This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/mask_rasterize.c

756 lines
21 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2012 Blender Foundation.
* All rights reserved.
*
* Contributor(s): Blender Foundation,
* Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/mask_rasterize.c
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "DNA_vec_types.h"
#include "DNA_mask_types.h"
#include "BLI_utildefines.h"
#include "BLI_scanfill.h"
#include "BLI_memarena.h"
#include "BLI_math.h"
#include "BLI_rect.h"
#include "BLI_listbase.h"
#include "BLI_linklist.h"
#include "BKE_mask.h"
#ifndef USE_RASKTER
/**
* A single #MaskRasterHandle contains multile #MaskRasterLayer's,
* each #MaskRasterLayer does its own lookup which contributes to
* the final pixel with its own blending mode and the final pixel is blended between these.
*/
/* internal use only */
typedef struct MaskRasterLayer {
/* geometry */
unsigned int tri_tot;
unsigned int (*tri_array)[4]; /* access coords tri/quad */
float (*tri_coords)[3]; /* xy, z 0-1 (1.0 == filled) */
/* 2d bounds (to quickly skip raytree lookup) */
rctf bounds;
/* buckets */
unsigned int **buckets_tri;
/* cache divide and subtract */
float buckets_xy_scalar[2]; /* 1.0 / (buckets_width + FLT_EPSILON) */
unsigned int buckets_x;
unsigned int buckets_y;
/* copied direct from #MaskLayer.--- */
/* blending options */
float alpha;
char blend;
char blend_flag;
} MaskRasterLayer;
static void layer_bucket_init(MaskRasterLayer *layer);
/**
* opaque local struct for mask pixel lookup, each MaskLayer needs one of these
*/
struct MaskRasterHandle {
MaskRasterLayer *layers;
unsigned int layers_tot;
/* 2d bounds (to quickly skip raytree lookup) */
rctf bounds;
};
MaskRasterHandle *BLI_maskrasterize_handle_new(void)
{
MaskRasterHandle *mr_handle;
mr_handle = MEM_callocN(sizeof(MaskRasterHandle), STRINGIFY(MaskRasterHandle));
return mr_handle;
}
void BLI_maskrasterize_handle_free(MaskRasterHandle *mr_handle)
{
const unsigned int layers_tot = mr_handle->layers_tot;
unsigned int i;
MaskRasterLayer *raslayers = mr_handle->layers;
/* raycast vars */
for (i = 0; i < layers_tot; i++, raslayers++) {
if (raslayers->tri_array) {
MEM_freeN(raslayers->tri_array);
}
if (raslayers->tri_coords) {
MEM_freeN(raslayers->tri_coords);
}
if (raslayers->buckets_tri) {
const unsigned int bucket_tot = raslayers->buckets_x * raslayers->buckets_y;
unsigned int bucket_index;
for (bucket_index = 0; bucket_index < bucket_tot; bucket_index++) {
unsigned int *tri_index = raslayers->buckets_tri[bucket_index];
if (tri_index) {
MEM_freeN(tri_index);
}
}
MEM_freeN(raslayers->buckets_tri);
}
}
MEM_freeN(mr_handle->layers);
MEM_freeN(mr_handle);
}
#define RESOL 32
#define PRINT_MASK_DEBUG printf
#define SF_EDGE_IS_BOUNDARY 0xff
#define SF_KEYINDEX_TEMP_ID ((unsigned int) -1)
#define TRI_TERMINATOR_ID ((unsigned int) -1)
void maskrasterize_spline_differentiate_point_inset(float (*diff_feather_points)[2], float (*diff_points)[2],
const int tot_diff_point, const float ofs, const int do_test)
{
int k_prev = tot_diff_point - 2;
int k_curr = tot_diff_point - 1;
int k_next = 0;
int k;
float d_prev[2];
float d_next[2];
float d[2];
const float *co_prev;
const float *co_curr;
const float *co_next;
const float ofs_squared = ofs * ofs;
co_prev = diff_points[k_prev];
co_curr = diff_points[k_curr];
co_next = diff_points[k_next];
/* precalc */
sub_v2_v2v2(d_prev, co_prev, co_curr);
normalize_v2(d_prev);
/* TODO, speedup by only doing one normalize per iter */
for (k = 0; k < tot_diff_point; k++) {
co_prev = diff_points[k_prev];
co_curr = diff_points[k_curr];
co_next = diff_points[k_next];
/* sub_v2_v2v2(d_prev, co_prev, co_curr); */ /* precalc */
sub_v2_v2v2(d_next, co_curr, co_next);
/* normalize_v2(d_prev); */ /* precalc */
normalize_v2(d_next);
if ((do_test == FALSE) ||
(len_squared_v2v2(diff_feather_points[k], diff_points[k]) < ofs_squared))
{
add_v2_v2v2(d, d_prev, d_next);
normalize_v2(d);
diff_feather_points[k][0] = diff_points[k][0] + ( d[1] * ofs);
diff_feather_points[k][1] = diff_points[k][1] + (-d[0] * ofs);
}
/* use next iter */
copy_v2_v2(d_prev, d_next);
k_prev = k_curr;
k_curr = k_next;
k_next++;
}
}
#define TRI_VERT ((unsigned int) -1)
void BLI_maskrasterize_handle_init(MaskRasterHandle *mr_handle, struct Mask *mask,
const int width, const int height,
const short do_aspect_correct, const short do_mask_aa,
const short do_feather)
{
/* TODO: real size */
const int resol = RESOL;
const float aa_filter_size = 1.0f / MIN2(width, height);
const float zvec[3] = {0.0f, 0.0f, 1.0f};
MaskLayer *masklay;
int masklay_index;
mr_handle->layers_tot = BLI_countlist(&mask->masklayers);
mr_handle->layers = MEM_mallocN(sizeof(MaskRasterLayer) * mr_handle->layers_tot, STRINGIFY(MaskRasterLayer));
BLI_rctf_init_minmax(&mr_handle->bounds);
for (masklay = mask->masklayers.first, masklay_index = 0; masklay; masklay = masklay->next, masklay_index++) {
MaskSpline *spline;
/* scanfill */
ScanFillContext sf_ctx;
ScanFillVert *sf_vert = NULL;
ScanFillVert *sf_vert_next = NULL;
ScanFillFace *sf_tri;
unsigned int sf_vert_tot = 0;
unsigned int tot_feather_quads = 0;
if (masklay->restrictflag & MASK_RESTRICT_RENDER) {
continue;
}
BLI_scanfill_begin(&sf_ctx);
for (spline = masklay->splines.first; spline; spline = spline->next) {
float (*diff_points)[2];
int tot_diff_point;
float (*diff_feather_points)[2];
int tot_diff_feather_points;
diff_points = BKE_mask_spline_differentiate_with_resolution_ex(spline, resol, &tot_diff_point);
/* dont ch*/
if (do_feather) {
diff_feather_points = BKE_mask_spline_feather_differentiated_points_with_resolution_ex(spline, resol, &tot_diff_feather_points);
}
else {
tot_diff_feather_points = 0;
diff_feather_points = NULL;
}
if (tot_diff_point > 3) {
ScanFillVert *sf_vert_prev;
int j;
float co[3];
co[2] = 0.0f;
if (do_aspect_correct) {
if (width != height) {
float *fp;
float *ffp;
int i;
float asp;
if (width < height) {
fp = &diff_points[0][0];
ffp = tot_diff_feather_points ? &diff_feather_points[0][0] : NULL;
asp = (float)width / (float)height;
}
else {
fp = &diff_points[0][1];
ffp = tot_diff_feather_points ? &diff_feather_points[0][1] : NULL;
asp = (float)height / (float)width;
}
for (i = 0; i < tot_diff_point; i++, fp += 2) {
(*fp) = (((*fp) - 0.5f) / asp) + 0.5f;
}
if (tot_diff_feather_points) {
for (i = 0; i < tot_diff_feather_points; i++, ffp += 2) {
(*ffp) = (((*ffp) - 0.5f) / asp) + 0.5f;
}
}
}
}
/* fake aa, using small feather */
if (do_mask_aa == TRUE) {
if (do_feather == FALSE) {
tot_diff_feather_points = tot_diff_point;
diff_feather_points = MEM_mallocN(sizeof(*diff_feather_points) * tot_diff_feather_points, __func__);
/* add single pixel feather */
maskrasterize_spline_differentiate_point_inset(diff_feather_points, diff_points,
tot_diff_point, aa_filter_size, FALSE);
}
else {
/* ensure single pixel feather, on any zero feather areas */
maskrasterize_spline_differentiate_point_inset(diff_feather_points, diff_points,
tot_diff_point, aa_filter_size, TRUE);
}
}
copy_v2_v2(co, diff_points[0]);
sf_vert_prev = BLI_scanfill_vert_add(&sf_ctx, co);
sf_vert_prev->tmp.u = sf_vert_tot;
sf_vert_prev->keyindex = sf_vert_tot + tot_diff_point; /* absolute index of feather vert */
sf_vert_tot++;
/* TODO, an alternate functions so we can avoid double vector copy! */
for (j = 1; j < tot_diff_point; j++) {
copy_v2_v2(co, diff_points[j]);
sf_vert = BLI_scanfill_vert_add(&sf_ctx, co);
sf_vert->tmp.u = sf_vert_tot;
sf_vert->keyindex = sf_vert_tot + tot_diff_point; /* absolute index of feather vert */
sf_vert_tot++;
}
sf_vert = sf_vert_prev;
sf_vert_prev = sf_ctx.fillvertbase.last;
for (j = 0; j < tot_diff_point; j++) {
ScanFillEdge *sf_edge = BLI_scanfill_edge_add(&sf_ctx, sf_vert_prev, sf_vert);
sf_edge->tmp.c = SF_EDGE_IS_BOUNDARY;
sf_vert_prev = sf_vert;
sf_vert = sf_vert->next;
}
if (diff_feather_points) {
float co_feather[3];
co_feather[2] = 1.0f;
BLI_assert(tot_diff_feather_points == tot_diff_point);
/* note: only added for convenience, we dont infact use these to scanfill,
* only to create feather faces after scanfill */
for (j = 0; j < tot_diff_feather_points; j++) {
copy_v2_v2(co_feather, diff_feather_points[j]);
sf_vert = BLI_scanfill_vert_add(&sf_ctx, co_feather);
/* no need for these attrs */
#if 0
sf_vert->tmp.u = sf_vert_tot;
sf_vert->keyindex = sf_vert_tot + tot_diff_point; /* absolute index of feather vert */
#endif
sf_vert->keyindex = SF_KEYINDEX_TEMP_ID;
sf_vert_tot++;
}
if (diff_feather_points) {
MEM_freeN(diff_feather_points);
}
tot_feather_quads += tot_diff_point;
}
}
if (diff_points) {
MEM_freeN(diff_points);
}
}
if (sf_ctx.fillvertbase.first) {
unsigned int (*tri_array)[4], *tri; /* access coords */
float (*tri_coords)[3], *cos; /* xy, z 0-1 (1.0 == filled) */
int sf_tri_tot;
rctf bounds;
int tri_index;
float bvhcos[4][3];
/* now we have all the splines */
tri_coords = MEM_mallocN((sizeof(float) * 3) * sf_vert_tot, "maskrast_tri_coords");
/* init bounds */
BLI_rctf_init_minmax(&bounds);
/* coords */
cos = (float *)tri_coords;
for (sf_vert = sf_ctx.fillvertbase.first; sf_vert; sf_vert = sf_vert_next) {
sf_vert_next = sf_vert->next;
copy_v3_v3(cos, sf_vert->co);
/* remove so as not to interfear with fill (called after) */
if (sf_vert->keyindex == SF_KEYINDEX_TEMP_ID) {
BLI_remlink(&sf_ctx.fillvertbase, sf_vert);
}
/* bounds */
BLI_rctf_do_minmax_v(&bounds, cos);
cos += 3;
}
/* main scanfill */
sf_tri_tot = BLI_scanfill_calc_ex(&sf_ctx, FALSE, zvec);
tri_array = MEM_mallocN(sizeof(*tri_array) * (sf_tri_tot + tot_feather_quads), "maskrast_tri_index");
/* tri's */
tri = (unsigned int *)tri_array;
for (sf_tri = sf_ctx.fillfacebase.first, tri_index = 0; sf_tri; sf_tri = sf_tri->next, tri_index++) {
*(tri++) = sf_tri->v1->tmp.u;
*(tri++) = sf_tri->v2->tmp.u;
*(tri++) = sf_tri->v3->tmp.u;
*(tri++) = TRI_VERT;
}
/* start of feather faces... if we have this set,
* 'tri_index' is kept from loop above */
BLI_assert(tri_index == sf_tri_tot);
if (tot_feather_quads) {
ScanFillEdge *sf_edge;
for (sf_edge = sf_ctx.filledgebase.first; sf_edge; sf_edge = sf_edge->next) {
if (sf_edge->tmp.c == SF_EDGE_IS_BOUNDARY) {
*(tri++) = sf_edge->v1->tmp.u;
*(tri++) = sf_edge->v2->tmp.u;
*(tri++) = sf_edge->v2->keyindex;
*(tri++) = sf_edge->v1->keyindex;
copy_v3_v3(bvhcos[0], tri_coords[*(tri - 4)]);
copy_v3_v3(bvhcos[1], tri_coords[*(tri - 3)]);
copy_v3_v3(bvhcos[2], tri_coords[*(tri - 2)]);
copy_v3_v3(bvhcos[3], tri_coords[*(tri - 1)]);
tri_index++;
}
}
}
fprintf(stderr, "%d %d\n", tri_index, sf_tri_tot + tot_feather_quads);
BLI_assert(tri_index == sf_tri_tot + tot_feather_quads);
{
MaskRasterLayer *raslayer = &mr_handle->layers[masklay_index];
raslayer->tri_tot = sf_tri_tot + tot_feather_quads;
raslayer->tri_coords = tri_coords;
raslayer->tri_array = tri_array;
raslayer->bounds = bounds;
/* copy as-is */
raslayer->alpha = masklay->alpha;
raslayer->blend = masklay->blend;
raslayer->blend_flag = masklay->blend_flag;
layer_bucket_init(raslayer);
BLI_union_rctf(&mr_handle->bounds, &bounds);
}
PRINT_MASK_DEBUG("tris %d, feather tris %d\n", sf_tri_tot, tot_feather_quads);
}
/* add trianges */
BLI_scanfill_end(&sf_ctx);
}
}
/* 2D ray test */
static float maskrasterize_layer_z_depth_tri(const float pt[2],
const float v1[3], const float v2[3], const float v3[3])
{
float w[3];
barycentric_weights_v2(v1, v2, v3, pt, w);
return (v1[2] * w[0]) + (v2[2] * w[1]) + (v3[2] * w[2]);
}
#if 0
static float maskrasterize_layer_z_depth_quad(const float pt[2],
const float v1[3], const float v2[3], const float v3[3], const float v4[3])
{
float w[4];
barycentric_weights_v2_quad(v1, v2, v3, v4, pt, w);
return (v1[2] * w[0]) + (v2[2] * w[1]) + (v3[2] * w[2]) + (v4[2] * w[3]);
}
#endif
static float maskrasterize_layer_isect(unsigned int *tri, float (*cos)[3], const float dist_orig, const float xy[2])
{
/* we always cast from same place only need xy */
if (tri[3] == TRI_VERT) {
/* --- tri --- */
/* not essential but avoids unneeded extra lookups */
if ((cos[0][2] < dist_orig) ||
(cos[1][2] < dist_orig) ||
(cos[2][2] < dist_orig))
{
if (isect_point_tri_v2(xy, cos[tri[0]], cos[tri[1]], cos[tri[2]])) {
/* we know all tris are close for now */
#if 0
return maskrasterize_layer_z_depth_tri(xy, cos[tri[0]], cos[tri[1]], cos[tri[2]]);
#else
return 0.0f;
#endif
}
}
}
else {
/* --- quad --- */
/* not essential but avoids unneeded extra lookups */
if ((cos[0][2] < dist_orig) ||
(cos[1][2] < dist_orig) ||
(cos[2][2] < dist_orig) ||
(cos[3][2] < dist_orig))
{
/* needs work */
#if 0
if (isect_point_quad_v2(xy, cos[tri[0]], cos[tri[1]], cos[tri[2]], cos[tri[3]])) {
return maskrasterize_layer_z_depth_quad(xy, cos[tri[0]], cos[tri[1]], cos[tri[2]], cos[tri[3]]);
}
#elif 1
if (isect_point_tri_v2(xy, cos[tri[0]], cos[tri[1]], cos[tri[2]])) {
return maskrasterize_layer_z_depth_tri(xy, cos[tri[0]], cos[tri[1]], cos[tri[2]]);
}
else if (isect_point_tri_v2(xy, cos[tri[0]], cos[tri[2]], cos[tri[3]])) {
return maskrasterize_layer_z_depth_tri(xy, cos[tri[0]], cos[tri[2]], cos[tri[3]]);
}
#else
/* cheat - we know first 2 verts are z0.0f and second 2 are z 1.0f */
/* ... worth looking into */
#endif
}
}
return 1.0f;
}
static void layer_bucket_init(MaskRasterLayer *layer)
{
MemArena *arena = BLI_memarena_new(1 << 16, __func__);
/* TODO - calculate best bucket size */
layer->buckets_x = 128;
layer->buckets_y = 128;
layer->buckets_xy_scalar[0] = (1.0f / ((layer->bounds.xmax - layer->bounds.xmin) + FLT_EPSILON)) * layer->buckets_x;
layer->buckets_xy_scalar[1] = (1.0f / ((layer->bounds.ymax - layer->bounds.ymin) + FLT_EPSILON)) * layer->buckets_y;
{
unsigned int *tri = &layer->tri_array[0][0];
float (*cos)[3] = layer->tri_coords;
const unsigned int bucket_tot = layer->buckets_x * layer->buckets_y;
LinkNode **bucketstore = MEM_callocN(bucket_tot * sizeof(LinkNode *), __func__);
unsigned int *bucketstore_tot = MEM_callocN(bucket_tot * sizeof(unsigned int), __func__);
unsigned int tri_index;
for (tri_index = 0; tri_index < layer->tri_tot; tri_index++, tri += 4) {
float xmin;
float xmax;
float ymin;
float ymax;
if (tri[3] == TRI_VERT) {
const float *v1 = cos[tri[0]];
const float *v2 = cos[tri[1]];
const float *v3 = cos[tri[2]];
xmin = fminf(v1[0], fminf(v2[0], v3[0]));
xmax = fmaxf(v1[0], fmaxf(v2[0], v3[0]));
ymin = fminf(v1[1], fminf(v2[1], v3[1]));
ymax = fmaxf(v1[1], fmaxf(v2[1], v3[1]));
}
else {
const float *v1 = cos[tri[0]];
const float *v2 = cos[tri[1]];
const float *v3 = cos[tri[2]];
const float *v4 = cos[tri[3]];
xmin = fminf(v1[0], fminf(v2[0], fminf(v3[0], v4[0])));
xmax = fmaxf(v1[0], fmaxf(v2[0], fmaxf(v3[0], v4[0])));
ymin = fminf(v1[1], fminf(v2[1], fminf(v3[1], v4[1])));
ymax = fmaxf(v1[1], fmaxf(v2[1], fmaxf(v3[1], v4[1])));
}
/* not essential but may as will skip any faces outside the view */
if (!((xmax < 0.0f) || (ymax < 0.0f) || (xmin > 1.0f) || (ymin > 1.0f))) {
const unsigned int xi_min = (unsigned int) ((xmin - layer->bounds.xmin) * layer->buckets_xy_scalar[0]);
const unsigned int xi_max = (unsigned int) ((xmax - layer->bounds.xmin) * layer->buckets_xy_scalar[0]);
const unsigned int yi_min = (unsigned int) ((ymin - layer->bounds.ymin) * layer->buckets_xy_scalar[1]);
const unsigned int yi_max = (unsigned int) ((ymax - layer->bounds.ymin) * layer->buckets_xy_scalar[1]);
unsigned int xi, yi;
for (xi = xi_min; xi <= xi_max; xi++) {
for (yi = yi_min; yi <= yi_max; yi++) {
unsigned int bucket_index = (layer->buckets_x * yi) + xi;
BLI_assert(xi < layer->buckets_x);
BLI_assert(yi < layer->buckets_y);
BLI_assert(bucket_index < bucket_tot);
BLI_linklist_prepend_arena(&bucketstore[bucket_index],
SET_UINT_IN_POINTER(tri_index),
arena);
bucketstore_tot[bucket_index]++;
}
}
}
}
if (1) {
/* now convert linknodes into arrays for faster per pixel access */
unsigned int **buckets_tri = MEM_mallocN(bucket_tot * sizeof(unsigned int **), __func__);
unsigned int bucket_index;
for (bucket_index = 0; bucket_index < bucket_tot; bucket_index++) {
if (bucketstore_tot[bucket_index]) {
unsigned int *bucket = MEM_mallocN((bucketstore_tot[bucket_index] + 1) * sizeof(unsigned int), __func__);
LinkNode *bucket_node;
buckets_tri[bucket_index] = bucket;
for (bucket_node = bucketstore[bucket_index]; bucket_node; bucket_node = bucket_node->next) {
*bucket = GET_UINT_FROM_POINTER(bucket_node->link);
bucket++;
}
*bucket = TRI_TERMINATOR_ID;
}
else {
buckets_tri[bucket_index] = NULL;
}
}
layer->buckets_tri = buckets_tri;
}
MEM_freeN(bucketstore);
MEM_freeN(bucketstore_tot);
}
BLI_memarena_free(arena);
}
static unsigned int layer_bucket_index_from_xy(MaskRasterLayer *layer, const float xy[2])
{
BLI_assert(BLI_in_rctf_v(&layer->bounds, xy));
return ( (unsigned int)((xy[0] - layer->bounds.xmin) * layer->buckets_xy_scalar[0])) +
(((unsigned int)((xy[1] - layer->bounds.ymin) * layer->buckets_xy_scalar[1])) * layer->buckets_x);
}
static float layer_bucket_depth_from_xy(MaskRasterLayer *layer, const float xy[2])
{
unsigned int index = layer_bucket_index_from_xy(layer, xy);
unsigned int *tri_index = layer->buckets_tri[index];
if (tri_index) {
float (*cos)[3] = layer->tri_coords;
float best_dist = 1.0f;
float test_dist;
while (*tri_index != TRI_TERMINATOR_ID) {
unsigned int *tri = layer->tri_array[*tri_index];
if ((test_dist = maskrasterize_layer_isect(tri, cos, best_dist, xy)) < best_dist) {
best_dist = test_dist;
/* bail early */
if (best_dist <= 0.0f) {
return 0.0f;
}
}
tri_index++;
}
return best_dist;
}
else {
return 1.0f;
}
}
float BLI_maskrasterize_handle_sample(MaskRasterHandle *mr_handle, const float xy[2])
{
/* TODO - AA jitter */
if (BLI_in_rctf_v(&mr_handle->bounds, xy)) {
const unsigned int layers_tot = mr_handle->layers_tot;
unsigned int i;
MaskRasterLayer *layer = mr_handle->layers;
/* raycast vars*/
/* return */
float value = 0.0f;
for (i = 0; i < layers_tot; i++, layer++) {
if (BLI_in_rctf_v(&layer->bounds, xy)) {
/* --- hit (start) --- */
const float dist = 1.0f - layer_bucket_depth_from_xy(layer, xy);
const float dist_ease = (3.0f * dist * dist - 2.0f * dist * dist * dist);
float v;
/* apply alpha */
v = dist_ease * layer->alpha;
if (layer->blend_flag & MASK_BLENDFLAG_INVERT) {
v = 1.0f - v;
}
switch (layer->blend) {
case MASK_BLEND_SUBTRACT:
{
value -= v;
break;
}
case MASK_BLEND_ADD:
default:
{
value += v;
break;
}
}
/* --- hit (end) --- */
}
}
return CLAMPIS(value, 0.0f, 1.0f);
}
else {
return 0.0f;
}
}
#endif /* USE_RASKTER */