This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenlib/intern/scanfill.c

1119 lines
26 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* (uit traces) maart 95
*/
/** \file blender/blenlib/intern/scanfill.c
* \ingroup bli
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_callbacks.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_scanfill.h"
#include "BLI_utildefines.h"
#include "BLI_threads.h"
/* callbacks for errors and interrupts and some goo */
static void (*BLI_localErrorCallBack)(const char *) = NULL;
static int (*BLI_localInterruptCallBack)(void) = NULL;
void BLI_setErrorCallBack(void (*f)(const char *))
{
BLI_localErrorCallBack = f;
}
void BLI_setInterruptCallBack(int (*f)(void))
{
BLI_localInterruptCallBack = f;
}
/* just flush the error to /dev/null if the error handler is missing */
void callLocalErrorCallBack(const char *msg)
{
if (BLI_localErrorCallBack) {
BLI_localErrorCallBack(msg);
}
}
#if 0
/* ignore if the interrupt wasn't set */
static int callLocalInterruptCallBack(void)
{
if (BLI_localInterruptCallBack) {
return BLI_localInterruptCallBack();
}
else {
return 0;
}
}
#endif
/* local types */
typedef struct PolyFill {
int edges, verts;
float min[3], max[3];
short f, nr;
} PolyFill;
typedef struct ScanFillVertLink {
ScanFillVert *v1;
ScanFillEdge *first, *last;
} ScanFillVertLink;
/* local funcs */
#define COMPLIMIT 0.00003f
static ScanFillVertLink *scdata;
ListBase fillvertbase = {NULL, NULL};
ListBase filledgebase = {NULL, NULL};
ListBase fillfacebase = {NULL, NULL};
static int cox, coy;
/* **** FUNCTIONS FOR QSORT *************************** */
static int vergscdata(const void *a1, const void *a2)
{
const ScanFillVertLink *x1 = a1, *x2 = a2;
if (x1->v1->co[coy] < x2->v1->co[coy]) return 1;
else if (x1->v1->co[coy] > x2->v1->co[coy]) return -1;
else if (x1->v1->co[cox] > x2->v1->co[cox]) return 1;
else if (x1->v1->co[cox] < x2->v1->co[cox]) return -1;
return 0;
}
static int vergpoly(const void *a1, const void *a2)
{
const PolyFill *x1 = a1, *x2 = a2;
if (x1->min[cox] > x2->min[cox]) return 1;
else if (x1->min[cox] < x2->min[cox]) return -1;
else if (x1->min[coy] > x2->min[coy]) return 1;
else if (x1->min[coy] < x2->min[coy]) return -1;
return 0;
}
/* ************* MEMORY MANAGEMENT ************* */
struct mem_elements {
struct mem_elements *next, *prev;
char *data;
};
/* simple optimization for allocating thousands of small memory blocks
* only to be used within loops, and not by one function at a time
* free in the end, with argument '-1'
*/
#define MEM_ELEM_BLOCKSIZE 16384
static struct mem_elements *melem__cur = NULL;
static int melem__offs = 0; /* the current free address */
static ListBase melem__lb = {NULL, NULL};
static void *mem_element_new(int size)
{
BLI_assert(!(size > 10000 || size == 0)); /* this is invalid use! */
size = (size + 3) & ~3; /* allocate in units of 4 */
if (melem__cur && (size + melem__offs < MEM_ELEM_BLOCKSIZE)) {
void *adr = (void *) (melem__cur->data + melem__offs);
melem__offs += size;
return adr;
}
else {
melem__cur = MEM_callocN(sizeof(struct mem_elements), "newmem");
melem__cur->data = MEM_callocN(MEM_ELEM_BLOCKSIZE, "newmem");
BLI_addtail(&melem__lb, melem__cur);
melem__offs = size;
return melem__cur->data;
}
}
static void mem_element_reset(int keep_first)
{
struct mem_elements *first;
if ((first = melem__lb.first)) { /* can be false if first fill fails */
if (keep_first) {
BLI_remlink(&melem__lb, first);
}
melem__cur = melem__lb.first;
while (melem__cur) {
MEM_freeN(melem__cur->data);
melem__cur = melem__cur->next;
}
BLI_freelistN(&melem__lb);
/*reset the block we're keeping*/
if (keep_first) {
BLI_addtail(&melem__lb, first);
memset(first->data, 0, MEM_ELEM_BLOCKSIZE);
}
else {
first = NULL;
}
}
melem__cur = first;
melem__offs = 0;
}
void BLI_end_edgefill(void)
{
mem_element_reset(TRUE);
fillvertbase.first = fillvertbase.last = 0;
filledgebase.first = filledgebase.last = 0;
fillfacebase.first = fillfacebase.last = 0;
BLI_unlock_thread(LOCK_SCANFILL);
}
void BLI_scanfill_free(void)
{
mem_element_reset(FALSE);
}
/* **** FILL ROUTINES *************************** */
ScanFillVert *BLI_addfillvert(const float vec[3])
{
ScanFillVert *eve;
eve = mem_element_new(sizeof(ScanFillVert));
BLI_addtail(&fillvertbase, eve);
eve->co[0] = vec[0];
eve->co[1] = vec[1];
eve->co[2] = vec[2];
return eve;
}
ScanFillEdge *BLI_addfilledge(ScanFillVert *v1, ScanFillVert *v2)
{
ScanFillEdge *newed;
newed = mem_element_new(sizeof(ScanFillEdge));
BLI_addtail(&filledgebase, newed);
newed->v1 = v1;
newed->v2 = v2;
return newed;
}
static void addfillface(ScanFillVert *v1, ScanFillVert *v2, ScanFillVert *v3)
{
/* does not make edges */
ScanFillFace *evl;
evl = mem_element_new(sizeof(ScanFillFace));
BLI_addtail(&fillfacebase, evl);
evl->v1 = v1;
evl->v2 = v2;
evl->v3 = v3;
}
static int boundisect(PolyFill *pf2, PolyFill *pf1)
{
/* has pf2 been touched (intersected) by pf1 ? with bounding box */
/* test first if polys exist */
if (pf1->edges == 0 || pf2->edges == 0) return 0;
if (pf2->max[cox] < pf1->min[cox]) return 0;
if (pf2->max[coy] < pf1->min[coy]) return 0;
if (pf2->min[cox] > pf1->max[cox]) return 0;
if (pf2->min[coy] > pf1->max[coy]) return 0;
/* join */
if (pf2->max[cox] < pf1->max[cox]) pf2->max[cox] = pf1->max[cox];
if (pf2->max[coy] < pf1->max[coy]) pf2->max[coy] = pf1->max[coy];
if (pf2->min[cox] > pf1->min[cox]) pf2->min[cox] = pf1->min[cox];
if (pf2->min[coy] > pf1->min[coy]) pf2->min[coy] = pf1->min[coy];
return 1;
}
static void mergepolysSimp(PolyFill *pf1, PolyFill *pf2) /* add pf2 to pf1 */
{
ScanFillVert *eve;
ScanFillEdge *eed;
/* replace old poly numbers */
eve = fillvertbase.first;
while (eve) {
if (eve->poly_nr == pf2->nr) eve->poly_nr = pf1->nr;
eve = eve->next;
}
eed = filledgebase.first;
while (eed) {
if (eed->poly_nr == pf2->nr) eed->poly_nr = pf1->nr;
eed = eed->next;
}
pf1->verts += pf2->verts;
pf1->edges += pf2->edges;
pf2->verts = pf2->edges = 0;
pf1->f = (pf1->f | pf2->f);
}
static short testedgeside(const float v1[3], const float v2[3], const float v3[3])
/* is v3 to the right of v1-v2 ? With exception: v3==v1 || v3==v2 */
{
float inp;
inp = (v2[cox] - v1[cox]) * (v1[coy] - v3[coy]) +
(v1[coy] - v2[coy]) * (v1[cox] - v3[cox]);
if (inp < 0.0f) {
return 0;
}
else if (inp == 0) {
if (v1[cox] == v3[cox] && v1[coy] == v3[coy]) return 0;
if (v2[cox] == v3[cox] && v2[coy] == v3[coy]) return 0;
}
return 1;
}
static short addedgetoscanvert(ScanFillVertLink *sc, ScanFillEdge *eed)
{
/* find first edge to the right of eed, and insert eed before that */
ScanFillEdge *ed;
float fac, fac1, x, y;
if (sc->first == NULL) {
sc->first = sc->last = eed;
eed->prev = eed->next = NULL;
return 1;
}
x = eed->v1->co[cox];
y = eed->v1->co[coy];
fac1 = eed->v2->co[coy] - y;
if (fac1 == 0.0f) {
fac1 = 1.0e10f * (eed->v2->co[cox] - x);
}
else fac1 = (x - eed->v2->co[cox]) / fac1;
ed = sc->first;
while (ed) {
if (ed->v2 == eed->v2) return 0;
fac = ed->v2->co[coy] - y;
if (fac == 0.0f) {
fac = 1.0e10f * (ed->v2->co[cox] - x);
}
else {
fac = (x - ed->v2->co[cox]) / fac;
}
if (fac > fac1) break;
ed = ed->next;
}
if (ed) BLI_insertlinkbefore((ListBase *)&(sc->first), ed, eed);
else BLI_addtail((ListBase *)&(sc->first), eed);
return 1;
}
static ScanFillVertLink *addedgetoscanlist(ScanFillEdge *eed, int len)
{
/* inserts edge at correct location in ScanFillVertLink list */
/* returns sc when edge already exists */
ScanFillVertLink *sc, scsearch;
ScanFillVert *eve;
/* which vert is left-top? */
if (eed->v1->co[coy] == eed->v2->co[coy]) {
if (eed->v1->co[cox] > eed->v2->co[cox]) {
eve = eed->v1;
eed->v1 = eed->v2;
eed->v2 = eve;
}
}
else if (eed->v1->co[coy] < eed->v2->co[coy]) {
eve = eed->v1;
eed->v1 = eed->v2;
eed->v2 = eve;
}
/* find location in list */
scsearch.v1 = eed->v1;
sc = (ScanFillVertLink *)bsearch(&scsearch, scdata, len,
sizeof(ScanFillVertLink), vergscdata);
if (sc == 0) printf("Error in search edge: %p\n", (void *)eed);
else if (addedgetoscanvert(sc, eed) == 0) return sc;
return 0;
}
static short boundinsideEV(ScanFillEdge *eed, ScanFillVert *eve)
/* is eve inside boundbox eed */
{
float minx, maxx, miny, maxy;
if (eed->v1->co[cox] < eed->v2->co[cox]) {
minx = eed->v1->co[cox];
maxx = eed->v2->co[cox];
}
else {
minx = eed->v2->co[cox];
maxx = eed->v1->co[cox];
}
if (eve->co[cox] >= minx && eve->co[cox] <= maxx) {
if (eed->v1->co[coy] < eed->v2->co[coy]) {
miny = eed->v1->co[coy];
maxy = eed->v2->co[coy];
}
else {
miny = eed->v2->co[coy];
maxy = eed->v1->co[coy];
}
if (eve->co[coy] >= miny && eve->co[coy] <= maxy) return 1;
}
return 0;
}
static void testvertexnearedge(void)
{
/* only vertices with ->h==1 are being tested for
* being close to an edge, if true insert */
ScanFillVert *eve;
ScanFillEdge *eed, *ed1;
float dist, vec1[2], vec2[2], vec3[2];
eve = fillvertbase.first;
while (eve) {
if (eve->h == 1) {
vec3[0] = eve->co[cox];
vec3[1] = eve->co[coy];
/* find the edge which has vertex eve */
ed1 = filledgebase.first;
while (ed1) {
if (ed1->v1 == eve || ed1->v2 == eve) break;
ed1 = ed1->next;
}
if (ed1->v1 == eve) {
ed1->v1 = ed1->v2;
ed1->v2 = eve;
}
eed = filledgebase.first;
while (eed) {
if (eve != eed->v1 && eve != eed->v2 && eve->poly_nr == eed->poly_nr) {
if (compare_v3v3(eve->co, eed->v1->co, COMPLIMIT)) {
ed1->v2 = eed->v1;
eed->v1->h++;
eve->h = 0;
break;
}
else if (compare_v3v3(eve->co, eed->v2->co, COMPLIMIT)) {
ed1->v2 = eed->v2;
eed->v2->h++;
eve->h = 0;
break;
}
else {
vec1[0] = eed->v1->co[cox];
vec1[1] = eed->v1->co[coy];
vec2[0] = eed->v2->co[cox];
vec2[1] = eed->v2->co[coy];
if (boundinsideEV(eed, eve)) {
dist = dist_to_line_v2(vec1, vec2, vec3);
if (dist < COMPLIMIT) {
/* new edge */
ed1 = BLI_addfilledge(eed->v1, eve);
/* printf("fill: vertex near edge %x\n",eve); */
ed1->f = 0;
ed1->poly_nr = eed->poly_nr;
eed->v1 = eve;
eve->h = 3;
break;
}
}
}
}
eed = eed->next;
}
}
eve = eve->next;
}
}
static void splitlist(ListBase *tempve, ListBase *temped, short nr)
{
/* everything is in templist, write only poly nr to fillist */
ScanFillVert *eve, *nextve;
ScanFillEdge *eed, *nexted;
BLI_movelisttolist(tempve, &fillvertbase);
BLI_movelisttolist(temped, &filledgebase);
eve = tempve->first;
while (eve) {
nextve = eve->next;
if (eve->poly_nr == nr) {
BLI_remlink(tempve, eve);
BLI_addtail(&fillvertbase, eve);
}
eve = nextve;
}
eed = temped->first;
while (eed) {
nexted = eed->next;
if (eed->poly_nr == nr) {
BLI_remlink(temped, eed);
BLI_addtail(&filledgebase, eed);
}
eed = nexted;
}
}
static int scanfill(PolyFill *pf)
{
ScanFillVertLink *sc = NULL, *sc1;
ScanFillVert *eve, *v1, *v2, *v3;
ScanFillEdge *eed, *nexted, *ed1, *ed2, *ed3;
float miny = 0.0;
int a, b, verts, maxface, totface;
short nr, test, twoconnected = 0;
nr = pf->nr;
/* PRINTS */
#if 0
verts = pf->verts;
eve = fillvertbase.first;
while (eve) {
printf("vert: %x co: %f %f\n", eve, eve->co[cox], eve->co[coy]);
eve = eve->next;
}
eed = filledgebase.first;
while (eed) {
printf("edge: %x verts: %x %x\n", eed, eed->v1, eed->v2);
eed = eed->next;
}
#endif
/* STEP 0: remove zero sized edges */
eed = filledgebase.first;
while (eed) {
if (eed->v1->co[cox] == eed->v2->co[cox]) {
if (eed->v1->co[coy] == eed->v2->co[coy]) {
if (eed->v1->f == 255 && eed->v2->f != 255) {
eed->v2->f = 255;
eed->v2->tmp.v = eed->v1->tmp.v;
}
else if (eed->v2->f == 255 && eed->v1->f != 255) {
eed->v1->f = 255;
eed->v1->tmp.v = eed->v2->tmp.v;
}
else if (eed->v2->f == 255 && eed->v1->f == 255) {
eed->v1->tmp.v = eed->v2->tmp.v;
}
else {
eed->v2->f = 255;
eed->v2->tmp.v = eed->v1;
}
}
}
eed = eed->next;
}
/* STEP 1: make using FillVert and FillEdge lists a sorted
* ScanFillVertLink list
*/
sc = scdata = (ScanFillVertLink *)MEM_callocN(pf->verts * sizeof(ScanFillVertLink), "Scanfill1");
eve = fillvertbase.first;
verts = 0;
while (eve) {
if (eve->poly_nr == nr) {
if (eve->f != 255) {
verts++;
eve->f = 0; /* flag for connectedges later on */
sc->v1 = eve;
sc++;
}
}
eve = eve->next;
}
qsort(scdata, verts, sizeof(ScanFillVertLink), vergscdata);
eed = filledgebase.first;
while (eed) {
nexted = eed->next;
BLI_remlink(&filledgebase, eed);
/* This code is for handling zero-length edges that get
* collapsed in step 0. It was removed for some time to
* fix trunk bug #4544, so if that comes back, this code
* may need some work, or there will have to be a better
* fix to #4544. */
if (eed->v1->f == 255) {
v1 = eed->v1;
while ((eed->v1->f == 255) && (eed->v1->tmp.v != v1))
eed->v1 = eed->v1->tmp.v;
}
if (eed->v2->f == 255) {
v2 = eed->v2;
while ((eed->v2->f == 255) && (eed->v2->tmp.v != v2))
eed->v2 = eed->v2->tmp.v;
}
if (eed->v1 != eed->v2) addedgetoscanlist(eed, verts);
eed = nexted;
}
#if 0
sc = scdata;
for (a = 0; a < verts; a++) {
printf("\nscvert: %x\n", sc->v1);
eed = sc->first;
while (eed) {
printf(" ed %x %x %x\n", eed, eed->v1, eed->v2);
eed = eed->next;
}
sc++;
}
#endif
/* STEP 2: FILL LOOP */
if (pf->f == 0) twoconnected = 1;
/* (temporal) security: never much more faces than vertices */
totface = 0;
maxface = 2 * verts; /* 2*verts: based at a filled circle within a triangle */
sc = scdata;
for (a = 0; a < verts; a++) {
/* printf("VERTEX %d %x\n",a,sc->v1); */
ed1 = sc->first;
while (ed1) { /* set connectflags */
nexted = ed1->next;
if (ed1->v1->h == 1 || ed1->v2->h == 1) {
BLI_remlink((ListBase *)&(sc->first), ed1);
BLI_addtail(&filledgebase, ed1);
if (ed1->v1->h > 1) ed1->v1->h--;
if (ed1->v2->h > 1) ed1->v2->h--;
}
else ed1->v2->f = 1;
ed1 = nexted;
}
while (sc->first) { /* for as long there are edges */
ed1 = sc->first;
ed2 = ed1->next;
/* commented out... the ESC here delivers corrupted memory (and doesnt work during grab) */
/* if (callLocalInterruptCallBack()) break; */
if (totface > maxface) {
/* printf("Fill error: endless loop. Escaped at vert %d, tot: %d.\n", a, verts); */
a = verts;
break;
}
if (ed2 == 0) {
sc->first = sc->last = NULL;
/* printf("just 1 edge to vert\n"); */
BLI_addtail(&filledgebase, ed1);
ed1->v2->f = 0;
ed1->v1->h--;
ed1->v2->h--;
}
else {
/* test rest of vertices */
v1 = ed1->v2;
v2 = ed1->v1;
v3 = ed2->v2;
/* this happens with a serial of overlapping edges */
if (v1 == v2 || v2 == v3) break;
/* printf("test verts %x %x %x\n",v1,v2,v3); */
miny = ( (v1->co[coy]) < (v3->co[coy]) ? (v1->co[coy]) : (v3->co[coy]) );
/* miny= MIN2(v1->co[coy],v3->co[coy]); */
sc1 = sc + 1;
test = 0;
for (b = a + 1; b < verts; b++) {
if (sc1->v1->f == 0) {
if (sc1->v1->co[coy] <= miny) break;
if (testedgeside(v1->co, v2->co, sc1->v1->co))
if (testedgeside(v2->co, v3->co, sc1->v1->co))
if (testedgeside(v3->co, v1->co, sc1->v1->co)) {
/* point in triangle */
test = 1;
break;
}
}
sc1++;
}
if (test) {
/* make new edge, and start over */
/* printf("add new edge %x %x and start again\n",v2,sc1->v1); */
ed3 = BLI_addfilledge(v2, sc1->v1);
BLI_remlink(&filledgebase, ed3);
BLI_insertlinkbefore((ListBase *)&(sc->first), ed2, ed3);
ed3->v2->f = 1;
ed3->f = 2;
ed3->v1->h++;
ed3->v2->h++;
}
else {
/* new triangle */
/* printf("add face %x %x %x\n",v1,v2,v3); */
addfillface(v1, v2, v3);
totface++;
BLI_remlink((ListBase *)&(sc->first), ed1);
BLI_addtail(&filledgebase, ed1);
ed1->v2->f = 0;
ed1->v1->h--;
ed1->v2->h--;
/* ed2 can be removed when it's a boundary edge */
if ((ed2->f == 0 && twoconnected) || (ed2->f == FILLBOUNDARY)) {
BLI_remlink((ListBase *)&(sc->first), ed2);
BLI_addtail(&filledgebase, ed2);
ed2->v2->f = 0;
ed2->v1->h--;
ed2->v2->h--;
}
/* new edge */
ed3 = BLI_addfilledge(v1, v3);
BLI_remlink(&filledgebase, ed3);
ed3->f = 2;
ed3->v1->h++;
ed3->v2->h++;
/* printf("add new edge %x %x\n",v1,v3); */
sc1 = addedgetoscanlist(ed3, verts);
if (sc1) { /* ed3 already exists: remove if a boundary */
/* printf("Edge exists\n"); */
ed3->v1->h--;
ed3->v2->h--;
ed3 = sc1->first;
while (ed3) {
if ( (ed3->v1 == v1 && ed3->v2 == v3) || (ed3->v1 == v3 && ed3->v2 == v1) ) {
if (twoconnected || ed3->f == FILLBOUNDARY) {
BLI_remlink((ListBase *)&(sc1->first), ed3);
BLI_addtail(&filledgebase, ed3);
ed3->v1->h--;
ed3->v2->h--;
}
break;
}
ed3 = ed3->next;
}
}
}
}
/* test for loose edges */
ed1 = sc->first;
while (ed1) {
nexted = ed1->next;
if (ed1->v1->h < 2 || ed1->v2->h < 2) {
BLI_remlink((ListBase *)&(sc->first), ed1);
BLI_addtail(&filledgebase, ed1);
if (ed1->v1->h > 1) ed1->v1->h--;
if (ed1->v2->h > 1) ed1->v2->h--;
}
ed1 = nexted;
}
}
sc++;
}
MEM_freeN(scdata);
return totface;
}
int BLI_begin_edgefill(void)
{
BLI_lock_thread(LOCK_SCANFILL);
return 1;
}
int BLI_edgefill(const short do_quad_tri_speedup)
{
/*
* - fill works with its own lists, so create that first (no faces!)
* - for vertices, put in ->tmp.v the old pointer
* - struct elements xs en ys are not used here: don't hide stuff in it
* - edge flag ->f becomes 2 when it's a new edge
* - mode: & 1 is check for crossings, then create edges (TO DO )
* - returns number of triangle faces added.
*/
ListBase tempve, temped;
ScanFillVert *eve;
ScanFillEdge *eed, *nexted;
PolyFill *pflist, *pf;
float limit, *minp, *maxp, *v1, *v2, norm[3], len;
short a, c, poly = 0, ok = 0, toggle = 0;
int totfaces = 0; /* total faces added */
/* reset variables */
eve = fillvertbase.first;
a = 0;
while (eve) {
eve->f = 0;
eve->poly_nr = 0;
eve->h = 0;
eve = eve->next;
a += 1;
}
if (do_quad_tri_speedup && (a == 3)) {
eve = fillvertbase.first;
addfillface(eve, eve->next, eve->next->next);
return 1;
}
else if (do_quad_tri_speedup && (a == 4)) {
float vec1[3], vec2[3];
eve = fillvertbase.first;
/* no need to check 'eve->next->next->next' is valid, already counted */
/*use shortest diagonal for quad*/
sub_v3_v3v3(vec1, eve->co, eve->next->next->co);
sub_v3_v3v3(vec2, eve->next->co, eve->next->next->next->co);
if (dot_v3v3(vec1, vec1) < dot_v3v3(vec2, vec2)) {
addfillface(eve, eve->next, eve->next->next);
addfillface(eve->next->next, eve->next->next->next, eve);
}
else {
addfillface(eve->next, eve->next->next, eve->next->next->next);
addfillface(eve->next->next->next, eve, eve->next);
}
return 2;
}
/* first test vertices if they are in edges */
/* including resetting of flags */
eed = filledgebase.first;
while (eed) {
eed->poly_nr = 0;
eed->v1->f = 1;
eed->v2->f = 1;
eed = eed->next;
}
eve = fillvertbase.first;
while (eve) {
if (eve->f & 1) {
ok = 1;
break;
}
eve = eve->next;
}
if (ok == 0) return 0;
/* NEW NEW! define projection: with 'best' normal */
/* just use the first three different vertices */
/* THIS PART STILL IS PRETTY WEAK! (ton) */
eve = fillvertbase.last;
len = 0.0;
v1 = eve->co;
v2 = 0;
eve = fillvertbase.first;
limit = 1e-8f;
while (eve) {
if (v2) {
if (!compare_v3v3(v2, eve->co, COMPLIMIT)) {
float inner = angle_v3v3v3(v1, v2, eve->co);
inner = MIN2(fabsf(inner), fabsf(M_PI - inner));
if (inner > limit) {
limit = inner;
len = normal_tri_v3(norm, v1, v2, eve->co);
}
}
}
else if (!compare_v3v3(v1, eve->co, COMPLIMIT))
v2 = eve->co;
eve = eve->next;
}
if (len == 0.0f) return 0; /* no fill possible */
axis_dominant_v3(&cox, &coy, norm);
/* STEP 1: COUNT POLYS */
eve = fillvertbase.first;
while (eve) {
/* get first vertex with no poly number */
if (eve->poly_nr == 0) {
poly++;
/* now a sortof select connected */
ok = 1;
eve->poly_nr = poly;
while (ok) {
ok = 0;
toggle++;
if (toggle & 1) eed = filledgebase.first;
else eed = filledgebase.last;
while (eed) {
if (eed->v1->poly_nr == 0 && eed->v2->poly_nr == poly) {
eed->v1->poly_nr = poly;
eed->poly_nr = poly;
ok = 1;
}
else if (eed->v2->poly_nr == 0 && eed->v1->poly_nr == poly) {
eed->v2->poly_nr = poly;
eed->poly_nr = poly;
ok = 1;
}
else if (eed->poly_nr == 0) {
if (eed->v1->poly_nr == poly && eed->v2->poly_nr == poly) {
eed->poly_nr = poly;
ok = 1;
}
}
if (toggle & 1) eed = eed->next;
else eed = eed->prev;
}
}
}
eve = eve->next;
}
/* printf("amount of poly's: %d\n",poly); */
/* STEP 2: remove loose edges and strings of edges */
eed = filledgebase.first;
while (eed) {
if (eed->v1->h++ > 250) break;
if (eed->v2->h++ > 250) break;
eed = eed->next;
}
if (eed) {
/* otherwise it's impossible to be sure you can clear vertices */
callLocalErrorCallBack("No vertices with 250 edges allowed!");
return 0;
}
/* does it only for vertices with ->h==1 */
testvertexnearedge();
ok = 1;
while (ok) {
ok = 0;
toggle++;
if (toggle & 1) eed = filledgebase.first;
else eed = filledgebase.last;
while (eed) {
if (toggle & 1) nexted = eed->next;
else nexted = eed->prev;
if (eed->v1->h == 1) {
eed->v2->h--;
BLI_remlink(&fillvertbase, eed->v1);
BLI_remlink(&filledgebase, eed);
ok = 1;
}
else if (eed->v2->h == 1) {
eed->v1->h--;
BLI_remlink(&fillvertbase, eed->v2);
BLI_remlink(&filledgebase, eed);
ok = 1;
}
eed = nexted;
}
}
if (filledgebase.first == 0) {
/* printf("All edges removed\n"); */
return 0;
}
/* CURRENT STATUS:
* - eve->f :1= availalble in edges
* - eve->xs :polynumber
* - eve->h :amount of edges connected to vertex
* - eve->tmp.v :store! original vertex number
*
* - eed->f :1= boundary edge (optionally set by caller)
* - eed->poly_nr :poly number
*/
/* STEP 3: MAKE POLYFILL STRUCT */
pflist = (PolyFill *)MEM_callocN(poly * sizeof(PolyFill), "edgefill");
pf = pflist;
for (a = 1; a <= poly; a++) {
pf->nr = a;
pf->min[0] = pf->min[1] = pf->min[2] = 1.0e20;
pf->max[0] = pf->max[1] = pf->max[2] = -1.0e20;
pf++;
}
eed = filledgebase.first;
while (eed) {
pflist[eed->poly_nr - 1].edges++;
eed = eed->next;
}
eve = fillvertbase.first;
while (eve) {
pflist[eve->poly_nr - 1].verts++;
minp = pflist[eve->poly_nr - 1].min;
maxp = pflist[eve->poly_nr - 1].max;
minp[cox] = (minp[cox]) < (eve->co[cox]) ? (minp[cox]) : (eve->co[cox]);
minp[coy] = (minp[coy]) < (eve->co[coy]) ? (minp[coy]) : (eve->co[coy]);
maxp[cox] = (maxp[cox]) > (eve->co[cox]) ? (maxp[cox]) : (eve->co[cox]);
maxp[coy] = (maxp[coy]) > (eve->co[coy]) ? (maxp[coy]) : (eve->co[coy]);
if (eve->h > 2) pflist[eve->poly_nr - 1].f = 1;
eve = eve->next;
}
/* STEP 4: FIND HOLES OR BOUNDS, JOIN THEM
* ( bounds just to divide it in pieces for optimization,
* the edgefill itself has good auto-hole detection)
* WATCH IT: ONLY WORKS WITH SORTED POLYS!!! */
if (poly > 1) {
short *polycache, *pc;
/* so, sort first */
qsort(pflist, poly, sizeof(PolyFill), vergpoly);
#if 0
pf = pflist;
for (a = 1; a <= poly; a++) {
printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
PRINT2(f, f, pf->min[0], pf->min[1]);
pf++;
}
#endif
polycache = pc = MEM_callocN(sizeof(short) * poly, "polycache");
pf = pflist;
for (a = 0; a < poly; a++, pf++) {
for (c = a + 1; c < poly; c++) {
/* if 'a' inside 'c': join (bbox too)
* Careful: 'a' can also be inside another poly.
*/
if (boundisect(pf, pflist + c)) {
*pc = c;
pc++;
}
/* only for optimize! */
/* else if (pf->max[cox] < (pflist+c)->min[cox]) break; */
}
while (pc != polycache) {
pc--;
mergepolysSimp(pf, pflist + *pc);
}
}
MEM_freeN(polycache);
}
#if 0
printf("after merge\n");
pf = pflist;
for (a = 1; a <= poly; a++) {
printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
pf++;
}
#endif
/* STEP 5: MAKE TRIANGLES */
tempve.first = fillvertbase.first;
tempve.last = fillvertbase.last;
temped.first = filledgebase.first;
temped.last = filledgebase.last;
fillvertbase.first = fillvertbase.last = 0;
filledgebase.first = filledgebase.last = 0;
pf = pflist;
for (a = 0; a < poly; a++) {
if (pf->edges > 1) {
splitlist(&tempve, &temped, pf->nr);
totfaces += scanfill(pf);
}
pf++;
}
BLI_movelisttolist(&fillvertbase, &tempve);
BLI_movelisttolist(&filledgebase, &temped);
/* FREE */
MEM_freeN(pflist);
return totfaces;
}