This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/image_gpu.cc
Brecht Van Lommel 8358cc7963 Fix wrong alpha for scene linear byte images during texture painting
Make the update logic consistent with the case where the initial texture is
created. Also fixes a wrong assert.

Thanks Clément for spotting this.
2022-07-18 17:40:48 +02:00

894 lines
27 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2001-2002 NaN Holding BV. All rights reserved. */
/** \file
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "BLI_bitmap.h"
#include "BLI_boxpack_2d.h"
#include "BLI_linklist.h"
#include "BLI_listbase.h"
#include "BLI_threads.h"
#include "DNA_image_types.h"
#include "DNA_userdef_types.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_image_partial_update.hh"
#include "BKE_main.h"
#include "GPU_capabilities.h"
#include "GPU_state.h"
#include "GPU_texture.h"
#include "PIL_time.h"
using namespace blender::bke::image::partial_update;
extern "C" {
/* Prototypes. */
static void gpu_free_unused_buffers();
static void image_free_gpu(Image *ima, const bool immediate);
static void image_update_gputexture_ex(
Image *ima, ImageTile *tile, ImBuf *ibuf, int x, int y, int w, int h);
bool BKE_image_has_gpu_texture_premultiplied_alpha(Image *image, ImBuf *ibuf)
{
if (image) {
/* Render result and compositor output are always premultiplied */
if (ELEM(image->type, IMA_TYPE_R_RESULT, IMA_TYPE_COMPOSITE)) {
return true;
}
/* Generated images use pre multiplied float buffer, but straight alpha for byte buffers. */
if (image->type == IMA_TYPE_UV_TEST && ibuf) {
return ibuf->rect_float != nullptr;
}
}
if (ibuf) {
if (ibuf->rect_float) {
return image ? (image->alpha_mode != IMA_ALPHA_STRAIGHT) : false;
}
return image ? (image->alpha_mode == IMA_ALPHA_PREMUL) : true;
}
return false;
}
/* -------------------------------------------------------------------- */
/** \name UDIM GPU Texture
* \{ */
static bool is_over_resolution_limit(int w, int h)
{
return (w > GPU_texture_size_with_limit(w) || h > GPU_texture_size_with_limit(h));
}
static int smaller_power_of_2_limit(int num)
{
return power_of_2_min_i(GPU_texture_size_with_limit(num));
}
static GPUTexture *gpu_texture_create_tile_mapping(Image *ima, const int multiview_eye)
{
GPUTexture *tilearray = ima->gputexture[TEXTARGET_2D_ARRAY][multiview_eye];
if (tilearray == nullptr) {
return nullptr;
}
float array_w = GPU_texture_width(tilearray);
float array_h = GPU_texture_height(tilearray);
/* Determine maximum tile number. */
BKE_image_sort_tiles(ima);
ImageTile *last_tile = (ImageTile *)ima->tiles.last;
int max_tile = last_tile->tile_number - 1001;
/* create image */
int width = max_tile + 1;
float *data = (float *)MEM_callocN(width * 8 * sizeof(float), __func__);
for (int i = 0; i < width; i++) {
data[4 * i] = -1.0f;
}
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
int i = tile->tile_number - 1001;
ImageTile_Runtime *tile_runtime = &tile->runtime;
data[4 * i] = tile_runtime->tilearray_layer;
float *tile_info = &data[4 * width + 4 * i];
tile_info[0] = tile_runtime->tilearray_offset[0] / array_w;
tile_info[1] = tile_runtime->tilearray_offset[1] / array_h;
tile_info[2] = tile_runtime->tilearray_size[0] / array_w;
tile_info[3] = tile_runtime->tilearray_size[1] / array_h;
}
GPUTexture *tex = GPU_texture_create_1d_array(ima->id.name + 2, width, 2, 1, GPU_RGBA32F, data);
GPU_texture_mipmap_mode(tex, false, false);
MEM_freeN(data);
return tex;
}
struct PackTile {
FixedSizeBoxPack boxpack;
ImageTile *tile;
float pack_score;
};
static int compare_packtile(const void *a, const void *b)
{
const PackTile *tile_a = (const PackTile *)a;
const PackTile *tile_b = (const PackTile *)b;
return tile_a->pack_score < tile_b->pack_score;
}
static GPUTexture *gpu_texture_create_tile_array(Image *ima, ImBuf *main_ibuf)
{
int arraywidth = 0, arrayheight = 0;
ListBase boxes = {nullptr};
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
ImageUser iuser;
BKE_imageuser_default(&iuser);
iuser.tile = tile->tile_number;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, &iuser, nullptr);
if (ibuf) {
PackTile *packtile = MEM_cnew<PackTile>(__func__);
packtile->tile = tile;
packtile->boxpack.w = ibuf->x;
packtile->boxpack.h = ibuf->y;
if (is_over_resolution_limit(packtile->boxpack.w, packtile->boxpack.h)) {
packtile->boxpack.w = smaller_power_of_2_limit(packtile->boxpack.w);
packtile->boxpack.h = smaller_power_of_2_limit(packtile->boxpack.h);
}
arraywidth = max_ii(arraywidth, packtile->boxpack.w);
arrayheight = max_ii(arrayheight, packtile->boxpack.h);
/* We sort the tiles by decreasing size, with an additional penalty term
* for high aspect ratios. This improves packing efficiency. */
float w = packtile->boxpack.w, h = packtile->boxpack.h;
packtile->pack_score = max_ff(w, h) / min_ff(w, h) * w * h;
BKE_image_release_ibuf(ima, ibuf, nullptr);
BLI_addtail(&boxes, packtile);
}
}
BLI_assert(arraywidth > 0 && arrayheight > 0);
BLI_listbase_sort(&boxes, compare_packtile);
int arraylayers = 0;
/* Keep adding layers until all tiles are packed. */
while (boxes.first != nullptr) {
ListBase packed = {nullptr};
BLI_box_pack_2d_fixedarea(&boxes, arraywidth, arrayheight, &packed);
BLI_assert(packed.first != nullptr);
LISTBASE_FOREACH (PackTile *, packtile, &packed) {
ImageTile *tile = packtile->tile;
ImageTile_Runtime *tile_runtime = &tile->runtime;
int *tileoffset = tile_runtime->tilearray_offset;
int *tilesize = tile_runtime->tilearray_size;
tileoffset[0] = packtile->boxpack.x;
tileoffset[1] = packtile->boxpack.y;
tilesize[0] = packtile->boxpack.w;
tilesize[1] = packtile->boxpack.h;
tile_runtime->tilearray_layer = arraylayers;
}
BLI_freelistN(&packed);
arraylayers++;
}
const bool use_high_bitdepth = (ima->flag & IMA_HIGH_BITDEPTH);
/* Create Texture without content. */
GPUTexture *tex = IMB_touch_gpu_texture(
ima->id.name + 2, main_ibuf, arraywidth, arrayheight, arraylayers, use_high_bitdepth);
/* Upload each tile one by one. */
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
ImageTile_Runtime *tile_runtime = &tile->runtime;
int tilelayer = tile_runtime->tilearray_layer;
int *tileoffset = tile_runtime->tilearray_offset;
int *tilesize = tile_runtime->tilearray_size;
if (tilesize[0] == 0 || tilesize[1] == 0) {
continue;
}
ImageUser iuser;
BKE_imageuser_default(&iuser);
iuser.tile = tile->tile_number;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, &iuser, nullptr);
if (ibuf) {
const bool store_premultiplied = BKE_image_has_gpu_texture_premultiplied_alpha(ima, ibuf);
IMB_update_gpu_texture_sub(tex,
ibuf,
UNPACK2(tileoffset),
tilelayer,
UNPACK2(tilesize),
use_high_bitdepth,
store_premultiplied);
}
BKE_image_release_ibuf(ima, ibuf, nullptr);
}
if (GPU_mipmap_enabled()) {
GPU_texture_generate_mipmap(tex);
GPU_texture_mipmap_mode(tex, true, true);
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
}
else {
GPU_texture_mipmap_mode(tex, false, true);
}
return tex;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Regular gpu texture
* \{ */
static GPUTexture **get_image_gpu_texture_ptr(Image *ima,
eGPUTextureTarget textarget,
const int multiview_eye)
{
const bool in_range = (textarget >= 0) && (textarget < TEXTARGET_COUNT);
BLI_assert(in_range);
BLI_assert(ELEM(multiview_eye, 0, 1));
if (in_range) {
return &(ima->gputexture[textarget][multiview_eye]);
}
return nullptr;
}
static GPUTexture *image_gpu_texture_error_create(eGPUTextureTarget textarget)
{
fprintf(stderr, "GPUTexture: Blender Texture Not Loaded!\n");
switch (textarget) {
case TEXTARGET_2D_ARRAY:
return GPU_texture_create_error(2, true);
case TEXTARGET_TILE_MAPPING:
return GPU_texture_create_error(1, true);
case TEXTARGET_2D:
default:
return GPU_texture_create_error(2, false);
}
}
static void image_gpu_texture_partial_update_changes_available(
Image *image, PartialUpdateChecker<ImageTileData>::CollectResult &changes)
{
while (changes.get_next_change() == ePartialUpdateIterResult::ChangeAvailable) {
/* Calculate the clipping region with the tile buffer.
* TODO(jbakker): should become part of ImageTileData to deduplicate with image engine. */
rcti buffer_rect;
BLI_rcti_init(
&buffer_rect, 0, changes.tile_data.tile_buffer->x, 0, changes.tile_data.tile_buffer->y);
rcti clipped_update_region;
const bool has_overlap = BLI_rcti_isect(
&buffer_rect, &changes.changed_region.region, &clipped_update_region);
if (!has_overlap) {
continue;
}
image_update_gputexture_ex(image,
changes.tile_data.tile,
changes.tile_data.tile_buffer,
clipped_update_region.xmin,
clipped_update_region.ymin,
BLI_rcti_size_x(&clipped_update_region),
BLI_rcti_size_y(&clipped_update_region));
}
}
static void image_gpu_texture_try_partial_update(Image *image, ImageUser *iuser)
{
PartialUpdateChecker<ImageTileData> checker(image, iuser, image->runtime.partial_update_user);
PartialUpdateChecker<ImageTileData>::CollectResult changes = checker.collect_changes();
switch (changes.get_result_code()) {
case ePartialUpdateCollectResult::FullUpdateNeeded: {
image_free_gpu(image, true);
break;
}
case ePartialUpdateCollectResult::PartialChangesDetected: {
image_gpu_texture_partial_update_changes_available(image, changes);
break;
}
case ePartialUpdateCollectResult::NoChangesDetected: {
/* GPUTextures are up to date. */
break;
}
}
}
static GPUTexture *image_get_gpu_texture(Image *ima,
ImageUser *iuser,
ImBuf *ibuf,
eGPUTextureTarget textarget)
{
if (ima == nullptr) {
return nullptr;
}
/* Free any unused GPU textures, since we know we are in a thread with OpenGL
* context and might as well ensure we have as much space free as possible. */
gpu_free_unused_buffers();
/* Free GPU textures when requesting a different render pass/layer.
* When `iuser` isn't set (texture painting single image mode) we assume that
* the current `pass` and `layer` should be 0. */
short requested_pass = iuser ? iuser->pass : 0;
short requested_layer = iuser ? iuser->layer : 0;
short requested_view = iuser ? iuser->multi_index : 0;
/* There is room for 2 multiview textures. When a higher number is requested we should always
* target the first view slot. This is fine as multi view images aren't used together. */
if (requested_view < 2) {
requested_view = 0;
}
if (ima->gpu_pass != requested_pass || ima->gpu_layer != requested_layer ||
ima->gpu_view != requested_view) {
ima->gpu_pass = requested_pass;
ima->gpu_layer = requested_layer;
ima->gpu_view = requested_view;
}
#undef GPU_FLAGS_TO_CHECK
if (ima->runtime.partial_update_user == nullptr) {
ima->runtime.partial_update_user = BKE_image_partial_update_create(ima);
}
image_gpu_texture_try_partial_update(ima, iuser);
/* Tag as in active use for garbage collector. */
BKE_image_tag_time(ima);
/* Test if we already have a texture. */
int current_view = iuser ? iuser->multi_index : 0;
if (current_view >= 2) {
current_view = 0;
}
GPUTexture **tex = get_image_gpu_texture_ptr(ima, textarget, current_view);
if (*tex) {
return *tex;
}
/* Check if we have a valid image. If not, we return a dummy
* texture with zero bind-code so we don't keep trying. */
ImageTile *tile = BKE_image_get_tile(ima, 0);
if (tile == nullptr) {
*tex = image_gpu_texture_error_create(textarget);
return *tex;
}
/* check if we have a valid image buffer */
ImBuf *ibuf_intern = ibuf;
if (ibuf_intern == nullptr) {
ibuf_intern = BKE_image_acquire_ibuf(ima, iuser, nullptr);
if (ibuf_intern == nullptr) {
*tex = image_gpu_texture_error_create(textarget);
return *tex;
}
}
if (textarget == TEXTARGET_2D_ARRAY) {
*tex = gpu_texture_create_tile_array(ima, ibuf_intern);
}
else if (textarget == TEXTARGET_TILE_MAPPING) {
*tex = gpu_texture_create_tile_mapping(ima, iuser ? iuser->multiview_eye : 0);
}
else {
const bool use_high_bitdepth = (ima->flag & IMA_HIGH_BITDEPTH);
const bool store_premultiplied = BKE_image_has_gpu_texture_premultiplied_alpha(ima,
ibuf_intern);
*tex = IMB_create_gpu_texture(
ima->id.name + 2, ibuf_intern, use_high_bitdepth, store_premultiplied);
if (*tex) {
GPU_texture_wrap_mode(*tex, true, false);
if (GPU_mipmap_enabled()) {
GPU_texture_generate_mipmap(*tex);
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
GPU_texture_mipmap_mode(*tex, true, true);
}
else {
GPU_texture_mipmap_mode(*tex, false, true);
}
}
}
if (*tex) {
GPU_texture_orig_size_set(*tex, ibuf_intern->x, ibuf_intern->y);
}
if (ibuf != ibuf_intern) {
BKE_image_release_ibuf(ima, ibuf_intern, nullptr);
}
return *tex;
}
GPUTexture *BKE_image_get_gpu_texture(Image *image, ImageUser *iuser, ImBuf *ibuf)
{
return image_get_gpu_texture(image, iuser, ibuf, TEXTARGET_2D);
}
GPUTexture *BKE_image_get_gpu_tiles(Image *image, ImageUser *iuser, ImBuf *ibuf)
{
return image_get_gpu_texture(image, iuser, ibuf, TEXTARGET_2D_ARRAY);
}
GPUTexture *BKE_image_get_gpu_tilemap(Image *image, ImageUser *iuser, ImBuf *ibuf)
{
return image_get_gpu_texture(image, iuser, ibuf, TEXTARGET_TILE_MAPPING);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Delayed GPU texture free
*
* Image datablocks can be deleted by any thread, but there may not be any active OpenGL context.
* In that case we push them into a queue and free the buffers later.
* \{ */
static LinkNode *gpu_texture_free_queue = nullptr;
static ThreadMutex gpu_texture_queue_mutex = BLI_MUTEX_INITIALIZER;
static void gpu_free_unused_buffers()
{
if (gpu_texture_free_queue == nullptr) {
return;
}
BLI_mutex_lock(&gpu_texture_queue_mutex);
while (gpu_texture_free_queue != nullptr) {
GPUTexture *tex = static_cast<GPUTexture *>(BLI_linklist_pop(&gpu_texture_free_queue));
GPU_texture_free(tex);
}
BLI_mutex_unlock(&gpu_texture_queue_mutex);
}
void BKE_image_free_unused_gpu_textures()
{
if (BLI_thread_is_main()) {
gpu_free_unused_buffers();
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Deletion
* \{ */
static void image_free_gpu(Image *ima, const bool immediate)
{
for (int eye = 0; eye < 2; eye++) {
for (int i = 0; i < TEXTARGET_COUNT; i++) {
if (ima->gputexture[i][eye] != nullptr) {
if (immediate) {
GPU_texture_free(ima->gputexture[i][eye]);
}
else {
BLI_mutex_lock(&gpu_texture_queue_mutex);
BLI_linklist_prepend(&gpu_texture_free_queue, ima->gputexture[i][eye]);
BLI_mutex_unlock(&gpu_texture_queue_mutex);
}
ima->gputexture[i][eye] = nullptr;
}
}
}
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
void BKE_image_free_gputextures(Image *ima)
{
image_free_gpu(ima, BLI_thread_is_main());
}
void BKE_image_free_all_gputextures(Main *bmain)
{
if (bmain) {
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
BKE_image_free_gputextures(ima);
}
}
}
void BKE_image_free_anim_gputextures(Main *bmain)
{
if (bmain) {
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
if (BKE_image_is_animated(ima)) {
BKE_image_free_gputextures(ima);
}
}
}
}
void BKE_image_free_old_gputextures(Main *bmain)
{
static int lasttime = 0;
int ctime = (int)PIL_check_seconds_timer();
/*
* Run garbage collector once for every collecting period of time
* if textimeout is 0, that's the option to NOT run the collector
*/
if (U.textimeout == 0 || ctime % U.texcollectrate || ctime == lasttime) {
return;
}
/* of course not! */
if (G.is_rendering) {
return;
}
lasttime = ctime;
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
if ((ima->flag & IMA_NOCOLLECT) == 0 && ctime - ima->lastused > U.textimeout) {
/* If it's in GL memory, deallocate and set time tag to current time
* This gives textures a "second chance" to be used before dying. */
if (BKE_image_has_opengl_texture(ima)) {
BKE_image_free_gputextures(ima);
ima->lastused = ctime;
}
/* Otherwise, just kill the buffers */
else {
BKE_image_free_buffers(ima);
}
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Paint Update
* \{ */
static ImBuf *update_do_scale(uchar *rect,
float *rect_float,
int *x,
int *y,
int *w,
int *h,
int limit_w,
int limit_h,
int full_w,
int full_h)
{
/* Partial update with scaling. */
float xratio = limit_w / (float)full_w;
float yratio = limit_h / (float)full_h;
int part_w = *w, part_h = *h;
/* Find sub coordinates in scaled image. Take ceiling because we will be
* losing 1 pixel due to rounding errors in x,y. */
*x *= xratio;
*y *= yratio;
*w = (int)ceil(xratio * (*w));
*h = (int)ceil(yratio * (*h));
/* ...but take back if we are over the limit! */
if (*x + *w > limit_w) {
(*w)--;
}
if (*y + *h > limit_h) {
(*h)--;
}
/* Scale pixels. */
ImBuf *ibuf = IMB_allocFromBuffer((uint *)rect, rect_float, part_w, part_h, 4);
IMB_scaleImBuf(ibuf, *w, *h);
return ibuf;
}
static void gpu_texture_update_scaled(GPUTexture *tex,
uchar *rect,
float *rect_float,
int full_w,
int full_h,
int x,
int y,
int layer,
const int *tile_offset,
const int *tile_size,
int w,
int h)
{
ImBuf *ibuf;
if (layer > -1) {
ibuf = update_do_scale(
rect, rect_float, &x, &y, &w, &h, tile_size[0], tile_size[1], full_w, full_h);
/* Shift to account for tile packing. */
x += tile_offset[0];
y += tile_offset[1];
}
else {
/* Partial update with scaling. */
int limit_w = GPU_texture_width(tex);
int limit_h = GPU_texture_height(tex);
ibuf = update_do_scale(rect, rect_float, &x, &y, &w, &h, limit_w, limit_h, full_w, full_h);
}
void *data = (ibuf->rect_float) ? (void *)(ibuf->rect_float) : (void *)(ibuf->rect);
eGPUDataFormat data_format = (ibuf->rect_float) ? GPU_DATA_FLOAT : GPU_DATA_UBYTE;
GPU_texture_update_sub(tex, data_format, data, x, y, layer, w, h, 1);
IMB_freeImBuf(ibuf);
}
static void gpu_texture_update_unscaled(GPUTexture *tex,
uchar *rect,
float *rect_float,
int x,
int y,
int layer,
const int tile_offset[2],
int w,
int h,
int tex_stride,
int tex_offset)
{
if (layer > -1) {
/* Shift to account for tile packing. */
x += tile_offset[0];
y += tile_offset[1];
}
void *data = (rect_float) ? (void *)(rect_float + tex_offset) : (void *)(rect + tex_offset);
eGPUDataFormat data_format = (rect_float) ? GPU_DATA_FLOAT : GPU_DATA_UBYTE;
/* Partial update without scaling. Stride and offset are used to copy only a
* subset of a possible larger buffer than what we are updating. */
GPU_unpack_row_length_set(tex_stride);
GPU_texture_update_sub(tex, data_format, data, x, y, layer, w, h, 1);
/* Restore default. */
GPU_unpack_row_length_set(0);
}
static void gpu_texture_update_from_ibuf(
GPUTexture *tex, Image *ima, ImBuf *ibuf, ImageTile *tile, int x, int y, int w, int h)
{
bool scaled;
if (tile != nullptr) {
ImageTile_Runtime *tile_runtime = &tile->runtime;
int *tilesize = tile_runtime->tilearray_size;
scaled = (ibuf->x != tilesize[0]) || (ibuf->y != tilesize[1]);
}
else {
scaled = (GPU_texture_width(tex) != ibuf->x) || (GPU_texture_height(tex) != ibuf->y);
}
if (scaled) {
/* Extra padding to account for bleed from neighboring pixels. */
const int padding = 4;
const int xmax = min_ii(x + w + padding, ibuf->x);
const int ymax = min_ii(y + h + padding, ibuf->y);
x = max_ii(x - padding, 0);
y = max_ii(y - padding, 0);
w = xmax - x;
h = ymax - y;
}
/* Get texture data pointers. */
float *rect_float = ibuf->rect_float;
uchar *rect = (uchar *)ibuf->rect;
int tex_stride = ibuf->x;
int tex_offset = ibuf->channels * (y * ibuf->x + x);
const bool store_premultiplied = BKE_image_has_gpu_texture_premultiplied_alpha(ima, ibuf);
if (rect_float) {
/* Float image is already in scene linear colorspace or non-color data by
* convention, no colorspace conversion needed. But we do require 4 channels
* currently. */
if (ibuf->channels != 4 || scaled || !store_premultiplied) {
rect_float = (float *)MEM_mallocN(sizeof(float[4]) * w * h, __func__);
if (rect_float == nullptr) {
return;
}
tex_stride = w;
tex_offset = 0;
IMB_colormanagement_imbuf_to_float_texture(
rect_float, x, y, w, h, ibuf, store_premultiplied);
}
}
else {
/* Byte image is in original colorspace from the file, and may need conversion. */
if (IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
/* Non-color data, just store buffer as is. */
}
else if (IMB_colormanagement_space_is_srgb(ibuf->rect_colorspace) ||
IMB_colormanagement_space_is_scene_linear(ibuf->rect_colorspace)) {
/* sRGB or scene linear, store as byte texture that the GPU can decode directly. */
rect = (uchar *)MEM_mallocN(sizeof(uchar[4]) * w * h, __func__);
if (rect == nullptr) {
return;
}
tex_stride = w;
tex_offset = 0;
/* Convert to scene linear with sRGB compression, and premultiplied for
* correct texture interpolation. */
IMB_colormanagement_imbuf_to_byte_texture(rect, x, y, w, h, ibuf, store_premultiplied);
}
else {
/* Other colorspace, store as float texture to avoid precision loss. */
rect_float = (float *)MEM_mallocN(sizeof(float[4]) * w * h, __func__);
if (rect_float == nullptr) {
return;
}
tex_stride = w;
tex_offset = 0;
IMB_colormanagement_imbuf_to_float_texture(
rect_float, x, y, w, h, ibuf, store_premultiplied);
}
}
if (scaled) {
/* Slower update where we first have to scale the input pixels. */
if (tile != nullptr) {
ImageTile_Runtime *tile_runtime = &tile->runtime;
int *tileoffset = tile_runtime->tilearray_offset;
int *tilesize = tile_runtime->tilearray_size;
int tilelayer = tile_runtime->tilearray_layer;
gpu_texture_update_scaled(
tex, rect, rect_float, ibuf->x, ibuf->y, x, y, tilelayer, tileoffset, tilesize, w, h);
}
else {
gpu_texture_update_scaled(
tex, rect, rect_float, ibuf->x, ibuf->y, x, y, -1, nullptr, nullptr, w, h);
}
}
else {
/* Fast update at same resolution. */
if (tile != nullptr) {
ImageTile_Runtime *tile_runtime = &tile->runtime;
int *tileoffset = tile_runtime->tilearray_offset;
int tilelayer = tile_runtime->tilearray_layer;
gpu_texture_update_unscaled(
tex, rect, rect_float, x, y, tilelayer, tileoffset, w, h, tex_stride, tex_offset);
}
else {
gpu_texture_update_unscaled(
tex, rect, rect_float, x, y, -1, nullptr, w, h, tex_stride, tex_offset);
}
}
/* Free buffers if needed. */
if (rect && rect != (uchar *)ibuf->rect) {
MEM_freeN(rect);
}
if (rect_float && rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
if (GPU_mipmap_enabled()) {
GPU_texture_generate_mipmap(tex);
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
GPU_texture_unbind(tex);
}
static void image_update_gputexture_ex(
Image *ima, ImageTile *tile, ImBuf *ibuf, int x, int y, int w, int h)
{
const int eye = 0;
GPUTexture *tex = ima->gputexture[TEXTARGET_2D][eye];
/* Check if we need to update the main gputexture. */
if (tex != nullptr && tile == ima->tiles.first) {
gpu_texture_update_from_ibuf(tex, ima, ibuf, nullptr, x, y, w, h);
}
/* Check if we need to update the array gputexture. */
tex = ima->gputexture[TEXTARGET_2D_ARRAY][eye];
if (tex != nullptr) {
gpu_texture_update_from_ibuf(tex, ima, ibuf, tile, x, y, w, h);
}
}
void BKE_image_update_gputexture(Image *ima, ImageUser *iuser, int x, int y, int w, int h)
{
ImageTile *image_tile = BKE_image_get_tile_from_iuser(ima, iuser);
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, nullptr);
BKE_image_update_gputexture_delayed(ima, image_tile, ibuf, x, y, w, h);
BKE_image_release_ibuf(ima, ibuf, nullptr);
}
void BKE_image_update_gputexture_delayed(struct Image *ima,
struct ImageTile *image_tile,
struct ImBuf *ibuf,
int x,
int y,
int w,
int h)
{
/* Check for full refresh. */
if (ibuf != nullptr && ima->source != IMA_SRC_TILED && x == 0 && y == 0 && w == ibuf->x &&
h == ibuf->y) {
BKE_image_partial_update_mark_full_update(ima);
}
else {
rcti dirty_region;
BLI_rcti_init(&dirty_region, x, x + w, y, y + h);
BKE_image_partial_update_mark_region(ima, image_tile, ibuf, &dirty_region);
}
}
void BKE_image_paint_set_mipmap(Main *bmain, bool mipmap)
{
LISTBASE_FOREACH (Image *, ima, &bmain->images) {
if (BKE_image_has_opengl_texture(ima)) {
if (ima->gpuflag & IMA_GPU_MIPMAP_COMPLETE) {
for (int a = 0; a < TEXTARGET_COUNT; a++) {
if (ELEM(a, TEXTARGET_2D, TEXTARGET_2D_ARRAY)) {
for (int eye = 0; eye < 2; eye++) {
GPUTexture *tex = ima->gputexture[a][eye];
if (tex != nullptr) {
GPU_texture_mipmap_mode(tex, mipmap, true);
}
}
}
}
}
else {
BKE_image_free_gputextures(ima);
}
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
}
}
/** \} */
}