When the result isn't used, prefer post increment/decrement (already used nearly everywhere in Blender).
548 lines
18 KiB
GLSL
548 lines
18 KiB
GLSL
|
|
/* Based on Stochastic Screen Space Reflections
|
|
* https://www.ea.com/frostbite/news/stochastic-screen-space-reflections */
|
|
|
|
#define MAX_MIP 9.0
|
|
|
|
uniform ivec2 halfresOffset;
|
|
|
|
ivec2 encode_hit_data(vec2 hit_pos, bool has_hit, bool is_planar)
|
|
{
|
|
ivec2 hit_data = ivec2(saturate(hit_pos) * 32767.0); /* 16bit signed int limit */
|
|
hit_data.x *= (is_planar) ? -1 : 1;
|
|
hit_data.y *= (has_hit) ? 1 : -1;
|
|
return hit_data;
|
|
}
|
|
|
|
vec2 decode_hit_data(vec2 hit_data, out bool has_hit, out bool is_planar)
|
|
{
|
|
is_planar = (hit_data.x < 0);
|
|
has_hit = (hit_data.y > 0);
|
|
vec2 hit_co = vec2(abs(hit_data)) / 32767.0; /* 16bit signed int limit */
|
|
if (is_planar) {
|
|
hit_co.x = 1.0 - hit_co.x;
|
|
}
|
|
return hit_co;
|
|
}
|
|
|
|
#ifdef STEP_RAYTRACE
|
|
|
|
uniform sampler2D normalBuffer;
|
|
uniform sampler2D specroughBuffer;
|
|
|
|
layout(location = 0) out ivec2 hitData;
|
|
layout(location = 1) out float pdfData;
|
|
|
|
void do_planar_ssr(int index,
|
|
vec3 V,
|
|
vec3 N,
|
|
vec3 T,
|
|
vec3 B,
|
|
vec3 planeNormal,
|
|
vec3 viewPosition,
|
|
float a2,
|
|
vec4 rand)
|
|
{
|
|
float NH;
|
|
vec3 H = sample_ggx(rand.xzw, a2, N, T, B, NH); /* Microfacet normal */
|
|
float pdf = pdf_ggx_reflect(NH, a2);
|
|
|
|
vec3 R = reflect(-V, H);
|
|
R = reflect(R, planeNormal);
|
|
|
|
/* If ray is bad (i.e. going below the plane) regenerate. */
|
|
if (dot(R, planeNormal) > 0.0) {
|
|
vec3 H = sample_ggx(rand.xzw * vec3(1.0, -1.0, -1.0), a2, N, T, B, NH); /* Microfacet normal */
|
|
pdf = pdf_ggx_reflect(NH, a2);
|
|
|
|
R = reflect(-V, H);
|
|
R = reflect(R, planeNormal);
|
|
}
|
|
|
|
pdfData = min(1024e32, pdf); /* Theoretical limit of 16bit float */
|
|
|
|
/* Since viewspace hit position can land behind the camera in this case,
|
|
* we save the reflected view position (visualize it as the hit position
|
|
* below the reflection plane). This way it's garanted that the hit will
|
|
* be in front of the camera. That let us tag the bad rays with a negative
|
|
* sign in the Z component. */
|
|
vec3 hit_pos = raycast(index, viewPosition, R * 1e16, 1e16, rand.y, ssrQuality, a2, false);
|
|
|
|
hitData = encode_hit_data(hit_pos.xy, (hit_pos.z > 0.0), true);
|
|
}
|
|
|
|
void do_ssr(vec3 V, vec3 N, vec3 T, vec3 B, vec3 viewPosition, float a2, vec4 rand)
|
|
{
|
|
float NH;
|
|
vec3 H = sample_ggx(rand.xzw, a2, N, T, B, NH); /* Microfacet normal */
|
|
float pdf = pdf_ggx_reflect(NH, a2);
|
|
|
|
vec3 R = reflect(-V, H);
|
|
pdfData = min(1024e32, pdf); /* Theoretical limit of 16bit float */
|
|
|
|
vec3 hit_pos = raycast(-1, viewPosition, R * 1e16, ssrThickness, rand.y, ssrQuality, a2, true);
|
|
|
|
hitData = encode_hit_data(hit_pos.xy, (hit_pos.z > 0.0), false);
|
|
}
|
|
|
|
void main()
|
|
{
|
|
# ifdef FULLRES
|
|
ivec2 fullres_texel = ivec2(gl_FragCoord.xy);
|
|
ivec2 halfres_texel = fullres_texel;
|
|
# else
|
|
ivec2 fullres_texel = ivec2(gl_FragCoord.xy) * 2 + halfresOffset;
|
|
ivec2 halfres_texel = ivec2(gl_FragCoord.xy);
|
|
# endif
|
|
|
|
float depth = texelFetch(depthBuffer, fullres_texel, 0).r;
|
|
|
|
/* Default: not hits. */
|
|
hitData = encode_hit_data(vec2(0.5), false, false);
|
|
pdfData = 0.0;
|
|
|
|
/* Early out */
|
|
/* We can't do discard because we don't clear the render target. */
|
|
if (depth == 1.0) {
|
|
return;
|
|
}
|
|
|
|
vec2 uvs = vec2(fullres_texel) / vec2(textureSize(depthBuffer, 0));
|
|
|
|
/* Using view space */
|
|
vec3 viewPosition = get_view_space_from_depth(uvs, depth);
|
|
vec3 V = viewCameraVec;
|
|
vec3 N = normal_decode(texelFetch(normalBuffer, fullres_texel, 0).rg, V);
|
|
|
|
/* Retrieve pixel data */
|
|
vec4 speccol_roughness = texelFetch(specroughBuffer, fullres_texel, 0).rgba;
|
|
|
|
/* Early out */
|
|
if (dot(speccol_roughness.rgb, vec3(1.0)) == 0.0) {
|
|
return;
|
|
}
|
|
|
|
float roughness = speccol_roughness.a;
|
|
float roughnessSquared = max(1e-3, roughness * roughness);
|
|
float a2 = roughnessSquared * roughnessSquared;
|
|
|
|
/* Early out */
|
|
if (roughness > ssrMaxRoughness + 0.2) {
|
|
return;
|
|
}
|
|
|
|
vec4 rand = texelFetch(utilTex, ivec3(halfres_texel % LUT_SIZE, 2), 0);
|
|
|
|
/* Gives *perfect* reflection for very small roughness */
|
|
if (roughness < 0.04) {
|
|
rand.xzw *= 0.0;
|
|
}
|
|
/* Importance sampling bias */
|
|
rand.x = mix(rand.x, 0.0, ssrBrdfBias);
|
|
|
|
vec3 worldPosition = transform_point(ViewMatrixInverse, viewPosition);
|
|
vec3 wN = transform_direction(ViewMatrixInverse, N);
|
|
|
|
vec3 T, B;
|
|
make_orthonormal_basis(N, T, B); /* Generate tangent space */
|
|
|
|
/* Planar Reflections */
|
|
for (int i = 0; i < MAX_PLANAR && i < prbNumPlanar; i++) {
|
|
PlanarData pd = planars_data[i];
|
|
|
|
float fade = probe_attenuation_planar(pd, worldPosition, wN, 0.0);
|
|
|
|
if (fade > 0.5) {
|
|
/* Find view vector / reflection plane intersection. */
|
|
/* TODO optimize, use view space for all. */
|
|
vec3 tracePosition = line_plane_intersect(worldPosition, cameraVec, pd.pl_plane_eq);
|
|
tracePosition = transform_point(ViewMatrix, tracePosition);
|
|
vec3 planeNormal = transform_direction(ViewMatrix, pd.pl_normal);
|
|
|
|
do_planar_ssr(i, V, N, T, B, planeNormal, tracePosition, a2, rand);
|
|
return;
|
|
}
|
|
}
|
|
|
|
do_ssr(V, N, T, B, viewPosition, a2, rand);
|
|
}
|
|
|
|
#else /* STEP_RESOLVE */
|
|
|
|
uniform sampler2D prevColorBuffer; /* previous frame */
|
|
uniform sampler2D normalBuffer;
|
|
uniform sampler2D specroughBuffer;
|
|
|
|
uniform isampler2D hitBuffer;
|
|
uniform sampler2D pdfBuffer;
|
|
|
|
uniform int neighborOffset;
|
|
|
|
const ivec2 neighbors[32] = ivec2[32](ivec2(0, 0),
|
|
ivec2(1, 1),
|
|
ivec2(-2, 0),
|
|
ivec2(0, -2),
|
|
ivec2(0, 0),
|
|
ivec2(1, -1),
|
|
ivec2(-2, 0),
|
|
ivec2(0, 2),
|
|
ivec2(0, 0),
|
|
ivec2(-1, -1),
|
|
ivec2(2, 0),
|
|
ivec2(0, 2),
|
|
ivec2(0, 0),
|
|
ivec2(-1, 1),
|
|
ivec2(2, 0),
|
|
ivec2(0, -2),
|
|
|
|
ivec2(0, 0),
|
|
ivec2(2, 2),
|
|
ivec2(-2, 2),
|
|
ivec2(0, -1),
|
|
ivec2(0, 0),
|
|
ivec2(2, -2),
|
|
ivec2(-2, -2),
|
|
ivec2(0, 1),
|
|
ivec2(0, 0),
|
|
ivec2(-2, -2),
|
|
ivec2(-2, 2),
|
|
ivec2(1, 0),
|
|
ivec2(0, 0),
|
|
ivec2(2, 2),
|
|
ivec2(2, -2),
|
|
ivec2(-1, 0));
|
|
|
|
out vec4 fragColor;
|
|
|
|
# if 0 /* Finish reprojection with motion vectors */
|
|
vec3 get_motion_vector(vec3 pos)
|
|
{
|
|
}
|
|
|
|
/* http://bitsquid.blogspot.fr/2017/06/reprojecting-reflections_22.html */
|
|
vec3 find_reflection_incident_point(vec3 cam, vec3 hit, vec3 pos, vec3 N)
|
|
{
|
|
float d_cam = point_plane_projection_dist(cam, pos, N);
|
|
float d_hit = point_plane_projection_dist(hit, pos, N);
|
|
|
|
if (d_hit < d_cam) {
|
|
/* Swap */
|
|
float tmp = d_cam;
|
|
d_cam = d_hit;
|
|
d_hit = tmp;
|
|
}
|
|
|
|
vec3 proj_cam = cam - (N * d_cam);
|
|
vec3 proj_hit = hit - (N * d_hit);
|
|
|
|
return (proj_hit - proj_cam) * d_cam / (d_cam + d_hit) + proj_cam;
|
|
}
|
|
# endif
|
|
|
|
float brightness(vec3 c)
|
|
{
|
|
return max(max(c.r, c.g), c.b);
|
|
}
|
|
|
|
vec2 get_reprojected_reflection(vec3 hit, vec3 pos, vec3 N)
|
|
{
|
|
/* TODO real reprojection with motion vectors, etc... */
|
|
return project_point(pastViewProjectionMatrix, hit).xy * 0.5 + 0.5;
|
|
}
|
|
|
|
float get_sample_depth(vec2 hit_co, bool is_planar, float planar_index)
|
|
{
|
|
if (is_planar) {
|
|
hit_co.x = 1.0 - hit_co.x;
|
|
return textureLod(planarDepth, vec3(hit_co, planar_index), 0.0).r;
|
|
}
|
|
else {
|
|
return textureLod(depthBuffer, hit_co, 0.0).r;
|
|
}
|
|
}
|
|
|
|
vec3 get_hit_vector(vec3 hit_pos,
|
|
PlanarData pd,
|
|
vec3 worldPosition,
|
|
vec3 N,
|
|
vec3 V,
|
|
bool is_planar,
|
|
inout vec2 hit_co,
|
|
inout float mask)
|
|
{
|
|
vec3 hit_vec;
|
|
|
|
if (is_planar) {
|
|
/* Reflect back the hit position to have it in non-reflected world space */
|
|
vec3 trace_pos = line_plane_intersect(worldPosition, V, pd.pl_plane_eq);
|
|
hit_vec = hit_pos - trace_pos;
|
|
hit_vec = reflect(hit_vec, pd.pl_normal);
|
|
/* Modify here so mip texel alignment is correct. */
|
|
hit_co.x = 1.0 - hit_co.x;
|
|
}
|
|
else {
|
|
/* Find hit position in previous frame. */
|
|
hit_co = get_reprojected_reflection(hit_pos, worldPosition, N);
|
|
hit_vec = hit_pos - worldPosition;
|
|
}
|
|
|
|
mask = screen_border_mask(hit_co);
|
|
return hit_vec;
|
|
}
|
|
|
|
vec3 get_scene_color(vec2 ref_uvs, float mip, float planar_index, bool is_planar)
|
|
{
|
|
if (is_planar) {
|
|
return textureLod(probePlanars, vec3(ref_uvs, planar_index), min(mip, prbLodPlanarMax)).rgb;
|
|
}
|
|
else {
|
|
return textureLod(prevColorBuffer, ref_uvs, mip).rgb;
|
|
}
|
|
}
|
|
|
|
vec4 get_ssr_samples(vec4 hit_pdf,
|
|
ivec4 hit_data[2],
|
|
PlanarData pd,
|
|
float planar_index,
|
|
vec3 worldPosition,
|
|
vec3 N,
|
|
vec3 V,
|
|
float roughnessSquared,
|
|
float cone_tan,
|
|
vec2 source_uvs,
|
|
inout float weight_acc)
|
|
{
|
|
bvec4 is_planar, has_hit;
|
|
vec4 hit_co[2];
|
|
hit_co[0].xy = decode_hit_data(hit_data[0].xy, has_hit.x, is_planar.x);
|
|
hit_co[0].zw = decode_hit_data(hit_data[0].zw, has_hit.y, is_planar.y);
|
|
hit_co[1].xy = decode_hit_data(hit_data[1].xy, has_hit.z, is_planar.z);
|
|
hit_co[1].zw = decode_hit_data(hit_data[1].zw, has_hit.w, is_planar.w);
|
|
|
|
vec4 hit_depth;
|
|
hit_depth.x = get_sample_depth(hit_co[0].xy, is_planar.x, planar_index);
|
|
hit_depth.y = get_sample_depth(hit_co[0].zw, is_planar.y, planar_index);
|
|
hit_depth.z = get_sample_depth(hit_co[1].xy, is_planar.z, planar_index);
|
|
hit_depth.w = get_sample_depth(hit_co[1].zw, is_planar.w, planar_index);
|
|
|
|
/* Hit position in view space. */
|
|
vec3 hit_view[4];
|
|
hit_view[0] = get_view_space_from_depth(hit_co[0].xy, hit_depth.x);
|
|
hit_view[1] = get_view_space_from_depth(hit_co[0].zw, hit_depth.y);
|
|
hit_view[2] = get_view_space_from_depth(hit_co[1].xy, hit_depth.z);
|
|
hit_view[3] = get_view_space_from_depth(hit_co[1].zw, hit_depth.w);
|
|
|
|
vec4 homcoord = vec4(hit_view[0].z, hit_view[1].z, hit_view[2].z, hit_view[3].z);
|
|
homcoord = ProjectionMatrix[2][3] * homcoord + ProjectionMatrix[3][3];
|
|
|
|
/* Hit position in world space. */
|
|
vec3 hit_pos[4];
|
|
hit_pos[0] = transform_point(ViewMatrixInverse, hit_view[0]);
|
|
hit_pos[1] = transform_point(ViewMatrixInverse, hit_view[1]);
|
|
hit_pos[2] = transform_point(ViewMatrixInverse, hit_view[2]);
|
|
hit_pos[3] = transform_point(ViewMatrixInverse, hit_view[3]);
|
|
|
|
/* Get actual hit vector and hit coordinate (from last frame). */
|
|
vec4 mask = vec4(1.0);
|
|
hit_pos[0] = get_hit_vector(
|
|
hit_pos[0], pd, worldPosition, N, V, is_planar.x, hit_co[0].xy, mask.x);
|
|
hit_pos[1] = get_hit_vector(
|
|
hit_pos[1], pd, worldPosition, N, V, is_planar.y, hit_co[0].zw, mask.y);
|
|
hit_pos[2] = get_hit_vector(
|
|
hit_pos[2], pd, worldPosition, N, V, is_planar.z, hit_co[1].xy, mask.z);
|
|
hit_pos[3] = get_hit_vector(
|
|
hit_pos[3], pd, worldPosition, N, V, is_planar.w, hit_co[1].zw, mask.w);
|
|
|
|
vec4 hit_dist;
|
|
hit_dist.x = length(hit_pos[0]);
|
|
hit_dist.y = length(hit_pos[1]);
|
|
hit_dist.z = length(hit_pos[2]);
|
|
hit_dist.w = length(hit_pos[3]);
|
|
hit_dist = max(vec4(1e-8), hit_dist);
|
|
|
|
/* Normalize */
|
|
hit_pos[0] /= hit_dist.x;
|
|
hit_pos[1] /= hit_dist.y;
|
|
hit_pos[2] /= hit_dist.z;
|
|
hit_pos[3] /= hit_dist.w;
|
|
|
|
/* Compute cone footprint in screen space. */
|
|
vec4 cone_footprint = hit_dist * cone_tan;
|
|
cone_footprint = ssrBrdfBias * 0.5 * cone_footprint *
|
|
max(ProjectionMatrix[0][0], ProjectionMatrix[1][1]) / homcoord;
|
|
|
|
/* Estimate a cone footprint to sample a corresponding mipmap level. */
|
|
vec4 mip = log2(cone_footprint * max_v2(vec2(textureSize(depthBuffer, 0))));
|
|
mip = clamp(mip, 0.0, MAX_MIP);
|
|
|
|
/* Correct UVs for mipmaping mis-alignment */
|
|
hit_co[0].xy *= mip_ratio_interp(mip.x);
|
|
hit_co[0].zw *= mip_ratio_interp(mip.y);
|
|
hit_co[1].xy *= mip_ratio_interp(mip.z);
|
|
hit_co[1].zw *= mip_ratio_interp(mip.w);
|
|
|
|
/* Slide 54 */
|
|
vec4 bsdf;
|
|
bsdf.x = bsdf_ggx(N, hit_pos[0], V, roughnessSquared);
|
|
bsdf.y = bsdf_ggx(N, hit_pos[1], V, roughnessSquared);
|
|
bsdf.z = bsdf_ggx(N, hit_pos[2], V, roughnessSquared);
|
|
bsdf.w = bsdf_ggx(N, hit_pos[3], V, roughnessSquared);
|
|
|
|
vec4 weight = step(1e-8, hit_pdf) * bsdf / max(vec4(1e-8), hit_pdf);
|
|
|
|
vec3 sample[4];
|
|
sample[0] = get_scene_color(hit_co[0].xy, mip.x, planar_index, is_planar.x);
|
|
sample[1] = get_scene_color(hit_co[0].zw, mip.y, planar_index, is_planar.y);
|
|
sample[2] = get_scene_color(hit_co[1].xy, mip.z, planar_index, is_planar.z);
|
|
sample[3] = get_scene_color(hit_co[1].zw, mip.w, planar_index, is_planar.w);
|
|
|
|
/* Clamped brightness. */
|
|
vec4 luma;
|
|
luma.x = brightness(sample[0]);
|
|
luma.y = brightness(sample[1]);
|
|
luma.z = brightness(sample[2]);
|
|
luma.w = brightness(sample[3]);
|
|
luma = max(vec4(1e-8), luma);
|
|
luma = 1.0 - max(vec4(0.0), luma - ssrFireflyFac) / luma;
|
|
|
|
sample[0] *= luma.x;
|
|
sample[1] *= luma.y;
|
|
sample[2] *= luma.z;
|
|
sample[3] *= luma.w;
|
|
|
|
/* Protection against NaNs in the history buffer.
|
|
* This could be removed if some previous pass has already
|
|
* sanitized the input. */
|
|
if (any(isnan(sample[0]))) {
|
|
sample[0] = vec3(0.0);
|
|
weight.x = 0.0;
|
|
}
|
|
if (any(isnan(sample[1]))) {
|
|
sample[1] = vec3(0.0);
|
|
weight.y = 0.0;
|
|
}
|
|
if (any(isnan(sample[2]))) {
|
|
sample[2] = vec3(0.0);
|
|
weight.z = 0.0;
|
|
}
|
|
if (any(isnan(sample[3]))) {
|
|
sample[3] = vec3(0.0);
|
|
weight.w = 0.0;
|
|
}
|
|
|
|
weight_acc += sum(weight);
|
|
|
|
/* Do not add light if ray has failed. */
|
|
vec4 accum;
|
|
accum = vec4(sample[0], mask.x) * weight.x * float(has_hit.x);
|
|
accum += vec4(sample[1], mask.y) * weight.y * float(has_hit.y);
|
|
accum += vec4(sample[2], mask.z) * weight.z * float(has_hit.z);
|
|
accum += vec4(sample[3], mask.w) * weight.w * float(has_hit.w);
|
|
return accum;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
ivec2 fullres_texel = ivec2(gl_FragCoord.xy);
|
|
# ifdef FULLRES
|
|
ivec2 halfres_texel = fullres_texel;
|
|
# else
|
|
ivec2 halfres_texel = ivec2(gl_FragCoord.xy / 2.0);
|
|
# endif
|
|
vec2 uvs = gl_FragCoord.xy / vec2(textureSize(depthBuffer, 0));
|
|
|
|
float depth = textureLod(depthBuffer, uvs, 0.0).r;
|
|
|
|
/* Early out */
|
|
if (depth == 1.0) {
|
|
discard;
|
|
}
|
|
|
|
/* Using world space */
|
|
vec3 viewPosition = get_view_space_from_depth(uvs, depth); /* Needed for viewCameraVec */
|
|
vec3 worldPosition = transform_point(ViewMatrixInverse, viewPosition);
|
|
vec3 V = cameraVec;
|
|
vec3 vN = normal_decode(texelFetch(normalBuffer, fullres_texel, 0).rg, viewCameraVec);
|
|
vec3 N = transform_direction(ViewMatrixInverse, vN);
|
|
vec4 speccol_roughness = texelFetch(specroughBuffer, fullres_texel, 0).rgba;
|
|
|
|
/* Early out */
|
|
if (dot(speccol_roughness.rgb, vec3(1.0)) == 0.0) {
|
|
discard;
|
|
}
|
|
|
|
float roughness = speccol_roughness.a;
|
|
float roughnessSquared = max(1e-3, roughness * roughness);
|
|
|
|
vec4 spec_accum = vec4(0.0);
|
|
|
|
/* Resolve SSR */
|
|
float cone_cos = cone_cosine(roughnessSquared);
|
|
float cone_tan = sqrt(1 - cone_cos * cone_cos) / cone_cos;
|
|
cone_tan *= mix(saturate(dot(N, -V) * 2.0), 1.0, roughness); /* Elongation fit */
|
|
|
|
vec2 source_uvs = project_point(pastViewProjectionMatrix, worldPosition).xy * 0.5 + 0.5;
|
|
|
|
vec4 ssr_accum = vec4(0.0);
|
|
float weight_acc = 0.0;
|
|
|
|
if (roughness < ssrMaxRoughness + 0.2) {
|
|
/* TODO optimize with textureGather */
|
|
/* Doing these fetches early to hide latency. */
|
|
vec4 hit_pdf;
|
|
hit_pdf.x = texelFetch(pdfBuffer, halfres_texel + neighbors[0 + neighborOffset], 0).r;
|
|
hit_pdf.y = texelFetch(pdfBuffer, halfres_texel + neighbors[1 + neighborOffset], 0).r;
|
|
hit_pdf.z = texelFetch(pdfBuffer, halfres_texel + neighbors[2 + neighborOffset], 0).r;
|
|
hit_pdf.w = texelFetch(pdfBuffer, halfres_texel + neighbors[3 + neighborOffset], 0).r;
|
|
|
|
ivec4 hit_data[2];
|
|
hit_data[0].xy = texelFetch(hitBuffer, halfres_texel + neighbors[0 + neighborOffset], 0).rg;
|
|
hit_data[0].zw = texelFetch(hitBuffer, halfres_texel + neighbors[1 + neighborOffset], 0).rg;
|
|
hit_data[1].xy = texelFetch(hitBuffer, halfres_texel + neighbors[2 + neighborOffset], 0).rg;
|
|
hit_data[1].zw = texelFetch(hitBuffer, halfres_texel + neighbors[3 + neighborOffset], 0).rg;
|
|
|
|
/* Find Planar Reflections affecting this pixel */
|
|
PlanarData pd;
|
|
float planar_index;
|
|
for (int i = 0; i < MAX_PLANAR && i < prbNumPlanar; i++) {
|
|
pd = planars_data[i];
|
|
|
|
float fade = probe_attenuation_planar(pd, worldPosition, N, 0.0);
|
|
|
|
if (fade > 0.5) {
|
|
planar_index = float(i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ssr_accum += get_ssr_samples(hit_pdf,
|
|
hit_data,
|
|
pd,
|
|
planar_index,
|
|
worldPosition,
|
|
N,
|
|
V,
|
|
roughnessSquared,
|
|
cone_tan,
|
|
source_uvs,
|
|
weight_acc);
|
|
}
|
|
|
|
/* Compute SSR contribution */
|
|
if (weight_acc > 0.0) {
|
|
ssr_accum /= weight_acc;
|
|
/* fade between 0.5 and 1.0 roughness */
|
|
ssr_accum.a *= smoothstep(ssrMaxRoughness + 0.2, ssrMaxRoughness, roughness);
|
|
accumulate_light(ssr_accum.rgb, ssr_accum.a, spec_accum);
|
|
}
|
|
|
|
/* If SSR contribution is not 1.0, blend with cubemaps */
|
|
if (spec_accum.a < 1.0) {
|
|
fallback_cubemap(N, V, worldPosition, viewPosition, roughness, roughnessSquared, spec_accum);
|
|
}
|
|
|
|
fragColor = vec4(spec_accum.rgb * speccol_roughness.rgb, 1.0);
|
|
}
|
|
|
|
#endif
|