This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/FN_multi_function_params.hh
Jacques Lucke 4fe8d0419c Functions: refactor virtual array data structures
When a function is executed for many elements (e.g. per point) it is often the case
that some parameters are different for every element and other parameters are
the same (there are some more less common cases). To simplify writing such
functions one can use a "virtual array". This is a data structure that has a value
for every index, but might not be stored as an actual array internally. Instead, it
might be just a single value or is computed on the fly. There are various tradeoffs
involved when using this data structure which are mentioned in `BLI_virtual_array.hh`.
It is called "virtual", because it uses inheritance and virtual methods.

Furthermore, there is a new virtual vector array data structure, which is an array
of vectors. Both these types have corresponding generic variants, which can be used
when the data type is not known at compile time. This is typically the case when
building a somewhat generic execution system. The function system used these virtual
data structures before, but now they are more versatile.

I've done this refactor in preparation for the attribute processor and other features of
geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used
independent of the function system.

One open question for me is whether all the generic data structures (and `CPPType`)
should be moved to blenlib as well. They are well isolated and don't really contain
any business logic. That can be done later if necessary.
2021-03-21 19:33:13 +01:00

274 lines
9.6 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#pragma once
/** \file
* \ingroup fn
*
* This file provides an MFParams and MFParamsBuilder structure.
*
* `MFParamsBuilder` is used by a function caller to be prepare all parameters that are passed into
* the function. `MFParams` is then used inside the called function to access the parameters.
*/
#include "BLI_resource_collector.hh"
#include "FN_generic_vector_array.hh"
#include "FN_generic_virtual_vector_array.hh"
#include "FN_multi_function_signature.hh"
namespace blender::fn {
class MFParamsBuilder {
private:
ResourceCollector resources_;
const MFSignature *signature_;
int64_t min_array_size_;
Vector<const GVArray *> virtual_arrays_;
Vector<GMutableSpan> mutable_spans_;
Vector<const GVVectorArray *> virtual_vector_arrays_;
Vector<GVectorArray *> vector_arrays_;
friend class MFParams;
public:
MFParamsBuilder(const MFSignature &signature, int64_t min_array_size)
: signature_(&signature), min_array_size_(min_array_size)
{
}
MFParamsBuilder(const class MultiFunction &fn, int64_t min_array_size);
template<typename T> void add_readonly_single_input(const T *value, StringRef expected_name = "")
{
this->add_readonly_single_input(resources_.construct<GVArrayForSingleValueRef>(
__func__, CPPType::get<T>(), min_array_size_, value),
expected_name);
}
void add_readonly_single_input(const GSpan span, StringRef expected_name = "")
{
this->add_readonly_single_input(resources_.construct<GVArrayForGSpan>(__func__, span),
expected_name);
}
void add_readonly_single_input(const GVArray &ref, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForSingleInput(ref.type()), expected_name);
BLI_assert(ref.size() >= min_array_size_);
virtual_arrays_.append(&ref);
}
void add_readonly_vector_input(const GVectorArray &vector_array, StringRef expected_name = "")
{
this->add_readonly_vector_input(
resources_.construct<GVVectorArrayForGVectorArray>(__func__, vector_array), expected_name);
}
void add_readonly_vector_input(const GVVectorArray &ref, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForVectorInput(ref.type()), expected_name);
BLI_assert(ref.size() >= min_array_size_);
virtual_vector_arrays_.append(&ref);
}
template<typename T> void add_uninitialized_single_output(T *value, StringRef expected_name = "")
{
this->add_uninitialized_single_output(GMutableSpan(CPPType::get<T>(), value, 1),
expected_name);
}
void add_uninitialized_single_output(GMutableSpan ref, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForSingleOutput(ref.type()), expected_name);
BLI_assert(ref.size() >= min_array_size_);
mutable_spans_.append(ref);
}
void add_vector_output(GVectorArray &vector_array, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForVectorOutput(vector_array.type()),
expected_name);
BLI_assert(vector_array.size() >= min_array_size_);
vector_arrays_.append(&vector_array);
}
void add_single_mutable(GMutableSpan ref, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForMutableSingle(ref.type()), expected_name);
BLI_assert(ref.size() >= min_array_size_);
mutable_spans_.append(ref);
}
void add_vector_mutable(GVectorArray &vector_array, StringRef expected_name = "")
{
this->assert_current_param_type(MFParamType::ForMutableVector(vector_array.type()),
expected_name);
BLI_assert(vector_array.size() >= min_array_size_);
vector_arrays_.append(&vector_array);
}
GMutableSpan computed_array(int param_index)
{
BLI_assert(ELEM(signature_->param_types[param_index].category(),
MFParamType::SingleOutput,
MFParamType::SingleMutable));
int data_index = signature_->data_index(param_index);
return mutable_spans_[data_index];
}
GVectorArray &computed_vector_array(int param_index)
{
BLI_assert(ELEM(signature_->param_types[param_index].category(),
MFParamType::VectorOutput,
MFParamType::VectorMutable));
int data_index = signature_->data_index(param_index);
return *vector_arrays_[data_index];
}
ResourceCollector &resources()
{
return resources_;
}
private:
void assert_current_param_type(MFParamType param_type, StringRef expected_name = "")
{
UNUSED_VARS_NDEBUG(param_type, expected_name);
#ifdef DEBUG
int param_index = this->current_param_index();
if (expected_name != "") {
StringRef actual_name = signature_->param_names[param_index];
BLI_assert(actual_name == expected_name);
}
MFParamType expected_type = signature_->param_types[param_index];
BLI_assert(expected_type == param_type);
#endif
}
int current_param_index() const
{
return virtual_arrays_.size() + mutable_spans_.size() + virtual_vector_arrays_.size() +
vector_arrays_.size();
}
};
class MFParams {
private:
MFParamsBuilder *builder_;
public:
MFParams(MFParamsBuilder &builder) : builder_(&builder)
{
}
template<typename T> const VArray<T> &readonly_single_input(int param_index, StringRef name = "")
{
const GVArray &array = this->readonly_single_input(param_index, name);
return builder_->resources_.construct<VArrayForGVArray<T>>(__func__, array);
}
const GVArray &readonly_single_input(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleInput);
int data_index = builder_->signature_->data_index(param_index);
return *builder_->virtual_arrays_[data_index];
}
template<typename T>
MutableSpan<T> uninitialized_single_output(int param_index, StringRef name = "")
{
return this->uninitialized_single_output(param_index, name).typed<T>();
}
GMutableSpan uninitialized_single_output(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleOutput);
int data_index = builder_->signature_->data_index(param_index);
return builder_->mutable_spans_[data_index];
}
template<typename T>
const VVectorArray<T> &readonly_vector_input(int param_index, StringRef name = "")
{
const GVVectorArray &vector_array = this->readonly_vector_input(param_index, name);
return builder_->resources_.construct<VVectorArrayForGVVectorArray<T>>(__func__, vector_array);
}
const GVVectorArray &readonly_vector_input(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::VectorInput);
int data_index = builder_->signature_->data_index(param_index);
return *builder_->virtual_vector_arrays_[data_index];
}
template<typename T>
GVectorArray_TypedMutableRef<T> vector_output(int param_index, StringRef name = "")
{
return {this->vector_output(param_index, name)};
}
GVectorArray &vector_output(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::VectorOutput);
int data_index = builder_->signature_->data_index(param_index);
return *builder_->vector_arrays_[data_index];
}
template<typename T> MutableSpan<T> single_mutable(int param_index, StringRef name = "")
{
return this->single_mutable(param_index, name).typed<T>();
}
GMutableSpan single_mutable(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::SingleMutable);
int data_index = builder_->signature_->data_index(param_index);
return builder_->mutable_spans_[data_index];
}
template<typename T>
GVectorArray_TypedMutableRef<T> vector_mutable(int param_index, StringRef name = "")
{
return {this->vector_mutable(param_index, name)};
}
GVectorArray &vector_mutable(int param_index, StringRef name = "")
{
this->assert_correct_param(param_index, name, MFParamType::VectorMutable);
int data_index = builder_->signature_->data_index(param_index);
return *builder_->vector_arrays_[data_index];
}
private:
void assert_correct_param(int param_index, StringRef name, MFParamType param_type)
{
UNUSED_VARS_NDEBUG(param_index, name, param_type);
#ifdef DEBUG
BLI_assert(builder_->signature_->param_types[param_index] == param_type);
if (name.size() > 0) {
BLI_assert(builder_->signature_->param_names[param_index] == name);
}
#endif
}
void assert_correct_param(int param_index, StringRef name, MFParamType::Category category)
{
UNUSED_VARS_NDEBUG(param_index, name, category);
#ifdef DEBUG
BLI_assert(builder_->signature_->param_types[param_index].category() == category);
if (name.size() > 0) {
BLI_assert(builder_->signature_->param_names[param_index] == name);
}
#endif
}
};
} // namespace blender::fn