1
1
This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/sculpt_paint/sculpt.cc
Joseph Eagar fbf091750c Sculpt: cleanup sculpt attribute API
* `BKE_sculpt_vertex_attr_get` (and it's alias `SCULPT_vertex_attr_get`)
  is now `blender::bke::paint::vertex_attr_ptr`.  Same for the face
  versions of those functions.  The SCULPT_XXX aliases are removed.
* Removed code duplication; `[vertex/face]_attr_ptr` now just calls
  a generic template (`elem_attr_ptr`).
* Added `[vertex/face]_attr_get` and `[vertex/face]_attr_set` functions
  to get/set attribute data without pointer wrangling.
* Given the unwieldly length of `blender::bke::paint::` it's recommended
  to do a `using blender::bke::paint;` at the top of sculpt files.

Example: `float w = vertex_attr_get<float>(vertex,
ss->attrs.automasking_factor);`
2023-04-13 12:12:56 -07:00

6476 lines
201 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2006 by Nicholas Bishop. All rights reserved. */
/** \file
* \ingroup edsculpt
* Implements the Sculpt Mode tools.
*/
#include <cmath>
#include <cstdlib>
#include <cstring>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_dial_2d.h"
#include "BLI_ghash.h"
#include "BLI_gsqueue.h"
#include "BLI_math.h"
#include "BLI_set.hh"
#include "BLI_task.h"
#include "BLI_task.hh"
#include "BLI_timeit.hh"
#include "BLI_utildefines.h"
#include "BLI_vector.hh"
#include "DNA_brush_types.h"
#include "DNA_customdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_node_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_attribute.h"
#include "BKE_attribute.hh"
#include "BKE_brush.h"
#include "BKE_ccg.h"
#include "BKE_colortools.h"
#include "BKE_context.h"
#include "BKE_image.h"
#include "BKE_key.h"
#include "BKE_lib_id.h"
#include "BKE_main.h"
#include "BKE_mesh.hh"
#include "BKE_mesh_mapping.h"
#include "BKE_modifier.h"
#include "BKE_multires.h"
#include "BKE_node_runtime.hh"
#include "BKE_object.h"
#include "BKE_paint.h"
#include "BKE_pbvh.h"
#include "BKE_report.h"
#include "BKE_scene.h"
#include "BKE_subdiv_ccg.h"
#include "BKE_subsurf.h"
#include "BLI_math_vector.hh"
#include "NOD_texture.h"
#include "DEG_depsgraph.h"
#include "WM_api.h"
#include "WM_types.h"
#include "ED_paint.h"
#include "ED_screen.h"
#include "ED_sculpt.h"
#include "ED_view3d.h"
#include "paint_intern.h"
#include "sculpt_intern.hh"
#include "RNA_access.h"
#include "RNA_define.h"
#include "bmesh.h"
using blender::float3;
using blender::MutableSpan;
using blender::Set;
using blender::Vector;
using namespace blender::bke::paint;
static float sculpt_calc_radius(ViewContext *vc,
const Brush *brush,
const Scene *scene,
const float3 location)
{
if (!BKE_brush_use_locked_size(scene, brush)) {
return paint_calc_object_space_radius(vc, location, BKE_brush_size_get(scene, brush));
}
else {
return BKE_brush_unprojected_radius_get(scene, brush);
}
}
/* -------------------------------------------------------------------- */
/** \name Sculpt PBVH Abstraction API
*
* This is read-only, for writing use PBVH vertex iterators. There vd.index matches
* the indices used here.
*
* For multi-resolution, the same vertex in multiple grids is counted multiple times, with
* different index for each grid.
* \{ */
void SCULPT_vertex_random_access_ensure(SculptSession *ss)
{
if (BKE_pbvh_type(ss->pbvh) == PBVH_BMESH) {
BM_mesh_elem_index_ensure(ss->bm, BM_VERT);
BM_mesh_elem_table_ensure(ss->bm, BM_VERT);
}
}
int SCULPT_vertex_count_get(SculptSession *ss)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
return ss->totvert;
case PBVH_BMESH:
return BM_mesh_elem_count(BKE_pbvh_get_bmesh(ss->pbvh), BM_VERT);
case PBVH_GRIDS:
return BKE_pbvh_get_grid_num_verts(ss->pbvh);
}
return 0;
}
const float *SCULPT_vertex_co_get(SculptSession *ss, PBVHVertRef vertex)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
if (ss->shapekey_active || ss->deform_modifiers_active) {
const float(*positions)[3] = BKE_pbvh_get_vert_positions(ss->pbvh);
return positions[vertex.i];
}
return ss->vert_positions[vertex.i];
}
case PBVH_BMESH:
return ((BMVert *)vertex.i)->co;
case PBVH_GRIDS: {
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int vertex_index = vertex.i - grid_index * key->grid_area;
CCGElem *elem = BKE_pbvh_get_grids(ss->pbvh)[grid_index];
return CCG_elem_co(key, CCG_elem_offset(key, elem, vertex_index));
}
}
return nullptr;
}
bool SCULPT_has_loop_colors(const Object *ob)
{
using namespace blender;
Mesh *me = BKE_object_get_original_mesh(ob);
const std::optional<bke::AttributeMetaData> meta_data = me->attributes().lookup_meta_data(
me->active_color_attribute);
if (!meta_data) {
return false;
}
if (meta_data->domain != ATTR_DOMAIN_CORNER) {
return false;
}
if (!(CD_TYPE_AS_MASK(meta_data->data_type) & CD_MASK_COLOR_ALL)) {
return false;
}
return true;
}
bool SCULPT_has_colors(const SculptSession *ss)
{
return ss->vcol || ss->mcol;
}
void SCULPT_vertex_color_get(const SculptSession *ss, PBVHVertRef vertex, float r_color[4])
{
BKE_pbvh_vertex_color_get(ss->pbvh, vertex, r_color);
}
void SCULPT_vertex_color_set(SculptSession *ss, PBVHVertRef vertex, const float color[4])
{
BKE_pbvh_vertex_color_set(ss->pbvh, vertex, color);
}
void SCULPT_vertex_normal_get(SculptSession *ss, PBVHVertRef vertex, float no[3])
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
const float(*vert_normals)[3] = BKE_pbvh_get_vert_normals(ss->pbvh);
copy_v3_v3(no, vert_normals[vertex.i]);
break;
}
case PBVH_BMESH: {
BMVert *v = (BMVert *)vertex.i;
copy_v3_v3(no, v->no);
break;
}
case PBVH_GRIDS: {
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int vertex_index = vertex.i - grid_index * key->grid_area;
CCGElem *elem = BKE_pbvh_get_grids(ss->pbvh)[grid_index];
copy_v3_v3(no, CCG_elem_no(key, CCG_elem_offset(key, elem, vertex_index)));
break;
}
}
}
const float *SCULPT_vertex_persistent_co_get(SculptSession *ss, PBVHVertRef vertex)
{
if (ss->attrs.persistent_co) {
return vertex_attr_ptr<const float *>(vertex, ss->attrs.persistent_co);
}
return SCULPT_vertex_co_get(ss, vertex);
}
const float *SCULPT_vertex_co_for_grab_active_get(SculptSession *ss, PBVHVertRef vertex)
{
if (BKE_pbvh_type(ss->pbvh) == PBVH_FACES) {
/* Always grab active shape key if the sculpt happens on shapekey. */
if (ss->shapekey_active) {
const float(*positions)[3] = BKE_pbvh_get_vert_positions(ss->pbvh);
return positions[vertex.i];
}
/* Sculpting on the base mesh. */
return ss->vert_positions[vertex.i];
}
/* Everything else, such as sculpting on multires. */
return SCULPT_vertex_co_get(ss, vertex);
}
void SCULPT_vertex_limit_surface_get(SculptSession *ss, PBVHVertRef vertex, float r_co[3])
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
case PBVH_BMESH:
copy_v3_v3(r_co, SCULPT_vertex_co_get(ss, vertex));
break;
case PBVH_GRIDS: {
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int vertex_index = vertex.i - grid_index * key->grid_area;
SubdivCCGCoord coord{};
coord.grid_index = grid_index;
coord.x = vertex_index % key->grid_size;
coord.y = vertex_index / key->grid_size;
BKE_subdiv_ccg_eval_limit_point(ss->subdiv_ccg, &coord, r_co);
break;
}
}
}
void SCULPT_vertex_persistent_normal_get(SculptSession *ss, PBVHVertRef vertex, float no[3])
{
if (ss->attrs.persistent_no) {
copy_v3_v3(no, vertex_attr_ptr<float *>(vertex, ss->attrs.persistent_no));
return;
}
SCULPT_vertex_normal_get(ss, vertex, no);
}
float SCULPT_vertex_mask_get(SculptSession *ss, PBVHVertRef vertex)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
return ss->vmask ? ss->vmask[vertex.i] : 0.0f;
case PBVH_BMESH: {
BMVert *v;
int cd_mask = CustomData_get_offset(&ss->bm->vdata, CD_PAINT_MASK);
v = (BMVert *)vertex.i;
return cd_mask != -1 ? BM_ELEM_CD_GET_FLOAT(v, cd_mask) : 0.0f;
}
case PBVH_GRIDS: {
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
if (key->mask_offset == -1) {
return 0.0f;
}
const int grid_index = vertex.i / key->grid_area;
const int vertex_index = vertex.i - grid_index * key->grid_area;
CCGElem *elem = BKE_pbvh_get_grids(ss->pbvh)[grid_index];
return *CCG_elem_mask(key, CCG_elem_offset(key, elem, vertex_index));
}
}
return 0.0f;
}
PBVHVertRef SCULPT_active_vertex_get(SculptSession *ss)
{
if (ELEM(BKE_pbvh_type(ss->pbvh), PBVH_FACES, PBVH_BMESH, PBVH_GRIDS)) {
return ss->active_vertex;
}
return BKE_pbvh_make_vref(PBVH_REF_NONE);
}
const float *SCULPT_active_vertex_co_get(SculptSession *ss)
{
return SCULPT_vertex_co_get(ss, SCULPT_active_vertex_get(ss));
}
void SCULPT_active_vertex_normal_get(SculptSession *ss, float normal[3])
{
SCULPT_vertex_normal_get(ss, SCULPT_active_vertex_get(ss), normal);
}
float (*SCULPT_mesh_deformed_positions_get(SculptSession *ss))[3]
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
if (ss->shapekey_active || ss->deform_modifiers_active) {
return BKE_pbvh_get_vert_positions(ss->pbvh);
}
return ss->vert_positions;
case PBVH_BMESH:
case PBVH_GRIDS:
return nullptr;
}
return nullptr;
}
float *SCULPT_brush_deform_target_vertex_co_get(SculptSession *ss,
const int deform_target,
PBVHVertexIter *iter)
{
switch (deform_target) {
case BRUSH_DEFORM_TARGET_GEOMETRY:
return iter->co;
case BRUSH_DEFORM_TARGET_CLOTH_SIM:
return ss->cache->cloth_sim->deformation_pos[iter->index];
}
return iter->co;
}
ePaintSymmetryFlags SCULPT_mesh_symmetry_xyz_get(Object *object)
{
const Mesh *mesh = BKE_mesh_from_object(object);
return ePaintSymmetryFlags(mesh->symmetry);
}
/* Sculpt Face Sets and Visibility. */
int SCULPT_active_face_set_get(SculptSession *ss)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
if (!ss->face_sets) {
return SCULPT_FACE_SET_NONE;
}
return ss->face_sets[ss->active_face_index];
case PBVH_GRIDS: {
if (!ss->face_sets) {
return SCULPT_FACE_SET_NONE;
}
const int face_index = BKE_subdiv_ccg_grid_to_face_index(ss->subdiv_ccg,
ss->active_grid_index);
return ss->face_sets[face_index];
}
case PBVH_BMESH:
return SCULPT_FACE_SET_NONE;
}
return SCULPT_FACE_SET_NONE;
}
void SCULPT_vertex_visible_set(SculptSession *ss, PBVHVertRef vertex, bool visible)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
bool *hide_vert = BKE_pbvh_get_vert_hide_for_write(ss->pbvh);
hide_vert[vertex.i] = visible;
break;
}
case PBVH_BMESH: {
BMVert *v = (BMVert *)vertex.i;
BM_elem_flag_set(v, BM_ELEM_HIDDEN, !visible);
break;
}
case PBVH_GRIDS:
break;
}
}
bool SCULPT_vertex_visible_get(SculptSession *ss, PBVHVertRef vertex)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
const bool *hide_vert = BKE_pbvh_get_vert_hide(ss->pbvh);
return hide_vert == nullptr || !hide_vert[vertex.i];
}
case PBVH_BMESH:
return !BM_elem_flag_test((BMVert *)vertex.i, BM_ELEM_HIDDEN);
case PBVH_GRIDS: {
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int vertex_index = vertex.i - grid_index * key->grid_area;
BLI_bitmap **grid_hidden = BKE_pbvh_get_grid_visibility(ss->pbvh);
if (grid_hidden && grid_hidden[grid_index]) {
return !BLI_BITMAP_TEST(grid_hidden[grid_index], vertex_index);
}
}
}
return true;
}
void SCULPT_face_set_visibility_set(SculptSession *ss, int face_set, bool visible)
{
BLI_assert(ss->face_sets != nullptr);
BLI_assert(ss->hide_poly != nullptr);
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
case PBVH_GRIDS:
for (int i = 0; i < ss->totfaces; i++) {
if (ss->face_sets[i] != face_set) {
continue;
}
ss->hide_poly[i] = !visible;
}
break;
case PBVH_BMESH:
break;
}
}
void SCULPT_face_visibility_all_invert(SculptSession *ss)
{
SCULPT_topology_islands_invalidate(ss);
BLI_assert(ss->face_sets != nullptr);
BLI_assert(ss->hide_poly != nullptr);
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
case PBVH_GRIDS:
for (int i = 0; i < ss->totfaces; i++) {
ss->hide_poly[i] = !ss->hide_poly[i];
}
break;
case PBVH_BMESH: {
BMIter iter;
BMFace *f;
BM_ITER_MESH (f, &iter, ss->bm, BM_FACES_OF_MESH) {
BM_elem_flag_toggle(f, BM_ELEM_HIDDEN);
}
break;
}
}
}
void SCULPT_face_visibility_all_set(SculptSession *ss, bool visible)
{
SCULPT_topology_islands_invalidate(ss);
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
case PBVH_GRIDS:
BLI_assert(ss->hide_poly != nullptr);
memset(ss->hide_poly, !visible, sizeof(bool) * ss->totfaces);
break;
case PBVH_BMESH: {
BMIter iter;
BMFace *f;
BM_ITER_MESH (f, &iter, ss->bm, BM_FACES_OF_MESH) {
BM_elem_flag_set(f, BM_ELEM_HIDDEN, !visible);
}
break;
}
}
}
bool SCULPT_vertex_any_face_visible_get(SculptSession *ss, PBVHVertRef vertex)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
if (!ss->hide_poly) {
return true;
}
const MeshElemMap *vert_map = &ss->pmap[vertex.i];
for (int j = 0; j < ss->pmap[vertex.i].count; j++) {
if (!ss->hide_poly[vert_map->indices[j]]) {
return true;
}
}
return false;
}
case PBVH_BMESH:
return true;
case PBVH_GRIDS:
return true;
}
return true;
}
bool SCULPT_vertex_all_faces_visible_get(const SculptSession *ss, PBVHVertRef vertex)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
if (!ss->hide_poly) {
return true;
}
const MeshElemMap *vert_map = &ss->pmap[vertex.i];
for (int j = 0; j < vert_map->count; j++) {
if (ss->hide_poly[vert_map->indices[j]]) {
return false;
}
}
return true;
}
case PBVH_BMESH: {
BMVert *v = (BMVert *)vertex.i;
BMEdge *e = v->e;
if (!e) {
return true;
}
do {
BMLoop *l = e->l;
if (!l) {
continue;
}
do {
if (BM_elem_flag_test(l->f, BM_ELEM_HIDDEN)) {
return false;
}
} while ((l = l->radial_next) != e->l);
} while ((e = BM_DISK_EDGE_NEXT(e, v)) != v->e);
return true;
}
case PBVH_GRIDS: {
if (!ss->hide_poly) {
return true;
}
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int face_index = BKE_subdiv_ccg_grid_to_face_index(ss->subdiv_ccg, grid_index);
return !ss->hide_poly[face_index];
}
}
return true;
}
void SCULPT_vertex_face_set_set(SculptSession *ss, PBVHVertRef vertex, int face_set)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
BLI_assert(ss->face_sets != nullptr);
const MeshElemMap *vert_map = &ss->pmap[vertex.i];
for (int j = 0; j < vert_map->count; j++) {
const int poly_index = vert_map->indices[j];
if (ss->hide_poly && ss->hide_poly[poly_index]) {
/* Skip hidden faces connected to the vertex. */
continue;
}
ss->face_sets[poly_index] = face_set;
}
break;
}
case PBVH_BMESH:
break;
case PBVH_GRIDS: {
BLI_assert(ss->face_sets != nullptr);
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int face_index = BKE_subdiv_ccg_grid_to_face_index(ss->subdiv_ccg, grid_index);
if (ss->hide_poly && ss->hide_poly[face_index]) {
/* Skip the vertex if it's in a hidden face. */
return;
}
ss->face_sets[face_index] = face_set;
break;
}
}
}
int SCULPT_vertex_face_set_get(SculptSession *ss, PBVHVertRef vertex)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
if (!ss->face_sets) {
return SCULPT_FACE_SET_NONE;
}
const MeshElemMap *vert_map = &ss->pmap[vertex.i];
int face_set = 0;
for (int i = 0; i < vert_map->count; i++) {
if (ss->face_sets[vert_map->indices[i]] > face_set) {
face_set = abs(ss->face_sets[vert_map->indices[i]]);
}
}
return face_set;
}
case PBVH_BMESH:
return 0;
case PBVH_GRIDS: {
if (!ss->face_sets) {
return SCULPT_FACE_SET_NONE;
}
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int face_index = BKE_subdiv_ccg_grid_to_face_index(ss->subdiv_ccg, grid_index);
return ss->face_sets[face_index];
}
}
return 0;
}
bool SCULPT_vertex_has_face_set(SculptSession *ss, PBVHVertRef vertex, int face_set)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
if (!ss->face_sets) {
return face_set == SCULPT_FACE_SET_NONE;
}
const MeshElemMap *vert_map = &ss->pmap[vertex.i];
for (int i = 0; i < vert_map->count; i++) {
if (ss->face_sets[vert_map->indices[i]] == face_set) {
return true;
}
}
return false;
}
case PBVH_BMESH:
return true;
case PBVH_GRIDS: {
if (!ss->face_sets) {
return face_set == SCULPT_FACE_SET_NONE;
}
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int face_index = BKE_subdiv_ccg_grid_to_face_index(ss->subdiv_ccg, grid_index);
return ss->face_sets[face_index] == face_set;
}
}
return true;
}
void SCULPT_visibility_sync_all_from_faces(Object *ob)
{
SculptSession *ss = ob->sculpt;
Mesh *mesh = BKE_object_get_original_mesh(ob);
SCULPT_topology_islands_invalidate(ss);
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
/* We may have adjusted the ".hide_poly" attribute, now make the hide status attributes for
* vertices and edges consistent. */
BKE_mesh_flush_hidden_from_polys(mesh);
BKE_pbvh_update_hide_attributes_from_mesh(ss->pbvh);
break;
}
case PBVH_GRIDS: {
/* In addition to making the hide status of the base mesh consistent, we also have to
* propagate the status to the Multires grids. */
BKE_mesh_flush_hidden_from_polys(mesh);
BKE_sculpt_sync_face_visibility_to_grids(mesh, ss->subdiv_ccg);
break;
}
case PBVH_BMESH: {
BMIter iter;
BMFace *f;
/* Hide all verts and edges attached to faces. */
BM_ITER_MESH (f, &iter, ss->bm, BM_FACES_OF_MESH) {
BMLoop *l = f->l_first;
do {
BM_elem_flag_enable(l->v, BM_ELEM_HIDDEN);
BM_elem_flag_enable(l->e, BM_ELEM_HIDDEN);
} while ((l = l->next) != f->l_first);
}
/* Unhide verts and edges attached to visible faces. */
BM_ITER_MESH (f, &iter, ss->bm, BM_FACES_OF_MESH) {
if (BM_elem_flag_test(f, BM_ELEM_HIDDEN)) {
continue;
}
BMLoop *l = f->l_first;
do {
BM_elem_flag_disable(l->v, BM_ELEM_HIDDEN);
BM_elem_flag_disable(l->e, BM_ELEM_HIDDEN);
} while ((l = l->next) != f->l_first);
}
break;
}
}
}
static bool sculpt_check_unique_face_set_in_base_mesh(SculptSession *ss, int index)
{
if (!ss->face_sets) {
return true;
}
const MeshElemMap *vert_map = &ss->pmap[index];
int face_set = -1;
for (int i = 0; i < vert_map->count; i++) {
if (face_set == -1) {
face_set = ss->face_sets[vert_map->indices[i]];
}
else {
if (ss->face_sets[vert_map->indices[i]] != face_set) {
return false;
}
}
}
return true;
}
/**
* Checks if the face sets of the adjacent faces to the edge between \a v1 and \a v2
* in the base mesh are equal.
*/
static bool sculpt_check_unique_face_set_for_edge_in_base_mesh(SculptSession *ss, int v1, int v2)
{
const MeshElemMap *vert_map = &ss->pmap[v1];
int p1 = -1, p2 = -1;
for (int i = 0; i < vert_map->count; i++) {
const int poly_i = vert_map->indices[i];
for (const int corner : ss->polys[poly_i]) {
if (ss->corner_verts[corner] == v2) {
if (p1 == -1) {
p1 = vert_map->indices[i];
break;
}
if (p2 == -1) {
p2 = vert_map->indices[i];
break;
}
}
}
}
if (p1 != -1 && p2 != -1) {
return abs(ss->face_sets[p1]) == (ss->face_sets[p2]);
}
return true;
}
bool SCULPT_vertex_has_unique_face_set(SculptSession *ss, PBVHVertRef vertex)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
return sculpt_check_unique_face_set_in_base_mesh(ss, vertex.i);
}
case PBVH_BMESH:
return true;
case PBVH_GRIDS: {
if (!ss->face_sets) {
return true;
}
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int vertex_index = vertex.i - grid_index * key->grid_area;
SubdivCCGCoord coord{};
coord.grid_index = grid_index;
coord.x = vertex_index % key->grid_size;
coord.y = vertex_index / key->grid_size;
int v1, v2;
const SubdivCCGAdjacencyType adjacency = BKE_subdiv_ccg_coarse_mesh_adjacency_info_get(
ss->subdiv_ccg, &coord, ss->corner_verts, ss->polys, &v1, &v2);
switch (adjacency) {
case SUBDIV_CCG_ADJACENT_VERTEX:
return sculpt_check_unique_face_set_in_base_mesh(ss, v1);
case SUBDIV_CCG_ADJACENT_EDGE:
return sculpt_check_unique_face_set_for_edge_in_base_mesh(ss, v1, v2);
case SUBDIV_CCG_ADJACENT_NONE:
return true;
}
}
}
return false;
}
int SCULPT_face_set_next_available_get(SculptSession *ss)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
case PBVH_GRIDS: {
if (!ss->face_sets) {
return 0;
}
int next_face_set = 0;
for (int i = 0; i < ss->totfaces; i++) {
if (ss->face_sets[i] > next_face_set) {
next_face_set = ss->face_sets[i];
}
}
next_face_set++;
return next_face_set;
}
case PBVH_BMESH:
return 0;
}
return 0;
}
/* Sculpt Neighbor Iterators */
#define SCULPT_VERTEX_NEIGHBOR_FIXED_CAPACITY 256
static void sculpt_vertex_neighbor_add(SculptVertexNeighborIter *iter,
PBVHVertRef neighbor,
int neighbor_index)
{
for (int i = 0; i < iter->size; i++) {
if (iter->neighbors[i].i == neighbor.i) {
return;
}
}
if (iter->size >= iter->capacity) {
iter->capacity += SCULPT_VERTEX_NEIGHBOR_FIXED_CAPACITY;
if (iter->neighbors == iter->neighbors_fixed) {
iter->neighbors = static_cast<PBVHVertRef *>(
MEM_mallocN(iter->capacity * sizeof(PBVHVertRef), "neighbor array"));
memcpy(iter->neighbors, iter->neighbors_fixed, sizeof(PBVHVertRef) * iter->size);
}
else {
iter->neighbors = static_cast<PBVHVertRef *>(MEM_reallocN_id(
iter->neighbors, iter->capacity * sizeof(PBVHVertRef), "neighbor array"));
}
if (iter->neighbor_indices == iter->neighbor_indices_fixed) {
iter->neighbor_indices = static_cast<int *>(
MEM_mallocN(iter->capacity * sizeof(int), "neighbor array"));
memcpy(iter->neighbor_indices, iter->neighbor_indices_fixed, sizeof(int) * iter->size);
}
else {
iter->neighbor_indices = static_cast<int *>(
MEM_reallocN_id(iter->neighbor_indices, iter->capacity * sizeof(int), "neighbor array"));
}
}
iter->neighbors[iter->size] = neighbor;
iter->neighbor_indices[iter->size] = neighbor_index;
iter->size++;
}
static void sculpt_vertex_neighbors_get_bmesh(PBVHVertRef vertex, SculptVertexNeighborIter *iter)
{
BMVert *v = (BMVert *)vertex.i;
BMIter liter;
BMLoop *l;
iter->size = 0;
iter->num_duplicates = 0;
iter->capacity = SCULPT_VERTEX_NEIGHBOR_FIXED_CAPACITY;
iter->neighbors = iter->neighbors_fixed;
iter->neighbor_indices = iter->neighbor_indices_fixed;
BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
const BMVert *adj_v[2] = {l->prev->v, l->next->v};
for (int i = 0; i < ARRAY_SIZE(adj_v); i++) {
const BMVert *v_other = adj_v[i];
if (v_other != v) {
sculpt_vertex_neighbor_add(
iter, BKE_pbvh_make_vref(intptr_t(v_other)), BM_elem_index_get(v_other));
}
}
}
}
static void sculpt_vertex_neighbors_get_faces(SculptSession *ss,
PBVHVertRef vertex,
SculptVertexNeighborIter *iter)
{
const MeshElemMap *vert_map = &ss->pmap[vertex.i];
iter->size = 0;
iter->num_duplicates = 0;
iter->capacity = SCULPT_VERTEX_NEIGHBOR_FIXED_CAPACITY;
iter->neighbors = iter->neighbors_fixed;
iter->neighbor_indices = iter->neighbor_indices_fixed;
for (int i = 0; i < vert_map->count; i++) {
if (ss->hide_poly && ss->hide_poly[vert_map->indices[i]]) {
/* Skip connectivity from hidden faces. */
continue;
}
const blender::IndexRange poly = ss->polys[vert_map->indices[i]];
const blender::int2 f_adj_v = blender::bke::mesh::poly_find_adjecent_verts(
poly, ss->corner_verts, vertex.i);
for (int j = 0; j < 2; j++) {
if (f_adj_v[j] != vertex.i) {
sculpt_vertex_neighbor_add(iter, BKE_pbvh_make_vref(f_adj_v[j]), f_adj_v[j]);
}
}
}
if (ss->fake_neighbors.use_fake_neighbors) {
BLI_assert(ss->fake_neighbors.fake_neighbor_index != nullptr);
if (ss->fake_neighbors.fake_neighbor_index[vertex.i] != FAKE_NEIGHBOR_NONE) {
sculpt_vertex_neighbor_add(
iter,
BKE_pbvh_make_vref(ss->fake_neighbors.fake_neighbor_index[vertex.i]),
ss->fake_neighbors.fake_neighbor_index[vertex.i]);
}
}
}
static void sculpt_vertex_neighbors_get_grids(SculptSession *ss,
const PBVHVertRef vertex,
const bool include_duplicates,
SculptVertexNeighborIter *iter)
{
/* TODO: optimize this. We could fill #SculptVertexNeighborIter directly,
* maybe provide coordinate and mask pointers directly rather than converting
* back and forth between #CCGElem and global index. */
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int vertex_index = vertex.i - grid_index * key->grid_area;
SubdivCCGCoord coord{};
coord.grid_index = grid_index;
coord.x = vertex_index % key->grid_size;
coord.y = vertex_index / key->grid_size;
SubdivCCGNeighbors neighbors;
BKE_subdiv_ccg_neighbor_coords_get(ss->subdiv_ccg, &coord, include_duplicates, &neighbors);
iter->size = 0;
iter->num_duplicates = neighbors.num_duplicates;
iter->capacity = SCULPT_VERTEX_NEIGHBOR_FIXED_CAPACITY;
iter->neighbors = iter->neighbors_fixed;
iter->neighbor_indices = iter->neighbor_indices_fixed;
for (int i = 0; i < neighbors.size; i++) {
int v = neighbors.coords[i].grid_index * key->grid_area +
neighbors.coords[i].y * key->grid_size + neighbors.coords[i].x;
sculpt_vertex_neighbor_add(iter, BKE_pbvh_make_vref(v), v);
}
if (ss->fake_neighbors.use_fake_neighbors) {
BLI_assert(ss->fake_neighbors.fake_neighbor_index != nullptr);
if (ss->fake_neighbors.fake_neighbor_index[vertex.i] != FAKE_NEIGHBOR_NONE) {
int v = ss->fake_neighbors.fake_neighbor_index[vertex.i];
sculpt_vertex_neighbor_add(iter, BKE_pbvh_make_vref(v), v);
}
}
if (neighbors.coords != neighbors.coords_fixed) {
MEM_freeN(neighbors.coords);
}
}
void SCULPT_vertex_neighbors_get(SculptSession *ss,
const PBVHVertRef vertex,
const bool include_duplicates,
SculptVertexNeighborIter *iter)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
sculpt_vertex_neighbors_get_faces(ss, vertex, iter);
return;
case PBVH_BMESH:
sculpt_vertex_neighbors_get_bmesh(vertex, iter);
return;
case PBVH_GRIDS:
sculpt_vertex_neighbors_get_grids(ss, vertex, include_duplicates, iter);
return;
}
}
static bool sculpt_check_boundary_vertex_in_base_mesh(const SculptSession *ss, const int index)
{
BLI_assert(ss->vertex_info.boundary);
return BLI_BITMAP_TEST(ss->vertex_info.boundary, index);
}
bool SCULPT_vertex_is_boundary(const SculptSession *ss, const PBVHVertRef vertex)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES: {
if (!SCULPT_vertex_all_faces_visible_get(ss, vertex)) {
return true;
}
return sculpt_check_boundary_vertex_in_base_mesh(ss, vertex.i);
}
case PBVH_BMESH: {
BMVert *v = (BMVert *)vertex.i;
return BM_vert_is_boundary(v);
}
case PBVH_GRIDS: {
const CCGKey *key = BKE_pbvh_get_grid_key(ss->pbvh);
const int grid_index = vertex.i / key->grid_area;
const int vertex_index = vertex.i - grid_index * key->grid_area;
SubdivCCGCoord coord{};
coord.grid_index = grid_index;
coord.x = vertex_index % key->grid_size;
coord.y = vertex_index / key->grid_size;
int v1, v2;
const SubdivCCGAdjacencyType adjacency = BKE_subdiv_ccg_coarse_mesh_adjacency_info_get(
ss->subdiv_ccg, &coord, ss->corner_verts, ss->polys, &v1, &v2);
switch (adjacency) {
case SUBDIV_CCG_ADJACENT_VERTEX:
return sculpt_check_boundary_vertex_in_base_mesh(ss, v1);
case SUBDIV_CCG_ADJACENT_EDGE:
return sculpt_check_boundary_vertex_in_base_mesh(ss, v1) &&
sculpt_check_boundary_vertex_in_base_mesh(ss, v2);
case SUBDIV_CCG_ADJACENT_NONE:
return false;
}
}
}
return false;
}
/* Utilities */
bool SCULPT_stroke_is_main_symmetry_pass(StrokeCache *cache)
{
return cache->mirror_symmetry_pass == 0 && cache->radial_symmetry_pass == 0 &&
cache->tile_pass == 0;
}
bool SCULPT_stroke_is_first_brush_step(StrokeCache *cache)
{
return cache->first_time && cache->mirror_symmetry_pass == 0 &&
cache->radial_symmetry_pass == 0 && cache->tile_pass == 0;
}
bool SCULPT_stroke_is_first_brush_step_of_symmetry_pass(StrokeCache *cache)
{
return cache->first_time;
}
bool SCULPT_check_vertex_pivot_symmetry(const float vco[3], const float pco[3], const char symm)
{
bool is_in_symmetry_area = true;
for (int i = 0; i < 3; i++) {
char symm_it = 1 << i;
if (symm & symm_it) {
if (pco[i] == 0.0f) {
if (vco[i] > 0.0f) {
is_in_symmetry_area = false;
}
}
if (vco[i] * pco[i] < 0.0f) {
is_in_symmetry_area = false;
}
}
}
return is_in_symmetry_area;
}
struct NearestVertexTLSData {
PBVHVertRef nearest_vertex;
float nearest_vertex_distance_squared;
};
static void do_nearest_vertex_get_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict tls)
{
SculptThreadedTaskData *data = static_cast<SculptThreadedTaskData *>(userdata);
SculptSession *ss = data->ob->sculpt;
NearestVertexTLSData *nvtd = static_cast<NearestVertexTLSData *>(tls->userdata_chunk);
PBVHVertexIter vd;
BKE_pbvh_vertex_iter_begin (ss->pbvh, data->nodes[n], vd, PBVH_ITER_UNIQUE) {
float distance_squared = len_squared_v3v3(vd.co, data->nearest_vertex_search_co);
if (distance_squared < nvtd->nearest_vertex_distance_squared &&
distance_squared < data->max_distance_squared) {
nvtd->nearest_vertex = vd.vertex;
nvtd->nearest_vertex_distance_squared = distance_squared;
}
}
BKE_pbvh_vertex_iter_end;
}
static void nearest_vertex_get_reduce(const void *__restrict /*userdata*/,
void *__restrict chunk_join,
void *__restrict chunk)
{
NearestVertexTLSData *join = static_cast<NearestVertexTLSData *>(chunk_join);
NearestVertexTLSData *nvtd = static_cast<NearestVertexTLSData *>(chunk);
if (join->nearest_vertex.i == PBVH_REF_NONE) {
join->nearest_vertex = nvtd->nearest_vertex;
join->nearest_vertex_distance_squared = nvtd->nearest_vertex_distance_squared;
}
else if (nvtd->nearest_vertex_distance_squared < join->nearest_vertex_distance_squared) {
join->nearest_vertex = nvtd->nearest_vertex;
join->nearest_vertex_distance_squared = nvtd->nearest_vertex_distance_squared;
}
}
PBVHVertRef SCULPT_nearest_vertex_get(
Sculpt *sd, Object *ob, const float co[3], float max_distance, bool use_original)
{
SculptSession *ss = ob->sculpt;
PBVHNode **nodes = nullptr;
int totnode;
SculptSearchSphereData data{};
data.sd = sd;
data.radius_squared = max_distance * max_distance;
data.original = use_original;
data.center = co;
BKE_pbvh_search_gather(ss->pbvh, SCULPT_search_sphere_cb, &data, &nodes, &totnode);
if (totnode == 0) {
return BKE_pbvh_make_vref(PBVH_REF_NONE);
}
SculptThreadedTaskData task_data{};
task_data.sd = sd;
task_data.ob = ob;
task_data.nodes = nodes;
task_data.max_distance_squared = max_distance * max_distance;
copy_v3_v3(task_data.nearest_vertex_search_co, co);
NearestVertexTLSData nvtd;
nvtd.nearest_vertex.i = PBVH_REF_NONE;
nvtd.nearest_vertex_distance_squared = FLT_MAX;
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
settings.func_reduce = nearest_vertex_get_reduce;
settings.userdata_chunk = &nvtd;
settings.userdata_chunk_size = sizeof(NearestVertexTLSData);
BLI_task_parallel_range(0, totnode, &task_data, do_nearest_vertex_get_task_cb, &settings);
MEM_SAFE_FREE(nodes);
return nvtd.nearest_vertex;
}
bool SCULPT_is_symmetry_iteration_valid(char i, char symm)
{
return i == 0 || (symm & i && (symm != 5 || i != 3) && (symm != 6 || !ELEM(i, 3, 5)));
}
bool SCULPT_is_vertex_inside_brush_radius_symm(const float vertex[3],
const float br_co[3],
float radius,
char symm)
{
for (char i = 0; i <= symm; ++i) {
if (!SCULPT_is_symmetry_iteration_valid(i, symm)) {
continue;
}
float location[3];
flip_v3_v3(location, br_co, ePaintSymmetryFlags(i));
if (len_squared_v3v3(location, vertex) < radius * radius) {
return true;
}
}
return false;
}
void SCULPT_tag_update_overlays(bContext *C)
{
ARegion *region = CTX_wm_region(C);
ED_region_tag_redraw(region);
Object *ob = CTX_data_active_object(C);
WM_event_add_notifier(C, NC_OBJECT | ND_DRAW, ob);
DEG_id_tag_update(&ob->id, ID_RECALC_SHADING);
RegionView3D *rv3d = CTX_wm_region_view3d(C);
if (!BKE_sculptsession_use_pbvh_draw(ob, rv3d)) {
DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Sculpt Flood Fill API
*
* Iterate over connected vertices, starting from one or more initial vertices.
* \{ */
void SCULPT_floodfill_init(SculptSession *ss, SculptFloodFill *flood)
{
int vertex_count = SCULPT_vertex_count_get(ss);
SCULPT_vertex_random_access_ensure(ss);
flood->queue = BLI_gsqueue_new(sizeof(intptr_t));
flood->visited_verts = BLI_BITMAP_NEW(vertex_count, "visited verts");
}
void SCULPT_floodfill_add_initial(SculptFloodFill *flood, PBVHVertRef vertex)
{
BLI_gsqueue_push(flood->queue, &vertex);
}
void SCULPT_floodfill_add_and_skip_initial(SculptFloodFill *flood, PBVHVertRef vertex)
{
BLI_gsqueue_push(flood->queue, &vertex);
BLI_BITMAP_ENABLE(flood->visited_verts, vertex.i);
}
void SCULPT_floodfill_add_initial_with_symmetry(Sculpt *sd,
Object *ob,
SculptSession *ss,
SculptFloodFill *flood,
PBVHVertRef vertex,
float radius)
{
/* Add active vertex and symmetric vertices to the queue. */
const char symm = SCULPT_mesh_symmetry_xyz_get(ob);
for (char i = 0; i <= symm; ++i) {
if (!SCULPT_is_symmetry_iteration_valid(i, symm)) {
continue;
}
PBVHVertRef v = {PBVH_REF_NONE};
if (i == 0) {
v = vertex;
}
else if (radius > 0.0f) {
float radius_squared = (radius == FLT_MAX) ? FLT_MAX : radius * radius;
float location[3];
flip_v3_v3(location, SCULPT_vertex_co_get(ss, vertex), ePaintSymmetryFlags(i));
v = SCULPT_nearest_vertex_get(sd, ob, location, radius_squared, false);
}
if (v.i != PBVH_REF_NONE) {
SCULPT_floodfill_add_initial(flood, v);
}
}
}
void SCULPT_floodfill_add_active(
Sculpt *sd, Object *ob, SculptSession *ss, SculptFloodFill *flood, float radius)
{
/* Add active vertex and symmetric vertices to the queue. */
const char symm = SCULPT_mesh_symmetry_xyz_get(ob);
for (char i = 0; i <= symm; ++i) {
if (!SCULPT_is_symmetry_iteration_valid(i, symm)) {
continue;
}
PBVHVertRef v = {PBVH_REF_NONE};
if (i == 0) {
v = SCULPT_active_vertex_get(ss);
}
else if (radius > 0.0f) {
float location[3];
flip_v3_v3(location, SCULPT_active_vertex_co_get(ss), ePaintSymmetryFlags(i));
v = SCULPT_nearest_vertex_get(sd, ob, location, radius, false);
}
if (v.i != PBVH_REF_NONE) {
SCULPT_floodfill_add_initial(flood, v);
}
}
}
void SCULPT_floodfill_execute(SculptSession *ss,
SculptFloodFill *flood,
bool (*func)(SculptSession *ss,
PBVHVertRef from_v,
PBVHVertRef to_v,
bool is_duplicate,
void *userdata),
void *userdata)
{
while (!BLI_gsqueue_is_empty(flood->queue)) {
PBVHVertRef from_v;
BLI_gsqueue_pop(flood->queue, &from_v);
SculptVertexNeighborIter ni;
SCULPT_VERTEX_DUPLICATES_AND_NEIGHBORS_ITER_BEGIN (ss, from_v, ni) {
const PBVHVertRef to_v = ni.vertex;
int to_v_i = BKE_pbvh_vertex_to_index(ss->pbvh, to_v);
if (BLI_BITMAP_TEST(flood->visited_verts, to_v_i)) {
continue;
}
if (!SCULPT_vertex_visible_get(ss, to_v)) {
continue;
}
BLI_BITMAP_ENABLE(flood->visited_verts, BKE_pbvh_vertex_to_index(ss->pbvh, to_v));
if (func(ss, from_v, to_v, ni.is_duplicate, userdata)) {
BLI_gsqueue_push(flood->queue, &to_v);
}
}
SCULPT_VERTEX_NEIGHBORS_ITER_END(ni);
}
}
void SCULPT_floodfill_free(SculptFloodFill *flood)
{
MEM_SAFE_FREE(flood->visited_verts);
BLI_gsqueue_free(flood->queue);
flood->queue = nullptr;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Tool Capabilities
*
* Avoid duplicate checks, internal logic only,
* share logic with #rna_def_sculpt_capabilities where possible.
* \{ */
static bool sculpt_tool_needs_original(const char sculpt_tool)
{
return ELEM(sculpt_tool,
SCULPT_TOOL_GRAB,
SCULPT_TOOL_ROTATE,
SCULPT_TOOL_THUMB,
SCULPT_TOOL_LAYER,
SCULPT_TOOL_DRAW_SHARP,
SCULPT_TOOL_ELASTIC_DEFORM,
SCULPT_TOOL_SMOOTH,
SCULPT_TOOL_BOUNDARY,
SCULPT_TOOL_POSE);
}
static bool sculpt_tool_is_proxy_used(const char sculpt_tool)
{
return ELEM(sculpt_tool,
SCULPT_TOOL_SMOOTH,
SCULPT_TOOL_LAYER,
SCULPT_TOOL_POSE,
SCULPT_TOOL_DISPLACEMENT_SMEAR,
SCULPT_TOOL_BOUNDARY,
SCULPT_TOOL_CLOTH,
SCULPT_TOOL_PAINT,
SCULPT_TOOL_SMEAR,
SCULPT_TOOL_DRAW_FACE_SETS);
}
static bool sculpt_brush_use_topology_rake(const SculptSession *ss, const Brush *brush)
{
return SCULPT_TOOL_HAS_TOPOLOGY_RAKE(brush->sculpt_tool) &&
(brush->topology_rake_factor > 0.0f) && (ss->bm != nullptr);
}
/**
* Test whether the #StrokeCache.sculpt_normal needs update in #do_brush_action
*/
static int sculpt_brush_needs_normal(const SculptSession *ss, Sculpt *sd, const Brush *brush)
{
const MTex *mask_tex = BKE_brush_mask_texture_get(brush, OB_MODE_SCULPT);
return ((SCULPT_TOOL_HAS_NORMAL_WEIGHT(brush->sculpt_tool) &&
(ss->cache->normal_weight > 0.0f)) ||
SCULPT_automasking_needs_normal(ss, sd, brush) ||
ELEM(brush->sculpt_tool,
SCULPT_TOOL_BLOB,
SCULPT_TOOL_CREASE,
SCULPT_TOOL_DRAW,
SCULPT_TOOL_DRAW_SHARP,
SCULPT_TOOL_CLOTH,
SCULPT_TOOL_LAYER,
SCULPT_TOOL_NUDGE,
SCULPT_TOOL_ROTATE,
SCULPT_TOOL_ELASTIC_DEFORM,
SCULPT_TOOL_THUMB) ||
(mask_tex->brush_map_mode == MTEX_MAP_MODE_AREA)) ||
sculpt_brush_use_topology_rake(ss, brush) ||
BKE_brush_has_cube_tip(brush, PAINT_MODE_SCULPT);
}
static bool sculpt_brush_needs_rake_rotation(const Brush *brush)
{
return SCULPT_TOOL_HAS_RAKE(brush->sculpt_tool) && (brush->rake_factor != 0.0f);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Sculpt Init/Update
* \{ */
enum StrokeFlags {
CLIP_X = 1,
CLIP_Y = 2,
CLIP_Z = 4,
};
void SCULPT_orig_vert_data_unode_init(SculptOrigVertData *data, Object *ob, SculptUndoNode *unode)
{
SculptSession *ss = ob->sculpt;
BMesh *bm = ss->bm;
memset(data, 0, sizeof(*data));
data->unode = unode;
if (bm) {
data->bm_log = ss->bm_log;
}
else {
data->coords = data->unode->co;
data->normals = data->unode->no;
data->vmasks = data->unode->mask;
data->colors = data->unode->col;
}
}
void SCULPT_orig_vert_data_init(SculptOrigVertData *data,
Object *ob,
PBVHNode *node,
SculptUndoType type)
{
SculptUndoNode *unode;
unode = SCULPT_undo_push_node(ob, node, type);
SCULPT_orig_vert_data_unode_init(data, ob, unode);
}
void SCULPT_orig_vert_data_update(SculptOrigVertData *orig_data, PBVHVertexIter *iter)
{
if (orig_data->unode->type == SCULPT_UNDO_COORDS) {
if (orig_data->bm_log) {
BM_log_original_vert_data(orig_data->bm_log, iter->bm_vert, &orig_data->co, &orig_data->no);
}
else {
orig_data->co = orig_data->coords[iter->i];
orig_data->no = orig_data->normals[iter->i];
}
}
else if (orig_data->unode->type == SCULPT_UNDO_COLOR) {
orig_data->col = orig_data->colors[iter->i];
}
else if (orig_data->unode->type == SCULPT_UNDO_MASK) {
if (orig_data->bm_log) {
orig_data->mask = BM_log_original_mask(orig_data->bm_log, iter->bm_vert);
}
else {
orig_data->mask = orig_data->vmasks[iter->i];
}
}
}
void SCULPT_orig_face_data_unode_init(SculptOrigFaceData *data, Object *ob, SculptUndoNode *unode)
{
SculptSession *ss = ob->sculpt;
BMesh *bm = ss->bm;
memset(data, 0, sizeof(*data));
data->unode = unode;
if (bm) {
data->bm_log = ss->bm_log;
}
else {
data->face_sets = unode->face_sets;
}
}
void SCULPT_orig_face_data_init(SculptOrigFaceData *data,
Object *ob,
PBVHNode *node,
SculptUndoType type)
{
SculptUndoNode *unode;
unode = SCULPT_undo_push_node(ob, node, type);
SCULPT_orig_face_data_unode_init(data, ob, unode);
}
void SCULPT_orig_face_data_update(SculptOrigFaceData *orig_data, PBVHFaceIter *iter)
{
if (orig_data->unode->type == SCULPT_UNDO_FACE_SETS) {
orig_data->face_set = orig_data->face_sets ? orig_data->face_sets[iter->i] : false;
}
}
static void sculpt_rake_data_update(SculptRakeData *srd, const float co[3])
{
float rake_dist = len_v3v3(srd->follow_co, co);
if (rake_dist > srd->follow_dist) {
interp_v3_v3v3(srd->follow_co, srd->follow_co, co, rake_dist - srd->follow_dist);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Sculpt Dynamic Topology
* \{ */
bool SCULPT_stroke_is_dynamic_topology(const SculptSession *ss, const Brush *brush)
{
return ((BKE_pbvh_type(ss->pbvh) == PBVH_BMESH) &&
(!ss->cache || (!ss->cache->alt_smooth)) &&
/* Requires mesh restore, which doesn't work with
* dynamic-topology. */
!(brush->flag & BRUSH_ANCHORED) && !(brush->flag & BRUSH_DRAG_DOT) &&
SCULPT_TOOL_HAS_DYNTOPO(brush->sculpt_tool));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Sculpt Paint Mesh
* \{ */
static void paint_mesh_restore_co_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
SculptThreadedTaskData *data = static_cast<SculptThreadedTaskData *>(userdata);
SculptSession *ss = data->ob->sculpt;
SculptUndoNode *unode;
SculptUndoType type;
switch (data->brush->sculpt_tool) {
case SCULPT_TOOL_MASK:
type = SCULPT_UNDO_MASK;
break;
case SCULPT_TOOL_PAINT:
case SCULPT_TOOL_SMEAR:
type = SCULPT_UNDO_COLOR;
break;
case SCULPT_TOOL_DRAW_FACE_SETS:
type = ss->cache->alt_smooth ? SCULPT_UNDO_COORDS : SCULPT_UNDO_FACE_SETS;
break;
default:
type = SCULPT_UNDO_COORDS;
break;
}
if (ss->bm) {
unode = SCULPT_undo_push_node(data->ob, data->nodes[n], type);
}
else {
unode = SCULPT_undo_get_node(data->nodes[n], type);
}
if (!unode) {
return;
}
switch (type) {
case SCULPT_UNDO_MASK:
BKE_pbvh_node_mark_update_mask(data->nodes[n]);
break;
case SCULPT_UNDO_COLOR:
BKE_pbvh_node_mark_update_color(data->nodes[n]);
break;
case SCULPT_UNDO_FACE_SETS:
BKE_pbvh_node_mark_update_face_sets(data->nodes[n]);
break;
case SCULPT_UNDO_COORDS:
BKE_pbvh_node_mark_update(data->nodes[n]);
break;
default:
break;
}
PBVHVertexIter vd;
SculptOrigVertData orig_vert_data;
SculptOrigFaceData orig_face_data;
if (type != SCULPT_UNDO_FACE_SETS) {
SCULPT_orig_vert_data_unode_init(&orig_vert_data, data->ob, unode);
}
else {
SCULPT_orig_face_data_unode_init(&orig_face_data, data->ob, unode);
}
if (unode->type == SCULPT_UNDO_FACE_SETS) {
PBVHFaceIter fd;
BKE_pbvh_face_iter_begin (ss->pbvh, data->nodes[n], fd) {
SCULPT_orig_face_data_update(&orig_face_data, &fd);
if (fd.face_set) {
*fd.face_set = orig_face_data.face_set;
}
}
BKE_pbvh_face_iter_end(fd);
return;
}
BKE_pbvh_vertex_iter_begin (ss->pbvh, data->nodes[n], vd, PBVH_ITER_UNIQUE) {
SCULPT_orig_vert_data_update(&orig_vert_data, &vd);
if (orig_vert_data.unode->type == SCULPT_UNDO_COORDS) {
copy_v3_v3(vd.co, orig_vert_data.co);
if (vd.no) {
copy_v3_v3(vd.no, orig_vert_data.no);
}
else {
copy_v3_v3(vd.fno, orig_vert_data.no);
}
if (vd.is_mesh) {
BKE_pbvh_vert_tag_update_normal(ss->pbvh, vd.vertex);
}
}
else if (orig_vert_data.unode->type == SCULPT_UNDO_MASK) {
*vd.mask = orig_vert_data.mask;
}
else if (orig_vert_data.unode->type == SCULPT_UNDO_COLOR) {
SCULPT_vertex_color_set(ss, vd.vertex, orig_vert_data.col);
}
}
BKE_pbvh_vertex_iter_end;
}
static void paint_mesh_restore_co(Sculpt *sd, Object *ob)
{
SculptSession *ss = ob->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
PBVHNode **nodes;
int totnode;
BKE_pbvh_search_gather(ss->pbvh, nullptr, nullptr, &nodes, &totnode);
/**
* Disable multi-threading when dynamic-topology is enabled. Otherwise,
* new entries might be inserted by #SCULPT_undo_push_node() into the #GHash
* used internally by #BM_log_original_vert_co() by a different thread. See #33787.
*/
SculptThreadedTaskData data{};
data.sd = sd;
data.ob = ob;
data.brush = brush;
data.nodes = nodes;
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true && !ss->bm, totnode);
BLI_task_parallel_range(0, totnode, &data, paint_mesh_restore_co_task_cb, &settings);
BKE_pbvh_node_color_buffer_free(ss->pbvh);
MEM_SAFE_FREE(nodes);
}
/*** BVH Tree ***/
static void sculpt_extend_redraw_rect_previous(Object *ob, rcti *rect)
{
/* Expand redraw \a rect with redraw \a rect from previous step to
* prevent partial-redraw issues caused by fast strokes. This is
* needed here (not in sculpt_flush_update) as it was before
* because redraw rectangle should be the same in both of
* optimized PBVH draw function and 3d view redraw, if not -- some
* mesh parts could disappear from screen (sergey). */
SculptSession *ss = ob->sculpt;
if (!ss->cache) {
return;
}
if (BLI_rcti_is_empty(&ss->cache->previous_r)) {
return;
}
BLI_rcti_union(rect, &ss->cache->previous_r);
}
bool SCULPT_get_redraw_rect(ARegion *region, RegionView3D *rv3d, Object *ob, rcti *rect)
{
PBVH *pbvh = ob->sculpt->pbvh;
float bb_min[3], bb_max[3];
if (!pbvh) {
return false;
}
BKE_pbvh_redraw_BB(pbvh, bb_min, bb_max);
/* Convert 3D bounding box to screen space. */
if (!paint_convert_bb_to_rect(rect, bb_min, bb_max, region, rv3d, ob)) {
return false;
}
return true;
}
void ED_sculpt_redraw_planes_get(float planes[4][4], ARegion *region, Object *ob)
{
PBVH *pbvh = ob->sculpt->pbvh;
/* Copy here, original will be used below. */
rcti rect = ob->sculpt->cache->current_r;
sculpt_extend_redraw_rect_previous(ob, &rect);
paint_calc_redraw_planes(planes, region, ob, &rect);
/* We will draw this \a rect, so now we can set it as the previous partial \a rect.
* Note that we don't update with the union of previous/current (\a rect), only with
* the current. Thus we avoid the rectangle needlessly growing to include
* all the stroke area. */
ob->sculpt->cache->previous_r = ob->sculpt->cache->current_r;
/* Clear redraw flag from nodes. */
if (pbvh) {
BKE_pbvh_update_bounds(pbvh, PBVH_UpdateRedraw);
}
}
/************************ Brush Testing *******************/
void SCULPT_brush_test_init(SculptSession *ss, SculptBrushTest *test)
{
RegionView3D *rv3d = ss->cache ? ss->cache->vc->rv3d : ss->rv3d;
View3D *v3d = ss->cache ? ss->cache->vc->v3d : ss->v3d;
test->radius_squared = ss->cache ? ss->cache->radius_squared :
ss->cursor_radius * ss->cursor_radius;
test->radius = sqrtf(test->radius_squared);
if (ss->cache) {
copy_v3_v3(test->location, ss->cache->location);
test->mirror_symmetry_pass = ss->cache->mirror_symmetry_pass;
test->radial_symmetry_pass = ss->cache->radial_symmetry_pass;
copy_m4_m4(test->symm_rot_mat_inv, ss->cache->symm_rot_mat_inv);
}
else {
copy_v3_v3(test->location, ss->cursor_location);
test->mirror_symmetry_pass = ePaintSymmetryFlags(0);
test->radial_symmetry_pass = 0;
unit_m4(test->symm_rot_mat_inv);
}
/* Just for initialize. */
test->dist = 0.0f;
/* Only for 2D projection. */
zero_v4(test->plane_view);
zero_v4(test->plane_tool);
if (RV3D_CLIPPING_ENABLED(v3d, rv3d)) {
test->clip_rv3d = rv3d;
}
else {
test->clip_rv3d = nullptr;
}
}
BLI_INLINE bool sculpt_brush_test_clipping(const SculptBrushTest *test, const float co[3])
{
RegionView3D *rv3d = test->clip_rv3d;
if (!rv3d) {
return false;
}
float symm_co[3];
flip_v3_v3(symm_co, co, test->mirror_symmetry_pass);
if (test->radial_symmetry_pass) {
mul_m4_v3(test->symm_rot_mat_inv, symm_co);
}
return ED_view3d_clipping_test(rv3d, symm_co, true);
}
bool SCULPT_brush_test_sphere(SculptBrushTest *test, const float co[3])
{
float distsq = len_squared_v3v3(co, test->location);
if (distsq > test->radius_squared) {
return false;
}
if (sculpt_brush_test_clipping(test, co)) {
return false;
}
test->dist = sqrtf(distsq);
return true;
}
bool SCULPT_brush_test_sphere_sq(SculptBrushTest *test, const float co[3])
{
float distsq = len_squared_v3v3(co, test->location);
if (distsq > test->radius_squared) {
return false;
}
if (sculpt_brush_test_clipping(test, co)) {
return false;
}
test->dist = distsq;
return true;
}
bool SCULPT_brush_test_sphere_fast(const SculptBrushTest *test, const float co[3])
{
if (sculpt_brush_test_clipping(test, co)) {
return false;
}
return len_squared_v3v3(co, test->location) <= test->radius_squared;
}
bool SCULPT_brush_test_circle_sq(SculptBrushTest *test, const float co[3])
{
float co_proj[3];
closest_to_plane_normalized_v3(co_proj, test->plane_view, co);
float distsq = len_squared_v3v3(co_proj, test->location);
if (distsq > test->radius_squared) {
return false;
}
if (sculpt_brush_test_clipping(test, co)) {
return false;
}
test->dist = distsq;
return true;
}
bool SCULPT_brush_test_cube(SculptBrushTest *test,
const float co[3],
const float local[4][4],
const float roundness)
{
float side = 1.0f;
float local_co[3];
if (sculpt_brush_test_clipping(test, co)) {
return false;
}
mul_v3_m4v3(local_co, local, co);
local_co[0] = fabsf(local_co[0]);
local_co[1] = fabsf(local_co[1]);
local_co[2] = fabsf(local_co[2]);
/* Keep the square and circular brush tips the same size. */
side += (1.0f - side) * roundness;
const float hardness = 1.0f - roundness;
const float constant_side = hardness * side;
const float falloff_side = roundness * side;
if (!(local_co[0] <= side && local_co[1] <= side && local_co[2] <= side)) {
/* Outside the square. */
return false;
}
if (min_ff(local_co[0], local_co[1]) > constant_side) {
/* Corner, distance to the center of the corner circle. */
float r_point[3];
copy_v3_fl(r_point, constant_side);
test->dist = len_v2v2(r_point, local_co) / falloff_side;
return true;
}
if (max_ff(local_co[0], local_co[1]) > constant_side) {
/* Side, distance to the square XY axis. */
test->dist = (max_ff(local_co[0], local_co[1]) - constant_side) / falloff_side;
return true;
}
/* Inside the square, constant distance. */
test->dist = 0.0f;
return true;
}
SculptBrushTestFn SCULPT_brush_test_init_with_falloff_shape(SculptSession *ss,
SculptBrushTest *test,
char falloff_shape)
{
if (!ss->cache && !ss->filter_cache) {
falloff_shape = PAINT_FALLOFF_SHAPE_SPHERE;
}
SCULPT_brush_test_init(ss, test);
SculptBrushTestFn sculpt_brush_test_sq_fn;
if (falloff_shape == PAINT_FALLOFF_SHAPE_SPHERE) {
sculpt_brush_test_sq_fn = SCULPT_brush_test_sphere_sq;
}
else {
float view_normal[3];
if (ss->cache) {
copy_v3_v3(view_normal, ss->cache->view_normal);
}
else {
copy_v3_v3(view_normal, ss->filter_cache->view_normal);
}
/* PAINT_FALLOFF_SHAPE_TUBE */
plane_from_point_normal_v3(test->plane_view, test->location, view_normal);
sculpt_brush_test_sq_fn = SCULPT_brush_test_circle_sq;
}
return sculpt_brush_test_sq_fn;
}
const float *SCULPT_brush_frontface_normal_from_falloff_shape(SculptSession *ss,
char falloff_shape)
{
if (falloff_shape == PAINT_FALLOFF_SHAPE_SPHERE) {
return ss->cache->sculpt_normal_symm;
}
/* PAINT_FALLOFF_SHAPE_TUBE */
return ss->cache->view_normal;
}
static float frontface(const Brush *br,
const float sculpt_normal[3],
const float no[3],
const float fno[3])
{
if (!(br->flag & BRUSH_FRONTFACE)) {
return 1.0f;
}
float dot;
if (no) {
dot = dot_v3v3(no, sculpt_normal);
}
else {
dot = dot_v3v3(fno, sculpt_normal);
}
return dot > 0.0f ? dot : 0.0f;
}
#if 0
static bool sculpt_brush_test_cyl(SculptBrushTest *test,
float co[3],
float location[3],
const float area_no[3])
{
if (sculpt_brush_test_sphere_fast(test, co)) {
float t1[3], t2[3], t3[3], dist;
sub_v3_v3v3(t1, location, co);
sub_v3_v3v3(t2, x2, location);
cross_v3_v3v3(t3, area_no, t1);
dist = len_v3(t3) / len_v3(t2);
test->dist = dist;
return true;
}
return false;
}
#endif
/* ===== Sculpting =====
*/
static float calc_overlap(StrokeCache *cache,
const ePaintSymmetryFlags symm,
const char axis,
const float angle)
{
float mirror[3];
float distsq;
flip_v3_v3(mirror, cache->true_location, symm);
if (axis != 0) {
float mat[3][3];
axis_angle_to_mat3_single(mat, axis, angle);
mul_m3_v3(mat, mirror);
}
distsq = len_squared_v3v3(mirror, cache->true_location);
if (distsq <= 4.0f * (cache->radius_squared)) {
return (2.0f * (cache->radius) - sqrtf(distsq)) / (2.0f * (cache->radius));
}
return 0.0f;
}
static float calc_radial_symmetry_feather(Sculpt *sd,
StrokeCache *cache,
const ePaintSymmetryFlags symm,
const char axis)
{
float overlap = 0.0f;
for (int i = 1; i < sd->radial_symm[axis - 'X']; i++) {
const float angle = 2.0f * M_PI * i / sd->radial_symm[axis - 'X'];
overlap += calc_overlap(cache, symm, axis, angle);
}
return overlap;
}
static float calc_symmetry_feather(Sculpt *sd, StrokeCache *cache)
{
if (!(sd->paint.symmetry_flags & PAINT_SYMMETRY_FEATHER)) {
return 1.0f;
}
float overlap;
const int symm = cache->symmetry;
overlap = 0.0f;
for (int i = 0; i <= symm; i++) {
if (!SCULPT_is_symmetry_iteration_valid(i, symm)) {
continue;
}
overlap += calc_overlap(cache, ePaintSymmetryFlags(i), 0, 0);
overlap += calc_radial_symmetry_feather(sd, cache, ePaintSymmetryFlags(i), 'X');
overlap += calc_radial_symmetry_feather(sd, cache, ePaintSymmetryFlags(i), 'Y');
overlap += calc_radial_symmetry_feather(sd, cache, ePaintSymmetryFlags(i), 'Z');
}
return 1.0f / overlap;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Calculate Normal and Center
*
* Calculate geometry surrounding the brush center.
* (optionally using original coordinates).
*
* Functions are:
* - #SCULPT_calc_area_center
* - #SCULPT_calc_area_normal
* - #SCULPT_calc_area_normal_and_center
*
* \note These are all _very_ similar, when changing one, check others.
* \{ */
struct AreaNormalCenterTLSData {
/* 0 = towards view, 1 = flipped */
float area_cos[2][3];
float area_nos[2][3];
int count_no[2];
int count_co[2];
};
static void calc_area_normal_and_center_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict tls)
{
SculptThreadedTaskData *data = static_cast<SculptThreadedTaskData *>(userdata);
SculptSession *ss = data->ob->sculpt;
AreaNormalCenterTLSData *anctd = static_cast<AreaNormalCenterTLSData *>(tls->userdata_chunk);
const bool use_area_nos = data->use_area_nos;
const bool use_area_cos = data->use_area_cos;
PBVHVertexIter vd;
SculptUndoNode *unode = nullptr;
bool use_original = false;
bool normal_test_r, area_test_r;
if (ss->cache && ss->cache->original) {
unode = SCULPT_undo_push_node(data->ob, data->nodes[n], SCULPT_UNDO_COORDS);
use_original = (unode->co || unode->bm_entry);
}
SculptBrushTest normal_test;
SculptBrushTestFn sculpt_brush_normal_test_sq_fn = SCULPT_brush_test_init_with_falloff_shape(
ss, &normal_test, data->brush->falloff_shape);
/* Update the test radius to sample the normal using the normal radius of the brush. */
if (data->brush->ob_mode == OB_MODE_SCULPT) {
float test_radius = sqrtf(normal_test.radius_squared);
test_radius *= data->brush->normal_radius_factor;
normal_test.radius = test_radius;
normal_test.radius_squared = test_radius * test_radius;
}
SculptBrushTest area_test;
SculptBrushTestFn sculpt_brush_area_test_sq_fn = SCULPT_brush_test_init_with_falloff_shape(
ss, &area_test, data->brush->falloff_shape);
if (data->brush->ob_mode == OB_MODE_SCULPT) {
float test_radius = sqrtf(area_test.radius_squared);
/* Layer brush produces artifacts with normal and area radius */
/* Enable area radius control only on Scrape for now */
if (ELEM(data->brush->sculpt_tool, SCULPT_TOOL_SCRAPE, SCULPT_TOOL_FILL) &&
data->brush->area_radius_factor > 0.0f) {
test_radius *= data->brush->area_radius_factor;
if (ss->cache && data->brush->flag2 & BRUSH_AREA_RADIUS_PRESSURE) {
test_radius *= ss->cache->pressure;
}
}
else {
test_radius *= data->brush->normal_radius_factor;
}
area_test.radius = test_radius;
area_test.radius_squared = test_radius * test_radius;
}
/* When the mesh is edited we can't rely on original coords
* (original mesh may not even have verts in brush radius). */
if (use_original && data->has_bm_orco) {
float(*orco_coords)[3];
int(*orco_tris)[3];
int orco_tris_num;
BKE_pbvh_node_get_bm_orco_data(
data->nodes[n], &orco_tris, &orco_tris_num, &orco_coords, nullptr);
for (int i = 0; i < orco_tris_num; i++) {
const float *co_tri[3] = {
orco_coords[orco_tris[i][0]],
orco_coords[orco_tris[i][1]],
orco_coords[orco_tris[i][2]],
};
float co[3];
closest_on_tri_to_point_v3(co, normal_test.location, UNPACK3(co_tri));
normal_test_r = sculpt_brush_normal_test_sq_fn(&normal_test, co);
area_test_r = sculpt_brush_area_test_sq_fn(&area_test, co);
if (!normal_test_r && !area_test_r) {
continue;
}
float no[3];
int flip_index;
normal_tri_v3(no, UNPACK3(co_tri));
flip_index = (dot_v3v3(ss->cache->view_normal, no) <= 0.0f);
if (use_area_cos && area_test_r) {
/* Weight the coordinates towards the center. */
float p = 1.0f - (sqrtf(area_test.dist) / area_test.radius);
const float afactor = clamp_f(3.0f * p * p - 2.0f * p * p * p, 0.0f, 1.0f);
float disp[3];
sub_v3_v3v3(disp, co, area_test.location);
mul_v3_fl(disp, 1.0f - afactor);
add_v3_v3v3(co, area_test.location, disp);
add_v3_v3(anctd->area_cos[flip_index], co);
anctd->count_co[flip_index] += 1;
}
if (use_area_nos && normal_test_r) {
/* Weight the normals towards the center. */
float p = 1.0f - (sqrtf(normal_test.dist) / normal_test.radius);
const float nfactor = clamp_f(3.0f * p * p - 2.0f * p * p * p, 0.0f, 1.0f);
mul_v3_fl(no, nfactor);
add_v3_v3(anctd->area_nos[flip_index], no);
anctd->count_no[flip_index] += 1;
}
}
}
else {
BKE_pbvh_vertex_iter_begin (ss->pbvh, data->nodes[n], vd, PBVH_ITER_UNIQUE) {
float co[3];
/* For bm_vert only. */
float no_s[3];
if (use_original) {
if (unode->bm_entry) {
const float *temp_co;
const float *temp_no_s;
BM_log_original_vert_data(ss->bm_log, vd.bm_vert, &temp_co, &temp_no_s);
copy_v3_v3(co, temp_co);
copy_v3_v3(no_s, temp_no_s);
}
else {
copy_v3_v3(co, unode->co[vd.i]);
copy_v3_v3(no_s, unode->no[vd.i]);
}
}
else {
copy_v3_v3(co, vd.co);
}
normal_test_r = sculpt_brush_normal_test_sq_fn(&normal_test, co);
area_test_r = sculpt_brush_area_test_sq_fn(&area_test, co);
if (!normal_test_r && !area_test_r) {
continue;
}
float no[3];
int flip_index;
data->any_vertex_sampled = true;
if (use_original) {
copy_v3_v3(no, no_s);
}
else {
if (vd.no) {
copy_v3_v3(no, vd.no);
}
else {
copy_v3_v3(no, vd.fno);
}
}
flip_index = (dot_v3v3(ss->cache ? ss->cache->view_normal : ss->cursor_view_normal, no) <=
0.0f);
if (use_area_cos && area_test_r) {
/* Weight the coordinates towards the center. */
float p = 1.0f - (sqrtf(area_test.dist) / area_test.radius);
const float afactor = clamp_f(3.0f * p * p - 2.0f * p * p * p, 0.0f, 1.0f);
float disp[3];
sub_v3_v3v3(disp, co, area_test.location);
mul_v3_fl(disp, 1.0f - afactor);
add_v3_v3v3(co, area_test.location, disp);
add_v3_v3(anctd->area_cos[flip_index], co);
anctd->count_co[flip_index] += 1;
}
if (use_area_nos && normal_test_r) {
/* Weight the normals towards the center. */
float p = 1.0f - (sqrtf(normal_test.dist) / normal_test.radius);
const float nfactor = clamp_f(3.0f * p * p - 2.0f * p * p * p, 0.0f, 1.0f);
mul_v3_fl(no, nfactor);
add_v3_v3(anctd->area_nos[flip_index], no);
anctd->count_no[flip_index] += 1;
}
}
BKE_pbvh_vertex_iter_end;
}
}
static void calc_area_normal_and_center_reduce(const void *__restrict /*userdata*/,
void *__restrict chunk_join,
void *__restrict chunk)
{
AreaNormalCenterTLSData *join = static_cast<AreaNormalCenterTLSData *>(chunk_join);
AreaNormalCenterTLSData *anctd = static_cast<AreaNormalCenterTLSData *>(chunk);
/* For flatten center. */
add_v3_v3(join->area_cos[0], anctd->area_cos[0]);
add_v3_v3(join->area_cos[1], anctd->area_cos[1]);
/* For area normal. */
add_v3_v3(join->area_nos[0], anctd->area_nos[0]);
add_v3_v3(join->area_nos[1], anctd->area_nos[1]);
/* Weights. */
add_v2_v2_int(join->count_no, anctd->count_no);
add_v2_v2_int(join->count_co, anctd->count_co);
}
void SCULPT_calc_area_center(
Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode, float r_area_co[3])
{
const Brush *brush = BKE_paint_brush(&sd->paint);
SculptSession *ss = ob->sculpt;
const bool has_bm_orco = ss->bm && SCULPT_stroke_is_dynamic_topology(ss, brush);
int n;
/* Intentionally set 'sd' to nullptr since we share logic with vertex paint. */
SculptThreadedTaskData data{};
data.sd = nullptr;
data.ob = ob;
data.brush = brush;
data.nodes = nodes;
data.totnode = totnode;
data.has_bm_orco = has_bm_orco;
data.use_area_cos = true;
AreaNormalCenterTLSData anctd = {{{0}}};
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
settings.func_reduce = calc_area_normal_and_center_reduce;
settings.userdata_chunk = &anctd;
settings.userdata_chunk_size = sizeof(AreaNormalCenterTLSData);
BLI_task_parallel_range(0, totnode, &data, calc_area_normal_and_center_task_cb, &settings);
/* For flatten center. */
for (n = 0; n < ARRAY_SIZE(anctd.area_cos); n++) {
if (anctd.count_co[n] == 0) {
continue;
}
mul_v3_v3fl(r_area_co, anctd.area_cos[n], 1.0f / anctd.count_co[n]);
break;
}
if (n == 2) {
zero_v3(r_area_co);
}
if (anctd.count_co[0] == 0 && anctd.count_co[1] == 0) {
if (ss->cache) {
copy_v3_v3(r_area_co, ss->cache->location);
}
}
}
void SCULPT_calc_area_normal(
Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode, float r_area_no[3])
{
const Brush *brush = BKE_paint_brush(&sd->paint);
SCULPT_pbvh_calc_area_normal(brush, ob, nodes, totnode, true, r_area_no);
}
bool SCULPT_pbvh_calc_area_normal(const Brush *brush,
Object *ob,
PBVHNode **nodes,
int totnode,
bool use_threading,
float r_area_no[3])
{
SculptSession *ss = ob->sculpt;
const bool has_bm_orco = ss->bm && SCULPT_stroke_is_dynamic_topology(ss, brush);
/* Intentionally set 'sd' to nullptr since this is used for vertex paint too. */
SculptThreadedTaskData data{};
data.sd = nullptr;
data.ob = ob;
data.brush = brush;
data.nodes = nodes;
data.totnode = totnode;
data.has_bm_orco = has_bm_orco;
data.use_area_nos = true;
data.any_vertex_sampled = false;
AreaNormalCenterTLSData anctd = {{{0}}};
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, use_threading, totnode);
settings.func_reduce = calc_area_normal_and_center_reduce;
settings.userdata_chunk = &anctd;
settings.userdata_chunk_size = sizeof(AreaNormalCenterTLSData);
BLI_task_parallel_range(0, totnode, &data, calc_area_normal_and_center_task_cb, &settings);
/* For area normal. */
for (int i = 0; i < ARRAY_SIZE(anctd.area_nos); i++) {
if (normalize_v3_v3(r_area_no, anctd.area_nos[i]) != 0.0f) {
break;
}
}
return data.any_vertex_sampled;
}
void SCULPT_calc_area_normal_and_center(
Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode, float r_area_no[3], float r_area_co[3])
{
const Brush *brush = BKE_paint_brush(&sd->paint);
SculptSession *ss = ob->sculpt;
const bool has_bm_orco = ss->bm && SCULPT_stroke_is_dynamic_topology(ss, brush);
int n;
/* Intentionally set 'sd' to nullptr since this is used for vertex paint too. */
SculptThreadedTaskData data{};
data.sd = nullptr;
data.ob = ob;
data.brush = brush;
data.nodes = nodes;
data.totnode = totnode;
data.has_bm_orco = has_bm_orco;
data.use_area_cos = true;
data.use_area_nos = true;
AreaNormalCenterTLSData anctd = {{{0}}};
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
settings.func_reduce = calc_area_normal_and_center_reduce;
settings.userdata_chunk = &anctd;
settings.userdata_chunk_size = sizeof(AreaNormalCenterTLSData);
BLI_task_parallel_range(0, totnode, &data, calc_area_normal_and_center_task_cb, &settings);
/* For flatten center. */
for (n = 0; n < ARRAY_SIZE(anctd.area_cos); n++) {
if (anctd.count_co[n] == 0) {
continue;
}
mul_v3_v3fl(r_area_co, anctd.area_cos[n], 1.0f / anctd.count_co[n]);
break;
}
if (n == 2) {
zero_v3(r_area_co);
}
if (anctd.count_co[0] == 0 && anctd.count_co[1] == 0) {
if (ss->cache) {
copy_v3_v3(r_area_co, ss->cache->location);
}
}
/* For area normal. */
for (n = 0; n < ARRAY_SIZE(anctd.area_nos); n++) {
if (normalize_v3_v3(r_area_no, anctd.area_nos[n]) != 0.0f) {
break;
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Generic Brush Utilities
* \{ */
/**
* Return modified brush strength. Includes the direction of the brush, positive
* values pull vertices, negative values push. Uses tablet pressure and a
* special multiplier found experimentally to scale the strength factor.
*/
static float brush_strength(const Sculpt *sd,
const StrokeCache *cache,
const float feather,
const UnifiedPaintSettings *ups,
const PaintModeSettings * /*paint_mode_settings*/)
{
const Scene *scene = cache->vc->scene;
const Brush *brush = BKE_paint_brush((Paint *)&sd->paint);
/* Primary strength input; square it to make lower values more sensitive. */
const float root_alpha = BKE_brush_alpha_get(scene, brush);
const float alpha = root_alpha * root_alpha;
const float dir = (brush->flag & BRUSH_DIR_IN) ? -1.0f : 1.0f;
const float pressure = BKE_brush_use_alpha_pressure(brush) ? cache->pressure : 1.0f;
const float pen_flip = cache->pen_flip ? -1.0f : 1.0f;
const float invert = cache->invert ? -1.0f : 1.0f;
float overlap = ups->overlap_factor;
/* Spacing is integer percentage of radius, divide by 50 to get
* normalized diameter. */
float flip = dir * invert * pen_flip;
if (brush->flag & BRUSH_INVERT_TO_SCRAPE_FILL) {
flip = 1.0f;
}
/* Pressure final value after being tweaked depending on the brush. */
float final_pressure;
switch (brush->sculpt_tool) {
case SCULPT_TOOL_CLAY:
final_pressure = pow4f(pressure);
overlap = (1.0f + overlap) / 2.0f;
return 0.25f * alpha * flip * final_pressure * overlap * feather;
case SCULPT_TOOL_DRAW:
case SCULPT_TOOL_DRAW_SHARP:
case SCULPT_TOOL_LAYER:
return alpha * flip * pressure * overlap * feather;
case SCULPT_TOOL_DISPLACEMENT_ERASER:
return alpha * pressure * overlap * feather;
case SCULPT_TOOL_CLOTH:
if (brush->cloth_deform_type == BRUSH_CLOTH_DEFORM_GRAB) {
/* Grab deform uses the same falloff as a regular grab brush. */
return root_alpha * feather;
}
else if (brush->cloth_deform_type == BRUSH_CLOTH_DEFORM_SNAKE_HOOK) {
return root_alpha * feather * pressure * overlap;
}
else if (brush->cloth_deform_type == BRUSH_CLOTH_DEFORM_EXPAND) {
/* Expand is more sensible to strength as it keeps expanding the cloth when sculpting over
* the same vertices. */
return 0.1f * alpha * flip * pressure * overlap * feather;
}
else {
/* Multiply by 10 by default to get a larger range of strength depending on the size of the
* brush and object. */
return 10.0f * alpha * flip * pressure * overlap * feather;
}
case SCULPT_TOOL_DRAW_FACE_SETS:
return alpha * pressure * overlap * feather;
case SCULPT_TOOL_SLIDE_RELAX:
return alpha * pressure * overlap * feather * 2.0f;
case SCULPT_TOOL_PAINT:
final_pressure = pressure * pressure;
return final_pressure * overlap * feather;
case SCULPT_TOOL_SMEAR:
case SCULPT_TOOL_DISPLACEMENT_SMEAR:
return alpha * pressure * overlap * feather;
case SCULPT_TOOL_CLAY_STRIPS:
/* Clay Strips needs less strength to compensate the curve. */
final_pressure = powf(pressure, 1.5f);
return alpha * flip * final_pressure * overlap * feather * 0.3f;
case SCULPT_TOOL_CLAY_THUMB:
final_pressure = pressure * pressure;
return alpha * flip * final_pressure * overlap * feather * 1.3f;
case SCULPT_TOOL_MASK:
overlap = (1.0f + overlap) / 2.0f;
switch ((BrushMaskTool)brush->mask_tool) {
case BRUSH_MASK_DRAW:
return alpha * flip * pressure * overlap * feather;
case BRUSH_MASK_SMOOTH:
return alpha * pressure * feather;
}
BLI_assert_msg(0, "Not supposed to happen");
return 0.0f;
case SCULPT_TOOL_CREASE:
case SCULPT_TOOL_BLOB:
return alpha * flip * pressure * overlap * feather;
case SCULPT_TOOL_INFLATE:
if (flip > 0.0f) {
return 0.250f * alpha * flip * pressure * overlap * feather;
}
else {
return 0.125f * alpha * flip * pressure * overlap * feather;
}
case SCULPT_TOOL_MULTIPLANE_SCRAPE:
overlap = (1.0f + overlap) / 2.0f;
return alpha * flip * pressure * overlap * feather;
case SCULPT_TOOL_FILL:
case SCULPT_TOOL_SCRAPE:
case SCULPT_TOOL_FLATTEN:
if (flip > 0.0f) {
overlap = (1.0f + overlap) / 2.0f;
return alpha * flip * pressure * overlap * feather;
}
else {
/* Reduce strength for DEEPEN, PEAKS, and CONTRAST. */
return 0.5f * alpha * flip * pressure * overlap * feather;
}
case SCULPT_TOOL_SMOOTH:
return flip * alpha * pressure * feather;
case SCULPT_TOOL_PINCH:
if (flip > 0.0f) {
return alpha * flip * pressure * overlap * feather;
}
else {
return 0.25f * alpha * flip * pressure * overlap * feather;
}
case SCULPT_TOOL_NUDGE:
overlap = (1.0f + overlap) / 2.0f;
return alpha * pressure * overlap * feather;
case SCULPT_TOOL_THUMB:
return alpha * pressure * feather;
case SCULPT_TOOL_SNAKE_HOOK:
return root_alpha * feather;
case SCULPT_TOOL_GRAB:
return root_alpha * feather;
case SCULPT_TOOL_ROTATE:
return alpha * pressure * feather;
case SCULPT_TOOL_ELASTIC_DEFORM:
case SCULPT_TOOL_POSE:
case SCULPT_TOOL_BOUNDARY:
return root_alpha * feather;
default:
return 0.0f;
}
}
static float sculpt_apply_hardness(const SculptSession *ss, const float input_len)
{
const StrokeCache *cache = ss->cache;
float final_len = input_len;
const float hardness = cache->paint_brush.hardness;
float p = input_len / cache->radius;
if (p < hardness) {
final_len = 0.0f;
}
else if (hardness == 1.0f) {
final_len = cache->radius;
}
else {
p = (p - hardness) / (1.0f - hardness);
final_len = p * cache->radius;
}
return final_len;
}
static void sculpt_apply_texture(const SculptSession *ss,
const Brush *brush,
const float brush_point[3],
const int thread_id,
float *r_value,
float r_rgba[4])
{
StrokeCache *cache = ss->cache;
const Scene *scene = cache->vc->scene;
const MTex *mtex = BKE_brush_mask_texture_get(brush, OB_MODE_SCULPT);
if (!mtex->tex) {
*r_value = 1.0f;
copy_v4_fl(r_rgba, 1.0f);
return;
}
float point[3];
sub_v3_v3v3(point, brush_point, cache->plane_offset);
if (mtex->brush_map_mode == MTEX_MAP_MODE_3D) {
/* Get strength by feeding the vertex location directly into a texture. */
*r_value = BKE_brush_sample_tex_3d(scene, brush, mtex, point, r_rgba, 0, ss->tex_pool);
}
else {
float symm_point[3];
/* If the active area is being applied for symmetry, flip it
* across the symmetry axis and rotate it back to the original
* position in order to project it. This insures that the
* brush texture will be oriented correctly. */
if (cache->radial_symmetry_pass) {
mul_m4_v3(cache->symm_rot_mat_inv, point);
}
flip_v3_v3(symm_point, point, cache->mirror_symmetry_pass);
/* Still no symmetry supported for other paint modes.
* Sculpt does it DIY. */
if (mtex->brush_map_mode == MTEX_MAP_MODE_AREA) {
/* Similar to fixed mode, but projects from brush angle
* rather than view direction. */
mul_m4_v3(cache->brush_local_mat, symm_point);
float x = symm_point[0];
float y = symm_point[1];
x *= mtex->size[0];
y *= mtex->size[1];
x += mtex->ofs[0];
y += mtex->ofs[1];
paint_get_tex_pixel(mtex, x, y, ss->tex_pool, thread_id, r_value, r_rgba);
add_v3_fl(r_rgba, brush->texture_sample_bias); // v3 -> Ignore alpha
*r_value -= brush->texture_sample_bias;
}
else {
float point_2d[2];
ED_view3d_project_float_v2_m4(
cache->vc->region, symm_point, point_2d, cache->projection_mat);
const float point_3d[3] = {point_2d[0], point_2d[1], 0.0f};
*r_value = BKE_brush_sample_tex_3d(scene, brush, mtex, point_3d, r_rgba, 0, ss->tex_pool);
}
}
}
float SCULPT_brush_strength_factor(SculptSession *ss,
const Brush *brush,
const float brush_point[3],
float len,
const float vno[3],
const float fno[3],
float mask,
const PBVHVertRef vertex,
int thread_id,
AutomaskingNodeData *automask_data)
{
StrokeCache *cache = ss->cache;
float avg = 1.0f;
float rgba[4];
sculpt_apply_texture(ss, brush, brush_point, thread_id, &avg, rgba);
/* Hardness. */
const float final_len = sculpt_apply_hardness(ss, len);
/* Falloff curve. */
avg *= BKE_brush_curve_strength(brush, final_len, cache->radius);
avg *= frontface(brush, cache->view_normal, vno, fno);
/* Paint mask. */
avg *= 1.0f - mask;
/* Auto-masking. */
avg *= SCULPT_automasking_factor_get(cache->automasking, ss, vertex, automask_data);
return avg;
}
void SCULPT_brush_strength_color(SculptSession *ss,
const Brush *brush,
const float brush_point[3],
float len,
const float vno[3],
const float fno[3],
float mask,
const PBVHVertRef vertex,
int thread_id,
AutomaskingNodeData *automask_data,
float r_rgba[4])
{
StrokeCache *cache = ss->cache;
float avg = 1.0f;
sculpt_apply_texture(ss, brush, brush_point, thread_id, &avg, r_rgba);
/* Hardness. */
const float final_len = sculpt_apply_hardness(ss, len);
/* Falloff curve. */
const float falloff = BKE_brush_curve_strength(brush, final_len, cache->radius) *
frontface(brush, cache->view_normal, vno, fno);
/* Paint mask. */
const float paint_mask = 1.0f - mask;
/* Auto-masking. */
const float automasking_factor = SCULPT_automasking_factor_get(
cache->automasking, ss, vertex, automask_data);
const float masks_combined = falloff * paint_mask * automasking_factor;
mul_v4_fl(r_rgba, masks_combined);
}
void SCULPT_calc_vertex_displacement(SculptSession *ss,
const Brush *brush,
float rgba[3],
float out_offset[3])
{
mul_v3_fl(rgba, ss->cache->bstrength);
/* Handle brush inversion */
if (ss->cache->bstrength < 0) {
rgba[0] *= -1;
rgba[1] *= -1;
}
/* Apply texture size */
for (int i = 0; i < 3; ++i) {
rgba[i] *= blender::math::safe_divide(1.0f, pow2f(brush->mtex.size[i]));
}
/* Transform vector to object space */
mul_mat3_m4_v3(ss->cache->brush_local_mat_inv, rgba);
/* Handle symmetry */
if (ss->cache->radial_symmetry_pass) {
mul_m4_v3(ss->cache->symm_rot_mat, rgba);
}
flip_v3_v3(out_offset, rgba, ss->cache->mirror_symmetry_pass);
}
bool SCULPT_search_sphere_cb(PBVHNode *node, void *data_v)
{
SculptSearchSphereData *data = static_cast<SculptSearchSphereData *>(data_v);
const float *center;
float nearest[3];
if (data->center) {
center = data->center;
}
else {
center = data->ss->cache ? data->ss->cache->location : data->ss->cursor_location;
}
float t[3], bb_min[3], bb_max[3];
if (data->ignore_fully_ineffective) {
if (BKE_pbvh_node_fully_hidden_get(node)) {
return false;
}
if (BKE_pbvh_node_fully_masked_get(node)) {
return false;
}
}
if (data->original) {
BKE_pbvh_node_get_original_BB(node, bb_min, bb_max);
}
else {
BKE_pbvh_node_get_BB(node, bb_min, bb_max);
}
for (int i = 0; i < 3; i++) {
if (bb_min[i] > center[i]) {
nearest[i] = bb_min[i];
}
else if (bb_max[i] < center[i]) {
nearest[i] = bb_max[i];
}
else {
nearest[i] = center[i];
}
}
sub_v3_v3v3(t, center, nearest);
return len_squared_v3(t) < data->radius_squared;
}
bool SCULPT_search_circle_cb(PBVHNode *node, void *data_v)
{
SculptSearchCircleData *data = static_cast<SculptSearchCircleData *>(data_v);
float bb_min[3], bb_max[3];
if (data->ignore_fully_ineffective) {
if (BKE_pbvh_node_fully_masked_get(node)) {
return false;
}
}
if (data->original) {
BKE_pbvh_node_get_original_BB(node, bb_min, bb_max);
}
else {
BKE_pbvh_node_get_BB(node, bb_min, bb_min);
}
float dummy_co[3], dummy_depth;
const float dist_sq = dist_squared_ray_to_aabb_v3(
data->dist_ray_to_aabb_precalc, bb_min, bb_max, dummy_co, &dummy_depth);
/* Seems like debug code.
* Maybe this function can just return true if the node is not fully masked. */
return dist_sq < data->radius_squared || true;
}
void SCULPT_clip(Sculpt *sd, SculptSession *ss, float co[3], const float val[3])
{
for (int i = 0; i < 3; i++) {
if (sd->flags & (SCULPT_LOCK_X << i)) {
continue;
}
bool do_clip = false;
float co_clip[3];
if (ss->cache && (ss->cache->flag & (CLIP_X << i))) {
/* Take possible mirror object into account. */
mul_v3_m4v3(co_clip, ss->cache->clip_mirror_mtx, co);
if (fabsf(co_clip[i]) <= ss->cache->clip_tolerance[i]) {
co_clip[i] = 0.0f;
float imtx[4][4];
invert_m4_m4(imtx, ss->cache->clip_mirror_mtx);
mul_m4_v3(imtx, co_clip);
do_clip = true;
}
}
if (do_clip) {
co[i] = co_clip[i];
}
else {
co[i] = val[i];
}
}
}
static PBVHNode **sculpt_pbvh_gather_cursor_update(Object *ob,
Sculpt *sd,
bool use_original,
int *r_totnode)
{
SculptSession *ss = ob->sculpt;
PBVHNode **nodes = nullptr;
SculptSearchSphereData data{};
data.ss = ss;
data.sd = sd;
data.radius_squared = ss->cursor_radius;
data.original = use_original;
data.ignore_fully_ineffective = false;
data.center = nullptr;
BKE_pbvh_search_gather(ss->pbvh, SCULPT_search_sphere_cb, &data, &nodes, r_totnode);
return nodes;
}
static PBVHNode **sculpt_pbvh_gather_generic_intern(Object *ob,
Sculpt *sd,
const Brush *brush,
bool use_original,
float radius_scale,
int *r_totnode,
PBVHNodeFlags flag)
{
SculptSession *ss = ob->sculpt;
PBVHNode **nodes = nullptr;
PBVHNodeFlags leaf_flag = PBVH_Leaf;
if (flag & PBVH_TexLeaf) {
leaf_flag = PBVH_TexLeaf;
}
/* Build a list of all nodes that are potentially within the cursor or brush's area of influence.
*/
if (brush->falloff_shape == PAINT_FALLOFF_SHAPE_SPHERE) {
SculptSearchSphereData data{};
data.ss = ss;
data.sd = sd;
data.radius_squared = square_f(ss->cache->radius * radius_scale);
data.original = use_original;
data.ignore_fully_ineffective = brush->sculpt_tool != SCULPT_TOOL_MASK;
data.center = nullptr;
BKE_pbvh_search_gather_ex(
ss->pbvh, SCULPT_search_sphere_cb, &data, &nodes, r_totnode, leaf_flag);
}
else {
DistRayAABB_Precalc dist_ray_to_aabb_precalc;
dist_squared_ray_to_aabb_v3_precalc(
&dist_ray_to_aabb_precalc, ss->cache->location, ss->cache->view_normal);
SculptSearchCircleData data{};
data.ss = ss;
data.sd = sd;
data.radius_squared = ss->cache ? square_f(ss->cache->radius * radius_scale) :
ss->cursor_radius;
data.original = use_original;
data.dist_ray_to_aabb_precalc = &dist_ray_to_aabb_precalc;
data.ignore_fully_ineffective = brush->sculpt_tool != SCULPT_TOOL_MASK;
BKE_pbvh_search_gather_ex(
ss->pbvh, SCULPT_search_circle_cb, &data, &nodes, r_totnode, leaf_flag);
}
return nodes;
}
static PBVHNode **sculpt_pbvh_gather_generic(Object *ob,
Sculpt *sd,
const Brush *brush,
bool use_original,
float radius_scale,
int *r_totnode)
{
return sculpt_pbvh_gather_generic_intern(
ob, sd, brush, use_original, radius_scale, r_totnode, PBVH_Leaf);
}
static PBVHNode **sculpt_pbvh_gather_texpaint(Object *ob,
Sculpt *sd,
const Brush *brush,
bool use_original,
float radius_scale,
int *r_totnode)
{
return sculpt_pbvh_gather_generic_intern(
ob, sd, brush, use_original, radius_scale, r_totnode, PBVH_TexLeaf);
}
/* Calculate primary direction of movement for many brushes. */
static void calc_sculpt_normal(
Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode, float r_area_no[3])
{
const Brush *brush = BKE_paint_brush(&sd->paint);
const SculptSession *ss = ob->sculpt;
switch (brush->sculpt_plane) {
case SCULPT_DISP_DIR_VIEW:
copy_v3_v3(r_area_no, ss->cache->true_view_normal);
break;
case SCULPT_DISP_DIR_X:
ARRAY_SET_ITEMS(r_area_no, 1.0f, 0.0f, 0.0f);
break;
case SCULPT_DISP_DIR_Y:
ARRAY_SET_ITEMS(r_area_no, 0.0f, 1.0f, 0.0f);
break;
case SCULPT_DISP_DIR_Z:
ARRAY_SET_ITEMS(r_area_no, 0.0f, 0.0f, 1.0f);
break;
case SCULPT_DISP_DIR_AREA:
SCULPT_calc_area_normal(sd, ob, nodes, totnode, r_area_no);
break;
default:
break;
}
}
static void update_sculpt_normal(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode)
{
const Brush *brush = BKE_paint_brush(&sd->paint);
StrokeCache *cache = ob->sculpt->cache;
/* Grab brush does not update the sculpt normal during a stroke. */
const bool update_normal =
!(brush->flag & BRUSH_ORIGINAL_NORMAL) && !(brush->sculpt_tool == SCULPT_TOOL_GRAB) &&
!(brush->sculpt_tool == SCULPT_TOOL_THUMB && !(brush->flag & BRUSH_ANCHORED)) &&
!(brush->sculpt_tool == SCULPT_TOOL_ELASTIC_DEFORM) &&
!(brush->sculpt_tool == SCULPT_TOOL_SNAKE_HOOK && cache->normal_weight > 0.0f);
if (cache->mirror_symmetry_pass == 0 && cache->radial_symmetry_pass == 0 &&
(SCULPT_stroke_is_first_brush_step_of_symmetry_pass(cache) || update_normal)) {
calc_sculpt_normal(sd, ob, nodes, totnode, cache->sculpt_normal);
if (brush->falloff_shape == PAINT_FALLOFF_SHAPE_TUBE) {
project_plane_v3_v3v3(cache->sculpt_normal, cache->sculpt_normal, cache->view_normal);
normalize_v3(cache->sculpt_normal);
}
copy_v3_v3(cache->sculpt_normal_symm, cache->sculpt_normal);
}
else {
copy_v3_v3(cache->sculpt_normal_symm, cache->sculpt_normal);
flip_v3(cache->sculpt_normal_symm, cache->mirror_symmetry_pass);
mul_m4_v3(cache->symm_rot_mat, cache->sculpt_normal_symm);
}
}
static void calc_local_y(ViewContext *vc, const float center[3], float y[3])
{
Object *ob = vc->obact;
float loc[3];
const float xy_delta[2] = {0.0f, 1.0f};
mul_v3_m4v3(loc, ob->world_to_object, center);
const float zfac = ED_view3d_calc_zfac(vc->rv3d, loc);
ED_view3d_win_to_delta(vc->region, xy_delta, zfac, y);
normalize_v3(y);
add_v3_v3(y, ob->loc);
mul_m4_v3(ob->world_to_object, y);
}
static void calc_brush_local_mat(const float rotation,
Object *ob,
float local_mat[4][4],
float local_mat_inv[4][4])
{
const StrokeCache *cache = ob->sculpt->cache;
float tmat[4][4];
float mat[4][4];
float scale[4][4];
float angle, v[3];
float up[3];
/* Ensure `ob->world_to_object` is up to date. */
invert_m4_m4(ob->world_to_object, ob->object_to_world);
/* Initialize last column of matrix. */
mat[0][3] = 0.0f;
mat[1][3] = 0.0f;
mat[2][3] = 0.0f;
mat[3][3] = 1.0f;
/* Get view's up vector in object-space. */
calc_local_y(cache->vc, cache->location, up);
/* Calculate the X axis of the local matrix. */
cross_v3_v3v3(v, up, cache->sculpt_normal);
/* Apply rotation (user angle, rake, etc.) to X axis. */
angle = rotation - cache->special_rotation;
rotate_v3_v3v3fl(mat[0], v, cache->sculpt_normal, angle);
/* Get other axes. */
cross_v3_v3v3(mat[1], cache->sculpt_normal, mat[0]);
copy_v3_v3(mat[2], cache->sculpt_normal);
/* Set location. */
copy_v3_v3(mat[3], cache->location);
/* Scale by brush radius. */
float radius = cache->radius;
/* Square tips should scale by square root of 2. */
if (BKE_brush_has_cube_tip(cache->brush, PAINT_MODE_SCULPT)) {
radius += (radius * M_SQRT2 - radius) * (1.0f - cache->brush->tip_roundness);
}
normalize_m4(mat);
scale_m4_fl(scale, radius);
mul_m4_m4m4(tmat, mat, scale);
/* Return tmat as is (for converting from local area coords to model-space coords). */
copy_m4_m4(local_mat_inv, tmat);
/* Return inverse (for converting from model-space coords to local area coords). */
invert_m4_m4(local_mat, tmat);
}
#define SCULPT_TILT_SENSITIVITY 0.7f
void SCULPT_tilt_apply_to_normal(float r_normal[3], StrokeCache *cache, const float tilt_strength)
{
if (!U.experimental.use_sculpt_tools_tilt) {
return;
}
const float rot_max = M_PI_2 * tilt_strength * SCULPT_TILT_SENSITIVITY;
mul_v3_mat3_m4v3(r_normal, cache->vc->obact->object_to_world, r_normal);
float normal_tilt_y[3];
rotate_v3_v3v3fl(normal_tilt_y, r_normal, cache->vc->rv3d->viewinv[0], cache->y_tilt * rot_max);
float normal_tilt_xy[3];
rotate_v3_v3v3fl(
normal_tilt_xy, normal_tilt_y, cache->vc->rv3d->viewinv[1], cache->x_tilt * rot_max);
mul_v3_mat3_m4v3(r_normal, cache->vc->obact->world_to_object, normal_tilt_xy);
normalize_v3(r_normal);
}
void SCULPT_tilt_effective_normal_get(const SculptSession *ss, const Brush *brush, float r_no[3])
{
copy_v3_v3(r_no, ss->cache->sculpt_normal_symm);
SCULPT_tilt_apply_to_normal(r_no, ss->cache, brush->tilt_strength_factor);
}
static void update_brush_local_mat(Sculpt *sd, Object *ob)
{
StrokeCache *cache = ob->sculpt->cache;
if (cache->mirror_symmetry_pass == 0 && cache->radial_symmetry_pass == 0) {
const Brush *brush = BKE_paint_brush(&sd->paint);
const MTex *mask_tex = BKE_brush_mask_texture_get(brush, OB_MODE_SCULPT);
calc_brush_local_mat(mask_tex->rot, ob, cache->brush_local_mat, cache->brush_local_mat_inv);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Texture painting
* \{ */
static bool sculpt_needs_pbvh_pixels(PaintModeSettings *paint_mode_settings,
const Brush *brush,
Object *ob)
{
if (brush->sculpt_tool == SCULPT_TOOL_PAINT && U.experimental.use_sculpt_texture_paint) {
Image *image;
ImageUser *image_user;
return SCULPT_paint_image_canvas_get(paint_mode_settings, ob, &image, &image_user);
}
return false;
}
static void sculpt_pbvh_update_pixels(PaintModeSettings *paint_mode_settings,
SculptSession *ss,
Object *ob)
{
BLI_assert(ob->type == OB_MESH);
Mesh *mesh = (Mesh *)ob->data;
Image *image;
ImageUser *image_user;
if (!SCULPT_paint_image_canvas_get(paint_mode_settings, ob, &image, &image_user)) {
return;
}
BKE_pbvh_build_pixels(ss->pbvh, mesh, image, image_user);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Generic Brush Plane & Symmetry Utilities
* \{ */
struct SculptRaycastData {
SculptSession *ss;
const float *ray_start;
const float *ray_normal;
bool hit;
float depth;
bool original;
PBVHVertRef active_vertex;
float *face_normal;
int active_face_grid_index;
IsectRayPrecalc isect_precalc;
};
struct SculptFindNearestToRayData {
SculptSession *ss;
const float *ray_start, *ray_normal;
bool hit;
float depth;
float dist_sq_to_ray;
bool original;
};
ePaintSymmetryAreas SCULPT_get_vertex_symm_area(const float co[3])
{
ePaintSymmetryAreas symm_area = ePaintSymmetryAreas(PAINT_SYMM_AREA_DEFAULT);
if (co[0] < 0.0f) {
symm_area |= PAINT_SYMM_AREA_X;
}
if (co[1] < 0.0f) {
symm_area |= PAINT_SYMM_AREA_Y;
}
if (co[2] < 0.0f) {
symm_area |= PAINT_SYMM_AREA_Z;
}
return symm_area;
}
void SCULPT_flip_v3_by_symm_area(float v[3],
const ePaintSymmetryFlags symm,
const ePaintSymmetryAreas symmarea,
const float pivot[3])
{
for (int i = 0; i < 3; i++) {
ePaintSymmetryFlags symm_it = ePaintSymmetryFlags(1 << i);
if (!(symm & symm_it)) {
continue;
}
if (symmarea & symm_it) {
flip_v3(v, symm_it);
}
if (pivot[i] < 0.0f) {
flip_v3(v, symm_it);
}
}
}
void SCULPT_flip_quat_by_symm_area(float quat[4],
const ePaintSymmetryFlags symm,
const ePaintSymmetryAreas symmarea,
const float pivot[3])
{
for (int i = 0; i < 3; i++) {
ePaintSymmetryFlags symm_it = ePaintSymmetryFlags(1 << i);
if (!(symm & symm_it)) {
continue;
}
if (symmarea & symm_it) {
flip_qt(quat, symm_it);
}
if (pivot[i] < 0.0f) {
flip_qt(quat, symm_it);
}
}
}
void SCULPT_calc_brush_plane(
Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode, float r_area_no[3], float r_area_co[3])
{
SculptSession *ss = ob->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
zero_v3(r_area_co);
zero_v3(r_area_no);
if (SCULPT_stroke_is_main_symmetry_pass(ss->cache) &&
(SCULPT_stroke_is_first_brush_step_of_symmetry_pass(ss->cache) ||
!(brush->flag & BRUSH_ORIGINAL_PLANE) || !(brush->flag & BRUSH_ORIGINAL_NORMAL))) {
switch (brush->sculpt_plane) {
case SCULPT_DISP_DIR_VIEW:
copy_v3_v3(r_area_no, ss->cache->true_view_normal);
break;
case SCULPT_DISP_DIR_X:
ARRAY_SET_ITEMS(r_area_no, 1.0f, 0.0f, 0.0f);
break;
case SCULPT_DISP_DIR_Y:
ARRAY_SET_ITEMS(r_area_no, 0.0f, 1.0f, 0.0f);
break;
case SCULPT_DISP_DIR_Z:
ARRAY_SET_ITEMS(r_area_no, 0.0f, 0.0f, 1.0f);
break;
case SCULPT_DISP_DIR_AREA:
SCULPT_calc_area_normal_and_center(sd, ob, nodes, totnode, r_area_no, r_area_co);
if (brush->falloff_shape == PAINT_FALLOFF_SHAPE_TUBE) {
project_plane_v3_v3v3(r_area_no, r_area_no, ss->cache->view_normal);
normalize_v3(r_area_no);
}
break;
default:
break;
}
/* For flatten center. */
/* Flatten center has not been calculated yet if we are not using the area normal. */
if (brush->sculpt_plane != SCULPT_DISP_DIR_AREA) {
SCULPT_calc_area_center(sd, ob, nodes, totnode, r_area_co);
}
/* For area normal. */
if (!SCULPT_stroke_is_first_brush_step_of_symmetry_pass(ss->cache) &&
(brush->flag & BRUSH_ORIGINAL_NORMAL)) {
copy_v3_v3(r_area_no, ss->cache->sculpt_normal);
}
else {
copy_v3_v3(ss->cache->sculpt_normal, r_area_no);
}
/* For flatten center. */
if (!SCULPT_stroke_is_first_brush_step_of_symmetry_pass(ss->cache) &&
(brush->flag & BRUSH_ORIGINAL_PLANE)) {
copy_v3_v3(r_area_co, ss->cache->last_center);
}
else {
copy_v3_v3(ss->cache->last_center, r_area_co);
}
}
else {
/* For area normal. */
copy_v3_v3(r_area_no, ss->cache->sculpt_normal);
/* For flatten center. */
copy_v3_v3(r_area_co, ss->cache->last_center);
/* For area normal. */
flip_v3(r_area_no, ss->cache->mirror_symmetry_pass);
/* For flatten center. */
flip_v3(r_area_co, ss->cache->mirror_symmetry_pass);
/* For area normal. */
mul_m4_v3(ss->cache->symm_rot_mat, r_area_no);
/* For flatten center. */
mul_m4_v3(ss->cache->symm_rot_mat, r_area_co);
/* Shift the plane for the current tile. */
add_v3_v3(r_area_co, ss->cache->plane_offset);
}
}
int SCULPT_plane_trim(const StrokeCache *cache, const Brush *brush, const float val[3])
{
return (!(brush->flag & BRUSH_PLANE_TRIM) ||
(dot_v3v3(val, val) <= cache->radius_squared * cache->plane_trim_squared));
}
int SCULPT_plane_point_side(const float co[3], const float plane[4])
{
float d = plane_point_side_v3(plane, co);
return d <= 0.0f;
}
float SCULPT_brush_plane_offset_get(Sculpt *sd, SculptSession *ss)
{
Brush *brush = BKE_paint_brush(&sd->paint);
float rv = brush->plane_offset;
if (brush->flag & BRUSH_OFFSET_PRESSURE) {
rv *= ss->cache->pressure;
}
return rv;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Sculpt Gravity Brush
* \{ */
static void do_gravity_task_cb_ex(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict tls)
{
SculptThreadedTaskData *data = static_cast<SculptThreadedTaskData *>(userdata);
SculptSession *ss = data->ob->sculpt;
const Brush *brush = data->brush;
float *offset = data->offset;
PBVHVertexIter vd;
float(*proxy)[3];
proxy = BKE_pbvh_node_add_proxy(ss->pbvh, data->nodes[n])->co;
SculptBrushTest test;
SculptBrushTestFn sculpt_brush_test_sq_fn = SCULPT_brush_test_init_with_falloff_shape(
ss, &test, data->brush->falloff_shape);
const int thread_id = BLI_task_parallel_thread_id(tls);
BKE_pbvh_vertex_iter_begin (ss->pbvh, data->nodes[n], vd, PBVH_ITER_UNIQUE) {
if (!sculpt_brush_test_sq_fn(&test, vd.co)) {
continue;
}
const float fade = SCULPT_brush_strength_factor(ss,
brush,
vd.co,
sqrtf(test.dist),
vd.no,
vd.fno,
vd.mask ? *vd.mask : 0.0f,
vd.vertex,
thread_id,
nullptr);
mul_v3_v3fl(proxy[vd.i], offset, fade);
if (vd.is_mesh) {
BKE_pbvh_vert_tag_update_normal(ss->pbvh, vd.vertex);
}
}
BKE_pbvh_vertex_iter_end;
}
static void do_gravity(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode, float bstrength)
{
SculptSession *ss = ob->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
float offset[3];
float gravity_vector[3];
mul_v3_v3fl(gravity_vector, ss->cache->gravity_direction, -ss->cache->radius_squared);
/* Offset with as much as possible factored in already. */
mul_v3_v3v3(offset, gravity_vector, ss->cache->scale);
mul_v3_fl(offset, bstrength);
/* Threaded loop over nodes. */
SculptThreadedTaskData data{};
data.sd = sd;
data.ob = ob;
data.brush = brush;
data.nodes = nodes;
data.offset = offset;
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
BLI_task_parallel_range(0, totnode, &data, do_gravity_task_cb_ex, &settings);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Sculpt Brush Utilities
* \{ */
void SCULPT_vertcos_to_key(Object *ob, KeyBlock *kb, const float (*vertCos)[3])
{
Mesh *me = (Mesh *)ob->data;
float(*ofs)[3] = nullptr;
int a;
const int kb_act_idx = ob->shapenr - 1;
/* For relative keys editing of base should update other keys. */
if (BKE_keyblock_is_basis(me->key, kb_act_idx)) {
ofs = BKE_keyblock_convert_to_vertcos(ob, kb);
/* Calculate key coord offsets (from previous location). */
for (a = 0; a < me->totvert; a++) {
sub_v3_v3v3(ofs[a], vertCos[a], ofs[a]);
}
/* Apply offsets on other keys. */
LISTBASE_FOREACH (KeyBlock *, currkey, &me->key->block) {
if ((currkey != kb) && (currkey->relative == kb_act_idx)) {
BKE_keyblock_update_from_offset(ob, currkey, ofs);
}
}
MEM_freeN(ofs);
}
/* Modifying of basis key should update mesh. */
if (kb == me->key->refkey) {
BKE_mesh_vert_coords_apply(me, vertCos);
}
/* Apply new coords on active key block, no need to re-allocate kb->data here! */
BKE_keyblock_update_from_vertcos(ob, kb, vertCos);
}
/* NOTE: we do the topology update before any brush actions to avoid
* issues with the proxies. The size of the proxy can't change, so
* topology must be updated first. */
static void sculpt_topology_update(Sculpt *sd,
Object *ob,
Brush *brush,
UnifiedPaintSettings * /*ups*/,
PaintModeSettings * /*paint_mode_settings*/)
{
SculptSession *ss = ob->sculpt;
int n, totnode;
/* Build a list of all nodes that are potentially within the brush's area of influence. */
const bool use_original = sculpt_tool_needs_original(brush->sculpt_tool) ? true :
ss->cache->original;
const float radius_scale = 1.25f;
PBVHNode **nodes = sculpt_pbvh_gather_generic(
ob, sd, brush, use_original, radius_scale, &totnode);
/* Only act if some verts are inside the brush area. */
if (totnode == 0) {
return;
}
/* Free index based vertex info as it will become invalid after modifying the topology during the
* stroke. */
MEM_SAFE_FREE(ss->vertex_info.boundary);
PBVHTopologyUpdateMode mode = PBVHTopologyUpdateMode(0);
float location[3];
if (!(sd->flags & SCULPT_DYNTOPO_DETAIL_MANUAL)) {
if (sd->flags & SCULPT_DYNTOPO_SUBDIVIDE) {
mode |= PBVH_Subdivide;
}
if ((sd->flags & SCULPT_DYNTOPO_COLLAPSE) || (brush->sculpt_tool == SCULPT_TOOL_SIMPLIFY)) {
mode |= PBVH_Collapse;
}
}
for (n = 0; n < totnode; n++) {
SCULPT_undo_push_node(ob,
nodes[n],
brush->sculpt_tool == SCULPT_TOOL_MASK ? SCULPT_UNDO_MASK :
SCULPT_UNDO_COORDS);
BKE_pbvh_node_mark_update(nodes[n]);
if (BKE_pbvh_type(ss->pbvh) == PBVH_BMESH) {
BKE_pbvh_node_mark_topology_update(nodes[n]);
BKE_pbvh_bmesh_node_save_orig(ss->bm, ss->bm_log, nodes[n], false);
}
}
if (BKE_pbvh_type(ss->pbvh) == PBVH_BMESH) {
BKE_pbvh_bmesh_update_topology(ss->pbvh,
mode,
ss->cache->location,
ss->cache->view_normal,
ss->cache->radius,
(brush->flag & BRUSH_FRONTFACE) != 0,
(brush->falloff_shape != PAINT_FALLOFF_SHAPE_SPHERE));
}
MEM_SAFE_FREE(nodes);
/* Update average stroke position. */
copy_v3_v3(location, ss->cache->true_location);
mul_m4_v3(ob->object_to_world, location);
}
static void do_brush_action_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict /*tls*/)
{
SculptThreadedTaskData *data = static_cast<SculptThreadedTaskData *>(userdata);
SculptSession *ss = data->ob->sculpt;
bool need_coords = ss->cache->supports_gravity;
if (data->brush->sculpt_tool == SCULPT_TOOL_DRAW_FACE_SETS) {
BKE_pbvh_node_mark_update_face_sets(data->nodes[n]);
/* Draw face sets in smooth mode moves the vertices. */
if (ss->cache->alt_smooth) {
need_coords = true;
}
else {
SCULPT_undo_push_node(data->ob, data->nodes[n], SCULPT_UNDO_FACE_SETS);
}
}
else if (data->brush->sculpt_tool == SCULPT_TOOL_MASK) {
SCULPT_undo_push_node(data->ob, data->nodes[n], SCULPT_UNDO_MASK);
BKE_pbvh_node_mark_update_mask(data->nodes[n]);
}
else if (SCULPT_tool_is_paint(data->brush->sculpt_tool)) {
SCULPT_undo_push_node(data->ob, data->nodes[n], SCULPT_UNDO_COLOR);
BKE_pbvh_node_mark_update_color(data->nodes[n]);
}
else {
need_coords = true;
}
if (need_coords) {
SCULPT_undo_push_node(data->ob, data->nodes[n], SCULPT_UNDO_COORDS);
BKE_pbvh_node_mark_update(data->nodes[n]);
}
}
static void do_brush_action(Sculpt *sd,
Object *ob,
Brush *brush,
UnifiedPaintSettings *ups,
PaintModeSettings *paint_mode_settings)
{
SculptSession *ss = ob->sculpt;
int totnode, texnodes_num = 0;
PBVHNode **nodes, **texnodes = nullptr;
/* Check for unsupported features. */
PBVHType type = BKE_pbvh_type(ss->pbvh);
if (SCULPT_tool_is_paint(brush->sculpt_tool) && SCULPT_has_loop_colors(ob)) {
if (type != PBVH_FACES) {
return;
}
BKE_pbvh_ensure_node_loops(ss->pbvh);
}
const bool use_original = sculpt_tool_needs_original(brush->sculpt_tool) ? true :
ss->cache->original;
const bool use_pixels = sculpt_needs_pbvh_pixels(paint_mode_settings, brush, ob);
if (sculpt_needs_pbvh_pixels(paint_mode_settings, brush, ob)) {
sculpt_pbvh_update_pixels(paint_mode_settings, ss, ob);
texnodes = sculpt_pbvh_gather_texpaint(ob, sd, brush, use_original, 1.0f, &texnodes_num);
if (!texnodes_num) {
return;
}
}
/* Build a list of all nodes that are potentially within the brush's area of influence */
if (SCULPT_tool_needs_all_pbvh_nodes(brush)) {
/* These brushes need to update all nodes as they are not constrained by the brush radius */
BKE_pbvh_search_gather(ss->pbvh, nullptr, nullptr, &nodes, &totnode);
}
else if (brush->sculpt_tool == SCULPT_TOOL_CLOTH) {
nodes = SCULPT_cloth_brush_affected_nodes_gather(ss, brush, &totnode);
}
else {
float radius_scale = 1.0f;
/* Corners of square brushes can go outside the brush radius. */
if (BKE_brush_has_cube_tip(brush, PAINT_MODE_SCULPT)) {
radius_scale = M_SQRT2;
}
/* With these options enabled not all required nodes are inside the original brush radius, so
* the brush can produce artifacts in some situations. */
if (brush->sculpt_tool == SCULPT_TOOL_DRAW && brush->flag & BRUSH_ORIGINAL_NORMAL) {
radius_scale = 2.0f;
}
nodes = sculpt_pbvh_gather_generic(ob, sd, brush, use_original, radius_scale, &totnode);
}
/* Draw Face Sets in draw mode makes a single undo push, in alt-smooth mode deforms the
* vertices and uses regular coords undo. */
/* It also assigns the paint_face_set here as it needs to be done regardless of the stroke type
* and the number of nodes under the brush influence. */
if (brush->sculpt_tool == SCULPT_TOOL_DRAW_FACE_SETS &&
SCULPT_stroke_is_first_brush_step(ss->cache) && !ss->cache->alt_smooth) {
if (ss->cache->invert) {
/* When inverting the brush, pick the paint face mask ID from the mesh. */
ss->cache->paint_face_set = SCULPT_active_face_set_get(ss);
}
else {
/* By default create a new Face Sets. */
ss->cache->paint_face_set = SCULPT_face_set_next_available_get(ss);
}
}
/* For anchored brushes with spherical falloff, we start off with zero radius, thus we have no
* PBVH nodes on the first brush step. */
if (totnode ||
((brush->falloff_shape == PAINT_FALLOFF_SHAPE_SPHERE) && (brush->flag & BRUSH_ANCHORED))) {
if (SCULPT_stroke_is_first_brush_step(ss->cache)) {
/* Initialize auto-masking cache. */
if (SCULPT_is_automasking_enabled(sd, ss, brush)) {
ss->cache->automasking = SCULPT_automasking_cache_init(sd, brush, ob);
ss->last_automasking_settings_hash = SCULPT_automasking_settings_hash(
ob, ss->cache->automasking);
}
/* Initialize surface smooth cache. */
if ((brush->sculpt_tool == SCULPT_TOOL_SMOOTH) &&
(brush->smooth_deform_type == BRUSH_SMOOTH_DEFORM_SURFACE)) {
BLI_assert(ss->cache->surface_smooth_laplacian_disp == nullptr);
ss->cache->surface_smooth_laplacian_disp = static_cast<float(*)[3]>(
MEM_callocN(sizeof(float[3]) * SCULPT_vertex_count_get(ss), "HC smooth laplacian b"));
}
}
}
/* Only act if some verts are inside the brush area. */
if (totnode == 0) {
MEM_SAFE_FREE(texnodes);
return;
}
float location[3];
if (!use_pixels) {
SculptThreadedTaskData task_data{};
task_data.sd = sd;
task_data.ob = ob;
task_data.brush = brush;
task_data.nodes = nodes;
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
BLI_task_parallel_range(0, totnode, &task_data, do_brush_action_task_cb, &settings);
}
if (sculpt_brush_needs_normal(ss, sd, brush)) {
update_sculpt_normal(sd, ob, nodes, totnode);
}
update_brush_local_mat(sd, ob);
if (brush->sculpt_tool == SCULPT_TOOL_POSE && SCULPT_stroke_is_first_brush_step(ss->cache)) {
SCULPT_pose_brush_init(sd, ob, ss, brush);
}
if (brush->deform_target == BRUSH_DEFORM_TARGET_CLOTH_SIM) {
if (!ss->cache->cloth_sim) {
ss->cache->cloth_sim = SCULPT_cloth_brush_simulation_create(
ob, 1.0f, 0.0f, 0.0f, false, true);
SCULPT_cloth_brush_simulation_init(ss, ss->cache->cloth_sim);
}
SCULPT_cloth_brush_store_simulation_state(ss, ss->cache->cloth_sim);
SCULPT_cloth_brush_ensure_nodes_constraints(
sd, ob, nodes, totnode, ss->cache->cloth_sim, ss->cache->location, FLT_MAX);
}
bool invert = ss->cache->pen_flip || ss->cache->invert || brush->flag & BRUSH_DIR_IN;
/* Apply one type of brush action. */
switch (brush->sculpt_tool) {
case SCULPT_TOOL_DRAW:
SCULPT_do_draw_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_SMOOTH:
if (brush->smooth_deform_type == BRUSH_SMOOTH_DEFORM_LAPLACIAN) {
SCULPT_do_smooth_brush(sd, ob, nodes, totnode);
}
else if (brush->smooth_deform_type == BRUSH_SMOOTH_DEFORM_SURFACE) {
SCULPT_do_surface_smooth_brush(sd, ob, nodes, totnode);
}
break;
case SCULPT_TOOL_CREASE:
SCULPT_do_crease_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_BLOB:
SCULPT_do_crease_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_PINCH:
SCULPT_do_pinch_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_INFLATE:
SCULPT_do_inflate_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_GRAB:
SCULPT_do_grab_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_ROTATE:
SCULPT_do_rotate_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_SNAKE_HOOK:
SCULPT_do_snake_hook_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_NUDGE:
SCULPT_do_nudge_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_THUMB:
SCULPT_do_thumb_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_LAYER:
SCULPT_do_layer_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_FLATTEN:
SCULPT_do_flatten_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_CLAY:
SCULPT_do_clay_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_CLAY_STRIPS:
SCULPT_do_clay_strips_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_MULTIPLANE_SCRAPE:
SCULPT_do_multiplane_scrape_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_CLAY_THUMB:
SCULPT_do_clay_thumb_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_FILL:
if (invert && brush->flag & BRUSH_INVERT_TO_SCRAPE_FILL) {
SCULPT_do_scrape_brush(sd, ob, nodes, totnode);
}
else {
SCULPT_do_fill_brush(sd, ob, nodes, totnode);
}
break;
case SCULPT_TOOL_SCRAPE:
if (invert && brush->flag & BRUSH_INVERT_TO_SCRAPE_FILL) {
SCULPT_do_fill_brush(sd, ob, nodes, totnode);
}
else {
SCULPT_do_scrape_brush(sd, ob, nodes, totnode);
}
break;
case SCULPT_TOOL_MASK:
SCULPT_do_mask_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_POSE:
SCULPT_do_pose_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_DRAW_SHARP:
SCULPT_do_draw_sharp_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_ELASTIC_DEFORM:
SCULPT_do_elastic_deform_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_SLIDE_RELAX:
SCULPT_do_slide_relax_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_BOUNDARY:
SCULPT_do_boundary_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_CLOTH:
SCULPT_do_cloth_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_DRAW_FACE_SETS:
SCULPT_do_draw_face_sets_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_DISPLACEMENT_ERASER:
SCULPT_do_displacement_eraser_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_DISPLACEMENT_SMEAR:
SCULPT_do_displacement_smear_brush(sd, ob, nodes, totnode);
break;
case SCULPT_TOOL_PAINT:
SCULPT_do_paint_brush(paint_mode_settings, sd, ob, nodes, totnode, texnodes, texnodes_num);
break;
case SCULPT_TOOL_SMEAR:
SCULPT_do_smear_brush(sd, ob, nodes, totnode);
break;
}
if (!ELEM(brush->sculpt_tool, SCULPT_TOOL_SMOOTH, SCULPT_TOOL_MASK) &&
brush->autosmooth_factor > 0) {
if (brush->flag & BRUSH_INVERSE_SMOOTH_PRESSURE) {
SCULPT_smooth(
sd, ob, nodes, totnode, brush->autosmooth_factor * (1.0f - ss->cache->pressure), false);
}
else {
SCULPT_smooth(sd, ob, nodes, totnode, brush->autosmooth_factor, false);
}
}
if (sculpt_brush_use_topology_rake(ss, brush)) {
SCULPT_bmesh_topology_rake(sd, ob, nodes, totnode, brush->topology_rake_factor);
}
if (!SCULPT_tool_can_reuse_automask(brush->sculpt_tool) ||
(ss->cache->supports_gravity && sd->gravity_factor > 0.0f)) {
/* Clear cavity mask cache. */
ss->last_automasking_settings_hash = 0;
}
/* The cloth brush adds the gravity as a regular force and it is processed in the solver. */
if (ss->cache->supports_gravity && !ELEM(brush->sculpt_tool,
SCULPT_TOOL_CLOTH,
SCULPT_TOOL_DRAW_FACE_SETS,
SCULPT_TOOL_BOUNDARY)) {
do_gravity(sd, ob, nodes, totnode, sd->gravity_factor);
}
if (brush->deform_target == BRUSH_DEFORM_TARGET_CLOTH_SIM) {
if (SCULPT_stroke_is_main_symmetry_pass(ss->cache)) {
SCULPT_cloth_sim_activate_nodes(ss->cache->cloth_sim, nodes, totnode);
SCULPT_cloth_brush_do_simulation_step(sd, ob, ss->cache->cloth_sim, nodes, totnode);
}
}
MEM_SAFE_FREE(nodes);
MEM_SAFE_FREE(texnodes);
/* Update average stroke position. */
copy_v3_v3(location, ss->cache->true_location);
mul_m4_v3(ob->object_to_world, location);
add_v3_v3(ups->average_stroke_accum, location);
ups->average_stroke_counter++;
/* Update last stroke position. */
ups->last_stroke_valid = true;
}
/* Flush displacement from deformed PBVH vertex to original mesh. */
static void sculpt_flush_pbvhvert_deform(const SculptSession &ss,
const PBVHVertexIter &vd,
MutableSpan<float3> positions)
{
float disp[3], newco[3];
int index = vd.vert_indices[vd.i];
sub_v3_v3v3(disp, vd.co, ss.deform_cos[index]);
mul_m3_v3(ss.deform_imats[index], disp);
add_v3_v3v3(newco, disp, ss.orig_cos[index]);
copy_v3_v3(ss.deform_cos[index], vd.co);
copy_v3_v3(ss.orig_cos[index], newco);
if (!ss.shapekey_active) {
copy_v3_v3(positions[index], newco);
}
}
static void sculpt_combine_proxies_node(Object &object,
Sculpt &sd,
const bool use_orco,
PBVHNode &node)
{
SculptSession *ss = object.sculpt;
float(*orco)[3] = nullptr;
if (use_orco && !ss->bm) {
orco = SCULPT_undo_push_node(&object, &node, SCULPT_UNDO_COORDS)->co;
}
int proxy_count;
PBVHProxyNode *proxies;
BKE_pbvh_node_get_proxies(&node, &proxies, &proxy_count);
Mesh &mesh = *static_cast<Mesh *>(object.data);
MutableSpan<float3> positions = mesh.vert_positions_for_write();
PBVHVertexIter vd;
BKE_pbvh_vertex_iter_begin (ss->pbvh, &node, vd, PBVH_ITER_UNIQUE) {
float val[3];
if (use_orco) {
if (ss->bm) {
copy_v3_v3(val, BM_log_original_vert_co(ss->bm_log, vd.bm_vert));
}
else {
copy_v3_v3(val, orco[vd.i]);
}
}
else {
copy_v3_v3(val, vd.co);
}
for (int p = 0; p < proxy_count; p++) {
add_v3_v3(val, proxies[p].co[vd.i]);
}
SCULPT_clip(&sd, ss, vd.co, val);
if (ss->deform_modifiers_active) {
sculpt_flush_pbvhvert_deform(*ss, vd, positions);
}
}
BKE_pbvh_vertex_iter_end;
BKE_pbvh_node_free_proxies(&node);
}
static void sculpt_combine_proxies(Sculpt *sd, Object *ob)
{
using namespace blender;
SculptSession *ss = ob->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
if (!ss->cache->supports_gravity && sculpt_tool_is_proxy_used(brush->sculpt_tool)) {
/* First line is tools that don't support proxies. */
return;
}
/* First line is tools that don't support proxies. */
const bool use_orco = ELEM(brush->sculpt_tool,
SCULPT_TOOL_GRAB,
SCULPT_TOOL_ROTATE,
SCULPT_TOOL_THUMB,
SCULPT_TOOL_ELASTIC_DEFORM,
SCULPT_TOOL_BOUNDARY,
SCULPT_TOOL_POSE);
int totnode;
PBVHNode **nodes;
BKE_pbvh_gather_proxies(ss->pbvh, &nodes, &totnode);
threading::parallel_for(IndexRange(totnode), 1, [&](IndexRange range) {
for (const int i : range) {
sculpt_combine_proxies_node(*ob, *sd, use_orco, *nodes[i]);
}
});
MEM_SAFE_FREE(nodes);
}
void SCULPT_combine_transform_proxies(Sculpt *sd, Object *ob)
{
using namespace blender;
SculptSession *ss = ob->sculpt;
int totnode;
PBVHNode **nodes;
BKE_pbvh_gather_proxies(ss->pbvh, &nodes, &totnode);
threading::parallel_for(IndexRange(totnode), 1, [&](IndexRange range) {
for (const int i : range) {
sculpt_combine_proxies_node(*ob, *sd, false, *nodes[i]);
}
});
MEM_SAFE_FREE(nodes);
}
/**
* Copy the modified vertices from the #PBVH to the active key.
*/
static void sculpt_update_keyblock(Object *ob)
{
SculptSession *ss = ob->sculpt;
float(*vertCos)[3];
/* Key-block update happens after handling deformation caused by modifiers,
* so ss->orig_cos would be updated with new stroke. */
if (ss->orig_cos) {
vertCos = ss->orig_cos;
}
else {
vertCos = BKE_pbvh_vert_coords_alloc(ss->pbvh);
}
if (!vertCos) {
return;
}
SCULPT_vertcos_to_key(ob, ss->shapekey_active, vertCos);
if (vertCos != ss->orig_cos) {
MEM_freeN(vertCos);
}
}
void SCULPT_flush_stroke_deform(Sculpt * /*sd*/, Object *ob, bool is_proxy_used)
{
using namespace blender;
SculptSession *ss = ob->sculpt;
if (is_proxy_used && ss->deform_modifiers_active) {
/* This brushes aren't using proxies, so sculpt_combine_proxies() wouldn't propagate needed
* deformation to original base. */
int totnode;
Mesh *me = (Mesh *)ob->data;
PBVHNode **nodes;
float(*vertCos)[3] = nullptr;
if (ss->shapekey_active) {
vertCos = static_cast<float(*)[3]>(
MEM_mallocN(sizeof(*vertCos) * me->totvert, "flushStrokeDeofrm keyVerts"));
/* Mesh could have isolated verts which wouldn't be in BVH, to deal with this we copy old
* coordinates over new ones and then update coordinates for all vertices from BVH. */
memcpy(vertCos, ss->orig_cos, sizeof(*vertCos) * me->totvert);
}
BKE_pbvh_search_gather(ss->pbvh, nullptr, nullptr, &nodes, &totnode);
MutableSpan<float3> positions = me->vert_positions_for_write();
threading::parallel_for(IndexRange(totnode), 1, [&](IndexRange range) {
for (const int i : range) {
PBVHVertexIter vd;
BKE_pbvh_vertex_iter_begin (ss->pbvh, nodes[i], vd, PBVH_ITER_UNIQUE) {
sculpt_flush_pbvhvert_deform(*ss, vd, positions);
if (!vertCos) {
continue;
}
int index = vd.vert_indices[vd.i];
copy_v3_v3(vertCos[index], ss->orig_cos[index]);
}
BKE_pbvh_vertex_iter_end;
}
});
if (vertCos) {
SCULPT_vertcos_to_key(ob, ss->shapekey_active, vertCos);
MEM_freeN(vertCos);
}
MEM_SAFE_FREE(nodes);
}
else if (ss->shapekey_active) {
sculpt_update_keyblock(ob);
}
}
void SCULPT_cache_calc_brushdata_symm(StrokeCache *cache,
const ePaintSymmetryFlags symm,
const char axis,
const float angle)
{
flip_v3_v3(cache->location, cache->true_location, symm);
flip_v3_v3(cache->last_location, cache->true_last_location, symm);
flip_v3_v3(cache->grab_delta_symmetry, cache->grab_delta, symm);
flip_v3_v3(cache->view_normal, cache->true_view_normal, symm);
flip_v3_v3(cache->initial_location, cache->true_initial_location, symm);
flip_v3_v3(cache->initial_normal, cache->true_initial_normal, symm);
/* XXX This reduces the length of the grab delta if it approaches the line of symmetry
* XXX However, a different approach appears to be needed. */
#if 0
if (sd->paint.symmetry_flags & PAINT_SYMMETRY_FEATHER) {
float frac = 1.0f / max_overlap_count(sd);
float reduce = (feather - frac) / (1.0f - frac);
printf("feather: %f frac: %f reduce: %f\n", feather, frac, reduce);
if (frac < 1.0f) {
mul_v3_fl(cache->grab_delta_symmetry, reduce);
}
}
#endif
unit_m4(cache->symm_rot_mat);
unit_m4(cache->symm_rot_mat_inv);
zero_v3(cache->plane_offset);
/* Expects XYZ. */
if (axis) {
rotate_m4(cache->symm_rot_mat, axis, angle);
rotate_m4(cache->symm_rot_mat_inv, axis, -angle);
}
mul_m4_v3(cache->symm_rot_mat, cache->location);
mul_m4_v3(cache->symm_rot_mat, cache->grab_delta_symmetry);
if (cache->supports_gravity) {
flip_v3_v3(cache->gravity_direction, cache->true_gravity_direction, symm);
mul_m4_v3(cache->symm_rot_mat, cache->gravity_direction);
}
if (cache->is_rake_rotation_valid) {
flip_qt_qt(cache->rake_rotation_symmetry, cache->rake_rotation, symm);
}
}
using BrushActionFunc = void (*)(Sculpt *sd,
Object *ob,
Brush *brush,
UnifiedPaintSettings *ups,
PaintModeSettings *paint_mode_settings);
static void do_tiled(Sculpt *sd,
Object *ob,
Brush *brush,
UnifiedPaintSettings *ups,
PaintModeSettings *paint_mode_settings,
BrushActionFunc action)
{
SculptSession *ss = ob->sculpt;
StrokeCache *cache = ss->cache;
const float radius = cache->radius;
const BoundBox *bb = BKE_object_boundbox_get(ob);
const float *bbMin = bb->vec[0];
const float *bbMax = bb->vec[6];
const float *step = sd->paint.tile_offset;
/* These are integer locations, for real location: multiply with step and add orgLoc.
* So 0,0,0 is at orgLoc. */
int start[3];
int end[3];
int cur[3];
/* Position of the "prototype" stroke for tiling. */
float orgLoc[3];
float original_initial_location[3];
copy_v3_v3(orgLoc, cache->location);
copy_v3_v3(original_initial_location, cache->initial_location);
for (int dim = 0; dim < 3; dim++) {
if ((sd->paint.symmetry_flags & (PAINT_TILE_X << dim)) && step[dim] > 0) {
start[dim] = (bbMin[dim] - orgLoc[dim] - radius) / step[dim];
end[dim] = (bbMax[dim] - orgLoc[dim] + radius) / step[dim];
}
else {
start[dim] = end[dim] = 0;
}
}
/* First do the "un-tiled" position to initialize the stroke for this location. */
cache->tile_pass = 0;
action(sd, ob, brush, ups, paint_mode_settings);
/* Now do it for all the tiles. */
copy_v3_v3_int(cur, start);
for (cur[0] = start[0]; cur[0] <= end[0]; cur[0]++) {
for (cur[1] = start[1]; cur[1] <= end[1]; cur[1]++) {
for (cur[2] = start[2]; cur[2] <= end[2]; cur[2]++) {
if (!cur[0] && !cur[1] && !cur[2]) {
/* Skip tile at orgLoc, this was already handled before all others. */
continue;
}
++cache->tile_pass;
for (int dim = 0; dim < 3; dim++) {
cache->location[dim] = cur[dim] * step[dim] + orgLoc[dim];
cache->plane_offset[dim] = cur[dim] * step[dim];
cache->initial_location[dim] = cur[dim] * step[dim] + original_initial_location[dim];
}
action(sd, ob, brush, ups, paint_mode_settings);
}
}
}
}
static void do_radial_symmetry(Sculpt *sd,
Object *ob,
Brush *brush,
UnifiedPaintSettings *ups,
PaintModeSettings *paint_mode_settings,
BrushActionFunc action,
const ePaintSymmetryFlags symm,
const int axis,
const float /*feather*/)
{
SculptSession *ss = ob->sculpt;
for (int i = 1; i < sd->radial_symm[axis - 'X']; i++) {
const float angle = 2.0f * M_PI * i / sd->radial_symm[axis - 'X'];
ss->cache->radial_symmetry_pass = i;
SCULPT_cache_calc_brushdata_symm(ss->cache, symm, axis, angle);
do_tiled(sd, ob, brush, ups, paint_mode_settings, action);
}
}
/**
* Noise texture gives different values for the same input coord; this
* can tear a multi-resolution mesh during sculpting so do a stitch in this case.
*/
static void sculpt_fix_noise_tear(Sculpt *sd, Object *ob)
{
SculptSession *ss = ob->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
const MTex *mtex = BKE_brush_mask_texture_get(brush, OB_MODE_SCULPT);
if (ss->multires.active && mtex->tex && mtex->tex->type == TEX_NOISE) {
multires_stitch_grids(ob);
}
}
static void do_symmetrical_brush_actions(Sculpt *sd,
Object *ob,
BrushActionFunc action,
UnifiedPaintSettings *ups,
PaintModeSettings *paint_mode_settings)
{
Brush *brush = BKE_paint_brush(&sd->paint);
SculptSession *ss = ob->sculpt;
StrokeCache *cache = ss->cache;
const char symm = SCULPT_mesh_symmetry_xyz_get(ob);
float feather = calc_symmetry_feather(sd, ss->cache);
cache->bstrength = brush_strength(sd, cache, feather, ups, paint_mode_settings);
cache->symmetry = symm;
/* `symm` is a bit combination of XYZ -
* 1 is mirror X; 2 is Y; 3 is XY; 4 is Z; 5 is XZ; 6 is YZ; 7 is XYZ */
for (int i = 0; i <= symm; i++) {
if (!SCULPT_is_symmetry_iteration_valid(i, symm)) {
continue;
}
const ePaintSymmetryFlags symm = ePaintSymmetryFlags(i);
cache->mirror_symmetry_pass = symm;
cache->radial_symmetry_pass = 0;
SCULPT_cache_calc_brushdata_symm(cache, symm, 0, 0);
do_tiled(sd, ob, brush, ups, paint_mode_settings, action);
do_radial_symmetry(sd, ob, brush, ups, paint_mode_settings, action, symm, 'X', feather);
do_radial_symmetry(sd, ob, brush, ups, paint_mode_settings, action, symm, 'Y', feather);
do_radial_symmetry(sd, ob, brush, ups, paint_mode_settings, action, symm, 'Z', feather);
}
}
bool SCULPT_mode_poll(bContext *C)
{
Object *ob = CTX_data_active_object(C);
return ob && ob->mode & OB_MODE_SCULPT;
}
bool SCULPT_mode_poll_view3d(bContext *C)
{
return (SCULPT_mode_poll(C) && CTX_wm_region_view3d(C));
}
bool SCULPT_poll_view3d(bContext *C)
{
return (SCULPT_poll(C) && CTX_wm_region_view3d(C));
}
bool SCULPT_poll(bContext *C)
{
return SCULPT_mode_poll(C) && PAINT_brush_tool_poll(C);
}
static const char *sculpt_tool_name(Sculpt *sd)
{
Brush *brush = BKE_paint_brush(&sd->paint);
switch ((eBrushSculptTool)brush->sculpt_tool) {
case SCULPT_TOOL_DRAW:
return "Draw Brush";
case SCULPT_TOOL_SMOOTH:
return "Smooth Brush";
case SCULPT_TOOL_CREASE:
return "Crease Brush";
case SCULPT_TOOL_BLOB:
return "Blob Brush";
case SCULPT_TOOL_PINCH:
return "Pinch Brush";
case SCULPT_TOOL_INFLATE:
return "Inflate Brush";
case SCULPT_TOOL_GRAB:
return "Grab Brush";
case SCULPT_TOOL_NUDGE:
return "Nudge Brush";
case SCULPT_TOOL_THUMB:
return "Thumb Brush";
case SCULPT_TOOL_LAYER:
return "Layer Brush";
case SCULPT_TOOL_FLATTEN:
return "Flatten Brush";
case SCULPT_TOOL_CLAY:
return "Clay Brush";
case SCULPT_TOOL_CLAY_STRIPS:
return "Clay Strips Brush";
case SCULPT_TOOL_CLAY_THUMB:
return "Clay Thumb Brush";
case SCULPT_TOOL_FILL:
return "Fill Brush";
case SCULPT_TOOL_SCRAPE:
return "Scrape Brush";
case SCULPT_TOOL_SNAKE_HOOK:
return "Snake Hook Brush";
case SCULPT_TOOL_ROTATE:
return "Rotate Brush";
case SCULPT_TOOL_MASK:
return "Mask Brush";
case SCULPT_TOOL_SIMPLIFY:
return "Simplify Brush";
case SCULPT_TOOL_DRAW_SHARP:
return "Draw Sharp Brush";
case SCULPT_TOOL_ELASTIC_DEFORM:
return "Elastic Deform Brush";
case SCULPT_TOOL_POSE:
return "Pose Brush";
case SCULPT_TOOL_MULTIPLANE_SCRAPE:
return "Multi-plane Scrape Brush";
case SCULPT_TOOL_SLIDE_RELAX:
return "Slide/Relax Brush";
case SCULPT_TOOL_BOUNDARY:
return "Boundary Brush";
case SCULPT_TOOL_CLOTH:
return "Cloth Brush";
case SCULPT_TOOL_DRAW_FACE_SETS:
return "Draw Face Sets";
case SCULPT_TOOL_DISPLACEMENT_ERASER:
return "Multires Displacement Eraser";
case SCULPT_TOOL_DISPLACEMENT_SMEAR:
return "Multires Displacement Smear";
case SCULPT_TOOL_PAINT:
return "Paint Brush";
case SCULPT_TOOL_SMEAR:
return "Smear Brush";
}
return "Sculpting";
}
/* Operator for applying a stroke (various attributes including mouse path)
* using the current brush. */
void SCULPT_cache_free(StrokeCache *cache)
{
MEM_SAFE_FREE(cache->dial);
MEM_SAFE_FREE(cache->surface_smooth_laplacian_disp);
MEM_SAFE_FREE(cache->layer_displacement_factor);
MEM_SAFE_FREE(cache->prev_colors);
MEM_SAFE_FREE(cache->detail_directions);
MEM_SAFE_FREE(cache->prev_displacement);
MEM_SAFE_FREE(cache->limit_surface_co);
MEM_SAFE_FREE(cache->prev_colors_vpaint);
if (cache->pose_ik_chain) {
SCULPT_pose_ik_chain_free(cache->pose_ik_chain);
}
for (int i = 0; i < PAINT_SYMM_AREAS; i++) {
if (cache->boundaries[i]) {
SCULPT_boundary_data_free(cache->boundaries[i]);
}
}
if (cache->cloth_sim) {
SCULPT_cloth_simulation_free(cache->cloth_sim);
}
MEM_freeN(cache);
}
/* Initialize mirror modifier clipping. */
static void sculpt_init_mirror_clipping(Object *ob, SculptSession *ss)
{
unit_m4(ss->cache->clip_mirror_mtx);
LISTBASE_FOREACH (ModifierData *, md, &ob->modifiers) {
if (!(md->type == eModifierType_Mirror && (md->mode & eModifierMode_Realtime))) {
continue;
}
MirrorModifierData *mmd = (MirrorModifierData *)md;
if (!(mmd->flag & MOD_MIR_CLIPPING)) {
continue;
}
/* Check each axis for mirroring. */
for (int i = 0; i < 3; i++) {
if (!(mmd->flag & (MOD_MIR_AXIS_X << i))) {
continue;
}
/* Enable sculpt clipping. */
ss->cache->flag |= CLIP_X << i;
/* Update the clip tolerance. */
if (mmd->tolerance > ss->cache->clip_tolerance[i]) {
ss->cache->clip_tolerance[i] = mmd->tolerance;
}
/* Store matrix for mirror object clipping. */
if (mmd->mirror_ob) {
float imtx_mirror_ob[4][4];
invert_m4_m4(imtx_mirror_ob, mmd->mirror_ob->object_to_world);
mul_m4_m4m4(ss->cache->clip_mirror_mtx, imtx_mirror_ob, ob->object_to_world);
}
}
}
}
static void smooth_brush_toggle_on(const bContext *C, Paint *paint, StrokeCache *cache)
{
Scene *scene = CTX_data_scene(C);
Brush *brush = paint->brush;
if (brush->sculpt_tool == SCULPT_TOOL_MASK) {
cache->saved_mask_brush_tool = brush->mask_tool;
brush->mask_tool = BRUSH_MASK_SMOOTH;
}
else if (ELEM(brush->sculpt_tool,
SCULPT_TOOL_SLIDE_RELAX,
SCULPT_TOOL_DRAW_FACE_SETS,
SCULPT_TOOL_PAINT,
SCULPT_TOOL_SMEAR)) {
/* Do nothing, this tool has its own smooth mode. */
}
else {
int cur_brush_size = BKE_brush_size_get(scene, brush);
BLI_strncpy(cache->saved_active_brush_name,
brush->id.name + 2,
sizeof(cache->saved_active_brush_name));
/* Switch to the smooth brush. */
brush = BKE_paint_toolslots_brush_get(paint, SCULPT_TOOL_SMOOTH);
if (brush) {
BKE_paint_brush_set(paint, brush);
cache->saved_smooth_size = BKE_brush_size_get(scene, brush);
BKE_brush_size_set(scene, brush, cur_brush_size);
BKE_curvemapping_init(brush->curve);
}
}
}
static void smooth_brush_toggle_off(const bContext *C, Paint *paint, StrokeCache *cache)
{
Main *bmain = CTX_data_main(C);
Scene *scene = CTX_data_scene(C);
Brush *brush = BKE_paint_brush(paint);
if (brush->sculpt_tool == SCULPT_TOOL_MASK) {
brush->mask_tool = cache->saved_mask_brush_tool;
}
else if (ELEM(brush->sculpt_tool,
SCULPT_TOOL_SLIDE_RELAX,
SCULPT_TOOL_DRAW_FACE_SETS,
SCULPT_TOOL_PAINT,
SCULPT_TOOL_SMEAR)) {
/* Do nothing. */
}
else {
/* Try to switch back to the saved/previous brush. */
BKE_brush_size_set(scene, brush, cache->saved_smooth_size);
brush = (Brush *)BKE_libblock_find_name(bmain, ID_BR, cache->saved_active_brush_name);
if (brush) {
BKE_paint_brush_set(paint, brush);
}
}
}
/* Initialize the stroke cache invariants from operator properties. */
static void sculpt_update_cache_invariants(
bContext *C, Sculpt *sd, SculptSession *ss, wmOperator *op, const float mval[2])
{
StrokeCache *cache = static_cast<StrokeCache *>(
MEM_callocN(sizeof(StrokeCache), "stroke cache"));
ToolSettings *tool_settings = CTX_data_tool_settings(C);
UnifiedPaintSettings *ups = &tool_settings->unified_paint_settings;
Brush *brush = BKE_paint_brush(&sd->paint);
ViewContext *vc = paint_stroke_view_context(static_cast<PaintStroke *>(op->customdata));
Object *ob = CTX_data_active_object(C);
float mat[3][3];
float viewDir[3] = {0.0f, 0.0f, 1.0f};
float max_scale;
int mode;
ss->cache = cache;
/* Set scaling adjustment. */
max_scale = 0.0f;
for (int i = 0; i < 3; i++) {
max_scale = max_ff(max_scale, fabsf(ob->scale[i]));
}
cache->scale[0] = max_scale / ob->scale[0];
cache->scale[1] = max_scale / ob->scale[1];
cache->scale[2] = max_scale / ob->scale[2];
cache->plane_trim_squared = brush->plane_trim * brush->plane_trim;
cache->flag = 0;
sculpt_init_mirror_clipping(ob, ss);
/* Initial mouse location. */
if (mval) {
copy_v2_v2(cache->initial_mouse, mval);
}
else {
zero_v2(cache->initial_mouse);
}
copy_v3_v3(cache->initial_location, ss->cursor_location);
copy_v3_v3(cache->true_initial_location, ss->cursor_location);
copy_v3_v3(cache->initial_normal, ss->cursor_normal);
copy_v3_v3(cache->true_initial_normal, ss->cursor_normal);
mode = RNA_enum_get(op->ptr, "mode");
cache->invert = mode == BRUSH_STROKE_INVERT;
cache->alt_smooth = mode == BRUSH_STROKE_SMOOTH;
cache->normal_weight = brush->normal_weight;
/* Interpret invert as following normal, for grab brushes. */
if (SCULPT_TOOL_HAS_NORMAL_WEIGHT(brush->sculpt_tool)) {
if (cache->invert) {
cache->invert = false;
cache->normal_weight = (cache->normal_weight == 0.0f);
}
}
/* Not very nice, but with current events system implementation
* we can't handle brush appearance inversion hotkey separately (sergey). */
if (cache->invert) {
ups->draw_inverted = true;
}
else {
ups->draw_inverted = false;
}
/* Alt-Smooth. */
if (cache->alt_smooth) {
smooth_brush_toggle_on(C, &sd->paint, cache);
/* Refresh the brush pointer in case we switched brush in the toggle function. */
brush = BKE_paint_brush(&sd->paint);
}
copy_v2_v2(cache->mouse, cache->initial_mouse);
copy_v2_v2(cache->mouse_event, cache->initial_mouse);
copy_v2_v2(ups->tex_mouse, cache->initial_mouse);
/* Truly temporary data that isn't stored in properties. */
cache->vc = vc;
cache->brush = brush;
/* Cache projection matrix. */
ED_view3d_ob_project_mat_get(cache->vc->rv3d, ob, cache->projection_mat);
invert_m4_m4(ob->world_to_object, ob->object_to_world);
copy_m3_m4(mat, cache->vc->rv3d->viewinv);
mul_m3_v3(mat, viewDir);
copy_m3_m4(mat, ob->world_to_object);
mul_m3_v3(mat, viewDir);
normalize_v3_v3(cache->true_view_normal, viewDir);
cache->supports_gravity = (!ELEM(brush->sculpt_tool,
SCULPT_TOOL_MASK,
SCULPT_TOOL_SMOOTH,
SCULPT_TOOL_SIMPLIFY,
SCULPT_TOOL_DISPLACEMENT_SMEAR,
SCULPT_TOOL_DISPLACEMENT_ERASER) &&
(sd->gravity_factor > 0.0f));
/* Get gravity vector in world space. */
if (cache->supports_gravity) {
if (sd->gravity_object) {
Object *gravity_object = sd->gravity_object;
copy_v3_v3(cache->true_gravity_direction, gravity_object->object_to_world[2]);
}
else {
cache->true_gravity_direction[0] = cache->true_gravity_direction[1] = 0.0f;
cache->true_gravity_direction[2] = 1.0f;
}
/* Transform to sculpted object space. */
mul_m3_v3(mat, cache->true_gravity_direction);
normalize_v3(cache->true_gravity_direction);
}
/* Make copies of the mesh vertex locations and normals for some tools. */
if (brush->flag & BRUSH_ANCHORED) {
cache->original = true;
}
if (SCULPT_automasking_needs_original(sd, brush)) {
cache->original = true;
}
/* Draw sharp does not need the original coordinates to produce the accumulate effect, so it
* should work the opposite way. */
if (brush->sculpt_tool == SCULPT_TOOL_DRAW_SHARP) {
cache->original = true;
}
if (SCULPT_TOOL_HAS_ACCUMULATE(brush->sculpt_tool)) {
if (!(brush->flag & BRUSH_ACCUMULATE)) {
cache->original = true;
if (brush->sculpt_tool == SCULPT_TOOL_DRAW_SHARP) {
cache->original = false;
}
}
}
/* Original coordinates require the sculpt undo system, which isn't used
* for image brushes. It's also not necessary, just disable it. */
if (brush && brush->sculpt_tool == SCULPT_TOOL_PAINT &&
SCULPT_use_image_paint_brush(&tool_settings->paint_mode, ob)) {
cache->original = false;
}
cache->first_time = true;
#define PIXEL_INPUT_THRESHHOLD 5
if (brush->sculpt_tool == SCULPT_TOOL_ROTATE) {
cache->dial = BLI_dial_init(cache->initial_mouse, PIXEL_INPUT_THRESHHOLD);
}
#undef PIXEL_INPUT_THRESHHOLD
}
static float sculpt_brush_dynamic_size_get(Brush *brush, StrokeCache *cache, float initial_size)
{
switch (brush->sculpt_tool) {
case SCULPT_TOOL_CLAY:
return max_ff(initial_size * 0.20f, initial_size * pow3f(cache->pressure));
case SCULPT_TOOL_CLAY_STRIPS:
return max_ff(initial_size * 0.30f, initial_size * powf(cache->pressure, 1.5f));
case SCULPT_TOOL_CLAY_THUMB: {
float clay_stabilized_pressure = SCULPT_clay_thumb_get_stabilized_pressure(cache);
return initial_size * clay_stabilized_pressure;
}
default:
return initial_size * cache->pressure;
}
}
/* In these brushes the grab delta is calculated always from the initial stroke location, which is
* generally used to create grab deformations. */
static bool sculpt_needs_delta_from_anchored_origin(Brush *brush)
{
if (brush->sculpt_tool == SCULPT_TOOL_SMEAR && (brush->flag & BRUSH_ANCHORED)) {
return true;
}
if (ELEM(brush->sculpt_tool,
SCULPT_TOOL_GRAB,
SCULPT_TOOL_POSE,
SCULPT_TOOL_BOUNDARY,
SCULPT_TOOL_THUMB,
SCULPT_TOOL_ELASTIC_DEFORM)) {
return true;
}
if (brush->sculpt_tool == SCULPT_TOOL_CLOTH &&
brush->cloth_deform_type == BRUSH_CLOTH_DEFORM_GRAB) {
return true;
}
return false;
}
/* In these brushes the grab delta is calculated from the previous stroke location, which is used
* to calculate to orientate the brush tip and deformation towards the stroke direction. */
static bool sculpt_needs_delta_for_tip_orientation(Brush *brush)
{
if (brush->sculpt_tool == SCULPT_TOOL_CLOTH) {
return brush->cloth_deform_type != BRUSH_CLOTH_DEFORM_GRAB;
}
return ELEM(brush->sculpt_tool,
SCULPT_TOOL_CLAY_STRIPS,
SCULPT_TOOL_PINCH,
SCULPT_TOOL_MULTIPLANE_SCRAPE,
SCULPT_TOOL_CLAY_THUMB,
SCULPT_TOOL_NUDGE,
SCULPT_TOOL_SNAKE_HOOK);
}
static void sculpt_update_brush_delta(UnifiedPaintSettings *ups, Object *ob, Brush *brush)
{
SculptSession *ss = ob->sculpt;
StrokeCache *cache = ss->cache;
const float mval[2] = {
cache->mouse_event[0],
cache->mouse_event[1],
};
int tool = brush->sculpt_tool;
if (!ELEM(tool,
SCULPT_TOOL_PAINT,
SCULPT_TOOL_GRAB,
SCULPT_TOOL_ELASTIC_DEFORM,
SCULPT_TOOL_CLOTH,
SCULPT_TOOL_NUDGE,
SCULPT_TOOL_CLAY_STRIPS,
SCULPT_TOOL_PINCH,
SCULPT_TOOL_MULTIPLANE_SCRAPE,
SCULPT_TOOL_CLAY_THUMB,
SCULPT_TOOL_SNAKE_HOOK,
SCULPT_TOOL_POSE,
SCULPT_TOOL_BOUNDARY,
SCULPT_TOOL_SMEAR,
SCULPT_TOOL_THUMB) &&
!sculpt_brush_use_topology_rake(ss, brush)) {
return;
}
float grab_location[3], imat[4][4], delta[3], loc[3];
if (SCULPT_stroke_is_first_brush_step_of_symmetry_pass(ss->cache)) {
if (tool == SCULPT_TOOL_GRAB && brush->flag & BRUSH_GRAB_ACTIVE_VERTEX) {
copy_v3_v3(cache->orig_grab_location,
SCULPT_vertex_co_for_grab_active_get(ss, SCULPT_active_vertex_get(ss)));
}
else {
copy_v3_v3(cache->orig_grab_location, cache->true_location);
}
}
else if (tool == SCULPT_TOOL_SNAKE_HOOK ||
(tool == SCULPT_TOOL_CLOTH &&
brush->cloth_deform_type == BRUSH_CLOTH_DEFORM_SNAKE_HOOK)) {
add_v3_v3(cache->true_location, cache->grab_delta);
}
/* Compute 3d coordinate at same z from original location + mval. */
mul_v3_m4v3(loc, ob->object_to_world, cache->orig_grab_location);
ED_view3d_win_to_3d(cache->vc->v3d, cache->vc->region, loc, mval, grab_location);
/* Compute delta to move verts by. */
if (!SCULPT_stroke_is_first_brush_step_of_symmetry_pass(ss->cache)) {
if (sculpt_needs_delta_from_anchored_origin(brush)) {
sub_v3_v3v3(delta, grab_location, cache->old_grab_location);
invert_m4_m4(imat, ob->object_to_world);
mul_mat3_m4_v3(imat, delta);
add_v3_v3(cache->grab_delta, delta);
}
else if (sculpt_needs_delta_for_tip_orientation(brush)) {
if (brush->flag & BRUSH_ANCHORED) {
float orig[3];
mul_v3_m4v3(orig, ob->object_to_world, cache->orig_grab_location);
sub_v3_v3v3(cache->grab_delta, grab_location, orig);
}
else {
sub_v3_v3v3(cache->grab_delta, grab_location, cache->old_grab_location);
}
invert_m4_m4(imat, ob->object_to_world);
mul_mat3_m4_v3(imat, cache->grab_delta);
}
else {
/* Use for 'Brush.topology_rake_factor'. */
sub_v3_v3v3(cache->grab_delta, grab_location, cache->old_grab_location);
}
}
else {
zero_v3(cache->grab_delta);
}
if (brush->falloff_shape == PAINT_FALLOFF_SHAPE_TUBE) {
project_plane_v3_v3v3(cache->grab_delta, cache->grab_delta, ss->cache->true_view_normal);
}
copy_v3_v3(cache->old_grab_location, grab_location);
if (tool == SCULPT_TOOL_GRAB) {
if (brush->flag & BRUSH_GRAB_ACTIVE_VERTEX) {
copy_v3_v3(cache->anchored_location, cache->orig_grab_location);
}
else {
copy_v3_v3(cache->anchored_location, cache->true_location);
}
}
else if (tool == SCULPT_TOOL_ELASTIC_DEFORM || SCULPT_is_cloth_deform_brush(brush)) {
copy_v3_v3(cache->anchored_location, cache->true_location);
}
else if (tool == SCULPT_TOOL_THUMB) {
copy_v3_v3(cache->anchored_location, cache->orig_grab_location);
}
if (sculpt_needs_delta_from_anchored_origin(brush)) {
/* Location stays the same for finding vertices in brush radius. */
copy_v3_v3(cache->true_location, cache->orig_grab_location);
ups->draw_anchored = true;
copy_v2_v2(ups->anchored_initial_mouse, cache->initial_mouse);
ups->anchored_size = ups->pixel_radius;
}
/* Handle 'rake' */
cache->is_rake_rotation_valid = false;
invert_m4_m4(imat, ob->object_to_world);
mul_mat3_m4_v3(imat, grab_location);
if (SCULPT_stroke_is_first_brush_step_of_symmetry_pass(ss->cache)) {
copy_v3_v3(cache->rake_data.follow_co, grab_location);
}
if (!sculpt_brush_needs_rake_rotation(brush)) {
return;
}
cache->rake_data.follow_dist = cache->radius * SCULPT_RAKE_BRUSH_FACTOR;
if (!is_zero_v3(cache->grab_delta)) {
const float eps = 0.00001f;
float v1[3], v2[3];
copy_v3_v3(v1, cache->rake_data.follow_co);
copy_v3_v3(v2, cache->rake_data.follow_co);
sub_v3_v3(v2, cache->grab_delta);
sub_v3_v3(v1, grab_location);
sub_v3_v3(v2, grab_location);
if ((normalize_v3(v2) > eps) && (normalize_v3(v1) > eps) && (len_squared_v3v3(v1, v2) > eps)) {
const float rake_dist_sq = len_squared_v3v3(cache->rake_data.follow_co, grab_location);
const float rake_fade = (rake_dist_sq > square_f(cache->rake_data.follow_dist)) ?
1.0f :
sqrtf(rake_dist_sq) / cache->rake_data.follow_dist;
float axis[3], angle;
float tquat[4];
rotation_between_vecs_to_quat(tquat, v1, v2);
/* Use axis-angle to scale rotation since the factor may be above 1. */
quat_to_axis_angle(axis, &angle, tquat);
normalize_v3(axis);
angle *= brush->rake_factor * rake_fade;
axis_angle_normalized_to_quat(cache->rake_rotation, axis, angle);
cache->is_rake_rotation_valid = true;
}
}
sculpt_rake_data_update(&cache->rake_data, grab_location);
}
static void sculpt_update_cache_paint_variants(StrokeCache *cache, const Brush *brush)
{
cache->paint_brush.hardness = brush->hardness;
if (brush->paint_flags & BRUSH_PAINT_HARDNESS_PRESSURE) {
cache->paint_brush.hardness *= brush->paint_flags & BRUSH_PAINT_HARDNESS_PRESSURE_INVERT ?
1.0f - cache->pressure :
cache->pressure;
}
cache->paint_brush.flow = brush->flow;
if (brush->paint_flags & BRUSH_PAINT_FLOW_PRESSURE) {
cache->paint_brush.flow *= brush->paint_flags & BRUSH_PAINT_FLOW_PRESSURE_INVERT ?
1.0f - cache->pressure :
cache->pressure;
}
cache->paint_brush.wet_mix = brush->wet_mix;
if (brush->paint_flags & BRUSH_PAINT_WET_MIX_PRESSURE) {
cache->paint_brush.wet_mix *= brush->paint_flags & BRUSH_PAINT_WET_MIX_PRESSURE_INVERT ?
1.0f - cache->pressure :
cache->pressure;
/* This makes wet mix more sensible in higher values, which allows to create brushes that have
* a wider pressure range were they only blend colors without applying too much of the brush
* color. */
cache->paint_brush.wet_mix = 1.0f - pow2f(1.0f - cache->paint_brush.wet_mix);
}
cache->paint_brush.wet_persistence = brush->wet_persistence;
if (brush->paint_flags & BRUSH_PAINT_WET_PERSISTENCE_PRESSURE) {
cache->paint_brush.wet_persistence = brush->paint_flags &
BRUSH_PAINT_WET_PERSISTENCE_PRESSURE_INVERT ?
1.0f - cache->pressure :
cache->pressure;
}
cache->paint_brush.density = brush->density;
if (brush->paint_flags & BRUSH_PAINT_DENSITY_PRESSURE) {
cache->paint_brush.density = brush->paint_flags & BRUSH_PAINT_DENSITY_PRESSURE_INVERT ?
1.0f - cache->pressure :
cache->pressure;
}
}
/* Initialize the stroke cache variants from operator properties. */
static void sculpt_update_cache_variants(bContext *C, Sculpt *sd, Object *ob, PointerRNA *ptr)
{
Scene *scene = CTX_data_scene(C);
UnifiedPaintSettings *ups = &scene->toolsettings->unified_paint_settings;
SculptSession *ss = ob->sculpt;
StrokeCache *cache = ss->cache;
Brush *brush = BKE_paint_brush(&sd->paint);
if (SCULPT_stroke_is_first_brush_step_of_symmetry_pass(ss->cache) ||
!((brush->flag & BRUSH_ANCHORED) || (brush->sculpt_tool == SCULPT_TOOL_SNAKE_HOOK) ||
(brush->sculpt_tool == SCULPT_TOOL_ROTATE) || SCULPT_is_cloth_deform_brush(brush))) {
RNA_float_get_array(ptr, "location", cache->true_location);
}
cache->pen_flip = RNA_boolean_get(ptr, "pen_flip");
RNA_float_get_array(ptr, "mouse", cache->mouse);
RNA_float_get_array(ptr, "mouse_event", cache->mouse_event);
/* XXX: Use pressure value from first brush step for brushes which don't support strokes (grab,
* thumb). They depends on initial state and brush coord/pressure/etc.
* It's more an events design issue, which doesn't split coordinate/pressure/angle changing
* events. We should avoid this after events system re-design. */
if (paint_supports_dynamic_size(brush, PAINT_MODE_SCULPT) || cache->first_time) {
cache->pressure = RNA_float_get(ptr, "pressure");
}
cache->x_tilt = RNA_float_get(ptr, "x_tilt");
cache->y_tilt = RNA_float_get(ptr, "y_tilt");
/* Truly temporary data that isn't stored in properties. */
if (SCULPT_stroke_is_first_brush_step_of_symmetry_pass(ss->cache)) {
cache->initial_radius = sculpt_calc_radius(cache->vc, brush, scene, cache->true_location);
if (!BKE_brush_use_locked_size(scene, brush)) {
BKE_brush_unprojected_radius_set(scene, brush, cache->initial_radius);
}
}
/* Clay stabilized pressure. */
if (brush->sculpt_tool == SCULPT_TOOL_CLAY_THUMB) {
if (SCULPT_stroke_is_first_brush_step_of_symmetry_pass(ss->cache)) {
for (int i = 0; i < SCULPT_CLAY_STABILIZER_LEN; i++) {
ss->cache->clay_pressure_stabilizer[i] = 0.0f;
}
ss->cache->clay_pressure_stabilizer_index = 0;
}
else {
cache->clay_pressure_stabilizer[cache->clay_pressure_stabilizer_index] = cache->pressure;
cache->clay_pressure_stabilizer_index += 1;
if (cache->clay_pressure_stabilizer_index >= SCULPT_CLAY_STABILIZER_LEN) {
cache->clay_pressure_stabilizer_index = 0;
}
}
}
if (BKE_brush_use_size_pressure(brush) &&
paint_supports_dynamic_size(brush, PAINT_MODE_SCULPT)) {
cache->radius = sculpt_brush_dynamic_size_get(brush, cache, cache->initial_radius);
cache->dyntopo_pixel_radius = sculpt_brush_dynamic_size_get(
brush, cache, ups->initial_pixel_radius);
}
else {
cache->radius = cache->initial_radius;
cache->dyntopo_pixel_radius = ups->initial_pixel_radius;
}
sculpt_update_cache_paint_variants(cache, brush);
cache->radius_squared = cache->radius * cache->radius;
if (brush->flag & BRUSH_ANCHORED) {
/* True location has been calculated as part of the stroke system already here. */
if (brush->flag & BRUSH_EDGE_TO_EDGE) {
RNA_float_get_array(ptr, "location", cache->true_location);
}
cache->radius = paint_calc_object_space_radius(
cache->vc, cache->true_location, ups->pixel_radius);
cache->radius_squared = cache->radius * cache->radius;
copy_v3_v3(cache->anchored_location, cache->true_location);
}
sculpt_update_brush_delta(ups, ob, brush);
if (brush->sculpt_tool == SCULPT_TOOL_ROTATE) {
cache->vertex_rotation = -BLI_dial_angle(cache->dial, cache->mouse) * cache->bstrength;
ups->draw_anchored = true;
copy_v2_v2(ups->anchored_initial_mouse, cache->initial_mouse);
copy_v3_v3(cache->anchored_location, cache->true_location);
ups->anchored_size = ups->pixel_radius;
}
cache->special_rotation = ups->brush_rotation;
cache->iteration_count++;
}
/* Returns true if any of the smoothing modes are active (currently
* one of smooth brush, autosmooth, mask smooth, or shift-key
* smooth). */
static bool sculpt_needs_connectivity_info(const Sculpt *sd,
const Brush *brush,
SculptSession *ss,
int stroke_mode)
{
if (!brush) {
return true;
}
if (ss && ss->pbvh && SCULPT_is_automasking_enabled(sd, ss, brush)) {
return true;
}
return ((stroke_mode == BRUSH_STROKE_SMOOTH) || (ss && ss->cache && ss->cache->alt_smooth) ||
(brush->sculpt_tool == SCULPT_TOOL_SMOOTH) || (brush->autosmooth_factor > 0) ||
((brush->sculpt_tool == SCULPT_TOOL_MASK) && (brush->mask_tool == BRUSH_MASK_SMOOTH)) ||
(brush->sculpt_tool == SCULPT_TOOL_POSE) ||
(brush->sculpt_tool == SCULPT_TOOL_BOUNDARY) ||
(brush->sculpt_tool == SCULPT_TOOL_SLIDE_RELAX) ||
SCULPT_tool_is_paint(brush->sculpt_tool) || (brush->sculpt_tool == SCULPT_TOOL_CLOTH) ||
(brush->sculpt_tool == SCULPT_TOOL_SMEAR) ||
(brush->sculpt_tool == SCULPT_TOOL_DRAW_FACE_SETS) ||
(brush->sculpt_tool == SCULPT_TOOL_DISPLACEMENT_SMEAR) ||
(brush->sculpt_tool == SCULPT_TOOL_PAINT));
}
void SCULPT_stroke_modifiers_check(const bContext *C, Object *ob, const Brush *brush)
{
SculptSession *ss = ob->sculpt;
RegionView3D *rv3d = CTX_wm_region_view3d(C);
Sculpt *sd = CTX_data_tool_settings(C)->sculpt;
bool need_pmap = sculpt_needs_connectivity_info(sd, brush, ss, 0);
if (ss->shapekey_active || ss->deform_modifiers_active ||
(!BKE_sculptsession_use_pbvh_draw(ob, rv3d) && need_pmap)) {
Depsgraph *depsgraph = CTX_data_depsgraph_pointer(C);
BKE_sculpt_update_object_for_edit(
depsgraph, ob, need_pmap, false, SCULPT_tool_is_paint(brush->sculpt_tool));
}
}
static void sculpt_raycast_cb(PBVHNode *node, void *data_v, float *tmin)
{
if (BKE_pbvh_node_get_tmin(node) >= *tmin) {
return;
}
SculptRaycastData *srd = static_cast<SculptRaycastData *>(data_v);
float(*origco)[3] = nullptr;
bool use_origco = false;
if (srd->original && srd->ss->cache) {
if (BKE_pbvh_type(srd->ss->pbvh) == PBVH_BMESH) {
use_origco = true;
}
else {
/* Intersect with coordinates from before we started stroke. */
SculptUndoNode *unode = SCULPT_undo_get_node(node, SCULPT_UNDO_COORDS);
origco = (unode) ? unode->co : nullptr;
use_origco = origco ? true : false;
}
}
if (BKE_pbvh_node_raycast(srd->ss->pbvh,
node,
origco,
use_origco,
srd->ray_start,
srd->ray_normal,
&srd->isect_precalc,
&srd->depth,
&srd->active_vertex,
&srd->active_face_grid_index,
srd->face_normal)) {
srd->hit = true;
*tmin = srd->depth;
}
}
static void sculpt_find_nearest_to_ray_cb(PBVHNode *node, void *data_v, float *tmin)
{
if (BKE_pbvh_node_get_tmin(node) >= *tmin) {
return;
}
SculptFindNearestToRayData *srd = static_cast<SculptFindNearestToRayData *>(data_v);
float(*origco)[3] = nullptr;
bool use_origco = false;
if (srd->original && srd->ss->cache) {
if (BKE_pbvh_type(srd->ss->pbvh) == PBVH_BMESH) {
use_origco = true;
}
else {
/* Intersect with coordinates from before we started stroke. */
SculptUndoNode *unode = SCULPT_undo_get_node(node, SCULPT_UNDO_COORDS);
origco = (unode) ? unode->co : nullptr;
use_origco = origco ? true : false;
}
}
if (BKE_pbvh_node_find_nearest_to_ray(srd->ss->pbvh,
node,
origco,
use_origco,
srd->ray_start,
srd->ray_normal,
&srd->depth,
&srd->dist_sq_to_ray)) {
srd->hit = true;
*tmin = srd->dist_sq_to_ray;
}
}
float SCULPT_raycast_init(ViewContext *vc,
const float mval[2],
float ray_start[3],
float ray_end[3],
float ray_normal[3],
bool original)
{
float obimat[4][4];
float dist;
Object *ob = vc->obact;
RegionView3D *rv3d = static_cast<RegionView3D *>(vc->region->regiondata);
View3D *v3d = vc->v3d;
/* TODO: what if the segment is totally clipped? (return == 0). */
ED_view3d_win_to_segment_clipped(
vc->depsgraph, vc->region, vc->v3d, mval, ray_start, ray_end, true);
invert_m4_m4(obimat, ob->object_to_world);
mul_m4_v3(obimat, ray_start);
mul_m4_v3(obimat, ray_end);
sub_v3_v3v3(ray_normal, ray_end, ray_start);
dist = normalize_v3(ray_normal);
if ((rv3d->is_persp == false) &&
/* If the ray is clipped, don't adjust its start/end. */
!RV3D_CLIPPING_ENABLED(v3d, rv3d)) {
BKE_pbvh_raycast_project_ray_root(ob->sculpt->pbvh, original, ray_start, ray_end, ray_normal);
/* rRecalculate the normal. */
sub_v3_v3v3(ray_normal, ray_end, ray_start);
dist = normalize_v3(ray_normal);
}
return dist;
}
bool SCULPT_cursor_geometry_info_update(bContext *C,
SculptCursorGeometryInfo *out,
const float mval[2],
bool use_sampled_normal)
{
Depsgraph *depsgraph = CTX_data_depsgraph_pointer(C);
Scene *scene = CTX_data_scene(C);
Sculpt *sd = scene->toolsettings->sculpt;
Object *ob;
SculptSession *ss;
ViewContext vc;
const Brush *brush = BKE_paint_brush(BKE_paint_get_active_from_context(C));
float ray_start[3], ray_end[3], ray_normal[3], depth, face_normal[3], sampled_normal[3],
mat[3][3];
float viewDir[3] = {0.0f, 0.0f, 1.0f};
int totnode;
bool original = false;
ED_view3d_viewcontext_init(C, &vc, depsgraph);
ob = vc.obact;
ss = ob->sculpt;
if (!ss->pbvh) {
zero_v3(out->location);
zero_v3(out->normal);
zero_v3(out->active_vertex_co);
return false;
}
/* PBVH raycast to get active vertex and face normal. */
depth = SCULPT_raycast_init(&vc, mval, ray_start, ray_end, ray_normal, original);
SCULPT_stroke_modifiers_check(C, ob, brush);
SculptRaycastData srd{};
srd.original = original;
srd.ss = ob->sculpt;
srd.hit = false;
srd.ray_start = ray_start;
srd.ray_normal = ray_normal;
srd.depth = depth;
srd.face_normal = face_normal;
isect_ray_tri_watertight_v3_precalc(&srd.isect_precalc, ray_normal);
BKE_pbvh_raycast(ss->pbvh, sculpt_raycast_cb, &srd, ray_start, ray_normal, srd.original);
/* Cursor is not over the mesh, return default values. */
if (!srd.hit) {
zero_v3(out->location);
zero_v3(out->normal);
zero_v3(out->active_vertex_co);
return false;
}
/* Update the active vertex of the SculptSession. */
ss->active_vertex = srd.active_vertex;
SCULPT_vertex_random_access_ensure(ss);
copy_v3_v3(out->active_vertex_co, SCULPT_active_vertex_co_get(ss));
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
ss->active_face_index = srd.active_face_grid_index;
ss->active_grid_index = 0;
break;
case PBVH_GRIDS:
ss->active_face_index = 0;
ss->active_grid_index = srd.active_face_grid_index;
break;
case PBVH_BMESH:
ss->active_face_index = 0;
ss->active_grid_index = 0;
break;
}
copy_v3_v3(out->location, ray_normal);
mul_v3_fl(out->location, srd.depth);
add_v3_v3(out->location, ray_start);
/* Option to return the face normal directly for performance o accuracy reasons. */
if (!use_sampled_normal) {
copy_v3_v3(out->normal, srd.face_normal);
return srd.hit;
}
/* Sampled normal calculation. */
float radius;
/* Update cursor data in SculptSession. */
invert_m4_m4(ob->world_to_object, ob->object_to_world);
copy_m3_m4(mat, vc.rv3d->viewinv);
mul_m3_v3(mat, viewDir);
copy_m3_m4(mat, ob->world_to_object);
mul_m3_v3(mat, viewDir);
normalize_v3_v3(ss->cursor_view_normal, viewDir);
copy_v3_v3(ss->cursor_normal, srd.face_normal);
copy_v3_v3(ss->cursor_location, out->location);
ss->rv3d = vc.rv3d;
ss->v3d = vc.v3d;
if (!BKE_brush_use_locked_size(scene, brush)) {
radius = paint_calc_object_space_radius(&vc, out->location, BKE_brush_size_get(scene, brush));
}
else {
radius = BKE_brush_unprojected_radius_get(scene, brush);
}
ss->cursor_radius = radius;
PBVHNode **nodes = sculpt_pbvh_gather_cursor_update(ob, sd, original, &totnode);
/* In case there are no nodes under the cursor, return the face normal. */
if (!totnode) {
MEM_SAFE_FREE(nodes);
copy_v3_v3(out->normal, srd.face_normal);
return true;
}
/* Calculate the sampled normal. */
if (SCULPT_pbvh_calc_area_normal(brush, ob, nodes, totnode, true, sampled_normal)) {
copy_v3_v3(out->normal, sampled_normal);
copy_v3_v3(ss->cursor_sampled_normal, sampled_normal);
}
else {
/* Use face normal when there are no vertices to sample inside the cursor radius. */
copy_v3_v3(out->normal, srd.face_normal);
}
MEM_SAFE_FREE(nodes);
return true;
}
bool SCULPT_stroke_get_location(bContext *C,
float out[3],
const float mval[2],
bool force_original)
{
const Brush *brush = BKE_paint_brush(BKE_paint_get_active_from_context(C));
bool check_closest = brush->falloff_shape == PAINT_FALLOFF_SHAPE_TUBE;
return SCULPT_stroke_get_location_ex(C, out, mval, force_original, check_closest, true);
}
bool SCULPT_stroke_get_location_ex(bContext *C,
float out[3],
const float mval[2],
bool force_original,
bool check_closest,
bool limit_closest_radius)
{
Depsgraph *depsgraph = CTX_data_depsgraph_pointer(C);
Object *ob;
SculptSession *ss;
StrokeCache *cache;
float ray_start[3], ray_end[3], ray_normal[3], depth, face_normal[3];
bool original;
ViewContext vc;
ED_view3d_viewcontext_init(C, &vc, depsgraph);
ob = vc.obact;
ss = ob->sculpt;
cache = ss->cache;
original = force_original || ((cache) ? cache->original : false);
const Brush *brush = BKE_paint_brush(BKE_paint_get_active_from_context(C));
SCULPT_stroke_modifiers_check(C, ob, brush);
depth = SCULPT_raycast_init(&vc, mval, ray_start, ray_end, ray_normal, original);
if (BKE_pbvh_type(ss->pbvh) == PBVH_BMESH) {
BM_mesh_elem_table_ensure(ss->bm, BM_VERT);
BM_mesh_elem_index_ensure(ss->bm, BM_VERT);
}
bool hit = false;
{
SculptRaycastData srd;
srd.ss = ob->sculpt;
srd.ray_start = ray_start;
srd.ray_normal = ray_normal;
srd.hit = false;
srd.depth = depth;
srd.original = original;
srd.face_normal = face_normal;
isect_ray_tri_watertight_v3_precalc(&srd.isect_precalc, ray_normal);
BKE_pbvh_raycast(ss->pbvh, sculpt_raycast_cb, &srd, ray_start, ray_normal, srd.original);
if (srd.hit) {
hit = true;
copy_v3_v3(out, ray_normal);
mul_v3_fl(out, srd.depth);
add_v3_v3(out, ray_start);
}
}
if (hit || !check_closest) {
return hit;
}
SculptFindNearestToRayData srd{};
srd.original = original;
srd.ss = ob->sculpt;
srd.hit = false;
srd.ray_start = ray_start;
srd.ray_normal = ray_normal;
srd.depth = FLT_MAX;
srd.dist_sq_to_ray = FLT_MAX;
BKE_pbvh_find_nearest_to_ray(
ss->pbvh, sculpt_find_nearest_to_ray_cb, &srd, ray_start, ray_normal, srd.original);
if (srd.hit && srd.dist_sq_to_ray) {
hit = true;
copy_v3_v3(out, ray_normal);
mul_v3_fl(out, srd.depth);
add_v3_v3(out, ray_start);
}
float closest_radius_sq = FLT_MAX;
if (limit_closest_radius) {
closest_radius_sq = sculpt_calc_radius(&vc, brush, CTX_data_scene(C), out);
closest_radius_sq *= closest_radius_sq;
}
return hit && srd.dist_sq_to_ray < closest_radius_sq;
}
static void sculpt_brush_init_tex(Sculpt *sd, SculptSession *ss)
{
Brush *brush = BKE_paint_brush(&sd->paint);
const MTex *mask_tex = BKE_brush_mask_texture_get(brush, OB_MODE_SCULPT);
/* Init mtex nodes. */
if (mask_tex->tex && mask_tex->tex->nodetree) {
/* Has internal flag to detect it only does it once. */
ntreeTexBeginExecTree(mask_tex->tex->nodetree);
}
if (ss->tex_pool == nullptr) {
ss->tex_pool = BKE_image_pool_new();
}
}
static void sculpt_brush_stroke_init(bContext *C, wmOperator *op)
{
Object *ob = CTX_data_active_object(C);
ToolSettings *tool_settings = CTX_data_tool_settings(C);
Sculpt *sd = tool_settings->sculpt;
SculptSession *ss = CTX_data_active_object(C)->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
int mode = RNA_enum_get(op->ptr, "mode");
bool need_pmap, needs_colors;
bool need_mask = false;
if (brush->sculpt_tool == SCULPT_TOOL_MASK) {
need_mask = true;
}
if (brush->sculpt_tool == SCULPT_TOOL_CLOTH ||
brush->deform_target == BRUSH_DEFORM_TARGET_CLOTH_SIM) {
need_mask = true;
}
view3d_operator_needs_opengl(C);
sculpt_brush_init_tex(sd, ss);
need_pmap = sculpt_needs_connectivity_info(sd, brush, ss, mode);
needs_colors = SCULPT_tool_is_paint(brush->sculpt_tool) &&
!SCULPT_use_image_paint_brush(&tool_settings->paint_mode, ob);
if (needs_colors) {
BKE_sculpt_color_layer_create_if_needed(ob);
}
/* CTX_data_ensure_evaluated_depsgraph should be used at the end to include the updates of
* earlier steps modifying the data. */
Depsgraph *depsgraph = CTX_data_ensure_evaluated_depsgraph(C);
BKE_sculpt_update_object_for_edit(
depsgraph, ob, need_pmap, need_mask, SCULPT_tool_is_paint(brush->sculpt_tool));
ED_paint_tool_update_sticky_shading_color(C, ob);
}
static void sculpt_restore_mesh(Sculpt *sd, Object *ob)
{
SculptSession *ss = ob->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
/* For the cloth brush it makes more sense to not restore the mesh state to keep running the
* simulation from the previous state. */
if (brush->sculpt_tool == SCULPT_TOOL_CLOTH) {
return;
}
/* Restore the mesh before continuing with anchored stroke. */
if ((brush->flag & BRUSH_ANCHORED) ||
(ELEM(brush->sculpt_tool, SCULPT_TOOL_GRAB, SCULPT_TOOL_ELASTIC_DEFORM) &&
BKE_brush_use_size_pressure(brush)) ||
(brush->flag & BRUSH_DRAG_DOT)) {
paint_mesh_restore_co(sd, ob);
if (ss->cache) {
MEM_SAFE_FREE(ss->cache->layer_displacement_factor);
}
}
}
void SCULPT_update_object_bounding_box(Object *ob)
{
if (ob->runtime.bb) {
float bb_min[3], bb_max[3];
BKE_pbvh_bounding_box(ob->sculpt->pbvh, bb_min, bb_max);
BKE_boundbox_init_from_minmax(ob->runtime.bb, bb_min, bb_max);
}
}
void SCULPT_flush_update_step(bContext *C, SculptUpdateType update_flags)
{
using namespace blender;
Depsgraph *depsgraph = CTX_data_depsgraph_pointer(C);
Object *ob = CTX_data_active_object(C);
SculptSession *ss = ob->sculpt;
ARegion *region = CTX_wm_region(C);
MultiresModifierData *mmd = ss->multires.modifier;
RegionView3D *rv3d = CTX_wm_region_view3d(C);
Mesh *mesh = static_cast<Mesh *>(ob->data);
if (rv3d) {
/* Mark for faster 3D viewport redraws. */
rv3d->rflag |= RV3D_PAINTING;
}
if (mmd != nullptr) {
multires_mark_as_modified(depsgraph, ob, MULTIRES_COORDS_MODIFIED);
}
if ((update_flags & SCULPT_UPDATE_IMAGE) != 0) {
ED_region_tag_redraw(region);
if (update_flags == SCULPT_UPDATE_IMAGE) {
/* Early exit when only need to update the images. We don't want to tag any geometry updates
* that would rebuilt the PBVH. */
return;
}
}
DEG_id_tag_update(&ob->id, ID_RECALC_SHADING);
/* Only current viewport matters, slower update for all viewports will
* be done in sculpt_flush_update_done. */
if (!BKE_sculptsession_use_pbvh_draw(ob, rv3d)) {
/* Slow update with full dependency graph update and all that comes with it.
* Needed when there are modifiers or full shading in the 3D viewport. */
DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY);
ED_region_tag_redraw(region);
}
else {
/* Fast path where we just update the BVH nodes that changed, and redraw
* only the part of the 3D viewport where changes happened. */
rcti r;
if (update_flags & SCULPT_UPDATE_COORDS) {
BKE_pbvh_update_bounds(ss->pbvh, PBVH_UpdateBB);
/* Update the object's bounding box too so that the object
* doesn't get incorrectly clipped during drawing in
* draw_mesh_object(). #33790. */
SCULPT_update_object_bounding_box(ob);
}
RegionView3D *rv3d = CTX_wm_region_view3d(C);
if (rv3d && SCULPT_get_redraw_rect(region, rv3d, ob, &r)) {
if (ss->cache) {
ss->cache->current_r = r;
}
/* previous is not set in the current cache else
* the partial rect will always grow */
sculpt_extend_redraw_rect_previous(ob, &r);
r.xmin += region->winrct.xmin - 2;
r.xmax += region->winrct.xmin + 2;
r.ymin += region->winrct.ymin - 2;
r.ymax += region->winrct.ymin + 2;
ED_region_tag_redraw_partial(region, &r, true);
}
}
if (update_flags & SCULPT_UPDATE_COORDS && !ss->shapekey_active) {
if (BKE_pbvh_type(ss->pbvh) == PBVH_FACES) {
/* When sculpting and changing the positions of a mesh, tag them as changed and update. */
BKE_mesh_tag_positions_changed(mesh);
/* Update the mesh's bounds eagerly since the PBVH already has that information. */
Bounds<float3> bounds;
BKE_pbvh_bounding_box(ob->sculpt->pbvh, bounds.min, bounds.max);
mesh->bounds_set_eager(bounds);
}
}
}
void SCULPT_flush_update_done(const bContext *C, Object *ob, SculptUpdateType update_flags)
{
/* After we are done drawing the stroke, check if we need to do a more
* expensive depsgraph tag to update geometry. */
wmWindowManager *wm = CTX_wm_manager(C);
RegionView3D *current_rv3d = CTX_wm_region_view3d(C);
SculptSession *ss = ob->sculpt;
Mesh *mesh = static_cast<Mesh *>(ob->data);
/* Always needed for linked duplicates. */
bool need_tag = (ID_REAL_USERS(&mesh->id) > 1);
if (current_rv3d) {
current_rv3d->rflag &= ~RV3D_PAINTING;
}
LISTBASE_FOREACH (wmWindow *, win, &wm->windows) {
bScreen *screen = WM_window_get_active_screen(win);
LISTBASE_FOREACH (ScrArea *, area, &screen->areabase) {
SpaceLink *sl = static_cast<SpaceLink *>(area->spacedata.first);
if (sl->spacetype != SPACE_VIEW3D) {
continue;
}
/* Tag all 3D viewports for redraw now that we are done. Others
* viewports did not get a full redraw, and anti-aliasing for the
* current viewport was deactivated. */
LISTBASE_FOREACH (ARegion *, region, &area->regionbase) {
if (region->regiontype == RGN_TYPE_WINDOW) {
RegionView3D *rv3d = static_cast<RegionView3D *>(region->regiondata);
if (rv3d != current_rv3d) {
need_tag |= !BKE_sculptsession_use_pbvh_draw(ob, rv3d);
}
ED_region_tag_redraw(region);
}
}
}
if (update_flags & SCULPT_UPDATE_IMAGE) {
LISTBASE_FOREACH (ScrArea *, area, &screen->areabase) {
SpaceLink *sl = static_cast<SpaceLink *>(area->spacedata.first);
if (sl->spacetype != SPACE_IMAGE) {
continue;
}
ED_area_tag_redraw_regiontype(area, RGN_TYPE_WINDOW);
}
}
}
if (update_flags & SCULPT_UPDATE_COORDS) {
BKE_pbvh_update_bounds(ss->pbvh, PBVH_UpdateOriginalBB);
/* Coordinates were modified, so fake neighbors are not longer valid. */
SCULPT_fake_neighbors_free(ob);
}
if (update_flags & SCULPT_UPDATE_MASK) {
BKE_pbvh_update_vertex_data(ss->pbvh, PBVH_UpdateMask);
}
if (update_flags & SCULPT_UPDATE_COLOR) {
BKE_pbvh_update_vertex_data(ss->pbvh, PBVH_UpdateColor);
}
BKE_sculpt_attributes_destroy_temporary_stroke(ob);
if (update_flags & SCULPT_UPDATE_COORDS) {
if (BKE_pbvh_type(ss->pbvh) == PBVH_BMESH) {
BKE_pbvh_bmesh_after_stroke(ss->pbvh);
}
/* Optimization: if there is locked key and active modifiers present in */
/* the stack, keyblock is updating at each step. otherwise we could update */
/* keyblock only when stroke is finished. */
if (ss->shapekey_active && !ss->deform_modifiers_active) {
sculpt_update_keyblock(ob);
}
}
if (need_tag) {
DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY);
}
}
/* Returns whether the mouse/stylus is over the mesh (1)
* or over the background (0). */
static bool over_mesh(bContext *C, wmOperator * /*op*/, const float mval[2])
{
float co_dummy[3];
Sculpt *sd = CTX_data_tool_settings(C)->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
bool check_closest = brush->falloff_shape == PAINT_FALLOFF_SHAPE_TUBE;
return SCULPT_stroke_get_location_ex(C, co_dummy, mval, false, check_closest, true);
}
static void sculpt_stroke_undo_begin(const bContext *C, wmOperator *op)
{
Object *ob = CTX_data_active_object(C);
Sculpt *sd = CTX_data_tool_settings(C)->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
ToolSettings *tool_settings = CTX_data_tool_settings(C);
/* Setup the correct undo system. Image painting and sculpting are mutual exclusive.
* Color attributes are part of the sculpting undo system. */
if (brush && brush->sculpt_tool == SCULPT_TOOL_PAINT &&
SCULPT_use_image_paint_brush(&tool_settings->paint_mode, ob)) {
ED_image_undo_push_begin(op->type->name, PAINT_MODE_SCULPT);
}
else {
SCULPT_undo_push_begin_ex(ob, sculpt_tool_name(sd));
}
}
static void sculpt_stroke_undo_end(const bContext *C, Brush *brush)
{
Object *ob = CTX_data_active_object(C);
ToolSettings *tool_settings = CTX_data_tool_settings(C);
if (brush && brush->sculpt_tool == SCULPT_TOOL_PAINT &&
SCULPT_use_image_paint_brush(&tool_settings->paint_mode, ob)) {
ED_image_undo_push_end();
}
else {
SCULPT_undo_push_end(ob);
}
}
bool SCULPT_handles_colors_report(SculptSession *ss, ReportList *reports)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_FACES:
return true;
case PBVH_BMESH:
BKE_report(reports, RPT_ERROR, "Not supported in dynamic topology mode");
return false;
case PBVH_GRIDS:
BKE_report(reports, RPT_ERROR, "Not supported in multiresolution mode");
return false;
}
BLI_assert_msg(0, "PBVH corruption, type was invalid.");
return false;
}
static bool sculpt_stroke_test_start(bContext *C, wmOperator *op, const float mval[2])
{
/* Don't start the stroke until `mval` goes over the mesh.
* NOTE: `mval` will only be null when re-executing the saved stroke.
* We have exception for 'exec' strokes since they may not set `mval`,
* only 'location', see: #52195. */
if (((op->flag & OP_IS_INVOKE) == 0) || (mval == nullptr) || over_mesh(C, op, mval)) {
Object *ob = CTX_data_active_object(C);
SculptSession *ss = ob->sculpt;
Sculpt *sd = CTX_data_tool_settings(C)->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
ToolSettings *tool_settings = CTX_data_tool_settings(C);
/* NOTE: This should be removed when paint mode is available. Paint mode can force based on the
* canvas it is painting on. (ref. use_sculpt_texture_paint). */
if (brush && SCULPT_tool_is_paint(brush->sculpt_tool) &&
!SCULPT_use_image_paint_brush(&tool_settings->paint_mode, ob)) {
View3D *v3d = CTX_wm_view3d(C);
if (v3d->shading.type == OB_SOLID) {
v3d->shading.color_type = V3D_SHADING_VERTEX_COLOR;
}
}
ED_view3d_init_mats_rv3d(ob, CTX_wm_region_view3d(C));
sculpt_update_cache_invariants(C, sd, ss, op, mval);
SculptCursorGeometryInfo sgi;
SCULPT_cursor_geometry_info_update(C, &sgi, mval, false);
sculpt_stroke_undo_begin(C, op);
SCULPT_stroke_id_next(ob);
ss->cache->stroke_id = ss->stroke_id;
return true;
}
return false;
}
static void sculpt_stroke_update_step(bContext *C,
wmOperator * /*op*/,
PaintStroke *stroke,
PointerRNA *itemptr)
{
UnifiedPaintSettings *ups = &CTX_data_tool_settings(C)->unified_paint_settings;
Sculpt *sd = CTX_data_tool_settings(C)->sculpt;
Object *ob = CTX_data_active_object(C);
SculptSession *ss = ob->sculpt;
const Brush *brush = BKE_paint_brush(&sd->paint);
ToolSettings *tool_settings = CTX_data_tool_settings(C);
StrokeCache *cache = ss->cache;
cache->stroke_distance = paint_stroke_distance_get(stroke);
SCULPT_stroke_modifiers_check(C, ob, brush);
sculpt_update_cache_variants(C, sd, ob, itemptr);
sculpt_restore_mesh(sd, ob);
if (sd->flags & (SCULPT_DYNTOPO_DETAIL_CONSTANT | SCULPT_DYNTOPO_DETAIL_MANUAL)) {
float object_space_constant_detail = 1.0f / (sd->constant_detail *
mat4_to_scale(ob->object_to_world));
BKE_pbvh_bmesh_detail_size_set(ss->pbvh, object_space_constant_detail);
}
else if (sd->flags & SCULPT_DYNTOPO_DETAIL_BRUSH) {
BKE_pbvh_bmesh_detail_size_set(ss->pbvh, ss->cache->radius * sd->detail_percent / 100.0f);
}
else {
BKE_pbvh_bmesh_detail_size_set(ss->pbvh,
(ss->cache->radius / ss->cache->dyntopo_pixel_radius) *
(sd->detail_size * U.pixelsize) / 0.4f);
}
if (SCULPT_stroke_is_dynamic_topology(ss, brush)) {
do_symmetrical_brush_actions(sd, ob, sculpt_topology_update, ups, &tool_settings->paint_mode);
}
do_symmetrical_brush_actions(sd, ob, do_brush_action, ups, &tool_settings->paint_mode);
sculpt_combine_proxies(sd, ob);
/* Hack to fix noise texture tearing mesh. */
sculpt_fix_noise_tear(sd, ob);
/* TODO(sergey): This is not really needed for the solid shading,
* which does use pBVH drawing anyway, but texture and wireframe
* requires this.
*
* Could be optimized later, but currently don't think it's so
* much common scenario.
*
* Same applies to the DEG_id_tag_update() invoked from
* sculpt_flush_update_step().
*/
if (ss->deform_modifiers_active) {
SCULPT_flush_stroke_deform(sd, ob, sculpt_tool_is_proxy_used(brush->sculpt_tool));
}
else if (ss->shapekey_active) {
sculpt_update_keyblock(ob);
}
ss->cache->first_time = false;
copy_v3_v3(ss->cache->true_last_location, ss->cache->true_location);
/* Cleanup. */
if (brush->sculpt_tool == SCULPT_TOOL_MASK) {
SCULPT_flush_update_step(C, SCULPT_UPDATE_MASK);
}
else if (SCULPT_tool_is_paint(brush->sculpt_tool)) {
if (SCULPT_use_image_paint_brush(&tool_settings->paint_mode, ob)) {
SCULPT_flush_update_step(C, SCULPT_UPDATE_IMAGE);
}
else {
SCULPT_flush_update_step(C, SCULPT_UPDATE_COLOR);
}
}
else {
SCULPT_flush_update_step(C, SCULPT_UPDATE_COORDS);
}
}
static void sculpt_brush_exit_tex(Sculpt *sd)
{
Brush *brush = BKE_paint_brush(&sd->paint);
const MTex *mask_tex = BKE_brush_mask_texture_get(brush, OB_MODE_SCULPT);
if (mask_tex->tex && mask_tex->tex->nodetree) {
ntreeTexEndExecTree(mask_tex->tex->nodetree->runtime->execdata);
}
}
static void sculpt_stroke_done(const bContext *C, PaintStroke * /*stroke*/)
{
Object *ob = CTX_data_active_object(C);
SculptSession *ss = ob->sculpt;
Sculpt *sd = CTX_data_tool_settings(C)->sculpt;
ToolSettings *tool_settings = CTX_data_tool_settings(C);
/* Finished. */
if (!ss->cache) {
sculpt_brush_exit_tex(sd);
return;
}
UnifiedPaintSettings *ups = &CTX_data_tool_settings(C)->unified_paint_settings;
Brush *brush = BKE_paint_brush(&sd->paint);
BLI_assert(brush == ss->cache->brush); /* const, so we shouldn't change. */
ups->draw_inverted = false;
SCULPT_stroke_modifiers_check(C, ob, brush);
/* Alt-Smooth. */
if (ss->cache->alt_smooth) {
smooth_brush_toggle_off(C, &sd->paint, ss->cache);
/* Refresh the brush pointer in case we switched brush in the toggle function. */
brush = BKE_paint_brush(&sd->paint);
}
if (SCULPT_is_automasking_enabled(sd, ss, brush)) {
SCULPT_automasking_cache_free(ss->cache->automasking);
}
BKE_pbvh_node_color_buffer_free(ss->pbvh);
SCULPT_cache_free(ss->cache);
ss->cache = nullptr;
sculpt_stroke_undo_end(C, brush);
if (brush->sculpt_tool == SCULPT_TOOL_MASK) {
SCULPT_flush_update_done(C, ob, SCULPT_UPDATE_MASK);
}
else if (brush->sculpt_tool == SCULPT_TOOL_PAINT) {
if (SCULPT_use_image_paint_brush(&tool_settings->paint_mode, ob)) {
SCULPT_flush_update_done(C, ob, SCULPT_UPDATE_IMAGE);
}
else {
BKE_sculpt_attributes_destroy_temporary_stroke(ob);
SCULPT_flush_update_done(C, ob, SCULPT_UPDATE_COLOR);
}
}
else {
SCULPT_flush_update_done(C, ob, SCULPT_UPDATE_COORDS);
}
WM_event_add_notifier(C, NC_OBJECT | ND_DRAW, ob);
sculpt_brush_exit_tex(sd);
}
static int sculpt_brush_stroke_invoke(bContext *C, wmOperator *op, const wmEvent *event)
{
PaintStroke *stroke;
int ignore_background_click;
int retval;
Object *ob = CTX_data_active_object(C);
/* Test that ob is visible; otherwise we won't be able to get evaluated data
* from the depsgraph. We do this here instead of SCULPT_mode_poll
* to avoid falling through to the translate operator in the
* global view3d keymap.
*
* NOTE: #BKE_object_is_visible_in_viewport is not working here (it returns false
* if the object is in local view); instead, test for OB_HIDE_VIEWPORT directly.
*/
if (ob->visibility_flag & OB_HIDE_VIEWPORT) {
return OPERATOR_CANCELLED;
}
sculpt_brush_stroke_init(C, op);
Sculpt *sd = CTX_data_tool_settings(C)->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
SculptSession *ss = ob->sculpt;
if (SCULPT_tool_is_paint(brush->sculpt_tool) &&
!SCULPT_handles_colors_report(ob->sculpt, op->reports)) {
return OPERATOR_CANCELLED;
}
if (SCULPT_tool_is_mask(brush->sculpt_tool)) {
MultiresModifierData *mmd = BKE_sculpt_multires_active(ss->scene, ob);
BKE_sculpt_mask_layers_ensure(CTX_data_depsgraph_pointer(C), CTX_data_main(C), ob, mmd);
}
if (SCULPT_tool_is_face_sets(brush->sculpt_tool)) {
Mesh *mesh = BKE_object_get_original_mesh(ob);
ss->face_sets = BKE_sculpt_face_sets_ensure(mesh);
}
stroke = paint_stroke_new(C,
op,
SCULPT_stroke_get_location,
sculpt_stroke_test_start,
sculpt_stroke_update_step,
nullptr,
sculpt_stroke_done,
event->type);
op->customdata = stroke;
/* For tablet rotation. */
ignore_background_click = RNA_boolean_get(op->ptr, "ignore_background_click");
const float mval[2] = {float(event->mval[0]), float(event->mval[1])};
if (ignore_background_click && !over_mesh(C, op, mval)) {
paint_stroke_free(C, op, static_cast<PaintStroke *>(op->customdata));
return OPERATOR_PASS_THROUGH;
}
retval = op->type->modal(C, op, event);
if (ELEM(retval, OPERATOR_FINISHED, OPERATOR_CANCELLED)) {
paint_stroke_free(C, op, static_cast<PaintStroke *>(op->customdata));
return retval;
}
/* Add modal handler. */
WM_event_add_modal_handler(C, op);
OPERATOR_RETVAL_CHECK(retval);
BLI_assert(retval == OPERATOR_RUNNING_MODAL);
return OPERATOR_RUNNING_MODAL;
}
static int sculpt_brush_stroke_exec(bContext *C, wmOperator *op)
{
sculpt_brush_stroke_init(C, op);
op->customdata = paint_stroke_new(C,
op,
SCULPT_stroke_get_location,
sculpt_stroke_test_start,
sculpt_stroke_update_step,
nullptr,
sculpt_stroke_done,
0);
/* Frees op->customdata. */
paint_stroke_exec(C, op, static_cast<PaintStroke *>(op->customdata));
return OPERATOR_FINISHED;
}
static void sculpt_brush_stroke_cancel(bContext *C, wmOperator *op)
{
Object *ob = CTX_data_active_object(C);
SculptSession *ss = ob->sculpt;
Sculpt *sd = CTX_data_tool_settings(C)->sculpt;
const Brush *brush = BKE_paint_brush(&sd->paint);
/* XXX Canceling strokes that way does not work with dynamic topology,
* user will have to do real undo for now. See #46456. */
if (ss->cache && !SCULPT_stroke_is_dynamic_topology(ss, brush)) {
paint_mesh_restore_co(sd, ob);
}
paint_stroke_cancel(C, op, static_cast<PaintStroke *>(op->customdata));
if (ss->cache) {
SCULPT_cache_free(ss->cache);
ss->cache = nullptr;
}
sculpt_brush_exit_tex(sd);
}
static int sculpt_brush_stroke_modal(bContext *C, wmOperator *op, const wmEvent *event)
{
return paint_stroke_modal(C, op, event, (PaintStroke **)&op->customdata);
}
static void sculpt_redo_empty_ui(bContext * /*C*/, wmOperator * /*op*/) {}
void SCULPT_OT_brush_stroke(wmOperatorType *ot)
{
/* Identifiers. */
ot->name = "Sculpt";
ot->idname = "SCULPT_OT_brush_stroke";
ot->description = "Sculpt a stroke into the geometry";
/* API callbacks. */
ot->invoke = sculpt_brush_stroke_invoke;
ot->modal = sculpt_brush_stroke_modal;
ot->exec = sculpt_brush_stroke_exec;
ot->poll = SCULPT_poll;
ot->cancel = sculpt_brush_stroke_cancel;
ot->ui = sculpt_redo_empty_ui;
/* Flags (sculpt does own undo? (ton)). */
ot->flag = OPTYPE_BLOCKING;
/* Properties. */
paint_stroke_operator_properties(ot);
RNA_def_boolean(ot->srna,
"ignore_background_click",
0,
"Ignore Background Click",
"Clicks on the background do not start the stroke");
}
/* Fake Neighbors. */
/* This allows the sculpt tools to work on meshes with multiple connected components as they had
* only one connected component. When initialized and enabled, the sculpt API will return extra
* connectivity neighbors that are not in the real mesh. These neighbors are calculated for each
* vertex using the minimum distance to a vertex that is in a different connected component. */
/* The fake neighbors first need to be ensured to be initialized.
* After that tools which needs fake neighbors functionality need to
* temporarily enable it:
*
* void my_awesome_sculpt_tool() {
* SCULPT_fake_neighbors_ensure(sd, object, brush->disconnected_distance_max);
* SCULPT_fake_neighbors_enable(ob);
*
* ... Logic of the tool ...
* SCULPT_fake_neighbors_disable(ob);
* }
*
* Such approach allows to keep all the connectivity information ready for reuse
* (without having lag prior to every stroke), but also makes it so the affect
* is localized to a specific brushes and tools only. */
enum {
SCULPT_TOPOLOGY_ID_NONE,
SCULPT_TOPOLOGY_ID_DEFAULT,
};
static void SCULPT_fake_neighbor_init(SculptSession *ss, const float max_dist)
{
const int totvert = SCULPT_vertex_count_get(ss);
ss->fake_neighbors.fake_neighbor_index = static_cast<int *>(
MEM_malloc_arrayN(totvert, sizeof(int), "fake neighbor"));
for (int i = 0; i < totvert; i++) {
ss->fake_neighbors.fake_neighbor_index[i] = FAKE_NEIGHBOR_NONE;
}
ss->fake_neighbors.current_max_distance = max_dist;
}
static void SCULPT_fake_neighbor_add(SculptSession *ss, PBVHVertRef v_a, PBVHVertRef v_b)
{
int v_index_a = BKE_pbvh_vertex_to_index(ss->pbvh, v_a);
int v_index_b = BKE_pbvh_vertex_to_index(ss->pbvh, v_b);
if (ss->fake_neighbors.fake_neighbor_index[v_index_a] == FAKE_NEIGHBOR_NONE) {
ss->fake_neighbors.fake_neighbor_index[v_index_a] = v_index_b;
ss->fake_neighbors.fake_neighbor_index[v_index_b] = v_index_a;
}
}
static void sculpt_pose_fake_neighbors_free(SculptSession *ss)
{
MEM_SAFE_FREE(ss->fake_neighbors.fake_neighbor_index);
}
struct NearestVertexFakeNeighborTLSData {
PBVHVertRef nearest_vertex;
float nearest_vertex_distance_squared;
int current_topology_id;
};
static void do_fake_neighbor_search_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict tls)
{
SculptThreadedTaskData *data = static_cast<SculptThreadedTaskData *>(userdata);
SculptSession *ss = data->ob->sculpt;
NearestVertexFakeNeighborTLSData *nvtd = static_cast<NearestVertexFakeNeighborTLSData *>(
tls->userdata_chunk);
PBVHVertexIter vd;
BKE_pbvh_vertex_iter_begin (ss->pbvh, data->nodes[n], vd, PBVH_ITER_UNIQUE) {
int vd_topology_id = SCULPT_vertex_island_get(ss, vd.vertex);
if (vd_topology_id != nvtd->current_topology_id &&
ss->fake_neighbors.fake_neighbor_index[vd.index] == FAKE_NEIGHBOR_NONE) {
float distance_squared = len_squared_v3v3(vd.co, data->nearest_vertex_search_co);
if (distance_squared < nvtd->nearest_vertex_distance_squared &&
distance_squared < data->max_distance_squared) {
nvtd->nearest_vertex = vd.vertex;
nvtd->nearest_vertex_distance_squared = distance_squared;
}
}
}
BKE_pbvh_vertex_iter_end;
}
static void fake_neighbor_search_reduce(const void *__restrict /*userdata*/,
void *__restrict chunk_join,
void *__restrict chunk)
{
NearestVertexFakeNeighborTLSData *join = static_cast<NearestVertexFakeNeighborTLSData *>(
chunk_join);
NearestVertexFakeNeighborTLSData *nvtd = static_cast<NearestVertexFakeNeighborTLSData *>(chunk);
if (join->nearest_vertex.i == PBVH_REF_NONE) {
join->nearest_vertex = nvtd->nearest_vertex;
join->nearest_vertex_distance_squared = nvtd->nearest_vertex_distance_squared;
}
else if (nvtd->nearest_vertex_distance_squared < join->nearest_vertex_distance_squared) {
join->nearest_vertex = nvtd->nearest_vertex;
join->nearest_vertex_distance_squared = nvtd->nearest_vertex_distance_squared;
}
}
static PBVHVertRef SCULPT_fake_neighbor_search(Sculpt *sd,
Object *ob,
const PBVHVertRef vertex,
float max_distance)
{
SculptSession *ss = ob->sculpt;
PBVHNode **nodes = nullptr;
int totnode;
SculptSearchSphereData data{};
data.ss = ss;
data.sd = sd;
data.radius_squared = max_distance * max_distance;
data.original = false;
data.center = SCULPT_vertex_co_get(ss, vertex);
BKE_pbvh_search_gather(ss->pbvh, SCULPT_search_sphere_cb, &data, &nodes, &totnode);
if (totnode == 0) {
return BKE_pbvh_make_vref(PBVH_REF_NONE);
}
SculptThreadedTaskData task_data{};
task_data.sd = sd;
task_data.ob = ob;
task_data.nodes = nodes;
task_data.max_distance_squared = max_distance * max_distance;
copy_v3_v3(task_data.nearest_vertex_search_co, SCULPT_vertex_co_get(ss, vertex));
NearestVertexFakeNeighborTLSData nvtd;
nvtd.nearest_vertex.i = -1;
nvtd.nearest_vertex_distance_squared = FLT_MAX;
nvtd.current_topology_id = SCULPT_vertex_island_get(ss, vertex);
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
settings.func_reduce = fake_neighbor_search_reduce;
settings.userdata_chunk = &nvtd;
settings.userdata_chunk_size = sizeof(NearestVertexFakeNeighborTLSData);
BLI_task_parallel_range(0, totnode, &task_data, do_fake_neighbor_search_task_cb, &settings);
MEM_SAFE_FREE(nodes);
return nvtd.nearest_vertex;
}
struct SculptTopologyIDFloodFillData {
int next_id;
};
void SCULPT_boundary_info_ensure(Object *object)
{
using namespace blender;
SculptSession *ss = object->sculpt;
if (ss->vertex_info.boundary) {
return;
}
Mesh *base_mesh = BKE_mesh_from_object(object);
const blender::Span<MEdge> edges = base_mesh->edges();
const OffsetIndices polys = base_mesh->polys();
const Span<int> corner_edges = base_mesh->corner_edges();
ss->vertex_info.boundary = BLI_BITMAP_NEW(base_mesh->totvert, "Boundary info");
int *adjacent_faces_edge_count = static_cast<int *>(
MEM_calloc_arrayN(base_mesh->totedge, sizeof(int), "Adjacent face edge count"));
for (const int i : polys.index_range()) {
for (const int edge : corner_edges.slice(polys[i])) {
adjacent_faces_edge_count[edge]++;
}
}
for (const int e : edges.index_range()) {
if (adjacent_faces_edge_count[e] < 2) {
const MEdge *edge = &edges[e];
BLI_BITMAP_SET(ss->vertex_info.boundary, edge->v1, true);
BLI_BITMAP_SET(ss->vertex_info.boundary, edge->v2, true);
}
}
MEM_freeN(adjacent_faces_edge_count);
}
void SCULPT_fake_neighbors_ensure(Sculpt *sd, Object *ob, const float max_dist)
{
SculptSession *ss = ob->sculpt;
const int totvert = SCULPT_vertex_count_get(ss);
/* Fake neighbors were already initialized with the same distance, so no need to be
* recalculated.
*/
if (ss->fake_neighbors.fake_neighbor_index &&
ss->fake_neighbors.current_max_distance == max_dist) {
return;
}
SCULPT_topology_islands_ensure(ob);
SCULPT_fake_neighbor_init(ss, max_dist);
for (int i = 0; i < totvert; i++) {
const PBVHVertRef from_v = BKE_pbvh_index_to_vertex(ss->pbvh, i);
/* This vertex does not have a fake neighbor yet, search one for it. */
if (ss->fake_neighbors.fake_neighbor_index[i] == FAKE_NEIGHBOR_NONE) {
const PBVHVertRef to_v = SCULPT_fake_neighbor_search(sd, ob, from_v, max_dist);
if (to_v.i != PBVH_REF_NONE) {
/* Add the fake neighbor if available. */
SCULPT_fake_neighbor_add(ss, from_v, to_v);
}
}
}
}
void SCULPT_fake_neighbors_enable(Object *ob)
{
SculptSession *ss = ob->sculpt;
BLI_assert(ss->fake_neighbors.fake_neighbor_index != nullptr);
ss->fake_neighbors.use_fake_neighbors = true;
}
void SCULPT_fake_neighbors_disable(Object *ob)
{
SculptSession *ss = ob->sculpt;
BLI_assert(ss->fake_neighbors.fake_neighbor_index != nullptr);
ss->fake_neighbors.use_fake_neighbors = false;
}
void SCULPT_fake_neighbors_free(Object *ob)
{
SculptSession *ss = ob->sculpt;
sculpt_pose_fake_neighbors_free(ss);
}
void SCULPT_automasking_node_begin(Object *ob,
const SculptSession * /*ss*/,
AutomaskingCache *automasking,
AutomaskingNodeData *automask_data,
PBVHNode *node)
{
if (!automasking) {
memset(automask_data, 0, sizeof(*automask_data));
return;
}
automask_data->node = node;
automask_data->have_orig_data = automasking->settings.flags &
(BRUSH_AUTOMASKING_BRUSH_NORMAL | BRUSH_AUTOMASKING_VIEW_NORMAL);
if (automask_data->have_orig_data) {
SCULPT_orig_vert_data_init(&automask_data->orig_data, ob, node, SCULPT_UNDO_COORDS);
}
else {
memset(&automask_data->orig_data, 0, sizeof(automask_data->orig_data));
}
}
void SCULPT_automasking_node_update(SculptSession * /*ss*/,
AutomaskingNodeData *automask_data,
PBVHVertexIter *vd)
{
if (automask_data->have_orig_data) {
SCULPT_orig_vert_data_update(&automask_data->orig_data, vd);
}
}
bool SCULPT_vertex_is_occluded(SculptSession *ss, PBVHVertRef vertex, bool original)
{
float ray_start[3], ray_end[3], ray_normal[3], face_normal[3];
float co[3];
copy_v3_v3(co, SCULPT_vertex_co_get(ss, vertex));
float mouse[2];
ViewContext *vc = ss->cache ? ss->cache->vc : &ss->filter_cache->vc;
ED_view3d_project_float_v2_m4(
vc->region, co, mouse, ss->cache ? ss->cache->projection_mat : ss->filter_cache->viewmat);
int depth = SCULPT_raycast_init(vc, mouse, ray_end, ray_start, ray_normal, original);
negate_v3(ray_normal);
copy_v3_v3(ray_start, SCULPT_vertex_co_get(ss, vertex));
madd_v3_v3fl(ray_start, ray_normal, 0.002);
SculptRaycastData srd = {0};
srd.original = original;
srd.ss = ss;
srd.hit = false;
srd.ray_start = ray_start;
srd.ray_normal = ray_normal;
srd.depth = depth;
srd.face_normal = face_normal;
isect_ray_tri_watertight_v3_precalc(&srd.isect_precalc, ray_normal);
BKE_pbvh_raycast(ss->pbvh, sculpt_raycast_cb, &srd, ray_start, ray_normal, srd.original);
return srd.hit;
}
void SCULPT_stroke_id_next(Object *ob)
{
/* Manually wrap in int32 space to avoid tripping up undefined behavior
* sanitizers.
*/
ob->sculpt->stroke_id = uchar((int(ob->sculpt->stroke_id) + 1) & 255);
}
void SCULPT_stroke_id_ensure(Object *ob)
{
SculptSession *ss = ob->sculpt;
if (!ss->attrs.automasking_stroke_id) {
SculptAttributeParams params = {0};
ss->attrs.automasking_stroke_id = BKE_sculpt_attribute_ensure(
ob,
ATTR_DOMAIN_POINT,
CD_PROP_INT8,
SCULPT_ATTRIBUTE_NAME(automasking_stroke_id),
&params);
}
}
int SCULPT_face_set_get(const SculptSession *ss, PBVHFaceRef face)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_BMESH:
return 0;
case PBVH_FACES:
case PBVH_GRIDS:
return ss->face_sets[face.i];
}
BLI_assert_unreachable();
return 0;
}
void SCULPT_face_set_set(SculptSession *ss, PBVHFaceRef face, int fset)
{
switch (BKE_pbvh_type(ss->pbvh)) {
case PBVH_BMESH:
break;
case PBVH_FACES:
case PBVH_GRIDS:
ss->face_sets[face.i] = fset;
}
}
int SCULPT_vertex_island_get(SculptSession *ss, PBVHVertRef vertex)
{
if (ss->attrs.topology_island_key) {
return vertex_attr_get<uint8_t>(vertex, ss->attrs.topology_island_key);
}
return -1;
}
void SCULPT_topology_islands_invalidate(SculptSession *ss)
{
ss->islands_valid = false;
}
void SCULPT_topology_islands_ensure(Object *ob)
{
SculptSession *ss = ob->sculpt;
if (ss->attrs.topology_island_key && ss->islands_valid &&
BKE_pbvh_type(ss->pbvh) != PBVH_BMESH) {
return;
}
SculptAttributeParams params;
params.permanent = params.stroke_only = params.simple_array = false;
ss->attrs.topology_island_key = BKE_sculpt_attribute_ensure(
ob, ATTR_DOMAIN_POINT, CD_PROP_INT8, SCULPT_ATTRIBUTE_NAME(topology_island_key), &params);
SCULPT_vertex_random_access_ensure(ss);
int totvert = SCULPT_vertex_count_get(ss);
Set<PBVHVertRef> visit;
Vector<PBVHVertRef> stack;
uint8_t island_nr = 0;
for (int i = 0; i < totvert; i++) {
PBVHVertRef vertex = BKE_pbvh_index_to_vertex(ss->pbvh, i);
if (visit.contains(vertex)) {
continue;
}
stack.clear();
stack.append(vertex);
visit.add(vertex);
while (stack.size()) {
PBVHVertRef vertex2 = stack.pop_last();
SculptVertexNeighborIter ni;
vertex_attr_set<uint8_t>(vertex2, ss->attrs.topology_island_key, island_nr);
SCULPT_VERTEX_NEIGHBORS_ITER_BEGIN (ss, vertex2, ni) {
if (visit.add(ni.vertex) && SCULPT_vertex_any_face_visible_get(ss, ni.vertex)) {
stack.append(ni.vertex);
}
}
SCULPT_VERTEX_NEIGHBORS_ITER_END(ni);
}
island_nr++;
}
ss->islands_valid = true;
}
void SCULPT_cube_tip_init(Sculpt * /*sd*/, Object *ob, Brush *brush, float mat[4][4])
{
SculptSession *ss = ob->sculpt;
float scale[4][4];
float tmat[4][4];
float unused[4][4];
zero_m4(mat);
calc_brush_local_mat(0.0, ob, unused, mat);
/* Note: we ignore the radius scaling done inside of calc_brush_local_mat to
* duplicate prior behavior.
*
* TODO: try disabling this and check that all edge cases work properly.
*/
normalize_m4(mat);
scale_m4_fl(scale, ss->cache->radius);
mul_m4_m4m4(tmat, mat, scale);
mul_v3_fl(tmat[1], brush->tip_scale_x);
invert_m4_m4(mat, tmat);
}
/** \} */