189 lines
4.3 KiB
C
189 lines
4.3 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: some of this file.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
* */
|
|
|
|
/** \file blender/blenlib/intern/math_geom_inline.c
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#ifndef __MATH_GEOM_INLINE_C__
|
|
#define __MATH_GEOM_INLINE_C__
|
|
|
|
#include "BLI_math.h"
|
|
|
|
#include <string.h>
|
|
|
|
/****************************** Spherical Harmonics **************************/
|
|
|
|
MINLINE void zero_sh(float r[9])
|
|
{
|
|
memset(r, 0, sizeof(float) * 9);
|
|
}
|
|
|
|
MINLINE void copy_sh_sh(float r[9], const float a[9])
|
|
{
|
|
memcpy(r, a, sizeof(float) * 9);
|
|
}
|
|
|
|
MINLINE void mul_sh_fl(float r[9], const float f)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 9; i++)
|
|
r[i] *= f;
|
|
}
|
|
|
|
MINLINE void add_sh_shsh(float r[9], const float a[9], const float b[9])
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 9; i++)
|
|
r[i] = a[i] + b[i];
|
|
}
|
|
|
|
MINLINE float dot_shsh(float a[9], float b[9])
|
|
{
|
|
float r = 0.0f;
|
|
int i;
|
|
|
|
for (i = 0; i < 9; i++)
|
|
r += a[i] * b[i];
|
|
|
|
return r;
|
|
}
|
|
|
|
MINLINE float diffuse_shv3(float sh[9], const float v[3])
|
|
{
|
|
/* See formula (13) in:
|
|
* "An Efficient Representation for Irradiance Environment Maps" */
|
|
static const float c1 = 0.429043f, c2 = 0.511664f, c3 = 0.743125f;
|
|
static const float c4 = 0.886227f, c5 = 0.247708f;
|
|
float x, y, z, sum;
|
|
|
|
x = v[0];
|
|
y = v[1];
|
|
z = v[2];
|
|
|
|
sum = c1 * sh[8] * (x * x - y * y);
|
|
sum += c3 * sh[6] * z * z;
|
|
sum += c4 * sh[0];
|
|
sum += -c5 * sh[6];
|
|
sum += 2.0f * c1 * (sh[4] * x * y + sh[7] * x * z + sh[5] * y * z);
|
|
sum += 2.0f * c2 * (sh[3] * x + sh[1] * y + sh[2] * z);
|
|
|
|
return sum;
|
|
}
|
|
|
|
MINLINE void vec_fac_to_sh(float r[9], const float v[3], const float f)
|
|
{
|
|
/* See formula (3) in:
|
|
* "An Efficient Representation for Irradiance Environment Maps" */
|
|
float sh[9], x, y, z;
|
|
|
|
x = v[0];
|
|
y = v[1];
|
|
z = v[2];
|
|
|
|
sh[0] = 0.282095f;
|
|
|
|
sh[1] = 0.488603f * y;
|
|
sh[2] = 0.488603f * z;
|
|
sh[3] = 0.488603f * x;
|
|
|
|
sh[4] = 1.092548f * x * y;
|
|
sh[5] = 1.092548f * y * z;
|
|
sh[6] = 0.315392f * (3.0f * z * z - 1.0f);
|
|
sh[7] = 1.092548f * x * z;
|
|
sh[8] = 0.546274f * (x * x - y * y);
|
|
|
|
mul_sh_fl(sh, f);
|
|
copy_sh_sh(r, sh);
|
|
}
|
|
|
|
MINLINE float eval_shv3(float sh[9], const float v[3])
|
|
{
|
|
float tmp[9];
|
|
|
|
vec_fac_to_sh(tmp, v, 1.0f);
|
|
return dot_shsh(tmp, sh);
|
|
}
|
|
|
|
MINLINE void madd_sh_shfl(float r[9], const float sh[9], const float f)
|
|
{
|
|
float tmp[9];
|
|
|
|
copy_sh_sh(tmp, sh);
|
|
mul_sh_fl(tmp, f);
|
|
add_sh_shsh(r, r, tmp);
|
|
}
|
|
|
|
MINLINE int max_axis_v3(const float vec[3])
|
|
{
|
|
const float x = vec[0];
|
|
const float y = vec[1];
|
|
const float z = vec[2];
|
|
return ((x > y) ?
|
|
((x > z) ? 0 : 2) :
|
|
((y > z) ? 1 : 2));
|
|
}
|
|
|
|
MINLINE int min_axis_v3(const float vec[3])
|
|
{
|
|
const float x = vec[0];
|
|
const float y = vec[1];
|
|
const float z = vec[2];
|
|
return ((x < y) ?
|
|
((x < z) ? 0 : 2) :
|
|
((y < z) ? 1 : 2));
|
|
}
|
|
|
|
/**
|
|
* Simple method to find how many tri's we need when we already know the corner+poly count.
|
|
*
|
|
* Formula is:
|
|
*
|
|
* tri = ((corner_count / poly_count) - 2) * poly_count;
|
|
*
|
|
* Use doubles since this is used for allocating and we
|
|
* don't want float precision to give incorrect results.
|
|
*
|
|
* \param poly_count The number of ngon's/tris (1-2 sided faces will give incorrect results)
|
|
* \param corner_count - also known as loops in BMesh/DNA
|
|
*/
|
|
MINLINE int poly_to_tri_count(const int poly_count, const int corner_count)
|
|
{
|
|
if (poly_count != 0) {
|
|
const double poly_count_d = (double)poly_count;
|
|
const double corner_count_d = (double)corner_count;
|
|
BLI_assert(poly_count > 0);
|
|
BLI_assert(corner_count > 0);
|
|
return (int)((((corner_count_d / poly_count_d) - 2.0) * poly_count_d) + 0.5);
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#endif /* __MATH_GEOM_INLINE_C__ */
|