Infinite loop occured when quad-to-triangles operator. The iterator increment in the do/while conditional gets executed after the continue, so the iterator was getting double-incremented and thus could skip past the first loop.
1078 lines
24 KiB
C
1078 lines
24 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Contributor(s): Joseph Eagar, Geoffrey Bantle, Campbell Barton
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/bmesh/intern/bmesh_polygon.c
|
|
* \ingroup bmesh
|
|
*
|
|
* This file contains code for dealing
|
|
* with polygons (normal/area calculation,
|
|
* tesselation, etc)
|
|
*
|
|
* BMESH_TODO:
|
|
* - Add in Tesselator frontend that creates
|
|
* BMTriangles from copied faces
|
|
*
|
|
* - Add in Function that checks for and flags
|
|
* degenerate faces.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "BKE_utildefines.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_array.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "bmesh.h"
|
|
#include "bmesh_private.h"
|
|
|
|
/*
|
|
* TEST EDGE SIDE and POINT IN TRIANGLE
|
|
*
|
|
* Point in triangle tests stolen from scanfill.c.
|
|
* Used for tesselator
|
|
*
|
|
*/
|
|
|
|
static short testedgeside(const double v1[2], const double v2[2], const double v3[2])
|
|
{
|
|
/* is v3 to the right of v1 - v2 ? With exception: v3 == v1 || v3 == v2 */
|
|
double inp;
|
|
|
|
//inp = (v2[cox] - v1[cox]) * (v1[coy] - v3[coy]) + (v1[coy] - v2[coy]) * (v1[cox] - v3[cox]);
|
|
inp = (v2[0] - v1[0]) * (v1[1] - v3[1]) + (v1[1] - v2[1]) * (v1[0] - v3[0]);
|
|
|
|
if (inp < 0.0) {
|
|
return FALSE;
|
|
}
|
|
else if (inp == 0) {
|
|
if (v1[0] == v3[0] && v1[1] == v3[1]) return FALSE;
|
|
if (v2[0] == v3[0] && v2[1] == v3[1]) return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
static short testedgesidef(const float v1[2], const float v2[2], const float v3[2])
|
|
{
|
|
/* is v3 to the right of v1 - v2 ? With exception: v3 == v1 || v3 == v2 */
|
|
double inp;
|
|
|
|
//inp = (v2[cox] - v1[cox]) * (v1[coy] - v3[coy]) + (v1[coy] - v2[coy]) * (v1[cox] - v3[cox]);
|
|
inp = (v2[0] - v1[0]) * (v1[1] - v3[1]) + (v1[1] - v2[1]) * (v1[0] - v3[0]);
|
|
|
|
if (inp < 0.0) {
|
|
return FALSE;
|
|
}
|
|
else if (inp == 0) {
|
|
if (v1[0] == v3[0] && v1[1] == v3[1]) return FALSE;
|
|
if (v2[0] == v3[0] && v2[1] == v3[1]) return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
static int point_in_triangle(const double v1[2], const double v2[2], const double v3[2], const double pt[2])
|
|
{
|
|
if (testedgeside(v1, v2, pt) && testedgeside(v2, v3, pt) && testedgeside(v3, v1, pt)) {
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* COMPUTE POLY NORMAL
|
|
*
|
|
* Computes the normal of a planar
|
|
* polygon See Graphics Gems for
|
|
* computing newell normal.
|
|
*
|
|
*/
|
|
|
|
static void compute_poly_normal(float normal[3], float (*verts)[3], int nverts)
|
|
{
|
|
|
|
float u[3], v[3], w[3]; /*, *w, v1[3], v2[3]; */
|
|
float n[3] = {0.0f, 0.0f, 0.0f} /*, l, v1[3], v2[3] */;
|
|
/* double l2; */
|
|
int i /*, s = 0 */;
|
|
|
|
/* this fixes some weird numerical erro */
|
|
add_v3_fl(verts[0], 0.0001f);
|
|
|
|
for (i = 0; i < nverts; i++) {
|
|
copy_v3_v3(u, verts[i]);
|
|
copy_v3_v3(v, verts[(i + 1) % nverts]);
|
|
copy_v3_v3(w, verts[(i + 2) % nverts]);
|
|
|
|
#if 0
|
|
sub_v3_v3v3(v1, w, v);
|
|
sub_v3_v3v3(v2, v, u);
|
|
normalize_v3(v1);
|
|
normalize_v3(v2);
|
|
|
|
l = dot_v3v3(v1, v2);
|
|
if (fabsf(l - 1.0) < 0.1f) {
|
|
continue;
|
|
}
|
|
#endif
|
|
/* newell's method
|
|
|
|
so thats?:
|
|
(a[1] - b[1]) * (a[2] + b[2]);
|
|
a[1]*b[2] - b[1]*a[2] - b[1]*b[2] + a[1]*a[2]
|
|
|
|
odd. half of that is the cross product. . .what's the
|
|
other half?
|
|
|
|
also could be like a[1]*(b[2] + a[2]) - b[1]*(a[2] - b[2])
|
|
*/
|
|
|
|
n[0] += (u[1] - v[1]) * (u[2] + v[2]);
|
|
n[1] += (u[2] - v[2]) * (u[0] + v[0]);
|
|
n[2] += (u[0] - v[0]) * (u[1] + v[1]);
|
|
}
|
|
|
|
if (normalize_v3_v3(normal, n) == 0.0f) {
|
|
normal[2] = 1.0f; /* other axis set to 0.0 */
|
|
}
|
|
|
|
#if 0
|
|
l = len_v3(n);
|
|
/* fast square root, newton/babylonian method:
|
|
l2 = l * 0.1;
|
|
|
|
l2 = (l / l2 + l2) * 0.5;
|
|
l2 = (l / l2 + l2) * 0.5;
|
|
l2 = (l / l2 + l2) * 0.5;
|
|
*/
|
|
|
|
if (l == 0.0) {
|
|
normal[0] = 0.0f;
|
|
normal[1] = 0.0f;
|
|
normal[2] = 1.0f;
|
|
|
|
return;
|
|
}
|
|
else {
|
|
l = 1.0f / l;
|
|
}
|
|
|
|
mul_v3_fl(n, l);
|
|
|
|
copy_v3_v3(normal, n);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* COMPUTE POLY CENTER
|
|
*
|
|
* Computes the centroid and
|
|
* area of a polygon in the X/Y
|
|
* plane.
|
|
*
|
|
*/
|
|
|
|
static int compute_poly_center(float center[3], float *r_area, float (*verts)[3], int nverts)
|
|
{
|
|
int i, j;
|
|
float atmp = 0.0f, xtmp = 0.0f, ytmp = 0.0f, ai;
|
|
|
|
zero_v3(center);
|
|
|
|
if (nverts < 3)
|
|
return FALSE;
|
|
|
|
i = nverts - 1;
|
|
j = 0;
|
|
|
|
while (j < nverts) {
|
|
ai = verts[i][0] * verts[j][1] - verts[j][0] * verts[i][1];
|
|
atmp += ai;
|
|
xtmp += (verts[j][0] + verts[i][0]) * ai;
|
|
ytmp += (verts[j][1] + verts[i][1]) * ai;
|
|
i = j;
|
|
j += 1;
|
|
}
|
|
|
|
if (r_area)
|
|
*r_area = atmp / 2.0f;
|
|
|
|
if (atmp != 0) {
|
|
center[0] = xtmp / (3.0f * atmp);
|
|
center[1] = xtmp / (3.0f * atmp);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
float BM_Compute_Face_Area(BMesh *bm, BMFace *f)
|
|
{
|
|
BMLoop *l;
|
|
BMIter iter;
|
|
float (*verts)[3];
|
|
float center[3];
|
|
float area = 0.0f;
|
|
int i;
|
|
|
|
BLI_array_fixedstack_declare(verts, BM_NGON_STACK_SIZE, f->len, __func__);
|
|
|
|
i = 0;
|
|
BM_ITER(l, &iter, bm, BM_LOOPS_OF_FACE, f) {
|
|
copy_v3_v3(verts[i], l->v->co);
|
|
i++;
|
|
}
|
|
|
|
compute_poly_center(center, &area, verts, f->len);
|
|
|
|
BLI_array_fixedstack_free(verts);
|
|
|
|
return area;
|
|
}
|
|
|
|
/*
|
|
* computes center of face in 3d. uses center of bounding box.
|
|
*/
|
|
void BM_Compute_Face_CenterBounds(BMesh *bm, BMFace *f, float r_cent[3])
|
|
{
|
|
BMIter iter;
|
|
BMLoop *l;
|
|
float min[3], max[3];
|
|
int i;
|
|
|
|
INIT_MINMAX(min, max);
|
|
l = BMIter_New(&iter, bm, BM_LOOPS_OF_FACE, f);
|
|
for (i = 0; l; l = BMIter_Step(&iter), i++) {
|
|
DO_MINMAX(l->v->co, min, max);
|
|
}
|
|
|
|
mid_v3_v3v3(r_cent, min, max);
|
|
}
|
|
|
|
void BM_Compute_Face_CenterMean(BMesh *bm, BMFace *f, float r_cent[3])
|
|
{
|
|
BMIter iter;
|
|
BMLoop *l;
|
|
int i;
|
|
|
|
zero_v3(r_cent);
|
|
|
|
l = BMIter_New(&iter, bm, BM_LOOPS_OF_FACE, f);
|
|
for (i = 0; l; l = BMIter_Step(&iter), i++) {
|
|
add_v3_v3(r_cent, l->v->co);
|
|
}
|
|
|
|
if (f->len) mul_v3_fl(r_cent, 1.0f / (float)f->len);
|
|
}
|
|
|
|
/*
|
|
* COMPUTE POLY PLANE
|
|
*
|
|
* Projects a set polygon's vertices to
|
|
* a plane defined by the average
|
|
* of its edges cross products
|
|
*
|
|
*/
|
|
|
|
void compute_poly_plane(float (*verts)[3], int nverts)
|
|
{
|
|
|
|
float avgc[3], norm[3], mag, avgn[3];
|
|
float *v1, *v2, *v3;
|
|
int i;
|
|
|
|
if (nverts < 3)
|
|
return;
|
|
|
|
zero_v3(avgn);
|
|
zero_v3(avgc);
|
|
|
|
for (i = 0; i < nverts; i++) {
|
|
v1 = verts[i];
|
|
v2 = verts[(i + 1) % nverts];
|
|
v3 = verts[(i + 2) % nverts];
|
|
normal_tri_v3(norm, v1, v2, v3);
|
|
|
|
add_v3_v3(avgn, norm);
|
|
}
|
|
|
|
/* what was this bit for */
|
|
if (is_zero_v3(avgn)) {
|
|
avgn[0] = 0.0f;
|
|
avgn[1] = 0.0f;
|
|
avgn[2] = 1.0f;
|
|
}
|
|
else {
|
|
/* XXX, why is this being divided and _then_ normalized
|
|
* division could be removed? - campbell */
|
|
avgn[0] /= nverts;
|
|
avgn[1] /= nverts;
|
|
avgn[2] /= nverts;
|
|
normalize_v3(avgn);
|
|
}
|
|
|
|
for (i = 0; i < nverts; i++) {
|
|
v1 = verts[i];
|
|
mag = dot_v3v3(v1, avgn);
|
|
madd_v3_v3fl(v1, avgn, -mag);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* BM LEGAL EDGES
|
|
*
|
|
* takes in a face and a list of edges, and sets to NULL any edge in
|
|
* the list that bridges a concave region of the face or intersects
|
|
* any of the faces's edges.
|
|
*/
|
|
#if 0 /* needs BLI math double versions of these functions */
|
|
static void shrink_edged(double *v1, double *v2, double fac)
|
|
{
|
|
double mid[3];
|
|
|
|
mid_v3_v3v3(mid, v1, v2);
|
|
|
|
sub_v3_v3v3(v1, v1, mid);
|
|
sub_v3_v3v3(v2, v2, mid);
|
|
|
|
mul_v3_fl(v1, fac);
|
|
mul_v3_fl(v2, fac);
|
|
|
|
add_v3_v3v3(v1, v1, mid);
|
|
add_v3_v3v3(v2, v2, mid);
|
|
}
|
|
#endif
|
|
|
|
static void shrink_edgef(float v1[3], float v2[3], const float fac)
|
|
{
|
|
float mid[3];
|
|
|
|
mid_v3_v3v3(mid, v1, v2);
|
|
|
|
sub_v3_v3v3(v1, v1, mid);
|
|
sub_v3_v3v3(v2, v2, mid);
|
|
|
|
mul_v3_fl(v1, fac);
|
|
mul_v3_fl(v2, fac);
|
|
|
|
add_v3_v3v3(v1, v1, mid);
|
|
add_v3_v3v3(v2, v2, mid);
|
|
}
|
|
|
|
|
|
/*
|
|
* POLY ROTATE PLANE
|
|
*
|
|
* Rotates a polygon so that it's
|
|
* normal is pointing towards the mesh Z axis
|
|
*
|
|
*/
|
|
|
|
void poly_rotate_plane(const float normal[3], float (*verts)[3], const int nverts)
|
|
{
|
|
|
|
float up[3] = {0.0f, 0.0f, 1.0f}, axis[3], q[4];
|
|
float mat[3][3];
|
|
double angle;
|
|
int i;
|
|
|
|
cross_v3_v3v3(axis, normal, up);
|
|
|
|
angle = saacos(dot_v3v3(normal, up));
|
|
|
|
if (angle == 0.0) return;
|
|
|
|
axis_angle_to_quat(q, axis, (float)angle);
|
|
quat_to_mat3(mat, q);
|
|
|
|
for (i = 0; i < nverts; i++)
|
|
mul_m3_v3(mat, verts[i]);
|
|
}
|
|
|
|
/*
|
|
* BMESH UPDATE FACE NORMAL
|
|
*
|
|
* Updates the stored normal for the
|
|
* given face. Requires that a buffer
|
|
* of sufficient length to store projected
|
|
* coordinates for all of the face's vertices
|
|
* is passed in as well.
|
|
*
|
|
*/
|
|
|
|
void BM_Face_UpdateNormal(BMesh *bm, BMFace *f)
|
|
{
|
|
if (f->len >= 3) {
|
|
float (*proj)[3];
|
|
|
|
BLI_array_fixedstack_declare(proj, BM_NGON_STACK_SIZE, f->len, __func__);
|
|
|
|
bmesh_update_face_normal(bm, f, f->no, proj);
|
|
|
|
BLI_array_fixedstack_free(proj);
|
|
}
|
|
}
|
|
/* same as BM_Face_UpdateNormal but takes vertex coords */
|
|
void BM_Face_UpdateNormal_VertexCos(BMesh *bm, BMFace *f, float no[3], float (*vertexCos)[3])
|
|
{
|
|
if (f->len >= 3) {
|
|
float (*proj)[3];
|
|
|
|
BLI_array_fixedstack_declare(proj, BM_NGON_STACK_SIZE, f->len, __func__);
|
|
|
|
bmesh_update_face_normal_vertex_cos(bm, f, no, proj, vertexCos);
|
|
|
|
BLI_array_fixedstack_free(proj);
|
|
}
|
|
}
|
|
|
|
void BM_Edge_UpdateNormals(BMesh *bm, BMEdge *e)
|
|
{
|
|
BMIter iter;
|
|
BMFace *f;
|
|
|
|
f = BMIter_New(&iter, bm, BM_FACES_OF_EDGE, e);
|
|
for ( ; f; f = BMIter_Step(&iter)) {
|
|
BM_Face_UpdateNormal(bm, f);
|
|
}
|
|
|
|
BM_Vert_UpdateNormal(bm, e->v1);
|
|
BM_Vert_UpdateNormal(bm, e->v2);
|
|
}
|
|
|
|
void BM_Vert_UpdateNormal(BMesh *bm, BMVert *v)
|
|
{
|
|
BMIter eiter, liter;
|
|
BMEdge *e;
|
|
BMLoop *l;
|
|
float vec1[3], vec2[3], fac;
|
|
int len = 0;
|
|
|
|
zero_v3(v->no);
|
|
|
|
BM_ITER(e, &eiter, bm, BM_EDGES_OF_VERT, v) {
|
|
BM_ITER(l, &liter, bm, BM_LOOPS_OF_EDGE, e) {
|
|
if (l->v == v) {
|
|
/* Same calculation used in BM_Compute_Normals */
|
|
sub_v3_v3v3(vec1, l->v->co, l->prev->v->co);
|
|
sub_v3_v3v3(vec2, l->next->v->co, l->v->co);
|
|
normalize_v3(vec1);
|
|
normalize_v3(vec2);
|
|
|
|
fac = saacos(-dot_v3v3(vec1, vec2));
|
|
|
|
madd_v3_v3fl(v->no, l->f->no, fac);
|
|
|
|
len++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (len) {
|
|
normalize_v3(v->no);
|
|
}
|
|
}
|
|
|
|
void BM_Vert_UpdateAllNormals(BMesh *bm, BMVert *v)
|
|
{
|
|
BMIter iter;
|
|
BMFace *f;
|
|
int len = 0;
|
|
|
|
f = BMIter_New(&iter, bm, BM_FACES_OF_VERT, v);
|
|
for ( ; f; f = BMIter_Step(&iter), len++) {
|
|
BM_Face_UpdateNormal(bm, f);
|
|
}
|
|
|
|
BM_Vert_UpdateNormal(bm, v);
|
|
}
|
|
|
|
void bmesh_update_face_normal(BMesh *bm, BMFace *f, float no[3],
|
|
float (*projectverts)[3])
|
|
{
|
|
BMLoop *l;
|
|
|
|
/* common cases first */
|
|
switch (f->len) {
|
|
case 4:
|
|
{
|
|
BMVert *v1 = (l = BM_FACE_FIRST_LOOP(f))->v;
|
|
BMVert *v2 = (l = l->next)->v;
|
|
BMVert *v3 = (l = l->next)->v;
|
|
BMVert *v4 = (l->next)->v;
|
|
normal_quad_v3(no, v1->co, v2->co, v3->co, v4->co);
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
BMVert *v1 = (l = BM_FACE_FIRST_LOOP(f))->v;
|
|
BMVert *v2 = (l = l->next)->v;
|
|
BMVert *v3 = (l->next)->v;
|
|
normal_tri_v3(no, v1->co, v2->co, v3->co);
|
|
break;
|
|
}
|
|
case 0:
|
|
{
|
|
zero_v3(no);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
BMIter iter;
|
|
int i = 0;
|
|
BM_ITER(l, &iter, bm, BM_LOOPS_OF_FACE, f) {
|
|
copy_v3_v3(projectverts[i], l->v->co);
|
|
i += 1;
|
|
}
|
|
compute_poly_normal(no, projectverts, f->len);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* exact same as 'bmesh_update_face_normal' but accepts vertex coords */
|
|
void bmesh_update_face_normal_vertex_cos(BMesh *bm, BMFace *f, float no[3],
|
|
float (*projectverts)[3], float (*vertexCos)[3])
|
|
{
|
|
BMLoop *l;
|
|
|
|
/* must have valid index data */
|
|
BLI_assert((bm->elem_index_dirty & BM_VERT) == 0);
|
|
|
|
/* common cases first */
|
|
switch (f->len) {
|
|
case 4:
|
|
{
|
|
BMVert *v1 = (l = BM_FACE_FIRST_LOOP(f))->v;
|
|
BMVert *v2 = (l = l->next)->v;
|
|
BMVert *v3 = (l = l->next)->v;
|
|
BMVert *v4 = (l->next)->v;
|
|
normal_quad_v3(no,
|
|
vertexCos[BM_GetIndex(v1)],
|
|
vertexCos[BM_GetIndex(v2)],
|
|
vertexCos[BM_GetIndex(v3)],
|
|
vertexCos[BM_GetIndex(v4)]);
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
BMVert *v1 = (l = BM_FACE_FIRST_LOOP(f))->v;
|
|
BMVert *v2 = (l = l->next)->v;
|
|
BMVert *v3 = (l->next)->v;
|
|
normal_tri_v3(no,
|
|
vertexCos[BM_GetIndex(v1)],
|
|
vertexCos[BM_GetIndex(v2)],
|
|
vertexCos[BM_GetIndex(v3)]);
|
|
break;
|
|
}
|
|
case 0:
|
|
{
|
|
zero_v3(no);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
BMIter iter;
|
|
int i = 0;
|
|
BM_ITER(l, &iter, bm, BM_LOOPS_OF_FACE, f) {
|
|
copy_v3_v3(projectverts[i], vertexCos[BM_GetIndex(l->v)]);
|
|
i += 1;
|
|
}
|
|
compute_poly_normal(no, projectverts, f->len);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* BMESH FLIP NORMAL
|
|
*
|
|
* Reverses the winding of a face.
|
|
* Note that this updates the calculated
|
|
* normal.
|
|
*/
|
|
void BM_flip_normal(BMesh *bm, BMFace *f)
|
|
{
|
|
bmesh_loop_reverse(bm, f);
|
|
negate_v3(f->no);
|
|
}
|
|
|
|
/* detects if two line segments cross each other (intersects).
|
|
* note, there could be more winding cases then there needs to be. */
|
|
static int UNUSED_FUNCTION(linecrosses)(const double v1[2], const double v2[2], const double v3[2], const double v4[2])
|
|
{
|
|
int w1, w2, w3, w4, w5;
|
|
|
|
/* w1 = winding(v1, v3, v4);
|
|
w2 = winding(v2, v3, v4);
|
|
w3 = winding(v3, v1, v2);
|
|
w4 = winding(v4, v1, v2);
|
|
|
|
return (w1 == w2) && (w3 == w4); */
|
|
|
|
w1 = testedgeside(v1, v3, v2);
|
|
w2 = testedgeside(v2, v4, v1);
|
|
w3 = !testedgeside(v1, v2, v3);
|
|
w4 = testedgeside(v3, v2, v4);
|
|
w5 = !testedgeside(v3, v1, v4);
|
|
return w1 == w2 && w2 == w3 && w3 == w4 && w4 == w5;
|
|
}
|
|
|
|
/* detects if two line segments cross each other (intersects).
|
|
* note, there could be more winding cases then there needs to be. */
|
|
static int linecrossesf(const float v1[2], const float v2[2], const float v3[2], const float v4[2])
|
|
{
|
|
int w1, w2, w3, w4, w5 /*, re */;
|
|
float mv1[2], mv2[2], mv3[2], mv4[2];
|
|
|
|
/* now test windin */
|
|
w1 = testedgesidef(v1, v3, v2);
|
|
w2 = testedgesidef(v2, v4, v1);
|
|
w3 = !testedgesidef(v1, v2, v3);
|
|
w4 = testedgesidef(v3, v2, v4);
|
|
w5 = !testedgesidef(v3, v1, v4);
|
|
|
|
if (w1 == w2 && w2 == w3 && w3 == w4 && w4 == w5) {
|
|
return TRUE;
|
|
}
|
|
|
|
#define GETMIN2_AXIS(a, b, ma, mb, axis) ma[axis] = MIN2(a[axis], b[axis]), mb[axis] = MAX2(a[axis], b[axis])
|
|
#define GETMIN2(a, b, ma, mb) GETMIN2_AXIS(a, b, ma, mb, 0); GETMIN2_AXIS(a, b, ma, mb, 1);
|
|
|
|
GETMIN2(v1, v2, mv1, mv2);
|
|
GETMIN2(v3, v4, mv3, mv4);
|
|
|
|
/* do an interval test on the x and y axe */
|
|
/* first do x axi */
|
|
#define T FLT_EPSILON * 15
|
|
if ( ABS(v1[1] - v2[1]) < T &&
|
|
ABS(v3[1] - v4[1]) < T &&
|
|
ABS(v1[1] - v3[1]) < T)
|
|
{
|
|
return (mv4[0] >= mv1[0] && mv3[0] <= mv2[0]);
|
|
}
|
|
|
|
/* now do y axi */
|
|
if ( ABS(v1[0] - v2[0]) < T &&
|
|
ABS(v3[0] - v4[0]) < T &&
|
|
ABS(v1[0] - v3[0]) < T)
|
|
{
|
|
return (mv4[1] >= mv1[1] && mv3[1] <= mv2[1]);
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* BM POINT IN FACE
|
|
*
|
|
* Projects co onto face f, and returns true if it is inside
|
|
* the face bounds. Note that this uses a best-axis projection
|
|
* test, instead of projecting co directly into f's orientation
|
|
* space, so there might be accuracy issues.
|
|
*/
|
|
int BM_Point_In_Face(BMesh *bm, BMFace *f, const float co[3])
|
|
{
|
|
int ax, ay;
|
|
float co2[3], cent[3] = {0.0f, 0.0f, 0.0f}, out[3] = {FLT_MAX * 0.5f, FLT_MAX * 0.5f, 0};
|
|
BMLoop *l_iter;
|
|
BMLoop *l_first;
|
|
int crosses = 0;
|
|
float eps = 1.0f + (float)FLT_EPSILON * 150.0f;
|
|
|
|
if (dot_v3v3(f->no, f->no) <= FLT_EPSILON * 10)
|
|
BM_Face_UpdateNormal(bm, f);
|
|
|
|
/* find best projection of face XY, XZ or YZ: barycentric weights of
|
|
* the 2d projected coords are the same and faster to compute
|
|
*
|
|
* this probably isn't all that accurate, but it has the advantage of
|
|
* being fast (especially compared to projecting into the face orientation)
|
|
*/
|
|
axis_dominant_v3(&ax, &ay, f->no);
|
|
|
|
co2[0] = co[ax];
|
|
co2[1] = co[ay];
|
|
co2[2] = 0;
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
cent[0] += l_iter->v->co[ax];
|
|
cent[1] += l_iter->v->co[ay];
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
mul_v2_fl(cent, 1.0f / (float)f->len);
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
float v1[3], v2[3];
|
|
|
|
v1[0] = (l_iter->prev->v->co[ax] - cent[ax]) * eps + cent[ax];
|
|
v1[1] = (l_iter->prev->v->co[ay] - cent[ay]) * eps + cent[ay];
|
|
v1[2] = 0.0f;
|
|
|
|
v2[0] = (l_iter->v->co[ax] - cent[ax]) * eps + cent[ax];
|
|
v2[1] = (l_iter->v->co[ay] - cent[ay]) * eps + cent[ay];
|
|
v2[2] = 0.0f;
|
|
|
|
crosses += linecrossesf(v1, v2, co2, out) != 0;
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
return crosses % 2 != 0;
|
|
}
|
|
|
|
static int goodline(float (*projectverts)[3], BMFace *f, int v1i,
|
|
int v2i, int v3i, int UNUSED(nvert))
|
|
{
|
|
BMLoop *l_iter;
|
|
BMLoop *l_first;
|
|
double v1[3], v2[3], v3[3], pv1[3], pv2[3];
|
|
int i;
|
|
|
|
VECCOPY(v1, projectverts[v1i]);
|
|
VECCOPY(v2, projectverts[v2i]);
|
|
VECCOPY(v3, projectverts[v3i]);
|
|
|
|
if (testedgeside(v1, v2, v3)) {
|
|
return FALSE;
|
|
}
|
|
|
|
//for (i = 0; i < nvert; i++) {
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
i = BM_GetIndex(l_iter->v);
|
|
if (i == v1i || i == v2i || i == v3i) {
|
|
continue;
|
|
}
|
|
|
|
VECCOPY(pv1, projectverts[BM_GetIndex(l_iter->v)]);
|
|
VECCOPY(pv2, projectverts[BM_GetIndex(l_iter->next->v)]);
|
|
|
|
//if (linecrosses(pv1, pv2, v1, v3)) return FALSE;
|
|
|
|
if ( point_in_triangle(v1, v2, v3, pv1) ||
|
|
point_in_triangle(v3, v2, v1, pv1))
|
|
{
|
|
return FALSE;
|
|
}
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
return TRUE;
|
|
}
|
|
/*
|
|
* FIND EAR
|
|
*
|
|
* Used by tesselator to find
|
|
* the next triangle to 'clip off'
|
|
* of a polygon while tesselating.
|
|
*
|
|
*/
|
|
|
|
static BMLoop *find_ear(BMesh *UNUSED(bm), BMFace *f, float (*verts)[3], const int nvert)
|
|
{
|
|
BMVert *v1, *v2, *v3;
|
|
BMLoop *bestear = NULL;
|
|
|
|
BMLoop *l_iter;
|
|
BMLoop *l_first;
|
|
/* float angle, bestangle = 180.0f; */
|
|
int isear /*, i = 0 */;
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
isear = 1;
|
|
|
|
v1 = l_iter->prev->v;
|
|
v2 = l_iter->v;
|
|
v3 = l_iter->next->v;
|
|
|
|
if (BM_Edge_Exist(v1, v3)) {
|
|
isear = 0;
|
|
}
|
|
else if (!goodline(verts, f, BM_GetIndex(v1), BM_GetIndex(v2), BM_GetIndex(v3), nvert)) {
|
|
isear = 0;
|
|
}
|
|
|
|
if (isear) {
|
|
#if 0
|
|
angle = angle_v3v3v3(verts[v1->head.eflag2], verts[v2->head.eflag2], verts[v3->head.eflag2]);
|
|
if (!bestear || ABS(angle-45.0f) < bestangle) {
|
|
bestear = l;
|
|
bestangle = ABS(45.0f - angle);
|
|
}
|
|
|
|
if (angle > 20 && angle < 90) break;
|
|
if (angle < 100 && i > 5) break;
|
|
i += 1;
|
|
#endif
|
|
|
|
bestear = l_iter;
|
|
break;
|
|
}
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
return bestear;
|
|
}
|
|
|
|
/*
|
|
* BMESH TRIANGULATE FACE
|
|
*
|
|
* Triangulates a face using a
|
|
* simple 'ear clipping' algorithm
|
|
* that tries to favor non-skinny
|
|
* triangles (angles less than
|
|
* 90 degrees). If the triangulator
|
|
* has bits left over (or cannot
|
|
* triangulate at all) it uses a
|
|
* simple fan triangulation
|
|
*
|
|
* newfaces, if non-null, must be an array of BMFace pointers,
|
|
* with a length equal to f->len. it will be filled with the new
|
|
* triangles, and will be NULL-terminated.
|
|
*/
|
|
void BM_Triangulate_Face(BMesh *bm, BMFace *f, float (*projectverts)[3],
|
|
int newedgeflag, int newfaceflag, BMFace **newfaces)
|
|
{
|
|
int i, done, nvert, nf_i = 0;
|
|
BMLoop *newl, *nextloop;
|
|
BMLoop *l_iter;
|
|
BMLoop *l_first;
|
|
/* BMVert *v; */ /* UNUSED */
|
|
|
|
/* copy vertex coordinates to vertspace arra */
|
|
i = 0;
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
copy_v3_v3(projectverts[i], l_iter->v->co);
|
|
BM_SetIndex(l_iter->v, i); /* set dirty! */
|
|
i++;
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
|
|
bm->elem_index_dirty |= BM_VERT; /* see above */
|
|
|
|
///bmesh_update_face_normal(bm, f, f->no, projectverts);
|
|
|
|
compute_poly_normal(f->no, projectverts, f->len);
|
|
poly_rotate_plane(f->no, projectverts, i);
|
|
|
|
nvert = f->len;
|
|
|
|
//compute_poly_plane(projectverts, i);
|
|
for (i = 0; i < nvert; i++) {
|
|
projectverts[i][2] = 0.0f;
|
|
}
|
|
|
|
done = 0;
|
|
while (!done && f->len > 3) {
|
|
done = 1;
|
|
l_iter = find_ear(bm, f, projectverts, nvert);
|
|
if (l_iter) {
|
|
done = 0;
|
|
/* v = l->v; */ /* UNUSED */
|
|
f = BM_Split_Face(bm, l_iter->f, l_iter->prev->v,
|
|
l_iter->next->v,
|
|
&newl, NULL);
|
|
copy_v3_v3(f->no, l_iter->f->no);
|
|
|
|
if (!f) {
|
|
fprintf(stderr, "%s: triangulator failed to split face! (bmesh internal error)\n", __func__);
|
|
break;
|
|
}
|
|
|
|
BMO_SetFlag(bm, newl->e, newedgeflag);
|
|
BMO_SetFlag(bm, f, newfaceflag);
|
|
|
|
if (newfaces) newfaces[nf_i++] = f;
|
|
|
|
/* l = f->loopbase;
|
|
do {
|
|
if (l->v == v) {
|
|
f->loopbase = l;
|
|
break;
|
|
}
|
|
l = l->next;
|
|
} while (l != f->loopbase); */
|
|
}
|
|
}
|
|
|
|
if (f->len > 3) {
|
|
l_iter = BM_FACE_FIRST_LOOP(f);
|
|
while (l_iter->f->len > 3) {
|
|
nextloop = l_iter->next->next;
|
|
f = BM_Split_Face(bm, l_iter->f, l_iter->v, nextloop->v,
|
|
&newl, NULL);
|
|
if (!f) {
|
|
printf("triangle fan step of triangulator failed.\n");
|
|
|
|
/* NULL-terminat */
|
|
if (newfaces) newfaces[nf_i] = NULL;
|
|
return;
|
|
}
|
|
|
|
if (newfaces) newfaces[nf_i++] = f;
|
|
|
|
BMO_SetFlag(bm, newl->e, newedgeflag);
|
|
BMO_SetFlag(bm, f, newfaceflag);
|
|
l_iter = nextloop;
|
|
}
|
|
}
|
|
|
|
/* NULL-terminat */
|
|
if (newfaces) newfaces[nf_i] = NULL;
|
|
}
|
|
|
|
/* each pair of loops defines a new edge, a split. this function goes
|
|
* through and sets pairs that are geometrically invalid to null. a
|
|
* split is invalid, if it forms a concave angle or it intersects other
|
|
* edges in the face, or it intersects another split. in the case of
|
|
* intersecting splits, only the first of the set of intersecting
|
|
* splits survives */
|
|
void BM_LegalSplits(BMesh *bm, BMFace *f, BMLoop *(*loops)[2], int len)
|
|
{
|
|
BMIter iter;
|
|
BMLoop *l;
|
|
float v1[3], v2[3], v3[3]/*, v4[3 */, no[3], mid[3], *p1, *p2, *p3, *p4;
|
|
float out[3] = {-234324.0f, -234324.0f, 0.0f};
|
|
float (*projverts)[3];
|
|
float (*edgeverts)[3];
|
|
float fac1 = 1.0000001f, fac2 = 0.9f; //9999f; //0.999f;
|
|
int i, j, a = 0, clen;
|
|
|
|
BLI_array_fixedstack_declare(projverts, BM_NGON_STACK_SIZE, f->len, "projvertsb");
|
|
BLI_array_fixedstack_declare(edgeverts, BM_NGON_STACK_SIZE * 2, len * 2, "edgevertsb");
|
|
|
|
i = 0;
|
|
l = BMIter_New(&iter, bm, BM_LOOPS_OF_FACE, f);
|
|
for ( ; l; l = BMIter_Step(&iter)) {
|
|
BM_SetIndex(l, i); /* set_loop */
|
|
copy_v3_v3(projverts[i], l->v->co);
|
|
i++;
|
|
}
|
|
|
|
for (i = 0; i < len; i++) {
|
|
copy_v3_v3(v1, loops[i][0]->v->co);
|
|
copy_v3_v3(v2, loops[i][1]->v->co);
|
|
|
|
shrink_edgef(v1, v2, fac2);
|
|
|
|
copy_v3_v3(edgeverts[a], v1);
|
|
a++;
|
|
copy_v3_v3(edgeverts[a], v2);
|
|
a++;
|
|
}
|
|
|
|
compute_poly_normal(no, projverts, f->len);
|
|
poly_rotate_plane(no, projverts, f->len);
|
|
poly_rotate_plane(no, edgeverts, len * 2);
|
|
|
|
l = BM_FACE_FIRST_LOOP(f);
|
|
for (i = 0; i < f->len; i++) {
|
|
p1 = projverts[i];
|
|
out[0] = MAX2(out[0], p1[0]) + 0.01f;
|
|
out[1] = MAX2(out[1], p1[1]) + 0.01f;
|
|
out[2] = 0.0f;
|
|
p1[2] = 0.0f;
|
|
|
|
//copy_v3_v3(l->v->co, p1);
|
|
|
|
l = l->next;
|
|
}
|
|
|
|
for (i = 0; i < len; i++) {
|
|
edgeverts[i * 2][2] = 0.0f;
|
|
edgeverts[i * 2 + 1][2] = 0.0f;
|
|
}
|
|
|
|
/* do convexity test */
|
|
for (i = 0; i < len; i++) {
|
|
copy_v3_v3(v2, edgeverts[i * 2]);
|
|
copy_v3_v3(v3, edgeverts[i * 2 + 1]);
|
|
|
|
mid_v3_v3v3(mid, v2, v3);
|
|
|
|
clen = 0;
|
|
for (j = 0; j < f->len; j++) {
|
|
p1 = projverts[j];
|
|
p2 = projverts[(j + 1) % f->len];
|
|
|
|
copy_v3_v3(v1, p1);
|
|
copy_v3_v3(v2, p2);
|
|
|
|
shrink_edgef(v1, v2, fac1);
|
|
|
|
if (linecrossesf(p1, p2, mid, out)) clen++;
|
|
}
|
|
|
|
if (clen % 2 == 0) {
|
|
loops[i][0] = NULL;
|
|
}
|
|
}
|
|
|
|
/* do line crossing test */
|
|
for (i = 0; i < f->len; i++) {
|
|
p1 = projverts[i];
|
|
p2 = projverts[(i + 1) % f->len];
|
|
|
|
copy_v3_v3(v1, p1);
|
|
copy_v3_v3(v2, p2);
|
|
|
|
shrink_edgef(v1, v2, fac1);
|
|
|
|
for (j = 0; j < len; j++) {
|
|
if (!loops[j][0]) continue;
|
|
|
|
p3 = edgeverts[j * 2];
|
|
p4 = edgeverts[j * 2 + 1];
|
|
|
|
if (linecrossesf(v1, v2, p3, p4)) {
|
|
loops[j][0] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < len; i++) {
|
|
for (j = 0; j < len; j++) {
|
|
if (j == i) continue;
|
|
if (!loops[i][0]) continue;
|
|
if (!loops[j][0]) continue;
|
|
|
|
p1 = edgeverts[i * 2];
|
|
p2 = edgeverts[i * 2 + 1];
|
|
p3 = edgeverts[j * 2];
|
|
p4 = edgeverts[j * 2 + 1];
|
|
|
|
copy_v3_v3(v1, p1);
|
|
copy_v3_v3(v2, p2);
|
|
|
|
shrink_edgef(v1, v2, fac1);
|
|
|
|
if (linecrossesf(v1, v2, p3, p4)) {
|
|
loops[i][0] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_array_fixedstack_free(projverts);
|
|
BLI_array_fixedstack_free(edgeverts);
|
|
}
|