This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/scanfill.c
Campbell Barton f9e339ef00 fix/workaround [#33281] script goes into not responding
scanfill remove-doubles pass assumes ordered edges (as with curves), otherwise it can hang.
workaround this problem by skipping removing-doubles for mesh ngons, since this isnt such a common case as it is with curves and we can just not support it.
2012-11-26 23:18:04 +00:00

1124 lines
28 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* (uit traces) maart 95
*/
/** \file blender/blenlib/intern/scanfill.c
* \ingroup bli
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_callbacks.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_scanfill.h"
#include "BLI_utildefines.h"
/* callbacks for errors and interrupts and some goo */
static void (*BLI_localErrorCallBack)(const char *) = NULL;
static int (*BLI_localInterruptCallBack)(void) = NULL;
void BLI_setErrorCallBack(void (*f)(const char *))
{
BLI_localErrorCallBack = f;
}
void BLI_setInterruptCallBack(int (*f)(void))
{
BLI_localInterruptCallBack = f;
}
/* just flush the error to /dev/null if the error handler is missing */
void callLocalErrorCallBack(const char *msg)
{
if (BLI_localErrorCallBack) {
BLI_localErrorCallBack(msg);
}
}
#if 0
/* ignore if the interrupt wasn't set */
static int callLocalInterruptCallBack(void)
{
if (BLI_localInterruptCallBack) {
return BLI_localInterruptCallBack();
}
else {
return 0;
}
}
#endif
/* local types */
typedef struct PolyFill {
int edges, verts;
float min_xy[2], max_xy[2];
short f, nr;
} PolyFill;
typedef struct ScanFillVertLink {
ScanFillVert *vert;
ScanFillEdge *edge_first, *edge_last;
} ScanFillVertLink;
/* local funcs */
#define SF_EPSILON 0.00003f
#define SF_VERT_UNKNOWN 1 /* TODO, what is this for exactly? - need to document it! */
#define SF_VERT_ZERO_LEN 255
/* Optionally set ScanFillEdge f to this to mark original boundary edges.
* Only needed if there are internal diagonal edges passed to BLI_scanfill_calc. */
#define SF_EDGE_BOUNDARY 1
#define SF_EDGE_UNKNOWN 2 /* TODO, what is this for exactly? - need to document it! */
/* **** FUNCTIONS FOR QSORT *************************** */
static int vergscdata(const void *a1, const void *a2)
{
const ScanFillVertLink *x1 = a1, *x2 = a2;
if (x1->vert->xy[1] < x2->vert->xy[1]) return 1;
else if (x1->vert->xy[1] > x2->vert->xy[1]) return -1;
else if (x1->vert->xy[0] > x2->vert->xy[0]) return 1;
else if (x1->vert->xy[0] < x2->vert->xy[0]) return -1;
return 0;
}
static int vergpoly(const void *a1, const void *a2)
{
const PolyFill *x1 = a1, *x2 = a2;
if (x1->min_xy[0] > x2->min_xy[0]) return 1;
else if (x1->min_xy[0] < x2->min_xy[0]) return -1;
else if (x1->min_xy[1] > x2->min_xy[1]) return 1;
else if (x1->min_xy[1] < x2->min_xy[1]) return -1;
return 0;
}
/* ************* MEMORY MANAGEMENT ************* */
/* memory management */
struct mem_elements {
struct mem_elements *next, *prev;
char *data;
};
static void *mem_element_new(ScanFillContext *sf_ctx, int size)
{
BLI_assert(!(size > 10000 || size == 0)); /* this is invalid use! */
size = (size + 3) & ~3; /* allocate in units of 4 */
if (sf_ctx->melem__cur && (size + sf_ctx->melem__offs < MEM_ELEM_BLOCKSIZE)) {
void *adr = (void *) (sf_ctx->melem__cur->data + sf_ctx->melem__offs);
sf_ctx->melem__offs += size;
return adr;
}
else {
sf_ctx->melem__cur = MEM_callocN(sizeof(struct mem_elements), "newmem");
sf_ctx->melem__cur->data = MEM_callocN(MEM_ELEM_BLOCKSIZE, "newmem");
BLI_addtail(&sf_ctx->melem__lb, sf_ctx->melem__cur);
sf_ctx->melem__offs = size;
return sf_ctx->melem__cur->data;
}
}
static void mem_element_reset(ScanFillContext *sf_ctx, int keep_first)
{
struct mem_elements *first;
if ((first = sf_ctx->melem__lb.first)) { /* can be false if first fill fails */
if (keep_first) {
BLI_remlink(&sf_ctx->melem__lb, first);
}
sf_ctx->melem__cur = sf_ctx->melem__lb.first;
while (sf_ctx->melem__cur) {
MEM_freeN(sf_ctx->melem__cur->data);
sf_ctx->melem__cur = sf_ctx->melem__cur->next;
}
BLI_freelistN(&sf_ctx->melem__lb);
/*reset the block we're keeping*/
if (keep_first) {
BLI_addtail(&sf_ctx->melem__lb, first);
memset(first->data, 0, MEM_ELEM_BLOCKSIZE);
}
else {
first = NULL;
}
}
sf_ctx->melem__cur = first;
sf_ctx->melem__offs = 0;
}
void BLI_scanfill_end(ScanFillContext *sf_ctx)
{
mem_element_reset(sf_ctx, FALSE);
sf_ctx->fillvertbase.first = sf_ctx->fillvertbase.last = NULL;
sf_ctx->filledgebase.first = sf_ctx->filledgebase.last = NULL;
sf_ctx->fillfacebase.first = sf_ctx->fillfacebase.last = NULL;
}
/* **** FILL ROUTINES *************************** */
ScanFillVert *BLI_scanfill_vert_add(ScanFillContext *sf_ctx, const float vec[3])
{
ScanFillVert *eve;
eve = mem_element_new(sf_ctx, sizeof(ScanFillVert));
BLI_addtail(&sf_ctx->fillvertbase, eve);
copy_v3_v3(eve->co, vec);
return eve;
}
ScanFillEdge *BLI_scanfill_edge_add(ScanFillContext *sf_ctx, ScanFillVert *v1, ScanFillVert *v2)
{
ScanFillEdge *newed;
newed = mem_element_new(sf_ctx, sizeof(ScanFillEdge));
BLI_addtail(&sf_ctx->filledgebase, newed);
newed->v1 = v1;
newed->v2 = v2;
return newed;
}
static void addfillface(ScanFillContext *sf_ctx, ScanFillVert *v1, ScanFillVert *v2, ScanFillVert *v3)
{
/* does not make edges */
ScanFillFace *sf_tri;
sf_tri = mem_element_new(sf_ctx, sizeof(ScanFillFace));
BLI_addtail(&sf_ctx->fillfacebase, sf_tri);
sf_tri->v1 = v1;
sf_tri->v2 = v2;
sf_tri->v3 = v3;
}
static int boundisect(PolyFill *pf2, PolyFill *pf1)
{
/* has pf2 been touched (intersected) by pf1 ? with bounding box */
/* test first if polys exist */
if (pf1->edges == 0 || pf2->edges == 0) return 0;
if (pf2->max_xy[0] < pf1->min_xy[0]) return 0;
if (pf2->max_xy[1] < pf1->min_xy[1]) return 0;
if (pf2->min_xy[0] > pf1->max_xy[0]) return 0;
if (pf2->min_xy[1] > pf1->max_xy[1]) return 0;
/* join */
if (pf2->max_xy[0] < pf1->max_xy[0]) pf2->max_xy[0] = pf1->max_xy[0];
if (pf2->max_xy[1] < pf1->max_xy[1]) pf2->max_xy[1] = pf1->max_xy[1];
if (pf2->min_xy[0] > pf1->min_xy[0]) pf2->min_xy[0] = pf1->min_xy[0];
if (pf2->min_xy[1] > pf1->min_xy[1]) pf2->min_xy[1] = pf1->min_xy[1];
return 1;
}
static void mergepolysSimp(ScanFillContext *sf_ctx, PolyFill *pf1, PolyFill *pf2) /* add pf2 to pf1 */
{
ScanFillVert *eve;
ScanFillEdge *eed;
/* replace old poly numbers */
eve = sf_ctx->fillvertbase.first;
while (eve) {
if (eve->poly_nr == pf2->nr) eve->poly_nr = pf1->nr;
eve = eve->next;
}
eed = sf_ctx->filledgebase.first;
while (eed) {
if (eed->poly_nr == pf2->nr) eed->poly_nr = pf1->nr;
eed = eed->next;
}
pf1->verts += pf2->verts;
pf1->edges += pf2->edges;
pf2->verts = pf2->edges = 0;
pf1->f = (pf1->f | pf2->f);
}
static short testedgeside(const float v1[2], const float v2[2], const float v3[2])
/* is v3 to the right of v1-v2 ? With exception: v3 == v1 || v3 == v2 */
{
float inp;
inp = (v2[0] - v1[0]) * (v1[1] - v3[1]) +
(v1[1] - v2[1]) * (v1[0] - v3[0]);
if (inp < 0.0f) {
return 0;
}
else if (inp == 0) {
if (v1[0] == v3[0] && v1[1] == v3[1]) return 0;
if (v2[0] == v3[0] && v2[1] == v3[1]) return 0;
}
return 1;
}
static short addedgetoscanvert(ScanFillVertLink *sc, ScanFillEdge *eed)
{
/* find first edge to the right of eed, and insert eed before that */
ScanFillEdge *ed;
float fac, fac1, x, y;
if (sc->edge_first == NULL) {
sc->edge_first = sc->edge_last = eed;
eed->prev = eed->next = NULL;
return 1;
}
x = eed->v1->xy[0];
y = eed->v1->xy[1];
fac1 = eed->v2->xy[1] - y;
if (fac1 == 0.0f) {
fac1 = 1.0e10f * (eed->v2->xy[0] - x);
}
else fac1 = (x - eed->v2->xy[0]) / fac1;
for (ed = sc->edge_first; ed; ed = ed->next) {
if (ed->v2 == eed->v2) {
return 0;
}
fac = ed->v2->xy[1] - y;
if (fac == 0.0f) {
fac = 1.0e10f * (ed->v2->xy[0] - x);
}
else {
fac = (x - ed->v2->xy[0]) / fac;
}
if (fac > fac1) {
break;
}
}
if (ed) BLI_insertlinkbefore((ListBase *)&(sc->edge_first), ed, eed);
else BLI_addtail((ListBase *)&(sc->edge_first), eed);
return 1;
}
static ScanFillVertLink *addedgetoscanlist(ScanFillContext *sf_ctx, ScanFillEdge *eed, int len)
{
/* inserts edge at correct location in ScanFillVertLink list */
/* returns sc when edge already exists */
ScanFillVertLink *sc, scsearch;
ScanFillVert *eve;
/* which vert is left-top? */
if (eed->v1->xy[1] == eed->v2->xy[1]) {
if (eed->v1->xy[0] > eed->v2->xy[0]) {
eve = eed->v1;
eed->v1 = eed->v2;
eed->v2 = eve;
}
}
else if (eed->v1->xy[1] < eed->v2->xy[1]) {
eve = eed->v1;
eed->v1 = eed->v2;
eed->v2 = eve;
}
/* find location in list */
scsearch.vert = eed->v1;
sc = (ScanFillVertLink *)bsearch(&scsearch, sf_ctx->_scdata, len,
sizeof(ScanFillVertLink), vergscdata);
if (sc == 0) printf("Error in search edge: %p\n", (void *)eed);
else if (addedgetoscanvert(sc, eed) == 0) return sc;
return 0;
}
static short boundinsideEV(ScanFillEdge *eed, ScanFillVert *eve)
/* is eve inside boundbox eed */
{
float minx, maxx, miny, maxy;
if (eed->v1->xy[0] < eed->v2->xy[0]) {
minx = eed->v1->xy[0];
maxx = eed->v2->xy[0];
}
else {
minx = eed->v2->xy[0];
maxx = eed->v1->xy[0];
}
if (eve->xy[0] >= minx && eve->xy[0] <= maxx) {
if (eed->v1->xy[1] < eed->v2->xy[1]) {
miny = eed->v1->xy[1];
maxy = eed->v2->xy[1];
}
else {
miny = eed->v2->xy[1];
maxy = eed->v1->xy[1];
}
if (eve->xy[1] >= miny && eve->xy[1] <= maxy) {
return 1;
}
}
return 0;
}
static void testvertexnearedge(ScanFillContext *sf_ctx)
{
/* only vertices with (->h == 1) are being tested for
* being close to an edge, if true insert */
ScanFillVert *eve;
ScanFillEdge *eed, *ed1;
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
if (eve->h == 1) {
/* find the edge which has vertex eve,
* note: we _know_ this will crash if 'ed1' becomes NULL
* but this will never happen. */
for (ed1 = sf_ctx->filledgebase.first;
!(ed1->v1 == eve || ed1->v2 == eve);
ed1 = ed1->next)
{
/* do nothing */
}
if (ed1->v1 == eve) {
ed1->v1 = ed1->v2;
ed1->v2 = eve;
}
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
if (eve != eed->v1 && eve != eed->v2 && eve->poly_nr == eed->poly_nr) {
if (compare_v3v3(eve->co, eed->v1->co, SF_EPSILON)) {
ed1->v2 = eed->v1;
eed->v1->h++;
eve->h = 0;
break;
}
else if (compare_v3v3(eve->co, eed->v2->co, SF_EPSILON)) {
ed1->v2 = eed->v2;
eed->v2->h++;
eve->h = 0;
break;
}
else {
if (boundinsideEV(eed, eve)) {
const float dist = dist_to_line_v2(eed->v1->xy, eed->v2->xy, eve->xy);
if (dist < SF_EPSILON) {
/* new edge */
ed1 = BLI_scanfill_edge_add(sf_ctx, eed->v1, eve);
/* printf("fill: vertex near edge %x\n",eve); */
ed1->f = 0;
ed1->poly_nr = eed->poly_nr;
eed->v1 = eve;
eve->h = 3;
break;
}
}
}
}
}
}
}
}
static void splitlist(ScanFillContext *sf_ctx, ListBase *tempve, ListBase *temped, short nr)
{
/* everything is in templist, write only poly nr to fillist */
ScanFillVert *eve, *nextve;
ScanFillEdge *eed, *nexted;
BLI_movelisttolist(tempve, &sf_ctx->fillvertbase);
BLI_movelisttolist(temped, &sf_ctx->filledgebase);
eve = tempve->first;
while (eve) {
nextve = eve->next;
if (eve->poly_nr == nr) {
BLI_remlink(tempve, eve);
BLI_addtail(&sf_ctx->fillvertbase, eve);
}
eve = nextve;
}
eed = temped->first;
while (eed) {
nexted = eed->next;
if (eed->poly_nr == nr) {
BLI_remlink(temped, eed);
BLI_addtail(&sf_ctx->filledgebase, eed);
}
eed = nexted;
}
}
static int scanfill(ScanFillContext *sf_ctx, PolyFill *pf, const int flag)
{
ScanFillVertLink *sc = NULL, *sc1;
ScanFillVert *eve, *v1, *v2, *v3;
ScanFillEdge *eed, *nexted, *ed1, *ed2, *ed3;
int a, b, verts, maxface, totface;
short nr, test, twoconnected = 0;
nr = pf->nr;
/* PRINTS */
#if 0
verts = pf->verts;
eve = sf_ctx->fillvertbase.first;
while (eve) {
printf("vert: %x co: %f %f\n", eve, eve->xy[0], eve->xy[1]);
eve = eve->next;
}
eed = sf_ctx->filledgebase.first;
while (eed) {
printf("edge: %x verts: %x %x\n", eed, eed->v1, eed->v2);
eed = eed->next;
}
#endif
/* STEP 0: remove zero sized edges */
if (flag & BLI_SCANFILL_CALC_REMOVE_DOUBLES) {
eed = sf_ctx->filledgebase.first;
while (eed) {
if (equals_v2v2(eed->v1->xy, eed->v2->xy)) {
if (eed->v1->f == SF_VERT_ZERO_LEN && eed->v2->f != SF_VERT_ZERO_LEN) {
eed->v2->f = SF_VERT_ZERO_LEN;
eed->v2->tmp.v = eed->v1->tmp.v;
}
else if (eed->v2->f == SF_VERT_ZERO_LEN && eed->v1->f != SF_VERT_ZERO_LEN) {
eed->v1->f = SF_VERT_ZERO_LEN;
eed->v1->tmp.v = eed->v2->tmp.v;
}
else if (eed->v2->f == SF_VERT_ZERO_LEN && eed->v1->f == SF_VERT_ZERO_LEN) {
eed->v1->tmp.v = eed->v2->tmp.v;
}
else {
eed->v2->f = SF_VERT_ZERO_LEN;
eed->v2->tmp.v = eed->v1;
}
}
eed = eed->next;
}
}
/* STEP 1: make using FillVert and FillEdge lists a sorted
* ScanFillVertLink list
*/
sc = sf_ctx->_scdata = (ScanFillVertLink *)MEM_callocN(pf->verts * sizeof(ScanFillVertLink), "Scanfill1");
eve = sf_ctx->fillvertbase.first;
verts = 0;
while (eve) {
if (eve->poly_nr == nr) {
if (eve->f != SF_VERT_ZERO_LEN) {
verts++;
eve->f = 0; /* flag for connectedges later on */
sc->vert = eve;
sc++;
}
}
eve = eve->next;
}
qsort(sf_ctx->_scdata, verts, sizeof(ScanFillVertLink), vergscdata);
if (flag & BLI_SCANFILL_CALC_REMOVE_DOUBLES) {
for (eed = sf_ctx->filledgebase.first; eed; eed = nexted) {
nexted = eed->next;
BLI_remlink(&sf_ctx->filledgebase, eed);
/* This code is for handling zero-length edges that get
* collapsed in step 0. It was removed for some time to
* fix trunk bug #4544, so if that comes back, this code
* may need some work, or there will have to be a better
* fix to #4544.
*
* warning, this can hang on un-ordered edges, see: [#33281]
* for now disable 'BLI_SCANFILL_CALC_REMOVE_DOUBLES' for ngons.
*/
if (eed->v1->f == SF_VERT_ZERO_LEN) {
v1 = eed->v1;
while ((eed->v1->f == SF_VERT_ZERO_LEN) && (eed->v1->tmp.v != v1) && (eed->v1 != eed->v1->tmp.v))
eed->v1 = eed->v1->tmp.v;
}
if (eed->v2->f == SF_VERT_ZERO_LEN) {
v2 = eed->v2;
while ((eed->v2->f == SF_VERT_ZERO_LEN) && (eed->v2->tmp.v != v2) && (eed->v2 != eed->v2->tmp.v))
eed->v2 = eed->v2->tmp.v;
}
if (eed->v1 != eed->v2) {
addedgetoscanlist(sf_ctx, eed, verts);
}
}
}
else {
for (eed = sf_ctx->filledgebase.first; eed; eed = nexted) {
nexted = eed->next;
BLI_remlink(&sf_ctx->filledgebase, eed);
if (eed->v1 != eed->v2) {
addedgetoscanlist(sf_ctx, eed, verts);
}
}
}
#if 0
sc = scdata;
for (a = 0; a < verts; a++) {
printf("\nscvert: %x\n", sc->v1);
eed = sc->first;
while (eed) {
printf(" ed %x %x %x\n", eed, eed->v1, eed->v2);
eed = eed->next;
}
sc++;
}
#endif
/* STEP 2: FILL LOOP */
if (pf->f == 0) twoconnected = 1;
/* (temporal) security: never much more faces than vertices */
totface = 0;
maxface = 2 * verts; /* 2*verts: based at a filled circle within a triangle */
sc = sf_ctx->_scdata;
for (a = 0; a < verts; a++) {
/* printf("VERTEX %d %x\n",a,sc->v1); */
ed1 = sc->edge_first;
while (ed1) { /* set connectflags */
nexted = ed1->next;
if (ed1->v1->h == 1 || ed1->v2->h == 1) {
BLI_remlink((ListBase *)&(sc->edge_first), ed1);
BLI_addtail(&sf_ctx->filledgebase, ed1);
if (ed1->v1->h > 1) ed1->v1->h--;
if (ed1->v2->h > 1) ed1->v2->h--;
}
else ed1->v2->f = SF_VERT_UNKNOWN;
ed1 = nexted;
}
while (sc->edge_first) { /* for as long there are edges */
ed1 = sc->edge_first;
ed2 = ed1->next;
/* commented out... the ESC here delivers corrupted memory (and doesnt work during grab) */
/* if (callLocalInterruptCallBack()) break; */
if (totface > maxface) {
/* printf("Fill error: endless loop. Escaped at vert %d, tot: %d.\n", a, verts); */
a = verts;
break;
}
if (ed2 == 0) {
sc->edge_first = sc->edge_last = NULL;
/* printf("just 1 edge to vert\n"); */
BLI_addtail(&sf_ctx->filledgebase, ed1);
ed1->v2->f = 0;
ed1->v1->h--;
ed1->v2->h--;
}
else {
/* test rest of vertices */
float miny;
v1 = ed1->v2;
v2 = ed1->v1;
v3 = ed2->v2;
/* this happens with a serial of overlapping edges */
if (v1 == v2 || v2 == v3) break;
/* printf("test verts %x %x %x\n",v1,v2,v3); */
miny = min_ff(v1->xy[1], v3->xy[1]);
/* miny = min_ff(v1->xy[1],v3->xy[1]); */
sc1 = sc + 1;
test = 0;
for (b = a + 1; b < verts; b++) {
if (sc1->vert->f == 0) {
if (sc1->vert->xy[1] <= miny) break;
if (testedgeside(v1->xy, v2->xy, sc1->vert->xy))
if (testedgeside(v2->xy, v3->xy, sc1->vert->xy))
if (testedgeside(v3->xy, v1->xy, sc1->vert->xy)) {
/* point in triangle */
test = 1;
break;
}
}
sc1++;
}
if (test) {
/* make new edge, and start over */
/* printf("add new edge %x %x and start again\n",v2,sc1->vert); */
ed3 = BLI_scanfill_edge_add(sf_ctx, v2, sc1->vert);
BLI_remlink(&sf_ctx->filledgebase, ed3);
BLI_insertlinkbefore((ListBase *)&(sc->edge_first), ed2, ed3);
ed3->v2->f = SF_VERT_UNKNOWN;
ed3->f = SF_EDGE_UNKNOWN;
ed3->v1->h++;
ed3->v2->h++;
}
else {
/* new triangle */
/* printf("add face %x %x %x\n",v1,v2,v3); */
addfillface(sf_ctx, v1, v2, v3);
totface++;
BLI_remlink((ListBase *)&(sc->edge_first), ed1);
BLI_addtail(&sf_ctx->filledgebase, ed1);
ed1->v2->f = 0;
ed1->v1->h--;
ed1->v2->h--;
/* ed2 can be removed when it's a boundary edge */
if ((ed2->f == 0 && twoconnected) || (ed2->f == SF_EDGE_BOUNDARY)) {
BLI_remlink((ListBase *)&(sc->edge_first), ed2);
BLI_addtail(&sf_ctx->filledgebase, ed2);
ed2->v2->f = 0;
ed2->v1->h--;
ed2->v2->h--;
}
/* new edge */
ed3 = BLI_scanfill_edge_add(sf_ctx, v1, v3);
BLI_remlink(&sf_ctx->filledgebase, ed3);
ed3->f = SF_EDGE_UNKNOWN;
ed3->v1->h++;
ed3->v2->h++;
/* printf("add new edge %x %x\n",v1,v3); */
sc1 = addedgetoscanlist(sf_ctx, ed3, verts);
if (sc1) { /* ed3 already exists: remove if a boundary */
/* printf("Edge exists\n"); */
ed3->v1->h--;
ed3->v2->h--;
ed3 = sc1->edge_first;
while (ed3) {
if ( (ed3->v1 == v1 && ed3->v2 == v3) || (ed3->v1 == v3 && ed3->v2 == v1) ) {
if (twoconnected || ed3->f == SF_EDGE_BOUNDARY) {
BLI_remlink((ListBase *)&(sc1->edge_first), ed3);
BLI_addtail(&sf_ctx->filledgebase, ed3);
ed3->v1->h--;
ed3->v2->h--;
}
break;
}
ed3 = ed3->next;
}
}
}
}
/* test for loose edges */
ed1 = sc->edge_first;
while (ed1) {
nexted = ed1->next;
if (ed1->v1->h < 2 || ed1->v2->h < 2) {
BLI_remlink((ListBase *)&(sc->edge_first), ed1);
BLI_addtail(&sf_ctx->filledgebase, ed1);
if (ed1->v1->h > 1) ed1->v1->h--;
if (ed1->v2->h > 1) ed1->v2->h--;
}
ed1 = nexted;
}
}
sc++;
}
MEM_freeN(sf_ctx->_scdata);
sf_ctx->_scdata = NULL;
return totface;
}
int BLI_scanfill_begin(ScanFillContext *sf_ctx)
{
memset(sf_ctx, 0, sizeof(*sf_ctx));
return 1;
}
int BLI_scanfill_calc(ScanFillContext *sf_ctx, const int flag)
{
return BLI_scanfill_calc_ex(sf_ctx, flag, NULL);
}
int BLI_scanfill_calc_ex(ScanFillContext *sf_ctx, const int flag, const float nor_proj[3])
{
/*
* - fill works with its own lists, so create that first (no faces!)
* - for vertices, put in ->tmp.v the old pointer
* - struct elements xs en ys are not used here: don't hide stuff in it
* - edge flag ->f becomes 2 when it's a new edge
* - mode: & 1 is check for crossings, then create edges (TO DO )
* - returns number of triangle faces added.
*/
ListBase tempve, temped;
ScanFillVert *eve;
ScanFillEdge *eed, *nexted;
PolyFill *pflist, *pf;
float *min_xy_p, *max_xy_p;
short a, c, poly = 0, ok = 0, toggle = 0;
int totfaces = 0; /* total faces added */
int co_x, co_y;
/* reset variables */
eve = sf_ctx->fillvertbase.first;
a = 0;
while (eve) {
eve->f = 0;
eve->poly_nr = 0;
eve->h = 0;
eve = eve->next;
a += 1;
}
if (flag & BLI_SCANFILL_CALC_QUADTRI_FASTPATH) {
if (a == 3) {
eve = sf_ctx->fillvertbase.first;
addfillface(sf_ctx, eve, eve->next, eve->next->next);
return 1;
}
else if (a == 4) {
float vec1[3], vec2[3];
eve = sf_ctx->fillvertbase.first;
/* no need to check 'eve->next->next->next' is valid, already counted */
/* use shortest diagonal for quad */
sub_v3_v3v3(vec1, eve->co, eve->next->next->co);
sub_v3_v3v3(vec2, eve->next->co, eve->next->next->next->co);
if (dot_v3v3(vec1, vec1) < dot_v3v3(vec2, vec2)) {
addfillface(sf_ctx, eve, eve->next, eve->next->next);
addfillface(sf_ctx, eve->next->next, eve->next->next->next, eve);
}
else {
addfillface(sf_ctx, eve->next, eve->next->next, eve->next->next->next);
addfillface(sf_ctx, eve->next->next->next, eve, eve->next);
}
return 2;
}
}
/* first test vertices if they are in edges */
/* including resetting of flags */
eed = sf_ctx->filledgebase.first;
while (eed) {
eed->poly_nr = 0;
eed->v1->f = SF_VERT_UNKNOWN;
eed->v2->f = SF_VERT_UNKNOWN;
eed = eed->next;
}
eve = sf_ctx->fillvertbase.first;
while (eve) {
if (eve->f & SF_VERT_UNKNOWN) {
ok = 1;
break;
}
eve = eve->next;
}
if (ok == 0) {
return 0;
}
else {
float n[3];
if (nor_proj) {
copy_v3_v3(n, nor_proj);
}
else {
/* define projection: with 'best' normal */
/* Newell's Method */
/* Similar code used elsewhere, but this checks for double ups
* which historically this function supports so better not change */
float *v_prev;
zero_v3(n);
eve = sf_ctx->fillvertbase.last;
v_prev = eve->co;
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
if (LIKELY(!compare_v3v3(v_prev, eve->co, SF_EPSILON))) {
add_newell_cross_v3_v3v3(n, v_prev, eve->co);
v_prev = eve->co;
}
}
}
if (UNLIKELY(normalize_v3(n) == 0.0f)) {
return 0;
}
axis_dominant_v3(&co_x, &co_y, n);
}
/* STEP 1: COUNT POLYS */
eve = sf_ctx->fillvertbase.first;
while (eve) {
eve->xy[0] = eve->co[co_x];
eve->xy[1] = eve->co[co_y];
/* get first vertex with no poly number */
if (eve->poly_nr == 0) {
poly++;
/* now a sort of select connected */
ok = 1;
eve->poly_nr = poly;
while (ok) {
ok = 0;
toggle++;
if (toggle & 1) eed = sf_ctx->filledgebase.first;
else eed = sf_ctx->filledgebase.last;
while (eed) {
if (eed->v1->poly_nr == 0 && eed->v2->poly_nr == poly) {
eed->v1->poly_nr = poly;
eed->poly_nr = poly;
ok = 1;
}
else if (eed->v2->poly_nr == 0 && eed->v1->poly_nr == poly) {
eed->v2->poly_nr = poly;
eed->poly_nr = poly;
ok = 1;
}
else if (eed->poly_nr == 0) {
if (eed->v1->poly_nr == poly && eed->v2->poly_nr == poly) {
eed->poly_nr = poly;
ok = 1;
}
}
if (toggle & 1) eed = eed->next;
else eed = eed->prev;
}
}
}
eve = eve->next;
}
/* printf("amount of poly's: %d\n",poly); */
/* STEP 2: remove loose edges and strings of edges */
eed = sf_ctx->filledgebase.first;
while (eed) {
if (eed->v1->h++ > 250) break;
if (eed->v2->h++ > 250) break;
eed = eed->next;
}
if (eed) {
/* otherwise it's impossible to be sure you can clear vertices */
callLocalErrorCallBack("No vertices with 250 edges allowed!");
return 0;
}
/* does it only for vertices with (->h == 1) */
testvertexnearedge(sf_ctx);
ok = 1;
while (ok) {
ok = 0;
toggle++;
if (toggle & 1) eed = sf_ctx->filledgebase.first;
else eed = sf_ctx->filledgebase.last;
while (eed) {
if (toggle & 1) nexted = eed->next;
else nexted = eed->prev;
if (eed->v1->h == 1) {
eed->v2->h--;
BLI_remlink(&sf_ctx->fillvertbase, eed->v1);
BLI_remlink(&sf_ctx->filledgebase, eed);
ok = 1;
}
else if (eed->v2->h == 1) {
eed->v1->h--;
BLI_remlink(&sf_ctx->fillvertbase, eed->v2);
BLI_remlink(&sf_ctx->filledgebase, eed);
ok = 1;
}
eed = nexted;
}
}
if (sf_ctx->filledgebase.first == 0) {
/* printf("All edges removed\n"); */
return 0;
}
/* CURRENT STATUS:
* - eve->f :1 = available in edges
* - eve->xs :polynumber
* - eve->h :amount of edges connected to vertex
* - eve->tmp.v :store! original vertex number
*
* - eed->f :1 = boundary edge (optionally set by caller)
* - eed->poly_nr :poly number
*/
/* STEP 3: MAKE POLYFILL STRUCT */
pflist = (PolyFill *)MEM_callocN(poly * sizeof(PolyFill), "edgefill");
pf = pflist;
for (a = 1; a <= poly; a++) {
pf->nr = a;
pf->min_xy[0] = pf->min_xy[1] = 1.0e20;
pf->max_xy[0] = pf->max_xy[1] = -1.0e20;
pf++;
}
eed = sf_ctx->filledgebase.first;
while (eed) {
pflist[eed->poly_nr - 1].edges++;
eed = eed->next;
}
eve = sf_ctx->fillvertbase.first;
while (eve) {
pflist[eve->poly_nr - 1].verts++;
min_xy_p = pflist[eve->poly_nr - 1].min_xy;
max_xy_p = pflist[eve->poly_nr - 1].max_xy;
min_xy_p[0] = (min_xy_p[0]) < (eve->xy[0]) ? (min_xy_p[0]) : (eve->xy[0]);
min_xy_p[1] = (min_xy_p[1]) < (eve->xy[1]) ? (min_xy_p[1]) : (eve->xy[1]);
max_xy_p[0] = (max_xy_p[0]) > (eve->xy[0]) ? (max_xy_p[0]) : (eve->xy[0]);
max_xy_p[1] = (max_xy_p[1]) > (eve->xy[1]) ? (max_xy_p[1]) : (eve->xy[1]);
if (eve->h > 2) pflist[eve->poly_nr - 1].f = 1;
eve = eve->next;
}
/* STEP 4: FIND HOLES OR BOUNDS, JOIN THEM
* ( bounds just to divide it in pieces for optimization,
* the edgefill itself has good auto-hole detection)
* WATCH IT: ONLY WORKS WITH SORTED POLYS!!! */
if (poly > 1) {
short *polycache, *pc;
/* so, sort first */
qsort(pflist, poly, sizeof(PolyFill), vergpoly);
#if 0
pf = pflist;
for (a = 1; a <= poly; a++) {
printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
PRINT2(f, f, pf->min[0], pf->min[1]);
pf++;
}
#endif
polycache = pc = MEM_callocN(sizeof(short) * poly, "polycache");
pf = pflist;
for (a = 0; a < poly; a++, pf++) {
for (c = a + 1; c < poly; c++) {
/* if 'a' inside 'c': join (bbox too)
* Careful: 'a' can also be inside another poly.
*/
if (boundisect(pf, pflist + c)) {
*pc = c;
pc++;
}
/* only for optimize! */
/* else if (pf->max_xy[0] < (pflist+c)->min[cox]) break; */
}
while (pc != polycache) {
pc--;
mergepolysSimp(sf_ctx, pf, pflist + *pc);
}
}
MEM_freeN(polycache);
}
#if 0
printf("after merge\n");
pf = pflist;
for (a = 1; a <= poly; a++) {
printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
pf++;
}
#endif
/* STEP 5: MAKE TRIANGLES */
tempve.first = sf_ctx->fillvertbase.first;
tempve.last = sf_ctx->fillvertbase.last;
temped.first = sf_ctx->filledgebase.first;
temped.last = sf_ctx->filledgebase.last;
sf_ctx->fillvertbase.first = sf_ctx->fillvertbase.last = NULL;
sf_ctx->filledgebase.first = sf_ctx->filledgebase.last = NULL;
pf = pflist;
for (a = 0; a < poly; a++) {
if (pf->edges > 1) {
splitlist(sf_ctx, &tempve, &temped, pf->nr);
totfaces += scanfill(sf_ctx, pf, flag);
}
pf++;
}
BLI_movelisttolist(&sf_ctx->fillvertbase, &tempve);
BLI_movelisttolist(&sf_ctx->filledgebase, &temped);
/* FREE */
MEM_freeN(pflist);
return totfaces;
}