(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return float4(_mm_mul_ps(a.m128, b.m128));
# else
return make_float4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w);
# endif
}
ccl_device_inline float4 operator*(const float4 &a, float f)
{
# if defined(__KERNEL_SSE__)
return a * make_float4(f);
# else
return make_float4(a.x * f, a.y * f, a.z * f, a.w * f);
# endif
}
ccl_device_inline float4 operator*(float f, const float4 &a)
{
return a * f;
}
ccl_device_inline float4 operator/(const float4 &a, float f)
{
return a * (1.0f / f);
}
ccl_device_inline float4 operator/(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return float4(_mm_div_ps(a.m128, b.m128));
# else
return make_float4(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w);
# endif
}
ccl_device_inline float4 operator+(const float4 &a, const float f)
{
return a + make_float4(f, f, f, f);
}
ccl_device_inline float4 operator+(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return float4(_mm_add_ps(a.m128, b.m128));
# else
return make_float4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
# endif
}
ccl_device_inline float4 operator-(const float4 &a, const float f)
{
return a - make_float4(f, f, f, f);
}
ccl_device_inline float4 operator-(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return float4(_mm_sub_ps(a.m128, b.m128));
# else
return make_float4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
# endif
}
ccl_device_inline float4 operator+=(float4 &a, const float4 &b)
{
return a = a + b;
}
ccl_device_inline float4 operator-=(float4 &a, const float4 &b)
{
return a = a - b;
}
ccl_device_inline float4 operator*=(float4 &a, const float4 &b)
{
return a = a * b;
}
ccl_device_inline float4 operator*=(float4 &a, float f)
{
return a = a * f;
}
ccl_device_inline float4 operator/=(float4 &a, float f)
{
return a = a / f;
}
ccl_device_inline int4 operator<(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return int4(_mm_castps_si128(_mm_cmplt_ps(a.m128, b.m128)));
# else
return make_int4(a.x < b.x, a.y < b.y, a.z < b.z, a.w < b.w);
# endif
}
ccl_device_inline int4 operator>=(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return int4(_mm_castps_si128(_mm_cmpge_ps(a.m128, b.m128)));
# else
return make_int4(a.x >= b.x, a.y >= b.y, a.z >= b.z, a.w >= b.w);
# endif
}
ccl_device_inline int4 operator<=(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return int4(_mm_castps_si128(_mm_cmple_ps(a.m128, b.m128)));
# else
return make_int4(a.x <= b.x, a.y <= b.y, a.z <= b.z, a.w <= b.w);
# endif
}
ccl_device_inline bool operator==(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return (_mm_movemask_ps(_mm_cmpeq_ps(a.m128, b.m128)) & 15) == 15;
# else
return (a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w);
# endif
}
ccl_device_inline float distance(const float4 &a, const float4 &b)
{
return len(a - b);
}
ccl_device_inline float dot(const float4 &a, const float4 &b)
{
# if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_dp_ps(a, b, 0xFF));
# else
return (a.x * b.x + a.y * b.y) + (a.z * b.z + a.w * b.w);
# endif
}
ccl_device_inline float len_squared(const float4 &a)
{
return dot(a, a);
}
ccl_device_inline float4 rcp(const float4 &a)
{
# ifdef __KERNEL_SSE__
/* Don't use _mm_rcp_ps due to poor precision. */
return float4(_mm_div_ps(_mm_set_ps1(1.0f), a.m128));
# else
return make_float4(1.0f / a.x, 1.0f / a.y, 1.0f / a.z, 1.0f / a.w);
# endif
}
ccl_device_inline float4 sqrt(const float4 &a)
{
# ifdef __KERNEL_SSE__
return float4(_mm_sqrt_ps(a.m128));
# else
return make_float4(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z), sqrtf(a.w));
# endif
}
ccl_device_inline float4 sqr(const float4 &a)
{
return a * a;
}
ccl_device_inline float4 cross(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return (shuffle<1, 2, 0, 0>(a) * shuffle<2, 0, 1, 0>(b)) -
(shuffle<2, 0, 1, 0>(a) * shuffle<1, 2, 0, 0>(b));
# else
return make_float4(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x, 0.0f);
# endif
}
ccl_device_inline bool is_zero(const float4 &a)
{
# ifdef __KERNEL_SSE__
return a == make_float4(0.0f);
# else
return (a.x == 0.0f && a.y == 0.0f && a.z == 0.0f && a.w == 0.0f);
# endif
}
ccl_device_inline float4 reduce_add(const float4 &a)
{
# ifdef __KERNEL_SSE__
# ifdef __KERNEL_SSE3__
float4 h(_mm_hadd_ps(a.m128, a.m128));
return float4(_mm_hadd_ps(h.m128, h.m128));
# else
float4 h(shuffle<1, 0, 3, 2>(a) + a);
return shuffle<2, 3, 0, 1>(h) + h;
# endif
# else
float sum = (a.x + a.y) + (a.z + a.w);
return make_float4(sum, sum, sum, sum);
# endif
}
ccl_device_inline float average(const float4 &a)
{
return reduce_add(a).x * 0.25f;
}
ccl_device_inline float len(const float4 &a)
{
return sqrtf(dot(a, a));
}
ccl_device_inline float4 normalize(const float4 &a)
{
return a / len(a);
}
ccl_device_inline float4 safe_normalize(const float4 &a)
{
float t = len(a);
return (t != 0.0f) ? a / t : a;
}
ccl_device_inline float4 min(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return float4(_mm_min_ps(a.m128, b.m128));
# else
return make_float4(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z), min(a.w, b.w));
# endif
}
ccl_device_inline float4 max(const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return float4(_mm_max_ps(a.m128, b.m128));
# else
return make_float4(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z), max(a.w, b.w));
# endif
}
ccl_device_inline float4 clamp(const float4 &a, const float4 &mn, const float4 &mx)
{
return min(max(a, mn), mx);
}
ccl_device_inline float4 fabs(const float4 &a)
{
# ifdef __KERNEL_SSE__
return float4(_mm_and_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff))));
# else
return make_float4(fabsf(a.x), fabsf(a.y), fabsf(a.z), fabsf(a.w));
# endif
}
ccl_device_inline float4 floor(const float4 &a)
{
# ifdef __KERNEL_SSE__
return float4(_mm_floor_ps(a));
# else
return make_float4(floorf(a.x), floorf(a.y), floorf(a.z), floorf(a.w));
# endif
}
ccl_device_inline float4 mix(const float4 &a, const float4 &b, float t)
{
return a + t * (b - a);
}
#endif /* !__KERNEL_OPENCL__*/
#ifdef __KERNEL_SSE__
template<size_t index_0, size_t index_1, size_t index_2, size_t index_3>
__forceinline const float4 shuffle(const float4 &b)
{
return float4(_mm_castsi128_ps(
_mm_shuffle_epi32(_mm_castps_si128(b), _MM_SHUFFLE(index_3, index_2, index_1, index_0))));
}
template<size_t index_0, size_t index_1, size_t index_2, size_t index_3>
__forceinline const float4 shuffle(const float4 &a, const float4 &b)
{
return float4(_mm_shuffle_ps(a.m128, b.m128, _MM_SHUFFLE(index_3, index_2, index_1, index_0)));
}
template<> __forceinline const float4 shuffle<0, 1, 0, 1>(const float4 &b)
{
return float4(_mm_castpd_ps(_mm_movedup_pd(_mm_castps_pd(b))));
}
template<> __forceinline const float4 shuffle<0, 1, 0, 1>(const float4 &a, const float4 &b)
{
return float4(_mm_movelh_ps(a.m128, b.m128));
}
template<> __forceinline const float4 shuffle<2, 3, 2, 3>(const float4 &a, const float4 &b)
{
return float4(_mm_movehl_ps(b.m128, a.m128));
}
# ifdef __KERNEL_SSE3__
template<> __forceinline const float4 shuffle<0, 0, 2, 2>(const float4 &b)
{
return float4(_mm_moveldup_ps(b));
}
template<> __forceinline const float4 shuffle<1, 1, 3, 3>(const float4 &b)
{
return float4(_mm_movehdup_ps(b));
}
# endif /* __KERNEL_SSE3__ */
#endif /* __KERNEL_SSE__ */
#ifndef __KERNEL_GPU__
ccl_device_inline float4 select(const int4 &mask, const float4 &a, const float4 &b)
{
# ifdef __KERNEL_SSE__
return float4(_mm_blendv_ps(b.m128, a.m128, _mm_castsi128_ps(mask.m128)));
# else
return make_float4(
(mask.x) ? a.x : b.x, (mask.y) ? a.y : b.y, (mask.z) ? a.z : b.z, (mask.w) ? a.w : b.w);
# endif
}
ccl_device_inline float4 mask(const int4 &mask, const float4 &a)
{
/* Replace elements of x with zero where mask isn't set. */
return select(mask, a, make_float4(0.0f));
}
ccl_device_inline float4 reduce_min(const float4 &a)
{
# ifdef __KERNEL_SSE__
float4 h = min(shuffle<1, 0, 3, 2>(a), a);
return min(shuffle<2, 3, 0, 1>(h), h);
# else
return make_float4(min(min(a.x, a.y), min(a.z, a.w)));
# endif
}
ccl_device_inline float4 reduce_max(const float4 &a)
{
# ifdef __KERNEL_SSE__
float4 h = max(shuffle<1, 0, 3, 2>(a), a);
return max(shuffle<2, 3, 0, 1>(h), h);
# else
return make_float4(max(max(a.x, a.y), max(a.z, a.w)));
# endif
}
ccl_device_inline float4 load_float4(const float *v)
{
# ifdef __KERNEL_SSE__
return float4(_mm_loadu_ps(v));
# else
return make_float4(v[0], v[1], v[2], v[3]);
# endif
}
#endif /* !__KERNEL_GPU__ */
ccl_device_inline float4 safe_divide_float4_float(const float4 a, const float b)
{
return (b != 0.0f) ? a / b : make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_FLOAT4_H__ */