This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/gpu/intern/gpu_buffers.c
Germano Cavalcante 84536d1d3c GPU Bufferes: Small optimization when updating buffers
With the API recently added to gawain, it is now possible to update the vbos linked to the batch.
So the batch does not have to be destroyed.
The optimization is more sensitive when sculpt is made on low poly meshs
2018-03-19 18:09:00 -03:00

2010 lines
56 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Brecht Van Lommel.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/gpu/intern/gpu_buffers.c
* \ingroup gpu
*
* Mesh drawing using OpenGL VBO (Vertex Buffer Objects)
*/
#include <limits.h>
#include <stddef.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_bitmap.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_ghash.h"
#include "BLI_threads.h"
#include "DNA_meshdata_types.h"
#include "BKE_ccg.h"
#include "BKE_DerivedMesh.h"
#include "BKE_paint.h"
#include "BKE_mesh.h"
#include "BKE_pbvh.h"
#include "GPU_buffers.h"
#include "GPU_draw.h"
#include "GPU_immediate.h"
#include "GPU_batch.h"
#include "bmesh.h"
/* TODO: gawain support for baseelemarray */
// #define USE_BASE_ELEM
typedef enum {
GPU_BUFFER_VERTEX_STATE = (1 << 0),
GPU_BUFFER_NORMAL_STATE = (1 << 1),
GPU_BUFFER_TEXCOORD_UNIT_0_STATE = (1 << 2),
GPU_BUFFER_TEXCOORD_UNIT_2_STATE = (1 << 3),
GPU_BUFFER_COLOR_STATE = (1 << 4),
GPU_BUFFER_ELEMENT_STATE = (1 << 5),
} GPUBufferState;
typedef struct {
GLenum gl_buffer_type;
int num_components; /* number of data components for one vertex */
} GPUBufferTypeSettings;
static size_t gpu_buffer_size_from_type(DerivedMesh *dm, GPUBufferType type);
static const GPUBufferTypeSettings gpu_buffer_type_settings[] = {
/* vertex */
{GL_ARRAY_BUFFER, 3},
/* normal */
{GL_ARRAY_BUFFER, 4}, /* we copy 3 shorts per normal but we add a fourth for alignment */
/* mcol */
{GL_ARRAY_BUFFER, 4},
/* uv */
{GL_ARRAY_BUFFER, 2},
/* uv for texpaint */
{GL_ARRAY_BUFFER, 4},
/* edge */
{GL_ELEMENT_ARRAY_BUFFER, 2},
/* uv edge */
{GL_ELEMENT_ARRAY_BUFFER, 4},
/* triangles, 1 point since we are allocating from tottriangle points, which account for all points */
{GL_ELEMENT_ARRAY_BUFFER, 1},
};
#define MAX_GPU_ATTRIB_DATA 32
#define BUFFER_OFFSET(n) ((GLubyte *)NULL + (n))
static GPUBufferState GLStates = 0;
static GPUAttrib attribData[MAX_GPU_ATTRIB_DATA] = { { -1, 0, 0 } };
static ThreadMutex buffer_mutex = BLI_MUTEX_INITIALIZER;
/* multires global buffer, can be used for many grids having the same grid size */
typedef struct GridCommonGPUBuffer {
Gwn_IndexBuf *mres_buffer;
int mres_prev_gridsize;
unsigned mres_prev_totquad;
} GridCommonGPUBuffer;
void GPU_buffer_material_finalize(GPUDrawObject *gdo, GPUBufferMaterial *matinfo, int totmat)
{
int i, curmat, curelement;
/* count the number of materials used by this DerivedMesh */
for (i = 0; i < totmat; i++) {
if (matinfo[i].totelements > 0)
gdo->totmaterial++;
}
/* allocate an array of materials used by this DerivedMesh */
gdo->materials = MEM_mallocN(sizeof(GPUBufferMaterial) * gdo->totmaterial,
"GPUDrawObject.materials");
/* initialize the materials array */
for (i = 0, curmat = 0, curelement = 0; i < totmat; i++) {
if (matinfo[i].totelements > 0) {
gdo->materials[curmat] = matinfo[i];
gdo->materials[curmat].start = curelement;
gdo->materials[curmat].mat_nr = i;
gdo->materials[curmat].polys = MEM_mallocN(sizeof(int) * matinfo[i].totpolys, "GPUBufferMaterial.polys");
curelement += matinfo[i].totelements;
curmat++;
}
}
MEM_freeN(matinfo);
}
/* stores recently-deleted buffers so that new buffers won't have to
* be recreated as often
*
* only one instance of this pool is created, stored in
* gpu_buffer_pool
*
* note that the number of buffers in the pool is usually limited to
* MAX_FREE_GPU_BUFFERS, but this limit may be exceeded temporarily
* when a GPUBuffer is released outside the main thread; due to OpenGL
* restrictions it cannot be immediately released
*/
typedef struct GPUBufferPool {
/* number of allocated buffers stored */
int totbuf;
/* actual allocated length of the arrays */
int maxsize;
GPUBuffer **buffers;
} GPUBufferPool;
#define MAX_FREE_GPU_BUFFERS 8
/* create a new GPUBufferPool */
static GPUBufferPool *gpu_buffer_pool_new(void)
{
GPUBufferPool *pool;
pool = MEM_callocN(sizeof(GPUBufferPool), "GPUBuffer_Pool");
pool->maxsize = MAX_FREE_GPU_BUFFERS;
pool->buffers = MEM_mallocN(sizeof(*pool->buffers) * pool->maxsize,
"GPUBufferPool.buffers");
return pool;
}
/* remove a GPUBuffer from the pool (does not free the GPUBuffer) */
static void gpu_buffer_pool_remove_index(GPUBufferPool *pool, int index)
{
int i;
if (!pool || index < 0 || index >= pool->totbuf)
return;
/* shift entries down, overwriting the buffer at `index' */
for (i = index; i < pool->totbuf - 1; i++)
pool->buffers[i] = pool->buffers[i + 1];
/* clear the last entry */
if (pool->totbuf > 0)
pool->buffers[pool->totbuf - 1] = NULL;
pool->totbuf--;
}
/* delete the last entry in the pool */
static void gpu_buffer_pool_delete_last(GPUBufferPool *pool)
{
GPUBuffer *last;
if (pool->totbuf <= 0)
return;
/* get the last entry */
if (!(last = pool->buffers[pool->totbuf - 1]))
return;
/* delete the buffer's data */
glDeleteBuffers(1, &last->id);
/* delete the buffer and remove from pool */
MEM_freeN(last);
pool->totbuf--;
pool->buffers[pool->totbuf] = NULL;
}
/* free a GPUBufferPool; also frees the data in the pool's
* GPUBuffers */
static void gpu_buffer_pool_free(GPUBufferPool *pool)
{
if (!pool)
return;
while (pool->totbuf)
gpu_buffer_pool_delete_last(pool);
MEM_freeN(pool->buffers);
MEM_freeN(pool);
}
static void gpu_buffer_pool_free_unused(GPUBufferPool *pool)
{
if (!pool)
return;
BLI_mutex_lock(&buffer_mutex);
while (pool->totbuf)
gpu_buffer_pool_delete_last(pool);
BLI_mutex_unlock(&buffer_mutex);
}
static GPUBufferPool *gpu_buffer_pool = NULL;
static GPUBufferPool *gpu_get_global_buffer_pool(void)
{
/* initialize the pool */
if (!gpu_buffer_pool)
gpu_buffer_pool = gpu_buffer_pool_new();
return gpu_buffer_pool;
}
void GPU_global_buffer_pool_free(void)
{
gpu_buffer_pool_free(gpu_buffer_pool);
gpu_buffer_pool = NULL;
}
void GPU_global_buffer_pool_free_unused(void)
{
gpu_buffer_pool_free_unused(gpu_buffer_pool);
}
/* get a GPUBuffer of at least `size' bytes; uses one from the buffer
* pool if possible, otherwise creates a new one
*
* Thread-unsafe version for internal usage only.
*/
static GPUBuffer *gpu_buffer_alloc_intern(size_t size)
{
GPUBufferPool *pool;
GPUBuffer *buf;
int i, bestfit = -1;
size_t bufsize;
/* bad case, leads to leak of buf since buf->pointer will allocate
* NULL, leading to return without cleanup. In any case better detect early
* psy-fi */
if (size == 0)
return NULL;
pool = gpu_get_global_buffer_pool();
/* not sure if this buffer pool code has been profiled much,
* seems to me that the graphics driver and system memory
* management might do this stuff anyway. --nicholas
*/
/* check the global buffer pool for a recently-deleted buffer
* that is at least as big as the request, but not more than
* twice as big */
for (i = 0; i < pool->totbuf; i++) {
bufsize = pool->buffers[i]->size;
/* check for an exact size match */
if (bufsize == size) {
bestfit = i;
break;
}
/* smaller buffers won't fit data and buffers at least
* twice as big are a waste of memory */
else if (bufsize > size && size > (bufsize / 2)) {
/* is it closer to the required size than the
* last appropriate buffer found. try to save
* memory */
if (bestfit == -1 || pool->buffers[bestfit]->size > bufsize) {
bestfit = i;
}
}
}
/* if an acceptable buffer was found in the pool, remove it
* from the pool and return it */
if (bestfit != -1) {
buf = pool->buffers[bestfit];
gpu_buffer_pool_remove_index(pool, bestfit);
return buf;
}
/* no acceptable buffer found in the pool, create a new one */
buf = MEM_callocN(sizeof(GPUBuffer), "GPUBuffer");
buf->size = size;
glGenBuffers(1, &buf->id);
glBindBuffer(GL_ARRAY_BUFFER, buf->id);
glBufferData(GL_ARRAY_BUFFER, size, NULL, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
return buf;
}
/* Same as above, but safe for threading. */
GPUBuffer *GPU_buffer_alloc(size_t size)
{
GPUBuffer *buffer;
if (size == 0) {
/* Early out, no lock needed in this case. */
return NULL;
}
BLI_mutex_lock(&buffer_mutex);
buffer = gpu_buffer_alloc_intern(size);
BLI_mutex_unlock(&buffer_mutex);
return buffer;
}
/* release a GPUBuffer; does not free the actual buffer or its data,
* but rather moves it to the pool of recently-freed buffers for
* possible re-use
*
* Thread-unsafe version for internal usage only.
*/
static void gpu_buffer_free_intern(GPUBuffer *buffer)
{
GPUBufferPool *pool;
int i;
if (!buffer)
return;
pool = gpu_get_global_buffer_pool();
/* free the last used buffer in the queue if no more space, but only
* if we are in the main thread. for e.g. rendering or baking it can
* happen that we are in other thread and can't call OpenGL, in that
* case cleanup will be done GPU_buffer_pool_free_unused */
if (BLI_thread_is_main()) {
/* in main thread, safe to decrease size of pool back
* down to MAX_FREE_GPU_BUFFERS */
while (pool->totbuf >= MAX_FREE_GPU_BUFFERS)
gpu_buffer_pool_delete_last(pool);
}
else {
/* outside of main thread, can't safely delete the
* buffer, so increase pool size */
if (pool->maxsize == pool->totbuf) {
pool->maxsize += MAX_FREE_GPU_BUFFERS;
pool->buffers = MEM_reallocN(pool->buffers,
sizeof(GPUBuffer *) * pool->maxsize);
}
}
/* shift pool entries up by one */
for (i = pool->totbuf; i > 0; i--)
pool->buffers[i] = pool->buffers[i - 1];
/* insert the buffer into the beginning of the pool */
pool->buffers[0] = buffer;
pool->totbuf++;
}
/* Same as above, but safe for threading. */
void GPU_buffer_free(GPUBuffer *buffer)
{
if (!buffer) {
/* Early output, no need to lock in this case, */
return;
}
BLI_mutex_lock(&buffer_mutex);
gpu_buffer_free_intern(buffer);
BLI_mutex_unlock(&buffer_mutex);
}
void GPU_drawobject_free(DerivedMesh *dm)
{
GPUDrawObject *gdo;
int i;
if (!dm || !(gdo = dm->drawObject))
return;
for (i = 0; i < gdo->totmaterial; i++) {
if (gdo->materials[i].polys)
MEM_freeN(gdo->materials[i].polys);
}
MEM_freeN(gdo->materials);
if (gdo->vert_points)
MEM_freeN(gdo->vert_points);
#ifdef USE_GPU_POINT_LINK
MEM_freeN(gdo->vert_points_mem);
#endif
GPU_buffer_free(gdo->points);
GPU_buffer_free(gdo->normals);
GPU_buffer_free(gdo->uv);
GPU_buffer_free(gdo->uv_tex);
GPU_buffer_free(gdo->colors);
GPU_buffer_free(gdo->edges);
GPU_buffer_free(gdo->uvedges);
GPU_buffer_free(gdo->triangles);
MEM_freeN(gdo);
dm->drawObject = NULL;
}
static GPUBuffer *gpu_try_realloc(GPUBufferPool *pool, GPUBuffer *buffer, size_t size)
{
/* try freeing an entry from the pool
* and reallocating the buffer */
gpu_buffer_free_intern(buffer);
buffer = NULL;
while (pool->totbuf && !buffer) {
gpu_buffer_pool_delete_last(pool);
buffer = gpu_buffer_alloc_intern(size);
}
return buffer;
}
static GPUBuffer *gpu_buffer_setup(DerivedMesh *dm, GPUDrawObject *object,
int type, void *user, GPUBuffer *buffer)
{
GPUBufferPool *pool;
float *varray;
int *mat_orig_to_new;
int i;
const GPUBufferTypeSettings *ts = &gpu_buffer_type_settings[type];
GLenum target = ts->gl_buffer_type;
size_t size = gpu_buffer_size_from_type(dm, type);
GLboolean uploaded;
pool = gpu_get_global_buffer_pool();
BLI_mutex_lock(&buffer_mutex);
/* alloc a GPUBuffer; fall back to legacy mode on failure */
if (!buffer) {
if (!(buffer = gpu_buffer_alloc_intern(size))) {
BLI_mutex_unlock(&buffer_mutex);
return NULL;
}
}
mat_orig_to_new = MEM_mallocN(sizeof(*mat_orig_to_new) * dm->totmat,
"GPU_buffer_setup.mat_orig_to_new");
for (i = 0; i < object->totmaterial; i++) {
/* map from original material index to new
* GPUBufferMaterial index */
mat_orig_to_new[object->materials[i].mat_nr] = i;
}
/* bind the buffer and discard previous data,
* avoids stalling gpu */
glBindBuffer(target, buffer->id);
glBufferData(target, buffer->size, NULL, GL_STATIC_DRAW);
/* attempt to map the buffer */
if (!(varray = glMapBuffer(target, GL_WRITE_ONLY))) {
buffer = gpu_try_realloc(pool, buffer, size);
/* allocation still failed; unfortunately we need to exit */
if (!(buffer && (varray = glMapBuffer(target, GL_WRITE_ONLY)))) {
if (buffer)
gpu_buffer_free_intern(buffer);
BLI_mutex_unlock(&buffer_mutex);
return NULL;
}
}
uploaded = GL_FALSE;
/* attempt to upload the data to the VBO */
while (uploaded == GL_FALSE) {
dm->copy_gpu_data(dm, type, varray, mat_orig_to_new, user);
/* glUnmapBuffer returns GL_FALSE if
* the data store is corrupted; retry
* in that case */
uploaded = glUnmapBuffer(target);
}
glBindBuffer(target, 0);
MEM_freeN(mat_orig_to_new);
BLI_mutex_unlock(&buffer_mutex);
return buffer;
}
/* get the GPUDrawObject buffer associated with a type */
static GPUBuffer **gpu_drawobject_buffer_from_type(GPUDrawObject *gdo, GPUBufferType type)
{
switch (type) {
case GPU_BUFFER_VERTEX:
return &gdo->points;
case GPU_BUFFER_NORMAL:
return &gdo->normals;
case GPU_BUFFER_COLOR:
return &gdo->colors;
case GPU_BUFFER_UV:
return &gdo->uv;
case GPU_BUFFER_UV_TEXPAINT:
return &gdo->uv_tex;
case GPU_BUFFER_EDGE:
return &gdo->edges;
case GPU_BUFFER_UVEDGE:
return &gdo->uvedges;
case GPU_BUFFER_TRIANGLES:
return &gdo->triangles;
default:
return NULL;
}
}
/* get the amount of space to allocate for a buffer of a particular type */
static size_t gpu_buffer_size_from_type(DerivedMesh *dm, GPUBufferType type)
{
const int components = gpu_buffer_type_settings[type].num_components;
switch (type) {
case GPU_BUFFER_VERTEX:
return sizeof(float) * components * (dm->drawObject->tot_loop_verts + dm->drawObject->tot_loose_point);
case GPU_BUFFER_NORMAL:
return sizeof(short) * components * dm->drawObject->tot_loop_verts;
case GPU_BUFFER_COLOR:
return sizeof(char) * components * dm->drawObject->tot_loop_verts;
case GPU_BUFFER_UV:
return sizeof(float) * components * dm->drawObject->tot_loop_verts;
case GPU_BUFFER_UV_TEXPAINT:
return sizeof(float) * components * dm->drawObject->tot_loop_verts;
case GPU_BUFFER_EDGE:
return sizeof(int) * components * dm->drawObject->totedge;
case GPU_BUFFER_UVEDGE:
return sizeof(int) * components * dm->drawObject->tot_loop_verts;
case GPU_BUFFER_TRIANGLES:
return sizeof(int) * components * dm->drawObject->tot_triangle_point;
default:
return -1;
}
}
/* call gpu_buffer_setup with settings for a particular type of buffer */
static GPUBuffer *gpu_buffer_setup_type(DerivedMesh *dm, GPUBufferType type, GPUBuffer *buf)
{
void *user_data = NULL;
/* special handling for MCol and UV buffers */
if (type == GPU_BUFFER_COLOR) {
if (!(user_data = DM_get_loop_data_layer(dm, dm->drawObject->colType)))
return NULL;
}
else if (ELEM(type, GPU_BUFFER_UV, GPU_BUFFER_UV_TEXPAINT)) {
if (!DM_get_loop_data_layer(dm, CD_MLOOPUV))
return NULL;
}
buf = gpu_buffer_setup(dm, dm->drawObject, type, user_data, buf);
return buf;
}
/* get the buffer of `type', initializing the GPUDrawObject and
* buffer if needed */
static GPUBuffer *gpu_buffer_setup_common(DerivedMesh *dm, GPUBufferType type, bool update)
{
GPUBuffer **buf;
if (!dm->drawObject)
dm->drawObject = dm->gpuObjectNew(dm);
buf = gpu_drawobject_buffer_from_type(dm->drawObject, type);
if (!(*buf))
*buf = gpu_buffer_setup_type(dm, type, NULL);
else if (update)
*buf = gpu_buffer_setup_type(dm, type, *buf);
return *buf;
}
void GPU_vertex_setup(DerivedMesh *dm)
{
if (!gpu_buffer_setup_common(dm, GPU_BUFFER_VERTEX, false))
return;
glEnableClientState(GL_VERTEX_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->points->id);
glVertexPointer(3, GL_FLOAT, 0, 0);
GLStates |= GPU_BUFFER_VERTEX_STATE;
}
void GPU_normal_setup(DerivedMesh *dm)
{
if (!gpu_buffer_setup_common(dm, GPU_BUFFER_NORMAL, false))
return;
glEnableClientState(GL_NORMAL_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->normals->id);
glNormalPointer(GL_SHORT, 4 * sizeof(short), 0);
GLStates |= GPU_BUFFER_NORMAL_STATE;
}
void GPU_uv_setup(DerivedMesh *dm)
{
if (!gpu_buffer_setup_common(dm, GPU_BUFFER_UV, false))
return;
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->uv->id);
glTexCoordPointer(2, GL_FLOAT, 0, 0);
GLStates |= GPU_BUFFER_TEXCOORD_UNIT_0_STATE;
}
void GPU_texpaint_uv_setup(DerivedMesh *dm)
{
if (!gpu_buffer_setup_common(dm, GPU_BUFFER_UV_TEXPAINT, false))
return;
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->uv_tex->id);
glTexCoordPointer(2, GL_FLOAT, 4 * sizeof(float), 0);
glClientActiveTexture(GL_TEXTURE2);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 4 * sizeof(float), BUFFER_OFFSET(2 * sizeof(float)));
glClientActiveTexture(GL_TEXTURE0);
GLStates |= GPU_BUFFER_TEXCOORD_UNIT_0_STATE | GPU_BUFFER_TEXCOORD_UNIT_2_STATE;
}
void GPU_color_setup(DerivedMesh *dm, int colType)
{
bool update = false;
if (!dm->drawObject) {
/* XXX Not really nice, but we need a valid gpu draw object to set the colType...
* Else we would have to add a new param to gpu_buffer_setup_common. */
dm->drawObject = dm->gpuObjectNew(dm);
dm->dirty &= ~DM_DIRTY_MCOL_UPDATE_DRAW;
dm->drawObject->colType = colType;
}
/* In paint mode, dm may stay the same during stroke, however we still want to update colors!
* Also check in case we changed color type (i.e. which MCol cdlayer we use). */
else if ((dm->dirty & DM_DIRTY_MCOL_UPDATE_DRAW) || (colType != dm->drawObject->colType)) {
update = true;
dm->dirty &= ~DM_DIRTY_MCOL_UPDATE_DRAW;
dm->drawObject->colType = colType;
}
if (!gpu_buffer_setup_common(dm, GPU_BUFFER_COLOR, update))
return;
glEnableClientState(GL_COLOR_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->colors->id);
glColorPointer(4, GL_UNSIGNED_BYTE, 0, 0);
GLStates |= GPU_BUFFER_COLOR_STATE;
}
void GPU_buffer_bind_as_color(GPUBuffer *buffer)
{
glEnableClientState(GL_COLOR_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, buffer->id);
glColorPointer(4, GL_UNSIGNED_BYTE, 0, 0);
GLStates |= GPU_BUFFER_COLOR_STATE;
}
void GPU_edge_setup(DerivedMesh *dm)
{
if (!gpu_buffer_setup_common(dm, GPU_BUFFER_EDGE, false))
return;
if (!gpu_buffer_setup_common(dm, GPU_BUFFER_VERTEX, false))
return;
glEnableClientState(GL_VERTEX_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->points->id);
glVertexPointer(3, GL_FLOAT, 0, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, dm->drawObject->edges->id);
GLStates |= (GPU_BUFFER_VERTEX_STATE | GPU_BUFFER_ELEMENT_STATE);
}
void GPU_uvedge_setup(DerivedMesh *dm)
{
if (!gpu_buffer_setup_common(dm, GPU_BUFFER_UVEDGE, false))
return;
glEnableClientState(GL_VERTEX_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->uvedges->id);
glVertexPointer(2, GL_FLOAT, 0, 0);
GLStates |= GPU_BUFFER_VERTEX_STATE;
}
void GPU_triangle_setup(struct DerivedMesh *dm)
{
if (!gpu_buffer_setup_common(dm, GPU_BUFFER_TRIANGLES, false))
return;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, dm->drawObject->triangles->id);
GLStates |= GPU_BUFFER_ELEMENT_STATE;
}
static int gpu_typesize(int type)
{
switch (type) {
case GL_FLOAT:
return sizeof(float);
case GL_INT:
return sizeof(int);
case GL_UNSIGNED_INT:
return sizeof(unsigned int);
case GL_BYTE:
return sizeof(char);
case GL_UNSIGNED_BYTE:
return sizeof(unsigned char);
default:
return 0;
}
}
int GPU_attrib_element_size(GPUAttrib data[], int numdata)
{
int i, elementsize = 0;
for (i = 0; i < numdata; i++) {
int typesize = gpu_typesize(data[i].type);
if (typesize != 0)
elementsize += typesize * data[i].size;
}
return elementsize;
}
void GPU_interleaved_attrib_setup(GPUBuffer *buffer, GPUAttrib data[], int numdata, int element_size)
{
int i;
int elementsize;
size_t offset = 0;
for (i = 0; i < MAX_GPU_ATTRIB_DATA; i++) {
if (attribData[i].index != -1) {
glDisableVertexAttribArray(attribData[i].index);
}
else
break;
}
if (element_size == 0)
elementsize = GPU_attrib_element_size(data, numdata);
else
elementsize = element_size;
glBindBuffer(GL_ARRAY_BUFFER, buffer->id);
for (i = 0; i < numdata; i++) {
glEnableVertexAttribArray(data[i].index);
int info = 0;
if (data[i].type == GL_UNSIGNED_BYTE) {
info |= GPU_ATTR_INFO_SRGB;
}
glUniform1i(data[i].info_index, info);
glVertexAttribPointer(data[i].index, data[i].size, data[i].type,
GL_TRUE, elementsize, BUFFER_OFFSET(offset));
offset += data[i].size * gpu_typesize(data[i].type);
attribData[i].index = data[i].index;
attribData[i].size = data[i].size;
attribData[i].type = data[i].type;
}
attribData[numdata].index = -1;
}
void GPU_interleaved_attrib_unbind(void)
{
int i;
for (i = 0; i < MAX_GPU_ATTRIB_DATA; i++) {
if (attribData[i].index != -1) {
glDisableVertexAttribArray(attribData[i].index);
}
else
break;
}
attribData[0].index = -1;
}
void GPU_buffers_unbind(void)
{
int i;
if (GLStates & GPU_BUFFER_VERTEX_STATE)
glDisableClientState(GL_VERTEX_ARRAY);
if (GLStates & GPU_BUFFER_NORMAL_STATE)
glDisableClientState(GL_NORMAL_ARRAY);
if (GLStates & GPU_BUFFER_TEXCOORD_UNIT_0_STATE)
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
if (GLStates & GPU_BUFFER_TEXCOORD_UNIT_2_STATE) {
glClientActiveTexture(GL_TEXTURE2);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glClientActiveTexture(GL_TEXTURE0);
}
if (GLStates & GPU_BUFFER_COLOR_STATE)
glDisableClientState(GL_COLOR_ARRAY);
if (GLStates & GPU_BUFFER_ELEMENT_STATE)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
GLStates &= ~(GPU_BUFFER_VERTEX_STATE | GPU_BUFFER_NORMAL_STATE |
GPU_BUFFER_TEXCOORD_UNIT_0_STATE | GPU_BUFFER_TEXCOORD_UNIT_2_STATE |
GPU_BUFFER_COLOR_STATE | GPU_BUFFER_ELEMENT_STATE);
for (i = 0; i < MAX_GPU_ATTRIB_DATA; i++) {
if (attribData[i].index != -1) {
glDisableVertexAttribArray(attribData[i].index);
}
else
break;
}
attribData[0].index = -1;
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void GPU_color_switch(int mode)
{
if (mode) {
if (!(GLStates & GPU_BUFFER_COLOR_STATE))
glEnableClientState(GL_COLOR_ARRAY);
GLStates |= GPU_BUFFER_COLOR_STATE;
}
else {
if (GLStates & GPU_BUFFER_COLOR_STATE)
glDisableClientState(GL_COLOR_ARRAY);
GLStates &= ~GPU_BUFFER_COLOR_STATE;
}
}
static int gpu_binding_type_gl[] =
{
GL_ARRAY_BUFFER,
GL_ELEMENT_ARRAY_BUFFER
};
void *GPU_buffer_lock(GPUBuffer *buffer, GPUBindingType binding)
{
float *varray;
int bindtypegl;
if (!buffer)
return 0;
bindtypegl = gpu_binding_type_gl[binding];
glBindBuffer(bindtypegl, buffer->id);
varray = glMapBuffer(bindtypegl, GL_WRITE_ONLY);
return varray;
}
void *GPU_buffer_lock_stream(GPUBuffer *buffer, GPUBindingType binding)
{
float *varray;
int bindtypegl;
if (!buffer)
return 0;
bindtypegl = gpu_binding_type_gl[binding];
glBindBuffer(bindtypegl, buffer->id);
/* discard previous data, avoid stalling gpu */
glBufferData(bindtypegl, buffer->size, 0, GL_STREAM_DRAW);
varray = glMapBuffer(bindtypegl, GL_WRITE_ONLY);
return varray;
}
void GPU_buffer_unlock(GPUBuffer *UNUSED(buffer), GPUBindingType binding)
{
int bindtypegl = gpu_binding_type_gl[binding];
/* note: this operation can fail, could return
* an error code from this function? */
glUnmapBuffer(bindtypegl);
glBindBuffer(bindtypegl, 0);
}
void GPU_buffer_bind(GPUBuffer *buffer, GPUBindingType binding)
{
int bindtypegl = gpu_binding_type_gl[binding];
glBindBuffer(bindtypegl, buffer->id);
}
void GPU_buffer_unbind(GPUBuffer *UNUSED(buffer), GPUBindingType binding)
{
int bindtypegl = gpu_binding_type_gl[binding];
glBindBuffer(bindtypegl, 0);
}
/* used for drawing edges */
void GPU_buffer_draw_elements(GPUBuffer *UNUSED(elements), unsigned int mode, int start, int count)
{
glDrawElements(mode, count, GL_UNSIGNED_INT, BUFFER_OFFSET(start * sizeof(unsigned int)));
}
/* XXX: the rest of the code in this file is used for optimized PBVH
* drawing and doesn't interact at all with the buffer code above */
struct GPU_PBVH_Buffers {
Gwn_IndexBuf *index_buf, *index_buf_fast;
Gwn_VertBuf *vert_buf;
Gwn_Batch *triangles;
Gwn_Batch *triangles_fast;
/* mesh pointers in case buffer allocation fails */
const MPoly *mpoly;
const MLoop *mloop;
const MLoopTri *looptri;
const MVert *mvert;
const int *face_indices;
int face_indices_len;
const float *vmask;
/* grid pointers */
CCGKey gridkey;
CCGElem **grids;
const DMFlagMat *grid_flag_mats;
BLI_bitmap * const *grid_hidden;
const int *grid_indices;
int totgrid;
bool has_hidden;
bool is_index_buf_global; /* Means index_buf uses global bvh's grid_common_gpu_buffer, **DO NOT** free it! */
bool use_bmesh;
unsigned int tot_tri, tot_quad;
/* The PBVH ensures that either all faces in the node are
* smooth-shaded or all faces are flat-shaded */
bool smooth;
bool show_diffuse_color;
bool show_mask;
bool use_matcaps;
float diffuse_color[4];
};
static struct {
uint pos, nor, col;
} g_vbo_id = {0};
/* Allocates a non-initialized buffer to be sent to GPU.
* Return is false it indicates that the memory map failed. */
static bool gpu_pbvh_vert_buf_data_set(GPU_PBVH_Buffers *buffers, unsigned int vert_ct)
{
if (buffers->vert_buf == NULL) {
/* Initialize vertex buffer */
/* match 'VertexBufferFormat' */
static Gwn_VertFormat format = {0};
if (format.attrib_ct == 0) {
g_vbo_id.pos = GWN_vertformat_attr_add(&format, "pos", GWN_COMP_F32, 3, GWN_FETCH_FLOAT);
g_vbo_id.nor = GWN_vertformat_attr_add(&format, "nor", GWN_COMP_I16, 3, GWN_FETCH_INT_TO_FLOAT_UNIT);
g_vbo_id.col = GWN_vertformat_attr_add(&format, "color", GWN_COMP_U8, 3, GWN_FETCH_INT_TO_FLOAT_UNIT);
}
#if 0
buffers->vert_buf = GWN_vertbuf_create_with_format_ex(&format, GWN_USAGE_DYNAMIC);
GWN_vertbuf_data_alloc(buffers->vert_buf, vert_ct);
}
else if (vert_ct != buffers->vert_buf->vertex_ct) {
GWN_vertbuf_data_resize(buffers->vert_buf, vert_ct);
}
#else
buffers->vert_buf = GWN_vertbuf_create_with_format_ex(&format, GWN_USAGE_STATIC);
}
GWN_vertbuf_data_alloc(buffers->vert_buf, vert_ct);
#endif
return buffers->vert_buf->data != NULL;
}
static void gpu_pbvh_batch_init(GPU_PBVH_Buffers *buffers)
{
/* force flushing to the GPU */
if (buffers->vert_buf->data) {
GWN_vertbuf_use(buffers->vert_buf);
}
if (buffers->triangles == NULL) {
buffers->triangles = GWN_batch_create(
GWN_PRIM_TRIS, buffers->vert_buf,
/* can be NULL */
buffers->index_buf);
}
if ((buffers->triangles_fast == NULL) && buffers->index_buf_fast) {
buffers->triangles_fast = GWN_batch_create(
GWN_PRIM_TRIS, buffers->vert_buf,
/* can be NULL */
buffers->index_buf_fast);
}
}
static float gpu_color_from_mask(float mask)
{
return 1.0f - mask * 0.75f;
}
static void gpu_color_from_mask_copy(float mask, const float diffuse_color[4], unsigned char out[3])
{
float mask_color;
mask_color = gpu_color_from_mask(mask) * 255.0f;
out[0] = diffuse_color[0] * mask_color;
out[1] = diffuse_color[1] * mask_color;
out[2] = diffuse_color[2] * mask_color;
}
static void gpu_color_from_mask_quad_copy(const CCGKey *key,
CCGElem *a, CCGElem *b,
CCGElem *c, CCGElem *d,
const float *diffuse_color,
unsigned char out[3])
{
float mask_color =
gpu_color_from_mask((*CCG_elem_mask(key, a) +
*CCG_elem_mask(key, b) +
*CCG_elem_mask(key, c) +
*CCG_elem_mask(key, d)) * 0.25f) * 255.0f;
out[0] = diffuse_color[0] * mask_color;
out[1] = diffuse_color[1] * mask_color;
out[2] = diffuse_color[2] * mask_color;
}
void GPU_pbvh_mesh_buffers_update(
GPU_PBVH_Buffers *buffers, const MVert *mvert,
const int *vert_indices, int totvert, const float *vmask,
const int (*face_vert_indices)[3],
const int update_flags)
{
const bool show_diffuse_color = (update_flags & GPU_PBVH_BUFFERS_SHOW_DIFFUSE_COLOR) != 0;
const bool show_mask = (update_flags & GPU_PBVH_BUFFERS_SHOW_MASK) != 0;
buffers->vmask = vmask;
buffers->show_diffuse_color = show_diffuse_color;
buffers->show_mask = show_mask;
buffers->use_matcaps = GPU_material_use_matcaps_get();
{
int totelem = (buffers->smooth ? totvert : (buffers->tot_tri * 3));
float diffuse_color[4] = {0.8f, 0.8f, 0.8f, 0.8f};
if (buffers->use_matcaps)
diffuse_color[0] = diffuse_color[1] = diffuse_color[2] = 1.0;
else if (show_diffuse_color) {
const MLoopTri *lt = &buffers->looptri[buffers->face_indices[0]];
const MPoly *mp = &buffers->mpoly[lt->poly];
GPU_material_diffuse_get(mp->mat_nr + 1, diffuse_color);
}
copy_v4_v4(buffers->diffuse_color, diffuse_color);
uchar diffuse_color_ub[4];
rgba_float_to_uchar(diffuse_color_ub, diffuse_color);
/* Build VBO */
if (gpu_pbvh_vert_buf_data_set(buffers, totelem)) {
/* Vertex data is shared if smooth-shaded, but separate
* copies are made for flat shading because normals
* shouldn't be shared. */
if (buffers->smooth) {
for (uint i = 0; i < totvert; ++i) {
const MVert *v = &mvert[vert_indices[i]];
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.pos, i, v->co);
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.nor, i, v->no);
}
for (uint i = 0; i < buffers->face_indices_len; i++) {
const MLoopTri *lt = &buffers->looptri[buffers->face_indices[i]];
for (uint j = 0; j < 3; j++) {
int vidx = face_vert_indices[i][j];
if (vmask && show_mask) {
int v_index = buffers->mloop[lt->tri[j]].v;
uchar color_ub[3];
gpu_color_from_mask_copy(vmask[v_index], diffuse_color, color_ub);
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.col, vidx, color_ub);
}
else {
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.col, vidx, diffuse_color_ub);
}
}
}
}
else {
/* calculate normal for each polygon only once */
unsigned int mpoly_prev = UINT_MAX;
short no[3];
int vbo_index = 0;
for (uint i = 0; i < buffers->face_indices_len; i++) {
const MLoopTri *lt = &buffers->looptri[buffers->face_indices[i]];
const unsigned int vtri[3] = {
buffers->mloop[lt->tri[0]].v,
buffers->mloop[lt->tri[1]].v,
buffers->mloop[lt->tri[2]].v,
};
if (paint_is_face_hidden(lt, mvert, buffers->mloop))
continue;
/* Face normal and mask */
if (lt->poly != mpoly_prev) {
const MPoly *mp = &buffers->mpoly[lt->poly];
float fno[3];
BKE_mesh_calc_poly_normal(mp, &buffers->mloop[mp->loopstart], mvert, fno);
normal_float_to_short_v3(no, fno);
mpoly_prev = lt->poly;
}
uchar color_ub[3];
if (vmask && show_mask) {
float fmask = (vmask[vtri[0]] + vmask[vtri[1]] + vmask[vtri[2]]) / 3.0f;
gpu_color_from_mask_copy(fmask, diffuse_color, color_ub);
}
else {
copy_v3_v3_uchar(color_ub, diffuse_color_ub);
}
for (uint j = 0; j < 3; j++) {
const MVert *v = &mvert[vtri[j]];
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.pos, vbo_index, v->co);
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.nor, vbo_index, no);
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.col, vbo_index, color_ub);
vbo_index++;
}
}
}
gpu_pbvh_batch_init(buffers);
}
}
buffers->mvert = mvert;
}
GPU_PBVH_Buffers *GPU_pbvh_mesh_buffers_build(
const int (*face_vert_indices)[3],
const MPoly *mpoly, const MLoop *mloop, const MLoopTri *looptri,
const MVert *mvert,
const int *face_indices,
const int face_indices_len)
{
GPU_PBVH_Buffers *buffers;
int i, tottri;
buffers = MEM_callocN(sizeof(GPU_PBVH_Buffers), "GPU_Buffers");
/* smooth or flat for all */
#if 0
buffers->smooth = mpoly[looptri[face_indices[0]].poly].flag & ME_SMOOTH;
#else
/* for DrawManager we dont support mixed smooth/flat */
buffers->smooth = (mpoly[0].flag & ME_SMOOTH) != 0;
#endif
buffers->show_diffuse_color = false;
buffers->show_mask = true;
buffers->use_matcaps = false;
/* Count the number of visible triangles */
for (i = 0, tottri = 0; i < face_indices_len; ++i) {
const MLoopTri *lt = &looptri[face_indices[i]];
if (!paint_is_face_hidden(lt, mvert, mloop))
tottri++;
}
if (tottri == 0) {
buffers->tot_tri = 0;
buffers->mpoly = mpoly;
buffers->mloop = mloop;
buffers->looptri = looptri;
buffers->face_indices = face_indices;
buffers->face_indices_len = 0;
return buffers;
}
/* An element index buffer is used for smooth shading, but flat
* shading requires separate vertex normals so an index buffer is
* can't be used there. */
if (buffers->smooth) {
/* Fill the triangle buffer */
buffers->index_buf = NULL;
Gwn_IndexBufBuilder elb;
GWN_indexbuf_init(&elb, GWN_PRIM_TRIS, tottri, INT_MAX);
for (i = 0; i < face_indices_len; ++i) {
const MLoopTri *lt = &looptri[face_indices[i]];
/* Skip hidden faces */
if (paint_is_face_hidden(lt, mvert, mloop))
continue;
GWN_indexbuf_add_tri_verts(&elb, UNPACK3(face_vert_indices[i]));
}
buffers->index_buf = GWN_indexbuf_build(&elb);
}
else {
if (!buffers->is_index_buf_global) {
GWN_INDEXBUF_DISCARD_SAFE(buffers->index_buf);
}
buffers->index_buf = NULL;
buffers->is_index_buf_global = false;
}
buffers->tot_tri = tottri;
buffers->mpoly = mpoly;
buffers->mloop = mloop;
buffers->looptri = looptri;
buffers->face_indices = face_indices;
buffers->face_indices_len = face_indices_len;
return buffers;
}
void GPU_pbvh_grid_buffers_update(
GPU_PBVH_Buffers *buffers, CCGElem **grids,
const DMFlagMat *grid_flag_mats, int *grid_indices,
int totgrid, const CCGKey *key,
const int update_flags)
{
const bool show_diffuse_color = (update_flags & GPU_PBVH_BUFFERS_SHOW_DIFFUSE_COLOR) != 0;
const bool show_mask = (update_flags & GPU_PBVH_BUFFERS_SHOW_MASK) != 0;
int i, j, k, x, y;
buffers->show_diffuse_color = show_diffuse_color;
buffers->show_mask = show_mask;
buffers->use_matcaps = GPU_material_use_matcaps_get();
buffers->smooth = grid_flag_mats[grid_indices[0]].flag & ME_SMOOTH;
/* Build VBO */
if (buffers->index_buf) {
const int has_mask = key->has_mask;
float diffuse_color[4] = {0.8f, 0.8f, 0.8f, 1.0f};
if (buffers->use_matcaps) {
diffuse_color[0] = diffuse_color[1] = diffuse_color[2] = 1.0;
}
else if (show_diffuse_color) {
const DMFlagMat *flags = &grid_flag_mats[grid_indices[0]];
GPU_material_diffuse_get(flags->mat_nr + 1, diffuse_color);
}
copy_v4_v4(buffers->diffuse_color, diffuse_color);
uint vbo_index_offset = 0;
/* Build VBO */
if (gpu_pbvh_vert_buf_data_set(buffers, totgrid * key->grid_area)) {
for (i = 0; i < totgrid; ++i) {
CCGElem *grid = grids[grid_indices[i]];
int vbo_index = vbo_index_offset;
for (y = 0; y < key->grid_size; y++) {
for (x = 0; x < key->grid_size; x++) {
CCGElem *elem = CCG_grid_elem(key, grid, x, y);
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.pos, vbo_index, CCG_elem_co(key, elem));
if (buffers->smooth) {
short no_short[3];
normal_float_to_short_v3(no_short, CCG_elem_no(key, elem));
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.nor, vbo_index, no_short);
if (has_mask) {
uchar color_ub[3];
if (show_mask) {
gpu_color_from_mask_copy(*CCG_elem_mask(key, elem),
diffuse_color, color_ub);
}
else {
F3TOCHAR3(diffuse_color, color_ub);
}
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.col, vbo_index, color_ub);
}
}
vbo_index += 1;
}
}
if (!buffers->smooth) {
for (j = 0; j < key->grid_size - 1; j++) {
for (k = 0; k < key->grid_size - 1; k++) {
CCGElem *elems[4] = {
CCG_grid_elem(key, grid, k, j + 1),
CCG_grid_elem(key, grid, k + 1, j + 1),
CCG_grid_elem(key, grid, k + 1, j),
CCG_grid_elem(key, grid, k, j)
};
float fno[3];
normal_quad_v3(fno,
CCG_elem_co(key, elems[0]),
CCG_elem_co(key, elems[1]),
CCG_elem_co(key, elems[2]),
CCG_elem_co(key, elems[3]));
vbo_index = vbo_index_offset + ((j + 1) * key->grid_size + k);
short no_short[3];
normal_float_to_short_v3(no_short, fno);
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.nor, vbo_index, no_short);
if (has_mask) {
uchar color_ub[3];
if (show_mask) {
gpu_color_from_mask_quad_copy(key,
elems[0],
elems[1],
elems[2],
elems[3],
diffuse_color,
color_ub);
}
else {
F3TOCHAR3(diffuse_color, color_ub);
}
GWN_vertbuf_attr_set(buffers->vert_buf, g_vbo_id.col, vbo_index, color_ub);
}
}
}
}
vbo_index_offset += key->grid_area;
}
gpu_pbvh_batch_init(buffers);
}
}
buffers->grids = grids;
buffers->grid_indices = grid_indices;
buffers->totgrid = totgrid;
buffers->grid_flag_mats = grid_flag_mats;
buffers->gridkey = *key;
//printf("node updated %p\n", buffers);
}
/* Build the element array buffer of grid indices using either
* unsigned shorts or unsigned ints. */
#define FILL_QUAD_BUFFER(max_vert_, tot_quad_, buffer_) \
{ \
int offset = 0; \
int i, j, k; \
\
Gwn_IndexBufBuilder elb; \
GWN_indexbuf_init( \
&elb, GWN_PRIM_TRIS, tot_quad_ * 2, max_vert_); \
\
/* Fill the buffer */ \
for (i = 0; i < totgrid; ++i) { \
BLI_bitmap *gh = NULL; \
if (grid_hidden) \
gh = grid_hidden[(grid_indices)[i]]; \
\
for (j = 0; j < gridsize - 1; ++j) { \
for (k = 0; k < gridsize - 1; ++k) { \
/* Skip hidden grid face */ \
if (gh && paint_is_grid_face_hidden( \
gh, gridsize, k, j)) \
{ \
continue; \
} \
GWN_indexbuf_add_generic_vert(&elb, offset + j * gridsize + k + 1); \
GWN_indexbuf_add_generic_vert(&elb, offset + j * gridsize + k); \
GWN_indexbuf_add_generic_vert(&elb, offset + (j + 1) * gridsize + k); \
\
GWN_indexbuf_add_generic_vert(&elb, offset + (j + 1) * gridsize + k + 1); \
GWN_indexbuf_add_generic_vert(&elb, offset + j * gridsize + k + 1); \
GWN_indexbuf_add_generic_vert(&elb, offset + (j + 1) * gridsize + k); \
} \
} \
\
offset += gridsize * gridsize; \
} \
buffer_ = GWN_indexbuf_build(&elb); \
} (void)0
/* end FILL_QUAD_BUFFER */
static Gwn_IndexBuf *gpu_get_grid_buffer(
int gridsize, unsigned *totquad, GridCommonGPUBuffer **grid_common_gpu_buffer,
/* remove this arg when gawain gets base-vertex support! */
int totgrid)
{
/* used in the FILL_QUAD_BUFFER macro */
BLI_bitmap * const *grid_hidden = NULL;
const int *grid_indices = NULL;
// int totgrid = 1;
GridCommonGPUBuffer *gridbuff = *grid_common_gpu_buffer;
if (gridbuff == NULL) {
*grid_common_gpu_buffer = gridbuff = MEM_mallocN(sizeof(GridCommonGPUBuffer), __func__);
gridbuff->mres_buffer = NULL;
gridbuff->mres_prev_gridsize = -1;
gridbuff->mres_prev_totquad = 0;
}
/* VBO is already built */
if (gridbuff->mres_buffer && gridbuff->mres_prev_gridsize == gridsize) {
*totquad = gridbuff->mres_prev_totquad;
return gridbuff->mres_buffer;
}
/* we can't reuse old, delete the existing buffer */
else if (gridbuff->mres_buffer) {
GWN_indexbuf_discard(gridbuff->mres_buffer);
gridbuff->mres_buffer = NULL;
}
/* Build new VBO */
*totquad = (gridsize - 1) * (gridsize - 1) * totgrid;
int max_vert = gridsize * gridsize * totgrid;
FILL_QUAD_BUFFER(max_vert, *totquad, gridbuff->mres_buffer);
gridbuff->mres_prev_gridsize = gridsize;
gridbuff->mres_prev_totquad = *totquad;
return gridbuff->mres_buffer;
}
#define FILL_FAST_BUFFER() \
{ \
Gwn_IndexBufBuilder elb; \
GWN_indexbuf_init(&elb, GWN_PRIM_TRIS, 6 * totgrid, INT_MAX); \
for (int i = 0; i < totgrid; i++) { \
GWN_indexbuf_add_generic_vert(&elb, i * gridsize * gridsize + gridsize - 1); \
GWN_indexbuf_add_generic_vert(&elb, i * gridsize * gridsize); \
GWN_indexbuf_add_generic_vert(&elb, (i + 1) * gridsize * gridsize - gridsize); \
GWN_indexbuf_add_generic_vert(&elb, (i + 1) * gridsize * gridsize - 1); \
GWN_indexbuf_add_generic_vert(&elb, i * gridsize * gridsize + gridsize - 1); \
GWN_indexbuf_add_generic_vert(&elb, (i + 1) * gridsize * gridsize - gridsize); \
} \
buffers->index_buf_fast = GWN_indexbuf_build(&elb); \
} (void)0
GPU_PBVH_Buffers *GPU_pbvh_grid_buffers_build(
int *grid_indices, int totgrid, BLI_bitmap **grid_hidden, int gridsize, const CCGKey *UNUSED(key),
GridCommonGPUBuffer **grid_common_gpu_buffer)
{
GPU_PBVH_Buffers *buffers;
int totquad;
int fully_visible_totquad = (gridsize - 1) * (gridsize - 1) * totgrid;
buffers = MEM_callocN(sizeof(GPU_PBVH_Buffers), "GPU_Buffers");
buffers->grid_hidden = grid_hidden;
buffers->totgrid = totgrid;
buffers->show_diffuse_color = false;
buffers->show_mask = true;
buffers->use_matcaps = false;
/* Count the number of quads */
totquad = BKE_pbvh_count_grid_quads(grid_hidden, grid_indices, totgrid, gridsize);
/* totally hidden node, return here to avoid BufferData with zero below. */
if (totquad == 0)
return buffers;
/* create and fill indices of the fast buffer too */
FILL_FAST_BUFFER();
if (totquad == fully_visible_totquad) {
buffers->index_buf = gpu_get_grid_buffer(
gridsize, &buffers->tot_quad, grid_common_gpu_buffer, totgrid);
buffers->has_hidden = false;
buffers->is_index_buf_global = true;
}
else {
uint max_vert = totgrid * gridsize * gridsize;
buffers->tot_quad = totquad;
FILL_QUAD_BUFFER(max_vert, totquad, buffers->index_buf);
buffers->has_hidden = false;
buffers->is_index_buf_global = false;
}
#ifdef USE_BASE_ELEM
/* Build coord/normal VBO */
if (GLEW_ARB_draw_elements_base_vertex /* 3.2 */) {
int i;
buffers->baseelemarray = MEM_mallocN(sizeof(int) * totgrid * 2, "GPU_PBVH_Buffers.baseelemarray");
buffers->baseindex = MEM_mallocN(sizeof(void *) * totgrid, "GPU_PBVH_Buffers.baseindex");
for (i = 0; i < totgrid; i++) {
buffers->baseelemarray[i] = buffers->tot_quad * 6;
buffers->baseelemarray[i + totgrid] = i * key->grid_area;
buffers->baseindex[i] = NULL;
}
}
#endif
return buffers;
}
#undef FILL_QUAD_BUFFER
/* Output a BMVert into a VertexBufferFormat array
*
* The vertex is skipped if hidden, otherwise the output goes into
* index '*v_index' in the 'vert_data' array and '*v_index' is
* incremented.
*/
static void gpu_bmesh_vert_to_buffer_copy__gwn(
BMVert *v,
Gwn_VertBuf *vert_buf,
int *v_index,
const float fno[3],
const float *fmask,
const int cd_vert_mask_offset,
const float diffuse_color[4],
const bool show_mask)
{
if (!BM_elem_flag_test(v, BM_ELEM_HIDDEN)) {
/* Set coord, normal, and mask */
GWN_vertbuf_attr_set(vert_buf, g_vbo_id.pos, *v_index, v->co);
{
short no_short[3];
normal_float_to_short_v3(no_short, fno ? fno : v->no);
GWN_vertbuf_attr_set(vert_buf, g_vbo_id.nor, *v_index, no_short);
}
{
uchar color_ub[3];
float effective_mask;
if (show_mask) {
effective_mask = fmask ? *fmask
: BM_ELEM_CD_GET_FLOAT(v, cd_vert_mask_offset);
}
else {
effective_mask = 0.0f;
}
gpu_color_from_mask_copy(
effective_mask,
diffuse_color,
color_ub);
GWN_vertbuf_attr_set(vert_buf, g_vbo_id.col, *v_index, color_ub);
}
/* Assign index for use in the triangle index buffer */
/* note: caller must set: bm->elem_index_dirty |= BM_VERT; */
BM_elem_index_set(v, (*v_index)); /* set_dirty! */
(*v_index)++;
}
}
/* Return the total number of vertices that don't have BM_ELEM_HIDDEN set */
static int gpu_bmesh_vert_visible_count(GSet *bm_unique_verts,
GSet *bm_other_verts)
{
GSetIterator gs_iter;
int totvert = 0;
GSET_ITER (gs_iter, bm_unique_verts) {
BMVert *v = BLI_gsetIterator_getKey(&gs_iter);
if (!BM_elem_flag_test(v, BM_ELEM_HIDDEN))
totvert++;
}
GSET_ITER (gs_iter, bm_other_verts) {
BMVert *v = BLI_gsetIterator_getKey(&gs_iter);
if (!BM_elem_flag_test(v, BM_ELEM_HIDDEN))
totvert++;
}
return totvert;
}
/* Return the total number of visible faces */
static int gpu_bmesh_face_visible_count(GSet *bm_faces)
{
GSetIterator gh_iter;
int totface = 0;
GSET_ITER (gh_iter, bm_faces) {
BMFace *f = BLI_gsetIterator_getKey(&gh_iter);
if (!BM_elem_flag_test(f, BM_ELEM_HIDDEN))
totface++;
}
return totface;
}
/* Creates a vertex buffer (coordinate, normal, color) and, if smooth
* shading, an element index buffer. */
void GPU_pbvh_bmesh_buffers_update(
GPU_PBVH_Buffers *buffers,
BMesh *bm,
GSet *bm_faces,
GSet *bm_unique_verts,
GSet *bm_other_verts,
const int update_flags)
{
const bool show_diffuse_color = (update_flags & GPU_PBVH_BUFFERS_SHOW_DIFFUSE_COLOR) != 0;
const bool show_mask = (update_flags & GPU_PBVH_BUFFERS_SHOW_MASK) != 0;
int tottri, totvert, maxvert = 0;
float diffuse_color[4] = {0.8f, 0.8f, 0.8f, 1.0f};
/* TODO, make mask layer optional for bmesh buffer */
const int cd_vert_mask_offset = CustomData_get_offset(&bm->vdata, CD_PAINT_MASK);
buffers->show_diffuse_color = show_diffuse_color;
buffers->show_mask = show_mask;
buffers->use_matcaps = GPU_material_use_matcaps_get();
/* Count visible triangles */
tottri = gpu_bmesh_face_visible_count(bm_faces);
if (buffers->smooth) {
/* Count visible vertices */
totvert = gpu_bmesh_vert_visible_count(bm_unique_verts, bm_other_verts);
}
else
totvert = tottri * 3;
if (!tottri) {
buffers->tot_tri = 0;
return;
}
if (buffers->use_matcaps)
diffuse_color[0] = diffuse_color[1] = diffuse_color[2] = 1.0;
else if (show_diffuse_color) {
/* due to dynamic nature of dyntopo, only get first material */
GSetIterator gs_iter;
BMFace *f;
BLI_gsetIterator_init(&gs_iter, bm_faces);
f = BLI_gsetIterator_getKey(&gs_iter);
GPU_material_diffuse_get(f->mat_nr + 1, diffuse_color);
}
copy_v4_v4(buffers->diffuse_color, diffuse_color);
/* Fill vertex buffer */
if (gpu_pbvh_vert_buf_data_set(buffers, totvert)) {
int v_index = 0;
if (buffers->smooth) {
GSetIterator gs_iter;
/* Vertices get an index assigned for use in the triangle
* index buffer */
bm->elem_index_dirty |= BM_VERT;
GSET_ITER (gs_iter, bm_unique_verts) {
gpu_bmesh_vert_to_buffer_copy__gwn(
BLI_gsetIterator_getKey(&gs_iter),
buffers->vert_buf, &v_index, NULL, NULL,
cd_vert_mask_offset, diffuse_color,
show_mask);
}
GSET_ITER (gs_iter, bm_other_verts) {
gpu_bmesh_vert_to_buffer_copy__gwn(
BLI_gsetIterator_getKey(&gs_iter),
buffers->vert_buf, &v_index, NULL, NULL,
cd_vert_mask_offset, diffuse_color,
show_mask);
}
maxvert = v_index;
}
else {
GSetIterator gs_iter;
GSET_ITER (gs_iter, bm_faces) {
BMFace *f = BLI_gsetIterator_getKey(&gs_iter);
BLI_assert(f->len == 3);
if (!BM_elem_flag_test(f, BM_ELEM_HIDDEN)) {
BMVert *v[3];
float fmask = 0;
int i;
#if 0
BM_iter_as_array(bm, BM_VERTS_OF_FACE, f, (void**)v, 3);
#endif
BM_face_as_array_vert_tri(f, v);
/* Average mask value */
for (i = 0; i < 3; i++) {
fmask += BM_ELEM_CD_GET_FLOAT(v[i], cd_vert_mask_offset);
}
fmask /= 3.0f;
for (i = 0; i < 3; i++) {
gpu_bmesh_vert_to_buffer_copy__gwn(
v[i], buffers->vert_buf,
&v_index, f->no, &fmask,
cd_vert_mask_offset, diffuse_color,
show_mask);
}
}
}
buffers->tot_tri = tottri;
}
/* gpu_bmesh_vert_to_buffer_copy sets dirty index values */
bm->elem_index_dirty |= BM_VERT;
}
else {
/* Memory map failed */
return;
}
if (buffers->smooth) {
/* Fill the triangle buffer */
buffers->index_buf = NULL;
Gwn_IndexBufBuilder elb;
GWN_indexbuf_init(&elb, GWN_PRIM_TRIS, tottri, maxvert);
/* Initialize triangle index buffer */
buffers->is_index_buf_global = false;
/* Fill triangle index buffer */
{
GSetIterator gs_iter;
GSET_ITER (gs_iter, bm_faces) {
BMFace *f = BLI_gsetIterator_getKey(&gs_iter);
if (!BM_elem_flag_test(f, BM_ELEM_HIDDEN)) {
BMLoop *l_iter;
BMLoop *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
GWN_indexbuf_add_generic_vert(&elb, BM_elem_index_get(l_iter->v));
} while ((l_iter = l_iter->next) != l_first);
}
}
buffers->tot_tri = tottri;
if (buffers->index_buf == NULL) {
buffers->index_buf = GWN_indexbuf_build(&elb);
}
else {
GWN_indexbuf_build_in_place(&elb, buffers->index_buf);
}
}
}
else if (buffers->index_buf) {
if (!buffers->is_index_buf_global) {
GWN_INDEXBUF_DISCARD_SAFE(buffers->index_buf);
}
buffers->index_buf = NULL;
buffers->is_index_buf_global = false;
}
gpu_pbvh_batch_init(buffers);
}
GPU_PBVH_Buffers *GPU_pbvh_bmesh_buffers_build(bool smooth_shading)
{
GPU_PBVH_Buffers *buffers;
buffers = MEM_callocN(sizeof(GPU_PBVH_Buffers), "GPU_Buffers");
buffers->use_bmesh = true;
buffers->smooth = smooth_shading;
buffers->show_diffuse_color = false;
buffers->show_mask = true;
buffers->use_matcaps = false;
return buffers;
}
void GPU_pbvh_buffers_draw(
GPU_PBVH_Buffers *buffers, DMSetMaterial setMaterial,
bool wireframe, bool fast)
{
UNUSED_VARS(wireframe, fast, setMaterial);
bool do_fast = fast && buffers->triangles_fast;
Gwn_Batch *triangles = do_fast ? buffers->triangles_fast : buffers->triangles;
if (triangles) {
/* Simple Shader: use when drawing without the draw-manager (old 2.7x viewport) */
if (triangles->interface == NULL) {
GPUBuiltinShader shader_id =
buffers->smooth ? GPU_SHADER_SIMPLE_LIGHTING_SMOOTH_COLOR : GPU_SHADER_SIMPLE_LIGHTING_FLAT_COLOR;
GPUShader *shader = GPU_shader_get_builtin_shader(shader_id);
GWN_batch_program_set(
triangles,
GPU_shader_get_program(shader), GPU_shader_get_interface(shader));
static float light[3] = {-0.3f, 0.5f, 1.0f};
static float alpha = 1.0f;
static float world_light = 1.0f;
GPU_shader_uniform_vector(shader, GPU_shader_get_uniform(shader, "light"), 3, 1, light);
GPU_shader_uniform_vector(shader, GPU_shader_get_uniform(shader, "alpha"), 1, 1, &alpha);
GPU_shader_uniform_vector(shader, GPU_shader_get_uniform(shader, "global"), 1, 1, &world_light);
}
GWN_batch_draw(triangles);
}
}
Gwn_Batch *GPU_pbvh_buffers_batch_get(GPU_PBVH_Buffers *buffers, bool fast)
{
return (fast && buffers->triangles_fast) ?
buffers->triangles_fast : buffers->triangles;
}
bool GPU_pbvh_buffers_diffuse_changed(GPU_PBVH_Buffers *buffers, GSet *bm_faces, bool show_diffuse_color)
{
float diffuse_color[4];
bool use_matcaps = GPU_material_use_matcaps_get();
if (buffers->show_diffuse_color != show_diffuse_color)
return true;
if (buffers->use_matcaps != use_matcaps)
return true;
if ((buffers->show_diffuse_color == false) || use_matcaps)
return false;
if (buffers->looptri) {
const MLoopTri *lt = &buffers->looptri[buffers->face_indices[0]];
const MPoly *mp = &buffers->mpoly[lt->poly];
GPU_material_diffuse_get(mp->mat_nr + 1, diffuse_color);
}
else if (buffers->use_bmesh) {
/* due to dynamic nature of dyntopo, only get first material */
if (BLI_gset_len(bm_faces) > 0) {
GSetIterator gs_iter;
BMFace *f;
BLI_gsetIterator_init(&gs_iter, bm_faces);
f = BLI_gsetIterator_getKey(&gs_iter);
GPU_material_diffuse_get(f->mat_nr + 1, diffuse_color);
}
else {
return false;
}
}
else {
const DMFlagMat *flags = &buffers->grid_flag_mats[buffers->grid_indices[0]];
GPU_material_diffuse_get(flags->mat_nr + 1, diffuse_color);
}
return !equals_v3v3(diffuse_color, buffers->diffuse_color);
}
bool GPU_pbvh_buffers_mask_changed(GPU_PBVH_Buffers *buffers, bool show_mask)
{
return (buffers->show_mask != show_mask);
}
void GPU_pbvh_buffers_free(GPU_PBVH_Buffers *buffers)
{
if (buffers) {
GWN_BATCH_DISCARD_SAFE(buffers->triangles);
GWN_BATCH_DISCARD_SAFE(buffers->triangles_fast);
if (!buffers->is_index_buf_global) {
GWN_INDEXBUF_DISCARD_SAFE(buffers->index_buf);
}
GWN_INDEXBUF_DISCARD_SAFE(buffers->index_buf_fast);
GWN_VERTBUF_DISCARD_SAFE(buffers->vert_buf);
#ifdef USE_BASE_ELEM
if (buffers->baseelemarray)
MEM_freeN(buffers->baseelemarray);
if (buffers->baseindex)
MEM_freeN(buffers->baseindex);
#endif
MEM_freeN(buffers);
}
}
void GPU_pbvh_multires_buffers_free(GridCommonGPUBuffer **grid_common_gpu_buffer)
{
GridCommonGPUBuffer *gridbuff = *grid_common_gpu_buffer;
if (gridbuff) {
if (gridbuff->mres_buffer) {
BLI_mutex_lock(&buffer_mutex);
GWN_INDEXBUF_DISCARD_SAFE(gridbuff->mres_buffer);
BLI_mutex_unlock(&buffer_mutex);
}
MEM_freeN(gridbuff);
*grid_common_gpu_buffer = NULL;
}
}
/* debug function, draws the pbvh BB */
void GPU_pbvh_BB_draw(float min[3], float max[3], bool leaf, unsigned int pos)
{
if (leaf)
immUniformColor4f(0.0, 1.0, 0.0, 0.5);
else
immUniformColor4f(1.0, 0.0, 0.0, 0.5);
/* TODO(merwin): revisit this after we have mutable VertexBuffers
* could keep a static batch & index buffer, change the VBO contents per draw
*/
immBegin(GWN_PRIM_LINES, 24);
/* top */
immVertex3f(pos, min[0], min[1], max[2]);
immVertex3f(pos, min[0], max[1], max[2]);
immVertex3f(pos, min[0], max[1], max[2]);
immVertex3f(pos, max[0], max[1], max[2]);
immVertex3f(pos, max[0], max[1], max[2]);
immVertex3f(pos, max[0], min[1], max[2]);
immVertex3f(pos, max[0], min[1], max[2]);
immVertex3f(pos, min[0], min[1], max[2]);
/* bottom */
immVertex3f(pos, min[0], min[1], min[2]);
immVertex3f(pos, min[0], max[1], min[2]);
immVertex3f(pos, min[0], max[1], min[2]);
immVertex3f(pos, max[0], max[1], min[2]);
immVertex3f(pos, max[0], max[1], min[2]);
immVertex3f(pos, max[0], min[1], min[2]);
immVertex3f(pos, max[0], min[1], min[2]);
immVertex3f(pos, min[0], min[1], min[2]);
/* sides */
immVertex3f(pos, min[0], min[1], min[2]);
immVertex3f(pos, min[0], min[1], max[2]);
immVertex3f(pos, min[0], max[1], min[2]);
immVertex3f(pos, min[0], max[1], max[2]);
immVertex3f(pos, max[0], max[1], min[2]);
immVertex3f(pos, max[0], max[1], max[2]);
immVertex3f(pos, max[0], min[1], min[2]);
immVertex3f(pos, max[0], min[1], max[2]);
immEnd();
}