This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/material.c

1162 lines
25 KiB
C

/* material.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <string.h>
#include <math.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meta_types.h"
#include "DNA_node_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "DNA_userdef_types.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "BKE_animsys.h"
#include "BKE_blender.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BKE_icons.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_node.h"
#include "BKE_utildefines.h"
#ifndef DISABLE_PYTHON
#include "BPY_extern.h"
#endif
#include "GPU_material.h"
/* used in UI and render */
Material defmaterial;
/* called on startup, creator.c */
void init_def_material(void)
{
init_material(&defmaterial);
}
/* not material itself */
void free_material(Material *ma)
{
MTex *mtex;
int a;
for(a=0; a<MAX_MTEX; a++) {
mtex= ma->mtex[a];
if(mtex && mtex->tex) mtex->tex->id.us--;
if(mtex) MEM_freeN(mtex);
}
if(ma->ramp_col) MEM_freeN(ma->ramp_col);
if(ma->ramp_spec) MEM_freeN(ma->ramp_spec);
BKE_free_animdata((ID *)ma);
BKE_previewimg_free(&ma->preview);
BKE_icon_delete((struct ID*)ma);
ma->id.icon_id = 0;
/* is no lib link block, but material extension */
if(ma->nodetree) {
ntreeFreeTree(ma->nodetree);
MEM_freeN(ma->nodetree);
}
if(ma->gpumaterial.first)
GPU_material_free(ma);
}
void init_material(Material *ma)
{
ma->r= ma->g= ma->b= ma->ref= 0.8;
ma->specr= ma->specg= ma->specb= 1.0;
ma->mirr= ma->mirg= ma->mirb= 1.0;
ma->spectra= 1.0;
ma->amb= 0.5;
ma->alpha= 1.0;
ma->spec= ma->hasize= 0.5;
ma->har= 50;
ma->starc= ma->ringc= 4;
ma->linec= 12;
ma->flarec= 1;
ma->flaresize= ma->subsize= 1.0;
ma->flareboost= 1;
ma->seed2= 6;
ma->friction= 0.5;
ma->refrac= 4.0;
ma->roughness= 0.5;
ma->param[0]= 0.5;
ma->param[1]= 0.1;
ma->param[2]= 0.5;
ma->param[3]= 0.1;
ma->rms= 0.1;
ma->darkness= 1.0;
ma->strand_sta= ma->strand_end= 1.0f;
ma->ang= 1.0;
ma->ray_depth= 2;
ma->ray_depth_tra= 2;
ma->fresnel_mir= 0.0;
ma->fresnel_tra= 0.0;
ma->fresnel_tra_i= 1.25;
ma->fresnel_mir_i= 1.25;
ma->tx_limit= 0.0;
ma->tx_falloff= 1.0;
ma->shad_alpha= 1.0f;
ma->gloss_mir = ma->gloss_tra= 1.0;
ma->samp_gloss_mir = ma->samp_gloss_tra= 18;
ma->adapt_thresh_mir = ma->adapt_thresh_tra = 0.005;
ma->dist_mir = 0.0;
ma->fadeto_mir = MA_RAYMIR_FADETOSKY;
ma->rampfac_col= 1.0;
ma->rampfac_spec= 1.0;
ma->pr_lamp= 3; /* two lamps, is bits */
ma->pr_type= MA_SPHERE;
ma->sss_radius[0]= 1.0f;
ma->sss_radius[1]= 1.0f;
ma->sss_radius[2]= 1.0f;
ma->sss_col[0]= 0.8f;
ma->sss_col[1]= 0.8f;
ma->sss_col[2]= 0.8f;
ma->sss_error= 0.05f;
ma->sss_scale= 0.1f;
ma->sss_ior= 1.3f;
ma->sss_colfac= 1.0f;
ma->sss_texfac= 0.0f;
ma->sss_front= 1.0f;
ma->sss_back= 1.0f;
ma->mode= MA_TRACEBLE|MA_SHADBUF|MA_SHADOW|MA_RAYBIAS|MA_TANGENT_STR|MA_ZTRANSP;
ma->preview = NULL;
}
Material *add_material(char *name)
{
Material *ma;
ma= alloc_libblock(&G.main->mat, ID_MA, name);
init_material(ma);
return ma;
}
Material *copy_material(Material *ma)
{
Material *man;
int a;
man= copy_libblock(ma);
#if 0 // XXX old animation system
id_us_plus((ID *)man->ipo);
#endif // XXX old animation system
id_us_plus((ID *)man->group);
for(a=0; a<MAX_MTEX; a++) {
if(ma->mtex[a]) {
man->mtex[a]= MEM_mallocN(sizeof(MTex), "copymaterial");
memcpy(man->mtex[a], ma->mtex[a], sizeof(MTex));
id_us_plus((ID *)man->mtex[a]->tex);
}
}
if(ma->ramp_col) man->ramp_col= MEM_dupallocN(ma->ramp_col);
if(ma->ramp_spec) man->ramp_spec= MEM_dupallocN(ma->ramp_spec);
if (ma->preview) man->preview = BKE_previewimg_copy(ma->preview);
if(ma->nodetree) {
man->nodetree= ntreeCopyTree(ma->nodetree, 0); /* 0 == full new tree */
}
man->gpumaterial.first= man->gpumaterial.last= NULL;
return man;
}
void make_local_material(Material *ma)
{
Object *ob;
Mesh *me;
Curve *cu;
MetaBall *mb;
Material *man;
int a, local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(ma->id.lib==0) return;
if(ma->id.us==1) {
ma->id.lib= 0;
ma->id.flag= LIB_LOCAL;
new_id(0, (ID *)ma, 0);
for(a=0; a<MAX_MTEX; a++) {
if(ma->mtex[a]) id_lib_extern((ID *)ma->mtex[a]->tex);
}
return;
}
/* test objects */
ob= G.main->object.first;
while(ob) {
if(ob->mat) {
for(a=0; a<ob->totcol; a++) {
if(ob->mat[a]==ma) {
if(ob->id.lib) lib= 1;
else local= 1;
}
}
}
ob= ob->id.next;
}
/* test meshes */
me= G.main->mesh.first;
while(me) {
if(me->mat) {
for(a=0; a<me->totcol; a++) {
if(me->mat[a]==ma) {
if(me->id.lib) lib= 1;
else local= 1;
}
}
}
me= me->id.next;
}
/* test curves */
cu= G.main->curve.first;
while(cu) {
if(cu->mat) {
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]==ma) {
if(cu->id.lib) lib= 1;
else local= 1;
}
}
}
cu= cu->id.next;
}
/* test mballs */
mb= G.main->mball.first;
while(mb) {
if(mb->mat) {
for(a=0; a<mb->totcol; a++) {
if(mb->mat[a]==ma) {
if(mb->id.lib) lib= 1;
else local= 1;
}
}
}
mb= mb->id.next;
}
if(local && lib==0) {
ma->id.lib= 0;
ma->id.flag= LIB_LOCAL;
for(a=0; a<MAX_MTEX; a++) {
if(ma->mtex[a]) id_lib_extern((ID *)ma->mtex[a]->tex);
}
new_id(0, (ID *)ma, 0);
}
else if(local && lib) {
man= copy_material(ma);
man->id.us= 0;
/* do objects */
ob= G.main->object.first;
while(ob) {
if(ob->mat) {
for(a=0; a<ob->totcol; a++) {
if(ob->mat[a]==ma) {
if(ob->id.lib==0) {
ob->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
ob= ob->id.next;
}
/* do meshes */
me= G.main->mesh.first;
while(me) {
if(me->mat) {
for(a=0; a<me->totcol; a++) {
if(me->mat[a]==ma) {
if(me->id.lib==0) {
me->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
me= me->id.next;
}
/* do curves */
cu= G.main->curve.first;
while(cu) {
if(cu->mat) {
for(a=0; a<cu->totcol; a++) {
if(cu->mat[a]==ma) {
if(cu->id.lib==0) {
cu->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
cu= cu->id.next;
}
/* do mballs */
mb= G.main->mball.first;
while(mb) {
if(mb->mat) {
for(a=0; a<mb->totcol; a++) {
if(mb->mat[a]==ma) {
if(mb->id.lib==0) {
mb->mat[a]= man;
man->id.us++;
ma->id.us--;
}
}
}
}
mb= mb->id.next;
}
}
}
Material ***give_matarar(Object *ob)
{
Mesh *me;
Curve *cu;
MetaBall *mb;
if(ob->type==OB_MESH) {
me= ob->data;
return &(me->mat);
}
else if ELEM3(ob->type, OB_CURVE, OB_FONT, OB_SURF) {
cu= ob->data;
return &(cu->mat);
}
else if(ob->type==OB_MBALL) {
mb= ob->data;
return &(mb->mat);
}
return NULL;
}
short *give_totcolp(Object *ob)
{
Mesh *me;
Curve *cu;
MetaBall *mb;
if(ob->type==OB_MESH) {
me= ob->data;
return &(me->totcol);
}
else if ELEM3(ob->type, OB_CURVE, OB_FONT, OB_SURF) {
cu= ob->data;
return &(cu->totcol);
}
else if(ob->type==OB_MBALL) {
mb= ob->data;
return &(mb->totcol);
}
return NULL;
}
Material *give_current_material(Object *ob, int act)
{
Material ***matarar, *ma;
short *totcolp;
if(ob==NULL) return NULL;
/* if object cannot have material, totcolp==NULL */
totcolp= give_totcolp(ob);
if(totcolp==NULL || ob->totcol==0) return NULL;
if(act>ob->totcol) act= ob->totcol;
else if(act<=0) act= 1;
if(ob->matbits[act-1]) { /* in object */
ma= ob->mat[act-1];
}
else { /* in data */
/* check for inconsistancy */
if(*totcolp < ob->totcol)
ob->totcol= *totcolp;
if(act>ob->totcol) act= ob->totcol;
matarar= give_matarar(ob);
if(matarar && *matarar) ma= (*matarar)[act-1];
else ma= 0;
}
return ma;
}
ID *material_from(Object *ob, int act)
{
if(ob==0) return 0;
if(ob->totcol==0) return ob->data;
if(act==0) act= 1;
if(ob->matbits[act-1]) return (ID *)ob;
else return ob->data;
}
/* GS reads the memory pointed at in a specific ordering. There are,
* however two definitions for it. I have jotted them down here, both,
* but I think the first one is actually used. The thing is that
* big-endian systems might read this the wrong way round. OTOH, we
* constructed the IDs that are read out with this macro explicitly as
* well. I expect we'll sort it out soon... */
/* from blendef: */
#define GS(a) (*((short *)(a)))
/* from misc_util: flip the bytes from x */
/* #define GS(x) (((unsigned char *)(x))[0] << 8 | ((unsigned char *)(x))[1]) */
void test_object_materials(ID *id)
{
/* make the ob mat-array same size as 'ob->data' mat-array */
Object *ob;
Mesh *me;
Curve *cu;
MetaBall *mb;
Material **newmatar;
char *newmatbits;
int totcol=0;
if(id==0) return;
if( GS(id->name)==ID_ME ) {
me= (Mesh *)id;
totcol= me->totcol;
}
else if( GS(id->name)==ID_CU ) {
cu= (Curve *)id;
totcol= cu->totcol;
}
else if( GS(id->name)==ID_MB ) {
mb= (MetaBall *)id;
totcol= mb->totcol;
}
else return;
ob= G.main->object.first;
while(ob) {
if(ob->data==id) {
if(totcol==0) {
if(ob->totcol) {
MEM_freeN(ob->mat);
MEM_freeN(ob->matbits);
ob->mat= NULL;
ob->matbits= NULL;
}
}
else if(ob->totcol<totcol) {
newmatar= MEM_callocN(sizeof(void *)*totcol, "newmatar");
newmatbits= MEM_callocN(sizeof(char)*totcol, "newmatbits");
if(ob->totcol) {
memcpy(newmatar, ob->mat, sizeof(void *)*ob->totcol);
memcpy(newmatbits, ob->matbits, sizeof(char)*ob->totcol);
MEM_freeN(ob->mat);
MEM_freeN(ob->matbits);
}
ob->mat= newmatar;
ob->matbits= newmatbits;
}
ob->totcol= totcol;
if(ob->totcol && ob->actcol==0) ob->actcol= 1;
if(ob->actcol>ob->totcol) ob->actcol= ob->totcol;
}
ob= ob->id.next;
}
}
void assign_material(Object *ob, Material *ma, int act)
{
Material *mao, **matar, ***matarar;
char *matbits;
short *totcolp;
if(act>MAXMAT) return;
if(act<1) act= 1;
/* test arraylens */
totcolp= give_totcolp(ob);
matarar= give_matarar(ob);
if(totcolp==0 || matarar==0) return;
if(act > *totcolp) {
matar= MEM_callocN(sizeof(void *)*act, "matarray1");
if(*totcolp) {
memcpy(matar, *matarar, sizeof(void *)*(*totcolp));
MEM_freeN(*matarar);
}
*matarar= matar;
*totcolp= act;
}
if(act > ob->totcol) {
matar= MEM_callocN(sizeof(void *)*act, "matarray2");
matbits= MEM_callocN(sizeof(char)*act, "matbits1");
if( ob->totcol) {
memcpy(matar, ob->mat, sizeof(void *)*( ob->totcol ));
memcpy(matbits, ob->matbits, sizeof(char)*(*totcolp));
MEM_freeN(ob->mat);
MEM_freeN(ob->matbits);
}
ob->mat= matar;
ob->matbits= matbits;
ob->totcol= act;
/* copy object/mesh linking, or assign based on userpref */
if(ob->actcol)
ob->matbits[act-1]= ob->matbits[ob->actcol-1];
else
ob->matbits[act-1]= (U.flag & USER_MAT_ON_OB)? 1: 0;
}
/* do it */
if(ob->matbits[act-1]) { /* in object */
mao= ob->mat[act-1];
if(mao) mao->id.us--;
ob->mat[act-1]= ma;
}
else { /* in data */
mao= (*matarar)[act-1];
if(mao) mao->id.us--;
(*matarar)[act-1]= ma;
}
if(ma)
id_us_plus((ID *)ma);
test_object_materials(ob->data);
}
int find_material_index(Object *ob, Material *ma)
{
Material ***matarar;
short a, *totcolp;
if(ma==NULL) return 0;
totcolp= give_totcolp(ob);
matarar= give_matarar(ob);
if(totcolp==NULL || matarar==NULL) return 0;
for(a=0; a<*totcolp; a++)
if((*matarar)[a]==ma)
break;
if(a<*totcolp)
return a+1;
return 0;
}
void object_add_material_slot(Object *ob)
{
Material *ma;
if(ob==0) return;
if(ob->totcol>=MAXMAT) return;
ma= give_current_material(ob, ob->actcol);
assign_material(ob, ma, ob->totcol+1);
ob->actcol= ob->totcol;
}
static void do_init_render_material(Material *ma, int r_mode, float *amb)
{
MTex *mtex;
int a, needuv=0, needtang=0;
if(ma->flarec==0) ma->flarec= 1;
/* add all texcoflags from mtex, texco and mapto were cleared in advance */
for(a=0; a<MAX_MTEX; a++) {
/* separate tex switching */
if(ma->septex & (1<<a)) continue;
mtex= ma->mtex[a];
if(mtex && mtex->tex && (mtex->tex->type | (mtex->tex->use_nodes && mtex->tex->nodetree) )) {
ma->texco |= mtex->texco;
ma->mapto |= mtex->mapto;
if(r_mode & R_OSA) {
if ELEM3(mtex->tex->type, TEX_IMAGE, TEX_PLUGIN, TEX_ENVMAP) ma->texco |= TEXCO_OSA;
else if(mtex->texflag & MTEX_NEW_BUMP) ma->texco |= TEXCO_OSA; // NEWBUMP: need texture derivatives for procedurals as well
}
if(ma->texco & (TEXCO_ORCO|TEXCO_REFL|TEXCO_NORM|TEXCO_STRAND|TEXCO_STRESS)) needuv= 1;
else if(ma->texco & (TEXCO_GLOB|TEXCO_UV|TEXCO_OBJECT|TEXCO_SPEED)) needuv= 1;
else if(ma->texco & (TEXCO_LAVECTOR|TEXCO_VIEW|TEXCO_STICKY)) needuv= 1;
if((ma->mapto & MAP_NORM) && (mtex->normapspace == MTEX_NSPACE_TANGENT))
needtang= 1;
}
}
if(needtang) ma->mode |= MA_NORMAP_TANG;
else ma->mode &= ~MA_NORMAP_TANG;
if(ma->mode & (MA_VERTEXCOL|MA_VERTEXCOLP|MA_FACETEXTURE)) {
needuv= 1;
if(r_mode & R_OSA) ma->texco |= TEXCO_OSA; /* for texfaces */
}
if(needuv) ma->texco |= NEED_UV;
/* since the raytracer doesnt recalc O structs for each ray, we have to preset them all */
if(r_mode & R_RAYTRACE) {
if((ma->mode & (MA_RAYMIRROR|MA_SHADOW_TRA)) || ((ma->mode && MA_TRANSP) && (ma->mode & MA_RAYTRANSP))) {
ma->texco |= NEED_UV|TEXCO_ORCO|TEXCO_REFL|TEXCO_NORM;
if(r_mode & R_OSA) ma->texco |= TEXCO_OSA;
}
}
if(amb) {
ma->ambr= ma->amb*amb[0];
ma->ambg= ma->amb*amb[1];
ma->ambb= ma->amb*amb[2];
}
/* will become or-ed result of all node modes */
ma->mode_l= ma->mode;
ma->mode_l &= ~MA_SHLESS;
if(ma->strand_surfnor > 0.0f)
ma->mode_l |= MA_STR_SURFDIFF;
}
static void init_render_nodetree(bNodeTree *ntree, Material *basemat, int r_mode, float *amb)
{
bNode *node;
for(node=ntree->nodes.first; node; node= node->next) {
if(node->id) {
if(GS(node->id->name)==ID_MA) {
Material *ma= (Material *)node->id;
if(ma!=basemat) {
do_init_render_material(ma, r_mode, amb);
basemat->texco |= ma->texco;
basemat->mode_l |= ma->mode_l;
}
}
else if(node->type==NODE_GROUP)
init_render_nodetree((bNodeTree *)node->id, basemat, r_mode, amb);
}
}
/* parses the geom+tex nodes */
ntreeShaderGetTexcoMode(ntree, r_mode, &basemat->texco, &basemat->mode_l);
}
void init_render_material(Material *mat, int r_mode, float *amb)
{
do_init_render_material(mat, r_mode, amb);
if(mat->nodetree && mat->use_nodes) {
init_render_nodetree(mat->nodetree, mat, r_mode, amb);
ntreeBeginExecTree(mat->nodetree); /* has internal flag to detect it only does it once */
}
}
void init_render_materials(int r_mode, float *amb)
{
Material *ma;
/* clear these flags before going over materials, to make sure they
* are cleared only once, otherwise node materials contained in other
* node materials can go wrong */
for(ma= G.main->mat.first; ma; ma= ma->id.next) {
if(ma->id.us) {
ma->texco= 0;
ma->mapto= 0;
}
}
/* two steps, first initialize, then or the flags for layers */
for(ma= G.main->mat.first; ma; ma= ma->id.next) {
/* is_used flag comes back in convertblender.c */
ma->flag &= ~MA_IS_USED;
if(ma->id.us)
init_render_material(ma, r_mode, amb);
}
do_init_render_material(&defmaterial, r_mode, amb);
}
/* only needed for nodes now */
void end_render_material(Material *mat)
{
if(mat && mat->nodetree && mat->use_nodes)
ntreeEndExecTree(mat->nodetree); /* has internal flag to detect it only does it once */
}
void end_render_materials(void)
{
Material *ma;
for(ma= G.main->mat.first; ma; ma= ma->id.next)
if(ma->id.us)
end_render_material(ma);
}
static int material_in_nodetree(bNodeTree *ntree, Material *mat)
{
bNode *node;
for(node=ntree->nodes.first; node; node= node->next) {
if(node->id && GS(node->id->name)==ID_MA) {
if(node->id==(ID*)mat)
return 1;
}
else if(node->type==NODE_GROUP)
if(material_in_nodetree((bNodeTree*)node->id, mat))
return 1;
}
return 0;
}
int material_in_material(Material *parmat, Material *mat)
{
if(parmat==mat)
return 1;
else if(parmat->nodetree && parmat->use_nodes)
return material_in_nodetree(parmat->nodetree, mat);
else
return 0;
}
/* ****************** */
char colname_array[125][20]= {
"Black","DarkRed","HalfRed","Red","Red",
"DarkGreen","DarkOlive","Brown","Chocolate","OrangeRed",
"HalfGreen","GreenOlive","DryOlive","Goldenrod","DarkOrange",
"LightGreen","Chartreuse","YellowGreen","Yellow","Gold",
"Green","LawnGreen","GreenYellow","LightOlive","Yellow",
"DarkBlue","DarkPurple","HotPink","VioletPink","RedPink",
"SlateGray","DarkGrey","PalePurple","IndianRed","Tomato",
"SeaGreen","PaleGreen","GreenKhaki","LightBrown","LightSalmon",
"SpringGreen","PaleGreen","MediumOlive","YellowBrown","LightGold",
"LightGreen","LightGreen","LightGreen","GreenYellow","PaleYellow",
"HalfBlue","DarkSky","HalfMagenta","VioletRed","DeepPink",
"SteelBlue","SkyBlue","Orchid","LightHotPink","HotPink",
"SeaGreen","SlateGray","MediumGrey","Burlywood","LightPink",
"SpringGreen","Aquamarine","PaleGreen","Khaki","PaleOrange",
"SpringGreen","SeaGreen","PaleGreen","PaleWhite","YellowWhite",
"LightBlue","Purple","MediumOrchid","Magenta","Magenta",
"RoyalBlue","SlateBlue","MediumOrchid","Orchid","Magenta",
"DeepSkyBlue","LightSteelBlue","LightSkyBlue","Violet","LightPink",
"Cyan","DarkTurquoise","SkyBlue","Grey","Snow",
"Mint","Mint","Aquamarine","MintCream","Ivory",
"Blue","Blue","DarkMagenta","DarkOrchid","Magenta",
"SkyBlue","RoyalBlue","LightSlateBlue","MediumOrchid","Magenta",
"DodgerBlue","SteelBlue","MediumPurple","PalePurple","Plum",
"DeepSkyBlue","PaleBlue","LightSkyBlue","PalePurple","Thistle",
"Cyan","ColdBlue","PaleTurquoise","GhostWhite","White"
};
void automatname(Material *ma)
{
int nr, r, g, b;
float ref;
if(ma==0) return;
if(ma->mode & MA_SHLESS) ref= 1.0;
else ref= ma->ref;
r= (int)(4.99*(ref*ma->r));
g= (int)(4.99*(ref*ma->g));
b= (int)(4.99*(ref*ma->b));
nr= r + 5*g + 25*b;
if(nr>124) nr= 124;
new_id(&G.main->mat, (ID *)ma, colname_array[nr]);
}
void object_remove_material_slot(Object *ob)
{
Material *mao, ***matarar;
Object *obt;
Curve *cu;
Nurb *nu;
short *totcolp;
int a, actcol;
if(ob==NULL || ob->totcol==0) return;
/* take a mesh/curve/mball as starting point, remove 1 index,
* AND with all objects that share the ob->data
*
* after that check indices in mesh/curve/mball!!!
*/
totcolp= give_totcolp(ob);
matarar= give_matarar(ob);
/* we delete the actcol */
if(ob->totcol) {
mao= (*matarar)[ob->actcol-1];
if(mao) mao->id.us--;
}
for(a=ob->actcol; a<ob->totcol; a++)
(*matarar)[a-1]= (*matarar)[a];
(*totcolp)--;
if(*totcolp==0) {
MEM_freeN(*matarar);
*matarar= 0;
}
actcol= ob->actcol;
obt= G.main->object.first;
while(obt) {
if(obt->data==ob->data) {
/* WATCH IT: do not use actcol from ob or from obt (can become zero) */
mao= obt->mat[actcol-1];
if(mao) mao->id.us--;
for(a=actcol; a<obt->totcol; a++) {
obt->mat[a-1]= obt->mat[a];
obt->matbits[a-1]= obt->matbits[a];
}
obt->totcol--;
if(obt->actcol > obt->totcol) obt->actcol= obt->totcol;
if(obt->totcol==0) {
MEM_freeN(obt->mat);
MEM_freeN(obt->matbits);
obt->mat= 0;
obt->matbits= NULL;
}
}
obt= obt->id.next;
}
/* check indices from mesh */
if(ob->type==OB_MESH) {
Mesh *me= get_mesh(ob);
mesh_delete_material_index(me, actcol-1);
freedisplist(&ob->disp);
}
else if ELEM(ob->type, OB_CURVE, OB_SURF) {
cu= ob->data;
nu= cu->nurb.first;
while(nu) {
if(nu->mat_nr && nu->mat_nr>=actcol-1) {
nu->mat_nr--;
if (ob->type == OB_CURVE) nu->charidx--;
}
nu= nu->next;
}
freedisplist(&ob->disp);
}
}
/* r g b = current value, col = new value, fac==0 is no change */
/* if g==NULL, it only does r channel */
void ramp_blend(int type, float *r, float *g, float *b, float fac, float *col)
{
float tmp, facm= 1.0-fac;
switch (type) {
case MA_RAMP_BLEND:
*r = facm*(*r) + fac*col[0];
if(g) {
*g = facm*(*g) + fac*col[1];
*b = facm*(*b) + fac*col[2];
}
break;
case MA_RAMP_ADD:
*r += fac*col[0];
if(g) {
*g += fac*col[1];
*b += fac*col[2];
}
break;
case MA_RAMP_MULT:
*r *= (facm + fac*col[0]);
if(g) {
*g *= (facm + fac*col[1]);
*b *= (facm + fac*col[2]);
}
break;
case MA_RAMP_SCREEN:
*r = 1.0 - (facm + fac*(1.0 - col[0])) * (1.0 - *r);
if(g) {
*g = 1.0 - (facm + fac*(1.0 - col[1])) * (1.0 - *g);
*b = 1.0 - (facm + fac*(1.0 - col[2])) * (1.0 - *b);
}
break;
case MA_RAMP_OVERLAY:
if(*r < 0.5f)
*r *= (facm + 2.0f*fac*col[0]);
else
*r = 1.0 - (facm + 2.0f*fac*(1.0 - col[0])) * (1.0 - *r);
if(g) {
if(*g < 0.5f)
*g *= (facm + 2.0f*fac*col[1]);
else
*g = 1.0 - (facm + 2.0f*fac*(1.0 - col[1])) * (1.0 - *g);
if(*b < 0.5f)
*b *= (facm + 2.0f*fac*col[2]);
else
*b = 1.0 - (facm + 2.0f*fac*(1.0 - col[2])) * (1.0 - *b);
}
break;
case MA_RAMP_SUB:
*r -= fac*col[0];
if(g) {
*g -= fac*col[1];
*b -= fac*col[2];
}
break;
case MA_RAMP_DIV:
if(col[0]!=0.0)
*r = facm*(*r) + fac*(*r)/col[0];
if(g) {
if(col[1]!=0.0)
*g = facm*(*g) + fac*(*g)/col[1];
if(col[2]!=0.0)
*b = facm*(*b) + fac*(*b)/col[2];
}
break;
case MA_RAMP_DIFF:
*r = facm*(*r) + fac*fabs(*r-col[0]);
if(g) {
*g = facm*(*g) + fac*fabs(*g-col[1]);
*b = facm*(*b) + fac*fabs(*b-col[2]);
}
break;
case MA_RAMP_DARK:
tmp= fac*col[0];
if(tmp < *r) *r= tmp;
if(g) {
tmp= fac*col[1];
if(tmp < *g) *g= tmp;
tmp= fac*col[2];
if(tmp < *b) *b= tmp;
}
break;
case MA_RAMP_LIGHT:
tmp= fac*col[0];
if(tmp > *r) *r= tmp;
if(g) {
tmp= fac*col[1];
if(tmp > *g) *g= tmp;
tmp= fac*col[2];
if(tmp > *b) *b= tmp;
}
break;
case MA_RAMP_DODGE:
if(*r !=0.0){
tmp = 1.0 - fac*col[0];
if(tmp <= 0.0)
*r = 1.0;
else if ((tmp = (*r) / tmp)> 1.0)
*r = 1.0;
else
*r = tmp;
}
if(g) {
if(*g !=0.0){
tmp = 1.0 - fac*col[1];
if(tmp <= 0.0 )
*g = 1.0;
else if ((tmp = (*g) / tmp) > 1.0 )
*g = 1.0;
else
*g = tmp;
}
if(*b !=0.0){
tmp = 1.0 - fac*col[2];
if(tmp <= 0.0)
*b = 1.0;
else if ((tmp = (*b) / tmp) > 1.0 )
*b = 1.0;
else
*b = tmp;
}
}
break;
case MA_RAMP_BURN:
tmp = facm + fac*col[0];
if(tmp <= 0.0)
*r = 0.0;
else if (( tmp = (1.0 - (1.0 - (*r)) / tmp )) < 0.0)
*r = 0.0;
else if (tmp > 1.0)
*r=1.0;
else
*r = tmp;
if(g) {
tmp = facm + fac*col[1];
if(tmp <= 0.0)
*g = 0.0;
else if (( tmp = (1.0 - (1.0 - (*g)) / tmp )) < 0.0 )
*g = 0.0;
else if(tmp >1.0)
*g=1.0;
else
*g = tmp;
tmp = facm + fac*col[2];
if(tmp <= 0.0)
*b = 0.0;
else if (( tmp = (1.0 - (1.0 - (*b)) / tmp )) < 0.0 )
*b = 0.0;
else if(tmp >1.0)
*b= 1.0;
else
*b = tmp;
}
break;
case MA_RAMP_HUE:
if(g){
float rH,rS,rV;
float colH,colS,colV;
float tmpr,tmpg,tmpb;
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
if(colS!=0 ){
rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV);
hsv_to_rgb( colH , rS, rV, &tmpr, &tmpg, &tmpb);
*r = facm*(*r) + fac*tmpr;
*g = facm*(*g) + fac*tmpg;
*b = facm*(*b) + fac*tmpb;
}
}
break;
case MA_RAMP_SAT:
if(g){
float rH,rS,rV;
float colH,colS,colV;
rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV);
if(rS!=0){
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
hsv_to_rgb( rH, (facm*rS +fac*colS), rV, r, g, b);
}
}
break;
case MA_RAMP_VAL:
if(g){
float rH,rS,rV;
float colH,colS,colV;
rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV);
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
hsv_to_rgb( rH, rS, (facm*rV +fac*colV), r, g, b);
}
break;
case MA_RAMP_COLOR:
if(g){
float rH,rS,rV;
float colH,colS,colV;
float tmpr,tmpg,tmpb;
rgb_to_hsv(col[0],col[1],col[2],&colH,&colS,&colV);
if(colS!=0){
rgb_to_hsv(*r,*g,*b,&rH,&rS,&rV);
hsv_to_rgb( colH, colS, rV, &tmpr, &tmpg, &tmpb);
*r = facm*(*r) + fac*tmpr;
*g = facm*(*g) + fac*tmpg;
*b = facm*(*b) + fac*tmpb;
}
}
break;
}
}