769 lines
16 KiB
C
769 lines
16 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Contributor(s): Joseph Eagar, Geoffrey Bantle, Campbell Barton
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/bmesh/intern/bmesh_mods.c
|
|
* \ingroup bmesh
|
|
*
|
|
* This file contains functions for locally modifying
|
|
* the topology of existing mesh data. (split, join, flip etc).
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "DNA_listBase.h"
|
|
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_linklist.h"
|
|
#include "BLI_ghash.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_array.h"
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_smallhash.h"
|
|
|
|
#include "bmesh.h"
|
|
#include "bmesh_private.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/**
|
|
* bmesh_dissolve_disk
|
|
*
|
|
* Turns the face region surrounding a manifold vertex into
|
|
* A single polygon.
|
|
*
|
|
*
|
|
* Example:
|
|
*
|
|
* |=========| |=========|
|
|
* | \ / | | |
|
|
* Before: | V | After: | |
|
|
* | / \ | | |
|
|
* |=========| |=========|
|
|
*
|
|
*
|
|
*/
|
|
#if 1
|
|
int BM_Dissolve_Vert(BMesh *bm, BMVert *v)
|
|
{
|
|
BMIter iter;
|
|
BMEdge *e;
|
|
int len = 0;
|
|
|
|
if (!v) {
|
|
return FALSE;
|
|
}
|
|
|
|
e = BMIter_New(&iter, bm, BM_EDGES_OF_VERT, v);
|
|
for ( ; e; e = BMIter_Step(&iter)) {
|
|
len++;
|
|
}
|
|
|
|
if (len == 1) {
|
|
if (v->e)
|
|
BM_Kill_Edge(bm, v->e);
|
|
BM_Kill_Vert(bm, v);
|
|
return TRUE;
|
|
}
|
|
|
|
if (BM_Nonmanifold_Vert(bm, v)) {
|
|
if (!v->e) BM_Kill_Vert(bm, v);
|
|
else if (!v->e->l) {
|
|
BM_Kill_Edge(bm, v->e);
|
|
BM_Kill_Vert(bm, v);
|
|
}
|
|
else {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
return BM_Dissolve_Disk(bm, v);
|
|
}
|
|
|
|
int BM_Dissolve_Disk(BMesh *bm, BMVert *v)
|
|
{
|
|
BMFace *f, *f2;
|
|
BMEdge *e, *keepedge = NULL, *baseedge = NULL;
|
|
int len = 0;
|
|
|
|
if (BM_Nonmanifold_Vert(bm, v)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (v->e) {
|
|
/* v->e we keep, what else */
|
|
e = v->e;
|
|
do {
|
|
e = bmesh_disk_nextedge(e, v);
|
|
if (!(BM_Edge_Share_Faces(e, v->e))) {
|
|
keepedge = e;
|
|
baseedge = v->e;
|
|
break;
|
|
}
|
|
len++;
|
|
} while (e != v->e);
|
|
}
|
|
|
|
/* this code for handling 2 and 3-valence verts
|
|
* may be totally bad */
|
|
if (keepedge == NULL && len == 3) {
|
|
/* handle specific case for three-valence. solve it by
|
|
* increasing valence to four. this may be hackish. . */
|
|
BMLoop *loop = e->l;
|
|
if (loop->v == v) loop = loop->next;
|
|
if (!BM_Split_Face(bm, loop->f, v, loop->v, NULL, NULL))
|
|
return FALSE;
|
|
|
|
if (!BM_Dissolve_Disk(bm, v)) {
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
else if (keepedge == NULL && len == 2) {
|
|
/* collapse the verte */
|
|
e = BM_Collapse_Vert_Faces(bm, v->e, v, 1.0, TRUE);
|
|
|
|
if (!e) {
|
|
return FALSE;
|
|
}
|
|
|
|
/* handle two-valenc */
|
|
f = e->l->f;
|
|
f2 = e->l->radial_next->f;
|
|
|
|
if (f != f2 && !BM_Join_TwoFaces(bm, f, f2, e)) {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
if (keepedge) {
|
|
int done = 0;
|
|
|
|
while (!done) {
|
|
done = 1;
|
|
e = v->e;
|
|
do {
|
|
f = NULL;
|
|
len = bmesh_radial_length(e->l);
|
|
if (len == 2 && (e != baseedge) && (e != keepedge)) {
|
|
f = BM_Join_TwoFaces(bm, e->l->f, e->l->radial_next->f, e);
|
|
/* return if couldn't join faces in manifold
|
|
* conditions */
|
|
//!disabled for testing why bad things happen
|
|
if (!f) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
if (f) {
|
|
done = 0;
|
|
break;
|
|
}
|
|
e = bmesh_disk_nextedge(e, v);
|
|
} while (e != v->e);
|
|
}
|
|
|
|
/* collapse the verte */
|
|
e = BM_Collapse_Vert_Faces(bm, baseedge, v, 1.0, TRUE);
|
|
|
|
if (!e) {
|
|
return FALSE;
|
|
}
|
|
|
|
/* get remaining two face */
|
|
f = e->l->f;
|
|
f2 = e->l->radial_next->f;
|
|
|
|
if (f != f2) {
|
|
/* join two remaining face */
|
|
if (!BM_Join_TwoFaces(bm, f, f2, e)) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
#else
|
|
void BM_Dissolve_Disk(BMesh *bm, BMVert *v)
|
|
{
|
|
BMFace *f;
|
|
BMEdge *e;
|
|
BMIter iter;
|
|
int done, len;
|
|
|
|
if (v->e) {
|
|
done = 0;
|
|
while (!done) {
|
|
done = 1;
|
|
|
|
/* loop the edges looking for an edge to dissolv */
|
|
for (e = BMIter_New(&iter, bm, BM_EDGES_OF_VERT, v); e;
|
|
e = BMIter_Step(&iter)) {
|
|
f = NULL;
|
|
len = bmesh_cycle_length(&(e->l->radial));
|
|
if (len == 2) {
|
|
f = BM_Join_TwoFaces(bm, e->l->f, ((BMLoop *)(e->l->radial_next))->f, e);
|
|
}
|
|
if (f) {
|
|
done = 0;
|
|
break;
|
|
}
|
|
};
|
|
}
|
|
BM_Collapse_Vert_Faces(bm, v->e, v, 1.0, TRUE);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* BM_Join_TwoFaces
|
|
*
|
|
* Joins two adjacenct faces togather.
|
|
*
|
|
* Because this method calls to BM_Join_Faces to do its work, ff a pair
|
|
* of faces share multiple edges, the pair of faces will be joined at
|
|
* every edge (not just edge e). This part of the functionality might need
|
|
* to be reconsidered.
|
|
*
|
|
* If the windings do not match the winding of the new face will follow
|
|
* f1's winding (i.e. f2 will be reversed before the join).
|
|
*
|
|
* Returns:
|
|
* pointer to the combined face
|
|
*/
|
|
|
|
BMFace *BM_Join_TwoFaces(BMesh *bm, BMFace *f1, BMFace *f2, BMEdge *e)
|
|
{
|
|
BMLoop *l1, *l2;
|
|
BMEdge *jed = NULL;
|
|
BMFace *faces[2] = {f1, f2};
|
|
|
|
jed = e;
|
|
if (!jed) {
|
|
BMLoop *l_first;
|
|
/* search for an edge that has both these faces in its radial cycl */
|
|
l1 = l_first = BM_FACE_FIRST_LOOP(f1);
|
|
do {
|
|
if (l1->radial_next->f == f2) {
|
|
jed = l1->e;
|
|
break;
|
|
}
|
|
} while ((l1 = l1->next) != l_first);
|
|
}
|
|
|
|
if (!jed) {
|
|
bmesh_error();
|
|
return NULL;
|
|
}
|
|
|
|
l1 = jed->l;
|
|
|
|
if (!l1) {
|
|
bmesh_error();
|
|
return NULL;
|
|
}
|
|
|
|
l2 = l1->radial_next;
|
|
if (l1->v == l2->v) {
|
|
bmesh_loop_reverse(bm, f2);
|
|
}
|
|
|
|
f1 = BM_Join_Faces(bm, faces, 2);
|
|
|
|
return f1;
|
|
}
|
|
|
|
/* connects two verts together, automatically (if very naively) finding the
|
|
* face they both share (if there is one) and splittling it. use this at your
|
|
* own risk, as it doesn't handle the many complex cases it should (like zero-area faces,
|
|
* multiple faces, etc).
|
|
*
|
|
* this is really only meant for cases where you don't know before hand the face
|
|
* the two verts belong to for splitting (e.g. the subdivision operator).
|
|
*/
|
|
|
|
BMEdge *BM_Connect_Verts(BMesh *bm, BMVert *v1, BMVert *v2, BMFace **nf)
|
|
{
|
|
BMIter iter, iter2;
|
|
BMVert *v;
|
|
BMLoop *nl;
|
|
BMFace *face;
|
|
|
|
/* be warned: this can do weird things in some ngon situation, see BM_LegalSplit */
|
|
for (face = BMIter_New(&iter, bm, BM_FACES_OF_VERT, v1); face; face = BMIter_Step(&iter)) {
|
|
for (v = BMIter_New(&iter2, bm, BM_VERTS_OF_FACE, face); v; v = BMIter_Step(&iter2)) {
|
|
if (v == v2) {
|
|
face = BM_Split_Face(bm, face, v1, v2, &nl, NULL);
|
|
|
|
if (nf) *nf = face;
|
|
return nl->e;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* BM_Split_Face
|
|
*
|
|
* Splits a single face into two.
|
|
*
|
|
* f - the original face
|
|
* v1 & v2 - vertices which define the split edge, must be different
|
|
* nl - pointer which will receive the BMLoop for the split edge in the new face
|
|
*
|
|
* Notes: the
|
|
|
|
* Returns -
|
|
* Pointer to the newly created face representing one side of the split
|
|
* if the split is successful (and the original original face will be the
|
|
* other side). NULL if the split fails.
|
|
*
|
|
*/
|
|
|
|
BMFace *BM_Split_Face(BMesh *bm, BMFace *f, BMVert *v1, BMVert *v2, BMLoop **nl, BMEdge *UNUSED(example))
|
|
{
|
|
const int has_mdisp = CustomData_has_layer(&bm->ldata, CD_MDISPS);
|
|
BMFace *nf, *of;
|
|
|
|
/* do we have a multires layer */
|
|
if (has_mdisp) {
|
|
of = BM_Copy_Face(bm, f, 0, 0);
|
|
}
|
|
|
|
nf = bmesh_sfme(bm, f, v1, v2, nl, NULL);
|
|
|
|
if (nf) {
|
|
BM_Copy_Attributes(bm, bm, f, nf);
|
|
copy_v3_v3(nf->no, f->no);
|
|
|
|
/* handle multires update */
|
|
if (has_mdisp && (nf != f)) {
|
|
BMLoop *l_iter;
|
|
BMLoop *l_first;
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
BM_loop_interp_from_face(bm, l_iter, of, 0, 1);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(nf);
|
|
do {
|
|
BM_loop_interp_from_face(bm, l_iter, of, 0, 1);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
BM_Kill_Face(bm, of);
|
|
|
|
BM_multires_smooth_bounds(bm, f);
|
|
BM_multires_smooth_bounds(bm, nf);
|
|
}
|
|
}
|
|
|
|
return nf;
|
|
}
|
|
|
|
/**
|
|
* BM_Collapse_Vert_Faces
|
|
*
|
|
* Collapses a vertex that has only two manifold edges
|
|
* onto a vertex it shares an edge with. Fac defines
|
|
* the amount of interpolation for Custom Data.
|
|
*
|
|
* Note that this is not a general edge collapse function.
|
|
*
|
|
* Note this function is very close to 'BM_Collapse_Vert_Edges', both collapse
|
|
* a vertex and return a new edge. Except this takes a factor and merges
|
|
* custom data.
|
|
*
|
|
* BMESH_TODO:
|
|
* Insert error checking for KV valance.
|
|
*
|
|
* @param fac The factor along the edge
|
|
* @param join_faces When true the faces around the vertex will be joined
|
|
* otherwise collapse the vertex by merging the 2 edges this vert touches into one.
|
|
* @returns The New Edge
|
|
*/
|
|
|
|
BMEdge *BM_Collapse_Vert_Faces(BMesh *bm, BMEdge *ke, BMVert *kv, float fac, const int join_faces)
|
|
{
|
|
BMEdge *ne = NULL;
|
|
BMVert *tv = bmesh_edge_getothervert(ke, kv);
|
|
|
|
BMEdge *e2;
|
|
BMVert *tv2;
|
|
|
|
BMIter iter;
|
|
BMLoop *l = NULL, *kvloop = NULL, *tvloop = NULL;
|
|
|
|
void *src[2];
|
|
float w[2];
|
|
|
|
/* Only intended to be called for 2-valence vertices */
|
|
BLI_assert(bmesh_disk_count(kv) <= 2);
|
|
|
|
|
|
/* first modify the face loop data */
|
|
w[0] = 1.0f - fac;
|
|
w[1] = fac;
|
|
|
|
if (ke->l) {
|
|
l = ke->l;
|
|
do {
|
|
if (l->v == tv && l->next->v == kv) {
|
|
tvloop = l;
|
|
kvloop = l->next;
|
|
|
|
src[0] = kvloop->head.data;
|
|
src[1] = tvloop->head.data;
|
|
CustomData_bmesh_interp(&bm->ldata, src, w, NULL, 2, kvloop->head.data);
|
|
}
|
|
l = l->radial_next;
|
|
} while (l != ke->l);
|
|
}
|
|
|
|
/* now interpolate the vertex data */
|
|
BM_Data_Interp_From_Verts(bm, kv, tv, kv, fac);
|
|
|
|
e2 = bmesh_disk_nextedge(ke, kv);
|
|
tv2 = BM_OtherEdgeVert(e2, kv);
|
|
|
|
if (join_faces) {
|
|
BMFace **faces = NULL, *f;
|
|
BLI_array_staticdeclare(faces, 8);
|
|
|
|
BM_ITER(f, &iter, bm, BM_FACES_OF_VERT, kv) {
|
|
BLI_array_append(faces, f);
|
|
}
|
|
|
|
if (BLI_array_count(faces) >= 2) {
|
|
BMFace *f2 = BM_Join_Faces(bm, faces, BLI_array_count(faces));
|
|
if (f2) {
|
|
BMLoop *nl = NULL;
|
|
if (BM_Split_Face(bm, f2, tv, tv2, &nl, NULL)) {
|
|
ne = nl->e;
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_array_free(faces);
|
|
|
|
return ne;
|
|
}
|
|
|
|
/* single face or no faces */
|
|
/* same as BM_Collapse_Vert_Edges() however we already
|
|
* have vars to perform this operation so dont call. */
|
|
bmesh_jekv(bm, ke, kv);
|
|
ne = BM_Edge_Exist(tv, tv2);
|
|
|
|
return ne;
|
|
}
|
|
|
|
|
|
/**
|
|
* BM_Collapse_Vert_Edges
|
|
*
|
|
* Collapses a vertex onto another vertex it shares an edge with.
|
|
*
|
|
* Returns -
|
|
* The New Edge
|
|
*/
|
|
|
|
BMEdge *BM_Collapse_Vert_Edges(BMesh *bm, BMEdge *ke, BMVert *kv)
|
|
{
|
|
/* nice example implimentation but we want loops to have their customdata
|
|
* accounted for */
|
|
#if 0
|
|
BMEdge *ne = NULL;
|
|
|
|
/* Collapse between 2 edges */
|
|
|
|
/* in this case we want to keep all faces and not join them,
|
|
* rather just get rid of the veretex - see bug [#28645] */
|
|
BMVert *tv = bmesh_edge_getothervert(ke, kv);
|
|
if (tv) {
|
|
BMEdge *e2 = bmesh_disk_nextedge(ke, kv);
|
|
if (e2) {
|
|
BMVert *tv2 = BM_OtherEdgeVert(e2, kv);
|
|
if (tv2) {
|
|
/* only action, other calls here only get the edge to return */
|
|
bmesh_jekv(bm, ke, kv);
|
|
|
|
ne = BM_Edge_Exist(tv, tv2);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ne;
|
|
#else
|
|
/* with these args faces are never joined, same as above
|
|
* but account for loop customdata */
|
|
return BM_Collapse_Vert_Faces(bm, ke, kv, 1.0f, FALSE);
|
|
#endif
|
|
}
|
|
|
|
#undef DO_V_INTERP
|
|
|
|
/**
|
|
* BM_split_edge
|
|
*
|
|
* Splits an edge. v should be one of the vertices in e and
|
|
* defines the direction of the splitting operation for interpolation
|
|
* purposes.
|
|
*
|
|
* Returns -
|
|
* the new vert
|
|
*/
|
|
|
|
BMVert *BM_Split_Edge(BMesh *bm, BMVert *v, BMEdge *e, BMEdge **ne, float percent)
|
|
{
|
|
BMVert *nv, *v2;
|
|
BMFace **oldfaces = NULL;
|
|
BMEdge *dummy;
|
|
BLI_array_staticdeclare(oldfaces, 32);
|
|
SmallHash hash;
|
|
|
|
/* we need this for handling multire */
|
|
if (!ne)
|
|
ne = &dummy;
|
|
|
|
/* do we have a multires layer */
|
|
if (CustomData_has_layer(&bm->ldata, CD_MDISPS) && e->l) {
|
|
BMLoop *l;
|
|
int i;
|
|
|
|
l = e->l;
|
|
do {
|
|
BLI_array_append(oldfaces, l->f);
|
|
l = l->radial_next;
|
|
} while (l != e->l);
|
|
|
|
/* create a hash so we can differentiate oldfaces from new face */
|
|
BLI_smallhash_init(&hash);
|
|
|
|
for (i = 0; i < BLI_array_count(oldfaces); i++) {
|
|
oldfaces[i] = BM_Copy_Face(bm, oldfaces[i], 1, 1);
|
|
BLI_smallhash_insert(&hash, (intptr_t)oldfaces[i], NULL);
|
|
}
|
|
}
|
|
|
|
v2 = bmesh_edge_getothervert(e, v);
|
|
nv = bmesh_semv(bm, v, e, ne);
|
|
if (nv == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
sub_v3_v3v3(nv->co, v2->co, v->co);
|
|
madd_v3_v3v3fl(nv->co, v->co, nv->co, percent);
|
|
|
|
if (ne) {
|
|
(*ne)->head.hflag = e->head.hflag;
|
|
BM_Copy_Attributes(bm, bm, e, *ne);
|
|
}
|
|
|
|
/* v->nv->v2 */
|
|
BM_Data_Facevert_Edgeinterp(bm, v2, v, nv, e, percent);
|
|
BM_Data_Interp_From_Verts(bm, v, v2, nv, percent);
|
|
|
|
if (CustomData_has_layer(&bm->ldata, CD_MDISPS) && e->l && nv) {
|
|
int i, j;
|
|
|
|
/* interpolate new/changed loop data from copied old face */
|
|
for (j = 0; j < 2; j++) {
|
|
for (i = 0; i < BLI_array_count(oldfaces); i++) {
|
|
BMEdge *e1 = j ? *ne : e;
|
|
BMLoop *l, *l2;
|
|
|
|
l = e1->l;
|
|
if (!l) {
|
|
bmesh_error();
|
|
break;
|
|
}
|
|
|
|
do {
|
|
if (!BLI_smallhash_haskey(&hash, (intptr_t)l->f)) {
|
|
BMLoop *l2_first;
|
|
|
|
l2 = l2_first = BM_FACE_FIRST_LOOP(l->f);
|
|
do {
|
|
BM_loop_interp_multires(bm, l2, oldfaces[i]);
|
|
} while ((l2 = l2->next) != l2_first);
|
|
}
|
|
l = l->radial_next;
|
|
} while (l != e1->l);
|
|
}
|
|
}
|
|
|
|
/* destroy the old face */
|
|
for (i = 0; i < BLI_array_count(oldfaces); i++) {
|
|
BM_Kill_Face_Verts(bm, oldfaces[i]);
|
|
}
|
|
|
|
/* fix boundaries a bit, doesn't work too well quite ye */
|
|
#if 0
|
|
for (j = 0; j < 2; j++) {
|
|
BMEdge *e1 = j ? *ne : e;
|
|
BMLoop *l, *l2;
|
|
|
|
l = e1->l;
|
|
if (!l) {
|
|
bmesh_error();
|
|
break;
|
|
}
|
|
|
|
do {
|
|
BM_multires_smooth_bounds(bm, l->f);
|
|
l = l->radial_next;
|
|
} while (l != e1->l);
|
|
}
|
|
#endif
|
|
|
|
BLI_array_free(oldfaces);
|
|
BLI_smallhash_release(&hash);
|
|
}
|
|
|
|
return nv;
|
|
}
|
|
|
|
BMVert *BM_Split_Edge_Multi(BMesh *bm, BMEdge *e, int numcuts)
|
|
{
|
|
int i;
|
|
float percent;
|
|
BMVert *nv = NULL;
|
|
|
|
for (i = 0; i < numcuts; i++) {
|
|
percent = 1.0f / (float)(numcuts + 1 - i);
|
|
nv = BM_Split_Edge(bm, e->v2, e, NULL, percent);
|
|
}
|
|
return nv;
|
|
}
|
|
|
|
int BM_Validate_Face(BMesh *bm, BMFace *face, FILE *err)
|
|
{
|
|
BMIter iter;
|
|
BLI_array_declare(verts);
|
|
BMVert **verts = NULL;
|
|
BMLoop *l;
|
|
int ret = 1, i, j;
|
|
|
|
if (face->len == 2) {
|
|
fprintf(err, "warning: found two-edged face. face ptr: %p\n", face);
|
|
fflush(err);
|
|
}
|
|
|
|
for (l = BMIter_New(&iter, bm, BM_LOOPS_OF_FACE, face); l; l = BMIter_Step(&iter)) {
|
|
BLI_array_growone(verts);
|
|
verts[BLI_array_count(verts) - 1] = l->v;
|
|
|
|
if (l->e->v1 == l->e->v2) {
|
|
fprintf(err, "Found bmesh edge with identical verts!\n");
|
|
fprintf(err, " edge ptr: %p, vert: %p\n", l->e, l->e->v1);
|
|
fflush(err);
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < BLI_array_count(verts); i++) {
|
|
for (j = 0; j < BLI_array_count(verts); j++) {
|
|
if (j == i) {
|
|
continue;
|
|
}
|
|
|
|
if (verts[i] == verts[j]) {
|
|
fprintf(err, "Found duplicate verts in bmesh face!\n");
|
|
fprintf(err, " face ptr: %p, vert: %p\n", face, verts[i]);
|
|
fflush(err);
|
|
ret = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_array_free(verts);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
BM Rotate Edge
|
|
|
|
Spins an edge topologically, either counter-clockwise or clockwise.
|
|
If ccw is true, the edge is spun counter-clockwise, otherwise it is
|
|
spun clockwise.
|
|
|
|
Returns the spun edge. Note that this works by dissolving the edge
|
|
then re-creating it, so the returned edge won't have the same pointer
|
|
address as the original one.
|
|
|
|
Returns NULL on error (e.g., if the edge isn't surrounded by exactly
|
|
two faces).
|
|
*/
|
|
BMEdge *BM_Rotate_Edge(BMesh *bm, BMEdge *e, int ccw)
|
|
{
|
|
BMVert *v1, *v2;
|
|
BMLoop *l, *l1, *l2, *nl;
|
|
BMFace *f;
|
|
BMIter liter;
|
|
|
|
v1 = e->v1;
|
|
v2 = e->v2;
|
|
|
|
if (BM_Edge_FaceCount(e) != 2)
|
|
return NULL;
|
|
|
|
f = BM_Join_TwoFaces(bm, e->l->f, e->l->radial_next->f, e);
|
|
|
|
if (f == NULL)
|
|
return NULL;
|
|
|
|
BM_ITER(l, &liter, bm, BM_LOOPS_OF_FACE, f) {
|
|
if (l->v == v1)
|
|
l1 = l;
|
|
else if (l->v == v2)
|
|
l2 = l;
|
|
}
|
|
|
|
if (ccw) {
|
|
l1 = l1->prev;
|
|
l2 = l2->prev;
|
|
}
|
|
else {
|
|
l1 = l1->next;
|
|
l2 = l2->next;
|
|
}
|
|
|
|
if (!BM_Split_Face(bm, f, l1->v, l2->v, &nl, NULL))
|
|
return NULL;
|
|
|
|
return nl->e;
|
|
}
|
|
|
|
BMVert *BM_Rip_Vertex ( BMesh *bm, BMFace *sf, BMVert *sv)
|
|
{
|
|
return bmesh_urmv(bm, sf, sv);
|
|
}
|