This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/compositor/operations/COM_VectorBlurOperation.cpp
Campbell Barton f8ce24f796 Cleanup: sort forward declarations of enum & struct
Done using:
  source/tools/utils_maintenance/c_sort_blocks.py
2019-01-28 22:12:49 +11:00

818 lines
22 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor:
* Jeroen Bakker
* Monique Dewanchand
*/
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
extern "C" {
#include "BLI_jitter_2d.h"
}
#include "COM_VectorBlurOperation.h"
/* Defined */
#define PASS_VECTOR_MAX 10000.0f
/* Forward declarations */
struct DrawBufPixel;
struct ZSpan;
void zbuf_accumulate_vecblur(
NodeBlurData *nbd, int xsize, int ysize, float *newrect,
const float *imgrect, float *vecbufrect, const float *zbufrect);
void zbuf_alloc_span(ZSpan *zspan, int rectx, int recty, float clipcrop);
void zbuf_free_span(ZSpan *zspan);
void antialias_tagbuf(int xsize, int ysize, char *rectmove);
/* VectorBlurOperation */
VectorBlurOperation::VectorBlurOperation() : NodeOperation()
{
this->addInputSocket(COM_DT_COLOR);
this->addInputSocket(COM_DT_VALUE); // ZBUF
this->addInputSocket(COM_DT_COLOR); //SPEED
this->addOutputSocket(COM_DT_COLOR);
this->m_settings = NULL;
this->m_cachedInstance = NULL;
this->m_inputImageProgram = NULL;
this->m_inputSpeedProgram = NULL;
this->m_inputZProgram = NULL;
setComplex(true);
}
void VectorBlurOperation::initExecution()
{
initMutex();
this->m_inputImageProgram = getInputSocketReader(0);
this->m_inputZProgram = getInputSocketReader(1);
this->m_inputSpeedProgram = getInputSocketReader(2);
this->m_cachedInstance = NULL;
QualityStepHelper::initExecution(COM_QH_INCREASE);
}
void VectorBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
float *buffer = (float *)data;
int index = (y * this->getWidth() + x) * COM_NUM_CHANNELS_COLOR;
copy_v4_v4(output, &buffer[index]);
}
void VectorBlurOperation::deinitExecution()
{
deinitMutex();
this->m_inputImageProgram = NULL;
this->m_inputSpeedProgram = NULL;
this->m_inputZProgram = NULL;
if (this->m_cachedInstance) {
MEM_freeN(this->m_cachedInstance);
this->m_cachedInstance = NULL;
}
}
void *VectorBlurOperation::initializeTileData(rcti *rect)
{
if (this->m_cachedInstance) {
return this->m_cachedInstance;
}
lockMutex();
if (this->m_cachedInstance == NULL) {
MemoryBuffer *tile = (MemoryBuffer *)this->m_inputImageProgram->initializeTileData(rect);
MemoryBuffer *speed = (MemoryBuffer *)this->m_inputSpeedProgram->initializeTileData(rect);
MemoryBuffer *z = (MemoryBuffer *)this->m_inputZProgram->initializeTileData(rect);
float *data = (float *)MEM_dupallocN(tile->getBuffer());
this->generateVectorBlur(data, tile, speed, z);
this->m_cachedInstance = data;
}
unlockMutex();
return this->m_cachedInstance;
}
bool VectorBlurOperation::determineDependingAreaOfInterest(rcti * /*input*/, ReadBufferOperation *readOperation, rcti *output)
{
if (this->m_cachedInstance == NULL) {
rcti newInput;
newInput.xmax = this->getWidth();
newInput.xmin = 0;
newInput.ymax = this->getHeight();
newInput.ymin = 0;
return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output);
}
else {
return false;
}
}
void VectorBlurOperation::generateVectorBlur(float *data, MemoryBuffer *inputImage, MemoryBuffer *inputSpeed, MemoryBuffer *inputZ)
{
NodeBlurData blurdata;
blurdata.samples = this->m_settings->samples / QualityStepHelper::getStep();
blurdata.maxspeed = this->m_settings->maxspeed;
blurdata.minspeed = this->m_settings->minspeed;
blurdata.curved = this->m_settings->curved;
blurdata.fac = this->m_settings->fac;
zbuf_accumulate_vecblur(&blurdata, this->getWidth(), this->getHeight(), data, inputImage->getBuffer(), inputSpeed->getBuffer(), inputZ->getBuffer());
return;
}
/* ****************** Spans ******************************* */
/* span fill in method, is also used to localize data for zbuffering */
typedef struct ZSpan {
/* range for clipping */
int rectx, recty;
/* actual filled in range */
int miny1, maxy1, miny2, maxy2;
/* vertex pointers detect min/max range in */
const float *minp1, *maxp1, *minp2, *maxp2;
float *span1, *span2;
/* transform from hoco to zbuf co */
float zmulx, zmuly, zofsx, zofsy;
int *rectz;
DrawBufPixel *rectdraw;
float clipcrop;
} ZSpan;
/* each zbuffer has coordinates transformed to local rect coordinates, so we can simply clip */
void zbuf_alloc_span(ZSpan *zspan, int rectx, int recty, float clipcrop)
{
memset(zspan, 0, sizeof(ZSpan));
zspan->rectx = rectx;
zspan->recty = recty;
zspan->span1 = (float *)MEM_mallocN(recty * sizeof(float), "zspan");
zspan->span2 = (float *)MEM_mallocN(recty * sizeof(float), "zspan");
zspan->clipcrop = clipcrop;
}
void zbuf_free_span(ZSpan *zspan)
{
if (zspan) {
if (zspan->span1) MEM_freeN(zspan->span1);
if (zspan->span2) MEM_freeN(zspan->span2);
zspan->span1 = zspan->span2 = NULL;
}
}
/* reset range for clipping */
static void zbuf_init_span(ZSpan *zspan)
{
zspan->miny1 = zspan->miny2 = zspan->recty + 1;
zspan->maxy1 = zspan->maxy2 = -1;
zspan->minp1 = zspan->maxp1 = zspan->minp2 = zspan->maxp2 = NULL;
}
static void zbuf_add_to_span(ZSpan *zspan, const float v1[2], const float v2[2])
{
const float *minv, *maxv;
float *span;
float xx1, dx0, xs0;
int y, my0, my2;
if (v1[1] < v2[1]) {
minv = v1; maxv = v2;
}
else {
minv = v2; maxv = v1;
}
my0 = ceil(minv[1]);
my2 = floor(maxv[1]);
if (my2 < 0 || my0 >= zspan->recty) return;
/* clip top */
if (my2 >= zspan->recty) my2 = zspan->recty - 1;
/* clip bottom */
if (my0 < 0) my0 = 0;
if (my0 > my2) return;
/* if (my0>my2) should still fill in, that way we get spans that skip nicely */
xx1 = maxv[1] - minv[1];
if (xx1 > FLT_EPSILON) {
dx0 = (minv[0] - maxv[0]) / xx1;
xs0 = dx0 * (minv[1] - my2) + minv[0];
}
else {
dx0 = 0.0f;
xs0 = min_ff(minv[0], maxv[0]);
}
/* empty span */
if (zspan->maxp1 == NULL) {
span = zspan->span1;
}
else { /* does it complete left span? */
if (maxv == zspan->minp1 || minv == zspan->maxp1) {
span = zspan->span1;
}
else {
span = zspan->span2;
}
}
if (span == zspan->span1) {
// printf("left span my0 %d my2 %d\n", my0, my2);
if (zspan->minp1 == NULL || zspan->minp1[1] > minv[1]) {
zspan->minp1 = minv;
}
if (zspan->maxp1 == NULL || zspan->maxp1[1] < maxv[1]) {
zspan->maxp1 = maxv;
}
if (my0 < zspan->miny1) zspan->miny1 = my0;
if (my2 > zspan->maxy1) zspan->maxy1 = my2;
}
else {
// printf("right span my0 %d my2 %d\n", my0, my2);
if (zspan->minp2 == NULL || zspan->minp2[1] > minv[1]) {
zspan->minp2 = minv;
}
if (zspan->maxp2 == NULL || zspan->maxp2[1] < maxv[1]) {
zspan->maxp2 = maxv;
}
if (my0 < zspan->miny2) zspan->miny2 = my0;
if (my2 > zspan->maxy2) zspan->maxy2 = my2;
}
for (y = my2; y >= my0; y--, xs0 += dx0) {
/* xs0 is the xcoord! */
span[y] = xs0;
}
}
/* ******************** VECBLUR ACCUM BUF ************************* */
typedef struct DrawBufPixel {
const float *colpoin;
float alpha;
} DrawBufPixel;
static void zbuf_fill_in_rgba(ZSpan *zspan, DrawBufPixel *col, float *v1, float *v2, float *v3, float *v4)
{
DrawBufPixel *rectpofs, *rp;
double zxd, zyd, zy0, zverg;
float x0, y0, z0;
float x1, y1, z1, x2, y2, z2, xx1;
const float *span1, *span2;
float *rectzofs, *rz;
int x, y;
int sn1, sn2, rectx, my0, my2;
/* init */
zbuf_init_span(zspan);
/* set spans */
zbuf_add_to_span(zspan, v1, v2);
zbuf_add_to_span(zspan, v2, v3);
zbuf_add_to_span(zspan, v3, v4);
zbuf_add_to_span(zspan, v4, v1);
/* clipped */
if (zspan->minp2 == NULL || zspan->maxp2 == NULL) return;
my0 = max_ii(zspan->miny1, zspan->miny2);
my2 = min_ii(zspan->maxy1, zspan->maxy2);
// printf("my %d %d\n", my0, my2);
if (my2 < my0) return;
/* ZBUF DX DY, in floats still */
x1 = v1[0] - v2[0];
x2 = v2[0] - v3[0];
y1 = v1[1] - v2[1];
y2 = v2[1] - v3[1];
z1 = v1[2] - v2[2];
z2 = v2[2] - v3[2];
x0 = y1 * z2 - z1 * y2;
y0 = z1 * x2 - x1 * z2;
z0 = x1 * y2 - y1 * x2;
if (z0 == 0.0f) return;
xx1 = (x0 * v1[0] + y0 * v1[1]) / z0 + v1[2];
zxd = -(double)x0 / (double)z0;
zyd = -(double)y0 / (double)z0;
zy0 = ((double)my2) * zyd + (double)xx1;
/* start-offset in rect */
rectx = zspan->rectx;
rectzofs = (float *)(zspan->rectz + rectx * my2);
rectpofs = ((DrawBufPixel *)zspan->rectdraw) + rectx * my2;
/* correct span */
sn1 = (my0 + my2) / 2;
if (zspan->span1[sn1] < zspan->span2[sn1]) {
span1 = zspan->span1 + my2;
span2 = zspan->span2 + my2;
}
else {
span1 = zspan->span2 + my2;
span2 = zspan->span1 + my2;
}
for (y = my2; y >= my0; y--, span1--, span2--) {
sn1 = floor(*span1);
sn2 = floor(*span2);
sn1++;
if (sn2 >= rectx) sn2 = rectx - 1;
if (sn1 < 0) sn1 = 0;
if (sn2 >= sn1) {
zverg = (double)sn1 * zxd + zy0;
rz = rectzofs + sn1;
rp = rectpofs + sn1;
x = sn2 - sn1;
while (x >= 0) {
if (zverg < (double)*rz) {
*rz = zverg;
*rp = *col;
}
zverg += zxd;
rz++;
rp++;
x--;
}
}
zy0 -= zyd;
rectzofs -= rectx;
rectpofs -= rectx;
}
}
/* char value==255 is filled in, rest should be zero */
/* returns alpha values, but sets alpha to 1 for zero alpha pixels that have an alpha value as neighbor */
void antialias_tagbuf(int xsize, int ysize, char *rectmove)
{
char *row1, *row2, *row3;
char prev, next;
int a, x, y, step;
/* 1: tag pixels to be candidate for AA */
for (y = 2; y < ysize; y++) {
/* setup rows */
row1 = rectmove + (y - 2) * xsize;
row2 = row1 + xsize;
row3 = row2 + xsize;
for (x = 2; x < xsize; x++, row1++, row2++, row3++) {
if (row2[1]) {
if (row2[0] == 0 || row2[2] == 0 || row1[1] == 0 || row3[1] == 0)
row2[1] = 128;
}
}
}
/* 2: evaluate horizontal scanlines and calculate alphas */
row1 = rectmove;
for (y = 0; y < ysize; y++) {
row1++;
for (x = 1; x < xsize; x++, row1++) {
if (row1[0] == 128 && row1[1] == 128) {
/* find previous color and next color and amount of steps to blend */
prev = row1[-1];
step = 1;
while (x + step < xsize && row1[step] == 128)
step++;
if (x + step != xsize) {
/* now we can blend values */
next = row1[step];
/* note, prev value can be next value, but we do this loop to clear 128 then */
for (a = 0; a < step; a++) {
int fac, mfac;
fac = ((a + 1) << 8) / (step + 1);
mfac = 255 - fac;
row1[a] = (prev * mfac + next * fac) >> 8;
}
}
}
}
}
/* 3: evaluate vertical scanlines and calculate alphas */
/* use for reading a copy of the original tagged buffer */
for (x = 0; x < xsize; x++) {
row1 = rectmove + x + xsize;
for (y = 1; y < ysize; y++, row1 += xsize) {
if (row1[0] == 128 && row1[xsize] == 128) {
/* find previous color and next color and amount of steps to blend */
prev = row1[-xsize];
step = 1;
while (y + step < ysize && row1[step * xsize] == 128)
step++;
if (y + step != ysize) {
/* now we can blend values */
next = row1[step * xsize];
/* note, prev value can be next value, but we do this loop to clear 128 then */
for (a = 0; a < step; a++) {
int fac, mfac;
fac = ((a + 1) << 8) / (step + 1);
mfac = 255 - fac;
row1[a * xsize] = (prev * mfac + next * fac) >> 8;
}
}
}
}
}
/* last: pixels with 0 we fill in zbuffer, with 1 we skip for mask */
for (y = 2; y < ysize; y++) {
/* setup rows */
row1 = rectmove + (y - 2) * xsize;
row2 = row1 + xsize;
row3 = row2 + xsize;
for (x = 2; x < xsize; x++, row1++, row2++, row3++) {
if (row2[1] == 0) {
if (row2[0] > 1 || row2[2] > 1 || row1[1] > 1 || row3[1] > 1)
row2[1] = 1;
}
}
}
}
/* in: two vectors, first vector points from origin back in time, 2nd vector points to future */
/* we make this into 3 points, center point is (0, 0) */
/* and offset the center point just enough to make curve go through midpoint */
static void quad_bezier_2d(float *result, float *v1, float *v2, float *ipodata)
{
float p1[2], p2[2], p3[2];
p3[0] = -v2[0];
p3[1] = -v2[1];
p1[0] = v1[0];
p1[1] = v1[1];
/* official formula 2*p2 - 0.5*p1 - 0.5*p3 */
p2[0] = -0.5f * p1[0] - 0.5f * p3[0];
p2[1] = -0.5f * p1[1] - 0.5f * p3[1];
result[0] = ipodata[0] * p1[0] + ipodata[1] * p2[0] + ipodata[2] * p3[0];
result[1] = ipodata[0] * p1[1] + ipodata[1] * p2[1] + ipodata[2] * p3[1];
}
static void set_quad_bezier_ipo(float fac, float *data)
{
float mfac = (1.0f - fac);
data[0] = mfac * mfac;
data[1] = 2.0f * mfac * fac;
data[2] = fac * fac;
}
void zbuf_accumulate_vecblur(
NodeBlurData *nbd, int xsize, int ysize, float *newrect,
const float *imgrect, float *vecbufrect, const float *zbufrect)
{
ZSpan zspan;
DrawBufPixel *rectdraw, *dr;
static float jit[256][2];
float v1[3], v2[3], v3[3], v4[3], fx, fy;
const float *dimg, *dz, *ro;
float *rectvz, *dvz, *dvec1, *dvec2, *dz1, *dz2, *rectz;
float *minvecbufrect = NULL, *rectweight, *rw, *rectmax, *rm;
float maxspeedsq = (float)nbd->maxspeed * nbd->maxspeed;
int y, x, step, maxspeed = nbd->maxspeed, samples = nbd->samples;
int tsktsk = 0;
static int firsttime = 1;
char *rectmove, *dm;
zbuf_alloc_span(&zspan, xsize, ysize, 1.0f);
zspan.zmulx = ((float)xsize) / 2.0f;
zspan.zmuly = ((float)ysize) / 2.0f;
zspan.zofsx = 0.0f;
zspan.zofsy = 0.0f;
/* the buffers */
rectz = (float *)MEM_mapallocN(sizeof(float) * xsize * ysize, "zbuf accum");
zspan.rectz = (int *)rectz;
rectmove = (char *)MEM_mapallocN(xsize * ysize, "rectmove");
rectdraw = (DrawBufPixel *)MEM_mapallocN(sizeof(DrawBufPixel) * xsize * ysize, "rect draw");
zspan.rectdraw = rectdraw;
rectweight = (float *)MEM_mapallocN(sizeof(float) * xsize * ysize, "rect weight");
rectmax = (float *)MEM_mapallocN(sizeof(float) * xsize * ysize, "rect max");
/* debug... check if PASS_VECTOR_MAX still is in buffers */
dvec1 = vecbufrect;
for (x = 4 * xsize * ysize; x > 0; x--, dvec1++) {
if (dvec1[0] == PASS_VECTOR_MAX) {
dvec1[0] = 0.0f;
tsktsk = 1;
}
}
if (tsktsk) printf("Found uninitialized speed in vector buffer... fixed.\n");
/* min speed? then copy speedbuffer to recalculate speed vectors */
if (nbd->minspeed) {
float minspeed = (float)nbd->minspeed;
float minspeedsq = minspeed * minspeed;
minvecbufrect = (float *)MEM_mapallocN(4 * sizeof(float) * xsize * ysize, "minspeed buf");
dvec1 = vecbufrect;
dvec2 = minvecbufrect;
for (x = 2 * xsize * ysize; x > 0; x--, dvec1 += 2, dvec2 += 2) {
if (dvec1[0] == 0.0f && dvec1[1] == 0.0f) {
dvec2[0] = dvec1[0];
dvec2[1] = dvec1[1];
}
else {
float speedsq = dvec1[0] * dvec1[0] + dvec1[1] * dvec1[1];
if (speedsq <= minspeedsq) {
dvec2[0] = 0.0f;
dvec2[1] = 0.0f;
}
else {
speedsq = 1.0f - minspeed / sqrtf(speedsq);
dvec2[0] = speedsq * dvec1[0];
dvec2[1] = speedsq * dvec1[1];
}
}
}
SWAP(float *, minvecbufrect, vecbufrect);
}
/* make vertex buffer with averaged speed and zvalues */
rectvz = (float *)MEM_mapallocN(4 * sizeof(float) * (xsize + 1) * (ysize + 1), "vertices");
dvz = rectvz;
for (y = 0; y <= ysize; y++) {
if (y == 0)
dvec1 = vecbufrect + 4 * y * xsize;
else
dvec1 = vecbufrect + 4 * (y - 1) * xsize;
if (y == ysize)
dvec2 = vecbufrect + 4 * (y - 1) * xsize;
else
dvec2 = vecbufrect + 4 * y * xsize;
for (x = 0; x <= xsize; x++) {
/* two vectors, so a step loop */
for (step = 0; step < 2; step++, dvec1 += 2, dvec2 += 2, dvz += 2) {
/* average on minimal speed */
int div = 0;
if (x != 0) {
if (dvec1[-4] != 0.0f || dvec1[-3] != 0.0f) {
dvz[0] = dvec1[-4];
dvz[1] = dvec1[-3];
div++;
}
if (dvec2[-4] != 0.0f || dvec2[-3] != 0.0f) {
if (div == 0) {
dvz[0] = dvec2[-4];
dvz[1] = dvec2[-3];
div++;
}
else if ( (ABS(dvec2[-4]) + ABS(dvec2[-3])) < (ABS(dvz[0]) + ABS(dvz[1])) ) {
dvz[0] = dvec2[-4];
dvz[1] = dvec2[-3];
}
}
}
if (x != xsize) {
if (dvec1[0] != 0.0f || dvec1[1] != 0.0f) {
if (div == 0) {
dvz[0] = dvec1[0];
dvz[1] = dvec1[1];
div++;
}
else if ( (ABS(dvec1[0]) + ABS(dvec1[1])) < (ABS(dvz[0]) + ABS(dvz[1])) ) {
dvz[0] = dvec1[0];
dvz[1] = dvec1[1];
}
}
if (dvec2[0] != 0.0f || dvec2[1] != 0.0f) {
if (div == 0) {
dvz[0] = dvec2[0];
dvz[1] = dvec2[1];
}
else if ( (ABS(dvec2[0]) + ABS(dvec2[1])) < (ABS(dvz[0]) + ABS(dvz[1])) ) {
dvz[0] = dvec2[0];
dvz[1] = dvec2[1];
}
}
}
if (maxspeed) {
float speedsq = dvz[0] * dvz[0] + dvz[1] * dvz[1];
if (speedsq > maxspeedsq) {
speedsq = (float)maxspeed / sqrtf(speedsq);
dvz[0] *= speedsq;
dvz[1] *= speedsq;
}
}
}
}
}
/* set border speeds to keep border speeds on border */
dz1 = rectvz;
dz2 = rectvz + 4 * (ysize) * (xsize + 1);
for (x = 0; x <= xsize; x++, dz1 += 4, dz2 += 4) {
dz1[1] = 0.0f;
dz2[1] = 0.0f;
dz1[3] = 0.0f;
dz2[3] = 0.0f;
}
dz1 = rectvz;
dz2 = rectvz + 4 * (xsize);
for (y = 0; y <= ysize; y++, dz1 += 4 * (xsize + 1), dz2 += 4 * (xsize + 1)) {
dz1[0] = 0.0f;
dz2[0] = 0.0f;
dz1[2] = 0.0f;
dz2[2] = 0.0f;
}
/* tag moving pixels, only these faces we draw */
dm = rectmove;
dvec1 = vecbufrect;
for (x = xsize * ysize; x > 0; x--, dm++, dvec1 += 4) {
if ((dvec1[0] != 0.0f || dvec1[1] != 0.0f || dvec1[2] != 0.0f || dvec1[3] != 0.0f))
*dm = 255;
}
antialias_tagbuf(xsize, ysize, rectmove);
/* has to become static, the init-jit calls a random-seed, screwing up texture noise node */
if (firsttime) {
firsttime = 0;
BLI_jitter_init(jit, 256);
}
memset(newrect, 0, sizeof(float) * xsize * ysize * 4);
/* accumulate */
samples /= 2;
for (step = 1; step <= samples; step++) {
float speedfac = 0.5f * nbd->fac * (float)step / (float)(samples + 1);
int side;
for (side = 0; side < 2; side++) {
float blendfac, ipodata[4];
/* clear zbuf, if we draw future we fill in not moving pixels */
if (0)
for (x = xsize * ysize - 1; x >= 0; x--) rectz[x] = 10e16;
else
for (x = xsize * ysize - 1; x >= 0; x--) {
if (rectmove[x] == 0)
rectz[x] = zbufrect[x];
else
rectz[x] = 10e16;
}
/* clear drawing buffer */
for (x = xsize * ysize - 1; x >= 0; x--) rectdraw[x].colpoin = NULL;
dimg = imgrect;
dm = rectmove;
dz = zbufrect;
dz1 = rectvz;
dz2 = rectvz + 4 * (xsize + 1);
if (side) {
if (nbd->curved == 0) {
dz1 += 2;
dz2 += 2;
}
speedfac = -speedfac;
}
set_quad_bezier_ipo(0.5f + 0.5f * speedfac, ipodata);
for (fy = -0.5f + jit[step & 255][0], y = 0; y < ysize; y++, fy += 1.0f) {
for (fx = -0.5f + jit[step & 255][1], x = 0; x < xsize; x++, fx += 1.0f, dimg += 4, dz1 += 4, dz2 += 4, dm++, dz++) {
if (*dm > 1) {
float jfx = fx + 0.5f;
float jfy = fy + 0.5f;
DrawBufPixel col;
/* make vertices */
if (nbd->curved) { /* curved */
quad_bezier_2d(v1, dz1, dz1 + 2, ipodata);
v1[0] += jfx; v1[1] += jfy; v1[2] = *dz;
quad_bezier_2d(v2, dz1 + 4, dz1 + 4 + 2, ipodata);
v2[0] += jfx + 1.0f; v2[1] += jfy; v2[2] = *dz;
quad_bezier_2d(v3, dz2 + 4, dz2 + 4 + 2, ipodata);
v3[0] += jfx + 1.0f; v3[1] += jfy + 1.0f; v3[2] = *dz;
quad_bezier_2d(v4, dz2, dz2 + 2, ipodata);
v4[0] += jfx; v4[1] += jfy + 1.0f; v4[2] = *dz;
}
else {
ARRAY_SET_ITEMS(v1, speedfac * dz1[0] + jfx, speedfac * dz1[1] + jfy, *dz);
ARRAY_SET_ITEMS(v2, speedfac * dz1[4] + jfx + 1.0f, speedfac * dz1[5] + jfy, *dz);
ARRAY_SET_ITEMS(v3, speedfac * dz2[4] + jfx + 1.0f, speedfac * dz2[5] + jfy + 1.0f, *dz);
ARRAY_SET_ITEMS(v4, speedfac * dz2[0] + jfx, speedfac * dz2[1] + jfy + 1.0f, *dz);
}
if (*dm == 255) col.alpha = 1.0f;
else if (*dm < 2) col.alpha = 0.0f;
else col.alpha = ((float)*dm) / 255.0f;
col.colpoin = dimg;
zbuf_fill_in_rgba(&zspan, &col, v1, v2, v3, v4);
}
}
dz1 += 4;
dz2 += 4;
}
/* blend with a falloff. this fixes the ugly effect you get with
* a fast moving object. then it looks like a solid object overlaid
* over a very transparent moving version of itself. in reality, the
* whole object should become transparent if it is moving fast, be
* we don't know what is behind it so we don't do that. this hack
* overestimates the contribution of foreground pixels but looks a
* bit better without a sudden cutoff. */
blendfac = ((samples - step) / (float)samples);
/* smoothstep to make it look a bit nicer as well */
blendfac = 3.0f * pow(blendfac, 2.0f) - 2.0f * pow(blendfac, 3.0f);
/* accum */
rw = rectweight;
rm = rectmax;
for (dr = rectdraw, dz2 = newrect, x = xsize * ysize - 1; x >= 0; x--, dr++, dz2 += 4, rw++, rm++) {
if (dr->colpoin) {
float bfac = dr->alpha * blendfac;
dz2[0] += bfac * dr->colpoin[0];
dz2[1] += bfac * dr->colpoin[1];
dz2[2] += bfac * dr->colpoin[2];
dz2[3] += bfac * dr->colpoin[3];
*rw += bfac;
*rm = MAX2(*rm, bfac);
}
}
}
}
/* blend between original images and accumulated image */
rw = rectweight;
rm = rectmax;
ro = imgrect;
dm = rectmove;
for (dz2 = newrect, x = xsize * ysize - 1; x >= 0; x--, dz2 += 4, ro += 4, rw++, rm++, dm++) {
float mfac = *rm;
float fac = (*rw == 0.0f) ? 0.0f : mfac / (*rw);
float nfac = 1.0f - mfac;
dz2[0] = fac * dz2[0] + nfac * ro[0];
dz2[1] = fac * dz2[1] + nfac * ro[1];
dz2[2] = fac * dz2[2] + nfac * ro[2];
dz2[3] = fac * dz2[3] + nfac * ro[3];
}
MEM_freeN(rectz);
MEM_freeN(rectmove);
MEM_freeN(rectdraw);
MEM_freeN(rectvz);
MEM_freeN(rectweight);
MEM_freeN(rectmax);
if (minvecbufrect) MEM_freeN(vecbufrect); /* rects were swapped! */
zbuf_free_span(&zspan);
}