This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/bmesh/intern/bmesh_mesh.c
Alexander Gavrilov 93c8955a72 Mesh Edit: preserve Custom Normal vectors in topology operators.
Custom Loop Normals are normally encoded relative to the default
normals, similar to normal maps, allowing them to naturally follow
mesh deformations. Changes to mesh topology however often result
in nonsensical effects that are not desired.

The Remove Doubles operation especially (now known as Merge By
Distance) is intended as a purely topological operation, and
definitely should not change the vector of the custom normals.

This patch implements that behavior by converting the relative
encoding into an absolute vector layer for the duration of the
operation. It also modifies other Merge types in this way for
consistency, the Rip operator as their inverse counterpart;
and also Delete, Dissolve, Connect Path and Knife operators
as other examples more related to topology than shape.

On the technical side, this ports mesh_normals_loop_custom_set
to BMesh, and then uses a temporary Custom Data layer to store
the normals as vectors for the duration of the above mentioned
operations. When the normals are converted back to custom data,
the caller can choose whether to mark edges as sharp to preserve
distinct normals, or just average them instead. All but Remove
Doubles choose to average for now.

Differential Revision: https://developer.blender.org/D4994
2020-06-10 16:51:22 +03:00

3073 lines
99 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bmesh
*
* BM mesh level functions.
*/
#include "MEM_guardedalloc.h"
#include "DNA_listBase.h"
#include "DNA_scene_types.h"
#include "BLI_bitmap.h"
#include "BLI_linklist_stack.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_stack.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
#include "BKE_editmesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_multires.h"
#include "atomic_ops.h"
#include "intern/bmesh_private.h"
/* used as an extern, defined in bmesh.h */
const BMAllocTemplate bm_mesh_allocsize_default = {512, 1024, 2048, 512};
const BMAllocTemplate bm_mesh_chunksize_default = {512, 1024, 2048, 512};
static void bm_mempool_init_ex(const BMAllocTemplate *allocsize,
const bool use_toolflags,
BLI_mempool **r_vpool,
BLI_mempool **r_epool,
BLI_mempool **r_lpool,
BLI_mempool **r_fpool)
{
size_t vert_size, edge_size, loop_size, face_size;
if (use_toolflags == true) {
vert_size = sizeof(BMVert_OFlag);
edge_size = sizeof(BMEdge_OFlag);
loop_size = sizeof(BMLoop);
face_size = sizeof(BMFace_OFlag);
}
else {
vert_size = sizeof(BMVert);
edge_size = sizeof(BMEdge);
loop_size = sizeof(BMLoop);
face_size = sizeof(BMFace);
}
if (r_vpool) {
*r_vpool = BLI_mempool_create(
vert_size, allocsize->totvert, bm_mesh_chunksize_default.totvert, BLI_MEMPOOL_ALLOW_ITER);
}
if (r_epool) {
*r_epool = BLI_mempool_create(
edge_size, allocsize->totedge, bm_mesh_chunksize_default.totedge, BLI_MEMPOOL_ALLOW_ITER);
}
if (r_lpool) {
*r_lpool = BLI_mempool_create(
loop_size, allocsize->totloop, bm_mesh_chunksize_default.totloop, BLI_MEMPOOL_NOP);
}
if (r_fpool) {
*r_fpool = BLI_mempool_create(
face_size, allocsize->totface, bm_mesh_chunksize_default.totface, BLI_MEMPOOL_ALLOW_ITER);
}
}
static void bm_mempool_init(BMesh *bm, const BMAllocTemplate *allocsize, const bool use_toolflags)
{
bm_mempool_init_ex(allocsize, use_toolflags, &bm->vpool, &bm->epool, &bm->lpool, &bm->fpool);
#ifdef USE_BMESH_HOLES
bm->looplistpool = BLI_mempool_create(sizeof(BMLoopList), 512, 512, BLI_MEMPOOL_NOP);
#endif
}
void BM_mesh_elem_toolflags_ensure(BMesh *bm)
{
BLI_assert(bm->use_toolflags);
if (bm->vtoolflagpool && bm->etoolflagpool && bm->ftoolflagpool) {
return;
}
bm->vtoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totvert, 512, BLI_MEMPOOL_NOP);
bm->etoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totedge, 512, BLI_MEMPOOL_NOP);
bm->ftoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totface, 512, BLI_MEMPOOL_NOP);
BMIter iter;
BMVert_OFlag *v_olfag;
BLI_mempool *toolflagpool = bm->vtoolflagpool;
BM_ITER_MESH (v_olfag, &iter, bm, BM_VERTS_OF_MESH) {
v_olfag->oflags = BLI_mempool_calloc(toolflagpool);
}
BMEdge_OFlag *e_olfag;
toolflagpool = bm->etoolflagpool;
BM_ITER_MESH (e_olfag, &iter, bm, BM_EDGES_OF_MESH) {
e_olfag->oflags = BLI_mempool_calloc(toolflagpool);
}
BMFace_OFlag *f_olfag;
toolflagpool = bm->ftoolflagpool;
BM_ITER_MESH (f_olfag, &iter, bm, BM_FACES_OF_MESH) {
f_olfag->oflags = BLI_mempool_calloc(toolflagpool);
}
bm->totflags = 1;
}
void BM_mesh_elem_toolflags_clear(BMesh *bm)
{
if (bm->vtoolflagpool) {
BLI_mempool_destroy(bm->vtoolflagpool);
bm->vtoolflagpool = NULL;
}
if (bm->etoolflagpool) {
BLI_mempool_destroy(bm->etoolflagpool);
bm->etoolflagpool = NULL;
}
if (bm->ftoolflagpool) {
BLI_mempool_destroy(bm->ftoolflagpool);
bm->ftoolflagpool = NULL;
}
}
/**
* \brief BMesh Make Mesh
*
* Allocates a new BMesh structure.
*
* \return The New bmesh
*
* \note ob is needed by multires
*/
BMesh *BM_mesh_create(const BMAllocTemplate *allocsize, const struct BMeshCreateParams *params)
{
/* allocate the structure */
BMesh *bm = MEM_callocN(sizeof(BMesh), __func__);
/* allocate the memory pools for the mesh elements */
bm_mempool_init(bm, allocsize, params->use_toolflags);
/* allocate one flag pool that we don't get rid of. */
bm->use_toolflags = params->use_toolflags;
bm->toolflag_index = 0;
bm->totflags = 0;
CustomData_reset(&bm->vdata);
CustomData_reset(&bm->edata);
CustomData_reset(&bm->ldata);
CustomData_reset(&bm->pdata);
return bm;
}
/**
* \brief BMesh Free Mesh Data
*
* Frees a BMesh structure.
*
* \note frees mesh, but not actual BMesh struct
*/
void BM_mesh_data_free(BMesh *bm)
{
BMVert *v;
BMEdge *e;
BMLoop *l;
BMFace *f;
BMIter iter;
BMIter itersub;
const bool is_ldata_free = CustomData_bmesh_has_free(&bm->ldata);
const bool is_pdata_free = CustomData_bmesh_has_free(&bm->pdata);
/* Check if we have to call free, if not we can avoid a lot of looping */
if (CustomData_bmesh_has_free(&(bm->vdata))) {
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
CustomData_bmesh_free_block(&(bm->vdata), &(v->head.data));
}
}
if (CustomData_bmesh_has_free(&(bm->edata))) {
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
CustomData_bmesh_free_block(&(bm->edata), &(e->head.data));
}
}
if (is_ldata_free || is_pdata_free) {
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
if (is_pdata_free) {
CustomData_bmesh_free_block(&(bm->pdata), &(f->head.data));
}
if (is_ldata_free) {
BM_ITER_ELEM (l, &itersub, f, BM_LOOPS_OF_FACE) {
CustomData_bmesh_free_block(&(bm->ldata), &(l->head.data));
}
}
}
}
/* Free custom data pools, This should probably go in CustomData_free? */
if (bm->vdata.totlayer) {
BLI_mempool_destroy(bm->vdata.pool);
}
if (bm->edata.totlayer) {
BLI_mempool_destroy(bm->edata.pool);
}
if (bm->ldata.totlayer) {
BLI_mempool_destroy(bm->ldata.pool);
}
if (bm->pdata.totlayer) {
BLI_mempool_destroy(bm->pdata.pool);
}
/* free custom data */
CustomData_free(&bm->vdata, 0);
CustomData_free(&bm->edata, 0);
CustomData_free(&bm->ldata, 0);
CustomData_free(&bm->pdata, 0);
/* destroy element pools */
BLI_mempool_destroy(bm->vpool);
BLI_mempool_destroy(bm->epool);
BLI_mempool_destroy(bm->lpool);
BLI_mempool_destroy(bm->fpool);
if (bm->vtable) {
MEM_freeN(bm->vtable);
}
if (bm->etable) {
MEM_freeN(bm->etable);
}
if (bm->ftable) {
MEM_freeN(bm->ftable);
}
/* destroy flag pool */
BM_mesh_elem_toolflags_clear(bm);
#ifdef USE_BMESH_HOLES
BLI_mempool_destroy(bm->looplistpool);
#endif
BLI_freelistN(&bm->selected);
if (bm->lnor_spacearr) {
BKE_lnor_spacearr_free(bm->lnor_spacearr);
MEM_freeN(bm->lnor_spacearr);
}
BMO_error_clear(bm);
}
/**
* \brief BMesh Clear Mesh
*
* Clear all data in bm
*/
void BM_mesh_clear(BMesh *bm)
{
const bool use_toolflags = bm->use_toolflags;
/* free old mesh */
BM_mesh_data_free(bm);
memset(bm, 0, sizeof(BMesh));
/* allocate the memory pools for the mesh elements */
bm_mempool_init(bm, &bm_mesh_allocsize_default, use_toolflags);
bm->use_toolflags = use_toolflags;
bm->toolflag_index = 0;
bm->totflags = 0;
CustomData_reset(&bm->vdata);
CustomData_reset(&bm->edata);
CustomData_reset(&bm->ldata);
CustomData_reset(&bm->pdata);
}
/**
* \brief BMesh Free Mesh
*
* Frees a BMesh data and its structure.
*/
void BM_mesh_free(BMesh *bm)
{
BM_mesh_data_free(bm);
if (bm->py_handle) {
/* keep this out of 'BM_mesh_data_free' because we want python
* to be able to clear the mesh and maintain access. */
bpy_bm_generic_invalidate(bm->py_handle);
bm->py_handle = NULL;
}
MEM_freeN(bm);
}
/**
* Helpers for #BM_mesh_normals_update and #BM_verts_calc_normal_vcos
*/
/* We use that existing internal API flag,
* assuming no other tool using it would run concurrently to clnors editing. */
#define BM_LNORSPACE_UPDATE _FLAG_MF
typedef struct BMEdgesCalcVectorsData {
/* Read-only data. */
const float (*vcos)[3];
/* Read-write data, but no need to protect it, no concurrency to fear here. */
float (*edgevec)[3];
} BMEdgesCalcVectorsData;
static void mesh_edges_calc_vectors_cb(void *userdata, MempoolIterData *mp_e)
{
BMEdgesCalcVectorsData *data = userdata;
BMEdge *e = (BMEdge *)mp_e;
if (e->l) {
const float *v1_co = data->vcos ? data->vcos[BM_elem_index_get(e->v1)] : e->v1->co;
const float *v2_co = data->vcos ? data->vcos[BM_elem_index_get(e->v2)] : e->v2->co;
sub_v3_v3v3(data->edgevec[BM_elem_index_get(e)], v2_co, v1_co);
normalize_v3(data->edgevec[BM_elem_index_get(e)]);
}
else {
/* the edge vector will not be needed when the edge has no radial */
}
}
static void bm_mesh_edges_calc_vectors(BMesh *bm, float (*edgevec)[3], const float (*vcos)[3])
{
BM_mesh_elem_index_ensure(bm, BM_EDGE | (vcos ? BM_VERT : 0));
BMEdgesCalcVectorsData data = {
.vcos = vcos,
.edgevec = edgevec,
};
BM_iter_parallel(
bm, BM_EDGES_OF_MESH, mesh_edges_calc_vectors_cb, &data, bm->totedge >= BM_OMP_LIMIT);
}
typedef struct BMVertsCalcNormalsData {
/* Read-only data. */
const float (*fnos)[3];
const float (*edgevec)[3];
const float (*vcos)[3];
/* Read-write data, protected by an atomic-based fake spin-lock like system. */
float (*vnos)[3];
} BMVertsCalcNormalsData;
static void mesh_verts_calc_normals_accum_cb(void *userdata, MempoolIterData *mp_f)
{
#define FLT_EQ_NONAN(_fa, _fb) (*((const uint32_t *)&_fa) == *((const uint32_t *)&_fb))
BMVertsCalcNormalsData *data = userdata;
BMFace *f = (BMFace *)mp_f;
const float *f_no = data->fnos ? data->fnos[BM_elem_index_get(f)] : f->no;
BMLoop *l_first, *l_iter;
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
do {
const float *e1diff, *e2diff;
float dotprod;
float fac;
/* calculate the dot product of the two edges that
* meet at the loop's vertex */
e1diff = data->edgevec[BM_elem_index_get(l_iter->prev->e)];
e2diff = data->edgevec[BM_elem_index_get(l_iter->e)];
dotprod = dot_v3v3(e1diff, e2diff);
/* edge vectors are calculated from e->v1 to e->v2, so
* adjust the dot product if one but not both loops
* actually runs from from e->v2 to e->v1 */
if ((l_iter->prev->e->v1 == l_iter->prev->v) ^ (l_iter->e->v1 == l_iter->v)) {
dotprod = -dotprod;
}
fac = saacos(-dotprod);
if (fac != fac) { /* NAN detection. */
/* Degenerated case, nothing to do here, just ignore that vertex. */
continue;
}
/* accumulate weighted face normal into the vertex's normal */
float *v_no = data->vnos ? data->vnos[BM_elem_index_get(l_iter->v)] : l_iter->v->no;
/* This block is a lockless threadsafe madd_v3_v3fl.
* It uses the first float of the vector as a sort of cheap spin-lock,
* assuming FLT_MAX is a safe 'illegal' value that cannot be set here otherwise.
* It also assumes that collisions between threads are highly unlikely,
* else performances would be quite bad here. */
float virtual_lock = v_no[0];
while (true) {
/* This loops until following conditions are met:
* - v_no[0] has same value as virtual_lock (i.e. it did not change since last try).
* - v_no[0] was not FLT_MAX, i.e. it was not locked by another thread.
*/
const float vl = atomic_cas_float(&v_no[0], virtual_lock, FLT_MAX);
if (FLT_EQ_NONAN(vl, virtual_lock) && vl != FLT_MAX) {
break;
}
virtual_lock = vl;
}
BLI_assert(v_no[0] == FLT_MAX);
/* Now we own that normal value, and can change it.
* But first scalar of the vector must not be changed yet, it's our lock! */
virtual_lock += f_no[0] * fac;
v_no[1] += f_no[1] * fac;
v_no[2] += f_no[2] * fac;
/* Second atomic operation to 'release'
* our lock on that vector and set its first scalar value. */
/* Note that we do not need to loop here, since we 'locked' v_no[0],
* nobody should have changed it in the mean time. */
virtual_lock = atomic_cas_float(&v_no[0], FLT_MAX, virtual_lock);
BLI_assert(virtual_lock == FLT_MAX);
} while ((l_iter = l_iter->next) != l_first);
#undef FLT_EQ_NONAN
}
static void mesh_verts_calc_normals_normalize_cb(void *userdata, MempoolIterData *mp_v)
{
BMVertsCalcNormalsData *data = userdata;
BMVert *v = (BMVert *)mp_v;
float *v_no = data->vnos ? data->vnos[BM_elem_index_get(v)] : v->no;
if (UNLIKELY(normalize_v3(v_no) == 0.0f)) {
const float *v_co = data->vcos ? data->vcos[BM_elem_index_get(v)] : v->co;
normalize_v3_v3(v_no, v_co);
}
}
static void bm_mesh_verts_calc_normals(BMesh *bm,
const float (*edgevec)[3],
const float (*fnos)[3],
const float (*vcos)[3],
float (*vnos)[3])
{
BM_mesh_elem_index_ensure(bm, (BM_EDGE | BM_FACE) | ((vnos || vcos) ? BM_VERT : 0));
BMVertsCalcNormalsData data = {
.fnos = fnos,
.edgevec = edgevec,
.vcos = vcos,
.vnos = vnos,
};
BM_iter_parallel(
bm, BM_FACES_OF_MESH, mesh_verts_calc_normals_accum_cb, &data, bm->totface >= BM_OMP_LIMIT);
/* normalize the accumulated vertex normals */
BM_iter_parallel(bm,
BM_VERTS_OF_MESH,
mesh_verts_calc_normals_normalize_cb,
&data,
bm->totvert >= BM_OMP_LIMIT);
}
static void mesh_faces_calc_normals_cb(void *UNUSED(userdata), MempoolIterData *mp_f)
{
BMFace *f = (BMFace *)mp_f;
BM_face_normal_update(f);
}
/**
* \brief BMesh Compute Normals
*
* Updates the normals of a mesh.
*/
void BM_mesh_normals_update(BMesh *bm)
{
float(*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * bm->totedge, __func__);
/* Parallel mempool iteration does not allow to generate indices inline anymore... */
BM_mesh_elem_index_ensure(bm, (BM_EDGE | BM_FACE));
/* calculate all face normals */
BM_iter_parallel(
bm, BM_FACES_OF_MESH, mesh_faces_calc_normals_cb, NULL, bm->totface >= BM_OMP_LIMIT);
/* Zero out vertex normals */
BMIter viter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &viter, bm, BM_VERTS_OF_MESH, i) {
BM_elem_index_set(v, i); /* set_inline */
zero_v3(v->no);
}
bm->elem_index_dirty &= ~BM_VERT;
/* Compute normalized direction vectors for each edge.
* Directions will be used for calculating the weights of the face normals on the vertex normals.
*/
bm_mesh_edges_calc_vectors(bm, edgevec, NULL);
/* Add weighted face normals to vertices, and normalize vert normals. */
bm_mesh_verts_calc_normals(bm, (const float(*)[3])edgevec, NULL, NULL, NULL);
MEM_freeN(edgevec);
}
/**
* \brief BMesh Compute Normals from/to external data.
*
* Computes the vertex normals of a mesh into vnos,
* using given vertex coordinates (vcos) and polygon normals (fnos).
*/
void BM_verts_calc_normal_vcos(BMesh *bm,
const float (*fnos)[3],
const float (*vcos)[3],
float (*vnos)[3])
{
float(*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * bm->totedge, __func__);
/* Compute normalized direction vectors for each edge.
* Directions will be used for calculating the weights of the face normals on the vertex normals.
*/
bm_mesh_edges_calc_vectors(bm, edgevec, vcos);
/* Add weighted face normals to vertices, and normalize vert normals. */
bm_mesh_verts_calc_normals(bm, (const float(*)[3])edgevec, fnos, vcos, vnos);
MEM_freeN(edgevec);
}
/**
* Helpers for #BM_mesh_loop_normals_update and #BM_loops_calc_normal_vcos
*/
static void bm_mesh_edges_sharp_tag(BMesh *bm,
const float (*vnos)[3],
const float (*fnos)[3],
float (*r_lnos)[3],
const float split_angle,
const bool do_sharp_edges_tag)
{
BMIter eiter;
BMEdge *e;
int i;
const bool check_angle = (split_angle < (float)M_PI);
const float split_angle_cos = check_angle ? cosf(split_angle) : -1.0f;
{
char htype = BM_VERT | BM_LOOP;
if (fnos) {
htype |= BM_FACE;
}
BM_mesh_elem_index_ensure(bm, htype);
}
/* This first loop checks which edges are actually smooth,
* and pre-populate lnos with vnos (as if they were all smooth). */
BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, i) {
BMLoop *l_a, *l_b;
BM_elem_index_set(e, i); /* set_inline */
BM_elem_flag_disable(e, BM_ELEM_TAG); /* Clear tag (means edge is sharp). */
/* An edge with only two loops, might be smooth... */
if (BM_edge_loop_pair(e, &l_a, &l_b)) {
bool is_angle_smooth = true;
if (check_angle) {
const float *no_a = fnos ? fnos[BM_elem_index_get(l_a->f)] : l_a->f->no;
const float *no_b = fnos ? fnos[BM_elem_index_get(l_b->f)] : l_b->f->no;
is_angle_smooth = (dot_v3v3(no_a, no_b) >= split_angle_cos);
}
/* We only tag edges that are *really* smooth:
* If the angle between both its polys' normals is below split_angle value,
* and it is tagged as such,
* and both its faces are smooth,
* and both its faces have compatible (non-flipped) normals,
* i.e. both loops on the same edge do not share the same vertex.
*/
if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) && BM_elem_flag_test(l_a->f, BM_ELEM_SMOOTH) &&
BM_elem_flag_test(l_b->f, BM_ELEM_SMOOTH) && l_a->v != l_b->v) {
if (is_angle_smooth) {
const float *no;
BM_elem_flag_enable(e, BM_ELEM_TAG);
/* linked vertices might be fully smooth, copy their normals to loop ones. */
if (r_lnos) {
no = vnos ? vnos[BM_elem_index_get(l_a->v)] : l_a->v->no;
copy_v3_v3(r_lnos[BM_elem_index_get(l_a)], no);
no = vnos ? vnos[BM_elem_index_get(l_b->v)] : l_b->v->no;
copy_v3_v3(r_lnos[BM_elem_index_get(l_b)], no);
}
}
else if (do_sharp_edges_tag) {
/* Note that we do not care about the other sharp-edge cases
* (sharp poly, non-manifold edge, etc.),
* only tag edge as sharp when it is due to angle threshold. */
BM_elem_flag_disable(e, BM_ELEM_SMOOTH);
}
}
}
}
bm->elem_index_dirty &= ~BM_EDGE;
}
/**
* Check whether given loop is part of an unknown-so-far cyclic smooth fan, or not.
* Needed because cyclic smooth fans have no obvious 'entry point',
* and yet we need to walk them once, and only once.
*/
bool BM_loop_check_cyclic_smooth_fan(BMLoop *l_curr)
{
BMLoop *lfan_pivot_next = l_curr;
BMEdge *e_next = l_curr->e;
BLI_assert(!BM_elem_flag_test(lfan_pivot_next, BM_ELEM_TAG));
BM_elem_flag_enable(lfan_pivot_next, BM_ELEM_TAG);
while (true) {
/* Much simpler than in sibling code with basic Mesh data! */
lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot_next, &e_next);
if (!lfan_pivot_next || !BM_elem_flag_test(e_next, BM_ELEM_TAG)) {
/* Sharp loop/edge, so not a cyclic smooth fan... */
return false;
}
/* Smooth loop/edge... */
else if (BM_elem_flag_test(lfan_pivot_next, BM_ELEM_TAG)) {
if (lfan_pivot_next == l_curr) {
/* We walked around a whole cyclic smooth fan
* without finding any already-processed loop,
* means we can use initial l_curr/l_prev edge as start for this smooth fan. */
return true;
}
/* ... already checked in some previous looping, we can abort. */
return false;
}
else {
/* ... we can skip it in future, and keep checking the smooth fan. */
BM_elem_flag_enable(lfan_pivot_next, BM_ELEM_TAG);
}
}
}
/**
* BMesh version of BKE_mesh_normals_loop_split() in mesh_evaluate.c
* Will use first clnors_data array, and fallback to cd_loop_clnors_offset
* (use NULL and -1 to not use clnors).
*/
static void bm_mesh_loops_calc_normals(BMesh *bm,
const float (*vcos)[3],
const float (*fnos)[3],
float (*r_lnos)[3],
MLoopNorSpaceArray *r_lnors_spacearr,
const short (*clnors_data)[2],
const int cd_loop_clnors_offset,
const bool do_rebuild)
{
BMIter fiter;
BMFace *f_curr;
const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
MLoopNorSpaceArray _lnors_spacearr = {NULL};
/* Temp normal stack. */
BLI_SMALLSTACK_DECLARE(normal, float *);
/* Temp clnors stack. */
BLI_SMALLSTACK_DECLARE(clnors, short *);
/* Temp edge vectors stack, only used when computing lnor spacearr. */
BLI_Stack *edge_vectors = NULL;
{
char htype = 0;
if (vcos) {
htype |= BM_VERT;
}
/* Face/Loop indices are set inline below. */
BM_mesh_elem_index_ensure(bm, htype);
}
if (!r_lnors_spacearr && has_clnors) {
/* We need to compute lnor spacearr if some custom lnor data are given to us! */
r_lnors_spacearr = &_lnors_spacearr;
}
if (r_lnors_spacearr) {
BKE_lnor_spacearr_init(r_lnors_spacearr, bm->totloop, MLNOR_SPACEARR_BMLOOP_PTR);
edge_vectors = BLI_stack_new(sizeof(float[3]), __func__);
}
/* Clear all loops' tags (means none are to be skipped for now). */
int index_face, index_loop = 0;
BM_ITER_MESH_INDEX (f_curr, &fiter, bm, BM_FACES_OF_MESH, index_face) {
BMLoop *l_curr, *l_first;
BM_elem_index_set(f_curr, index_face); /* set_inline */
l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
do {
BM_elem_index_set(l_curr, index_loop++); /* set_inline */
BM_elem_flag_disable(l_curr, BM_ELEM_TAG);
} while ((l_curr = l_curr->next) != l_first);
}
bm->elem_index_dirty &= ~(BM_FACE | BM_LOOP);
/* We now know edges that can be smoothed (they are tagged),
* and edges that will be hard (they aren't).
* Now, time to generate the normals.
*/
BM_ITER_MESH (f_curr, &fiter, bm, BM_FACES_OF_MESH) {
BMLoop *l_curr, *l_first;
l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
do {
if (do_rebuild && !BM_ELEM_API_FLAG_TEST(l_curr, BM_LNORSPACE_UPDATE) &&
!(bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL)) {
continue;
}
/* A smooth edge, we have to check for cyclic smooth fan case.
* If we find a new, never-processed cyclic smooth fan, we can do it now using that loop/edge
* as 'entry point', otherwise we can skip it. */
/* Note: In theory, we could make bm_mesh_loop_check_cyclic_smooth_fan() store
* mlfan_pivot's in a stack, to avoid having to fan again around
* the vert during actual computation of clnor & clnorspace. However, this would complicate
* the code, add more memory usage, and
* BM_vert_step_fan_loop() is quite cheap in term of CPU cycles,
* so really think it's not worth it. */
if (BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) &&
(BM_elem_flag_test(l_curr, BM_ELEM_TAG) || !BM_loop_check_cyclic_smooth_fan(l_curr))) {
}
else if (!BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) &&
!BM_elem_flag_test(l_curr->prev->e, BM_ELEM_TAG)) {
/* Simple case (both edges around that vertex are sharp in related polygon),
* this vertex just takes its poly normal.
*/
const int l_curr_index = BM_elem_index_get(l_curr);
const float *no = fnos ? fnos[BM_elem_index_get(f_curr)] : f_curr->no;
copy_v3_v3(r_lnos[l_curr_index], no);
/* If needed, generate this (simple!) lnor space. */
if (r_lnors_spacearr) {
float vec_curr[3], vec_prev[3];
MLoopNorSpace *lnor_space = BKE_lnor_space_create(r_lnors_spacearr);
{
const BMVert *v_pivot = l_curr->v;
const float *co_pivot = vcos ? vcos[BM_elem_index_get(v_pivot)] : v_pivot->co;
const BMVert *v_1 = BM_edge_other_vert(l_curr->e, v_pivot);
const float *co_1 = vcos ? vcos[BM_elem_index_get(v_1)] : v_1->co;
const BMVert *v_2 = BM_edge_other_vert(l_curr->prev->e, v_pivot);
const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
sub_v3_v3v3(vec_curr, co_1, co_pivot);
normalize_v3(vec_curr);
sub_v3_v3v3(vec_prev, co_2, co_pivot);
normalize_v3(vec_prev);
}
BKE_lnor_space_define(lnor_space, r_lnos[l_curr_index], vec_curr, vec_prev, NULL);
/* We know there is only one loop in this space,
* no need to create a linklist in this case... */
BKE_lnor_space_add_loop(r_lnors_spacearr, lnor_space, l_curr_index, l_curr, true);
if (has_clnors) {
const short(*clnor)[2] = clnors_data ? &clnors_data[l_curr_index] :
(const void *)BM_ELEM_CD_GET_VOID_P(
l_curr, cd_loop_clnors_offset);
BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor, r_lnos[l_curr_index]);
}
}
}
/* We *do not need* to check/tag loops as already computed!
* Due to the fact a loop only links to one of its two edges,
* a same fan *will never be walked more than once!*
* Since we consider edges having neighbor faces with inverted (flipped) normals as sharp,
* we are sure that no fan will be skipped, even only considering the case
* (sharp curr_edge, smooth prev_edge), and not the alternative
* (smooth curr_edge, sharp prev_edge).
* All this due/thanks to link between normals and loop ordering.
*/
else {
/* We have to fan around current vertex, until we find the other non-smooth edge,
* and accumulate face normals into the vertex!
* Note in case this vertex has only one sharp edge,
* this is a waste because the normal is the same as the vertex normal,
* but I do not see any easy way to detect that (would need to count number of sharp edges
* per vertex, I doubt the additional memory usage would be worth it, especially as it
* should not be a common case in real-life meshes anyway).
*/
BMVert *v_pivot = l_curr->v;
BMEdge *e_next;
const BMEdge *e_org = l_curr->e;
BMLoop *lfan_pivot, *lfan_pivot_next;
int lfan_pivot_index;
float lnor[3] = {0.0f, 0.0f, 0.0f};
float vec_curr[3], vec_next[3], vec_org[3];
/* We validate clnors data on the fly - cheapest way to do! */
int clnors_avg[2] = {0, 0};
const short(*clnor_ref)[2] = NULL;
int clnors_nbr = 0;
bool clnors_invalid = false;
const float *co_pivot = vcos ? vcos[BM_elem_index_get(v_pivot)] : v_pivot->co;
MLoopNorSpace *lnor_space = r_lnors_spacearr ? BKE_lnor_space_create(r_lnors_spacearr) :
NULL;
BLI_assert((edge_vectors == NULL) || BLI_stack_is_empty(edge_vectors));
lfan_pivot = l_curr;
lfan_pivot_index = BM_elem_index_get(lfan_pivot);
e_next = lfan_pivot->e; /* Current edge here, actually! */
/* Only need to compute previous edge's vector once,
* then we can just reuse old current one! */
{
const BMVert *v_2 = BM_edge_other_vert(e_next, v_pivot);
const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
sub_v3_v3v3(vec_org, co_2, co_pivot);
normalize_v3(vec_org);
copy_v3_v3(vec_curr, vec_org);
if (r_lnors_spacearr) {
BLI_stack_push(edge_vectors, vec_org);
}
}
while (true) {
/* Much simpler than in sibling code with basic Mesh data! */
lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot, &e_next);
if (lfan_pivot_next) {
BLI_assert(lfan_pivot_next->v == v_pivot);
}
else {
/* next edge is non-manifold, we have to find it ourselves! */
e_next = (lfan_pivot->e == e_next) ? lfan_pivot->prev->e : lfan_pivot->e;
}
/* Compute edge vector.
* NOTE: We could pre-compute those into an array, in the first iteration,
* instead of computing them twice (or more) here.
* However, time gained is not worth memory and time lost,
* given the fact that this code should not be called that much in real-life meshes.
*/
{
const BMVert *v_2 = BM_edge_other_vert(e_next, v_pivot);
const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
sub_v3_v3v3(vec_next, co_2, co_pivot);
normalize_v3(vec_next);
}
{
/* Code similar to accumulate_vertex_normals_poly_v3. */
/* Calculate angle between the two poly edges incident on this vertex. */
const BMFace *f = lfan_pivot->f;
const float fac = saacos(dot_v3v3(vec_next, vec_curr));
const float *no = fnos ? fnos[BM_elem_index_get(f)] : f->no;
/* Accumulate */
madd_v3_v3fl(lnor, no, fac);
if (has_clnors) {
/* Accumulate all clnors, if they are not all equal we have to fix that! */
const short(*clnor)[2] = clnors_data ? &clnors_data[lfan_pivot_index] :
(const void *)BM_ELEM_CD_GET_VOID_P(
lfan_pivot, cd_loop_clnors_offset);
if (clnors_nbr) {
clnors_invalid |= ((*clnor_ref)[0] != (*clnor)[0] ||
(*clnor_ref)[1] != (*clnor)[1]);
}
else {
clnor_ref = clnor;
}
clnors_avg[0] += (*clnor)[0];
clnors_avg[1] += (*clnor)[1];
clnors_nbr++;
/* We store here a pointer to all custom lnors processed. */
BLI_SMALLSTACK_PUSH(clnors, (short *)*clnor);
}
}
/* We store here a pointer to all loop-normals processed. */
BLI_SMALLSTACK_PUSH(normal, (float *)r_lnos[lfan_pivot_index]);
if (r_lnors_spacearr) {
/* Assign current lnor space to current 'vertex' loop. */
BKE_lnor_space_add_loop(
r_lnors_spacearr, lnor_space, lfan_pivot_index, lfan_pivot, false);
if (e_next != e_org) {
/* We store here all edges-normalized vectors processed. */
BLI_stack_push(edge_vectors, vec_next);
}
}
if (!BM_elem_flag_test(e_next, BM_ELEM_TAG) || (e_next == e_org)) {
/* Next edge is sharp, we have finished with this fan of faces around this vert! */
break;
}
/* Copy next edge vector to current one. */
copy_v3_v3(vec_curr, vec_next);
/* Next pivot loop to current one. */
lfan_pivot = lfan_pivot_next;
lfan_pivot_index = BM_elem_index_get(lfan_pivot);
}
{
float lnor_len = normalize_v3(lnor);
/* If we are generating lnor spacearr, we can now define the one for this fan. */
if (r_lnors_spacearr) {
if (UNLIKELY(lnor_len == 0.0f)) {
/* Use vertex normal as fallback! */
copy_v3_v3(lnor, r_lnos[lfan_pivot_index]);
lnor_len = 1.0f;
}
BKE_lnor_space_define(lnor_space, lnor, vec_org, vec_next, edge_vectors);
if (has_clnors) {
if (clnors_invalid) {
short *clnor;
clnors_avg[0] /= clnors_nbr;
clnors_avg[1] /= clnors_nbr;
/* Fix/update all clnors of this fan with computed average value. */
/* Prints continuously when merge custom normals, so commenting. */
/* printf("Invalid clnors in this fan!\n"); */
while ((clnor = BLI_SMALLSTACK_POP(clnors))) {
// print_v2("org clnor", clnor);
clnor[0] = (short)clnors_avg[0];
clnor[1] = (short)clnors_avg[1];
}
// print_v2("new clnors", clnors_avg);
}
else {
/* We still have to consume the stack! */
while (BLI_SMALLSTACK_POP(clnors)) {
/* pass */
}
}
BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor_ref, lnor);
}
}
/* In case we get a zero normal here, just use vertex normal already set! */
if (LIKELY(lnor_len != 0.0f)) {
/* Copy back the final computed normal into all related loop-normals. */
float *nor;
while ((nor = BLI_SMALLSTACK_POP(normal))) {
copy_v3_v3(nor, lnor);
}
}
else {
/* We still have to consume the stack! */
while (BLI_SMALLSTACK_POP(normal)) {
/* pass */
}
}
}
/* Tag related vertex as sharp, to avoid fanning around it again
* (in case it was a smooth one). */
if (r_lnors_spacearr) {
BM_elem_flag_enable(l_curr->v, BM_ELEM_TAG);
}
}
} while ((l_curr = l_curr->next) != l_first);
}
if (r_lnors_spacearr) {
BLI_stack_free(edge_vectors);
if (r_lnors_spacearr == &_lnors_spacearr) {
BKE_lnor_spacearr_free(r_lnors_spacearr);
}
}
}
/* This threshold is a bit touchy (usual float precision issue), this value seems OK. */
#define LNOR_SPACE_TRIGO_THRESHOLD (1.0f - 1e-4f)
/**
* Check each current smooth fan (one lnor space per smooth fan!), and if all its
* matching custom lnors are not (enough) equal, add sharp edges as needed.
*/
static bool bm_mesh_loops_split_lnor_fans(BMesh *bm,
MLoopNorSpaceArray *lnors_spacearr,
const float (*new_lnors)[3])
{
BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)bm->totloop, __func__);
bool changed = false;
BLI_assert(lnors_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);
for (int i = 0; i < bm->totloop; i++) {
if (!lnors_spacearr->lspacearr[i]) {
/* This should not happen in theory, but in some rare case (probably ugly geometry)
* we can get some NULL loopspacearr at this point. :/
* Maybe we should set those loops' edges as sharp?
*/
BLI_BITMAP_ENABLE(done_loops, i);
if (G.debug & G_DEBUG) {
printf("WARNING! Getting invalid NULL loop space for loop %d!\n", i);
}
continue;
}
if (!BLI_BITMAP_TEST(done_loops, i)) {
/* Notes:
* * In case of mono-loop smooth fan, we have nothing to do.
* * Loops in this linklist are ordered (in reversed order compared to how they were
* discovered by BKE_mesh_normals_loop_split(), but this is not a problem).
* Which means if we find a mismatching clnor,
* we know all remaining loops will have to be in a new, different smooth fan/lnor space.
* * In smooth fan case, we compare each clnor against a ref one,
* to avoid small differences adding up into a real big one in the end!
*/
if (lnors_spacearr->lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) {
BLI_BITMAP_ENABLE(done_loops, i);
continue;
}
LinkNode *loops = lnors_spacearr->lspacearr[i]->loops;
BMLoop *prev_ml = NULL;
const float *org_nor = NULL;
while (loops) {
BMLoop *ml = loops->link;
const int lidx = BM_elem_index_get(ml);
const float *nor = new_lnors[lidx];
if (!org_nor) {
org_nor = nor;
}
else if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) {
/* Current normal differs too much from org one, we have to tag the edge between
* previous loop's face and current's one as sharp.
* We know those two loops do not point to the same edge,
* since we do not allow reversed winding in a same smooth fan.
*/
BMEdge *e = (prev_ml->e == ml->prev->e) ? prev_ml->e : ml->e;
BM_elem_flag_disable(e, BM_ELEM_TAG | BM_ELEM_SMOOTH);
changed = true;
org_nor = nor;
}
prev_ml = ml;
loops = loops->next;
BLI_BITMAP_ENABLE(done_loops, lidx);
}
/* We also have to check between last and first loops,
* otherwise we may miss some sharp edges here!
* This is just a simplified version of above while loop.
* See T45984. */
loops = lnors_spacearr->lspacearr[i]->loops;
if (loops && org_nor) {
BMLoop *ml = loops->link;
const int lidx = BM_elem_index_get(ml);
const float *nor = new_lnors[lidx];
if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) {
BMEdge *e = (prev_ml->e == ml->prev->e) ? prev_ml->e : ml->e;
BM_elem_flag_disable(e, BM_ELEM_TAG | BM_ELEM_SMOOTH);
changed = true;
}
}
}
}
MEM_freeN(done_loops);
return changed;
}
/**
* Assign custom normal data from given normal vectors, averaging normals
* from one smooth fan as necessary.
*/
static void bm_mesh_loops_assign_normal_data(BMesh *bm,
MLoopNorSpaceArray *lnors_spacearr,
short (*r_clnors_data)[2],
const int cd_loop_clnors_offset,
const float (*new_lnors)[3])
{
BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)bm->totloop, __func__);
BLI_SMALLSTACK_DECLARE(clnors_data, short *);
BLI_assert(lnors_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);
for (int i = 0; i < bm->totloop; i++) {
if (!lnors_spacearr->lspacearr[i]) {
BLI_BITMAP_ENABLE(done_loops, i);
if (G.debug & G_DEBUG) {
printf("WARNING! Still getting invalid NULL loop space in second loop for loop %d!\n", i);
}
continue;
}
if (!BLI_BITMAP_TEST(done_loops, i)) {
/* Note we accumulate and average all custom normals in current smooth fan,
* to avoid getting different clnors data (tiny differences in plain custom normals can
* give rather huge differences in computed 2D factors).
*/
LinkNode *loops = lnors_spacearr->lspacearr[i]->loops;
if (lnors_spacearr->lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) {
BMLoop *ml = (BMLoop *)loops;
const int lidx = BM_elem_index_get(ml);
BLI_assert(lidx == i);
const float *nor = new_lnors[lidx];
short *clnor = r_clnors_data ? &r_clnors_data[lidx] :
BM_ELEM_CD_GET_VOID_P(ml, cd_loop_clnors_offset);
BKE_lnor_space_custom_normal_to_data(lnors_spacearr->lspacearr[i], nor, clnor);
BLI_BITMAP_ENABLE(done_loops, i);
}
else {
int nbr_nors = 0;
float avg_nor[3];
short clnor_data_tmp[2], *clnor_data;
zero_v3(avg_nor);
while (loops) {
BMLoop *ml = loops->link;
const int lidx = BM_elem_index_get(ml);
const float *nor = new_lnors[lidx];
short *clnor = r_clnors_data ? &r_clnors_data[lidx] :
BM_ELEM_CD_GET_VOID_P(ml, cd_loop_clnors_offset);
nbr_nors++;
add_v3_v3(avg_nor, nor);
BLI_SMALLSTACK_PUSH(clnors_data, clnor);
loops = loops->next;
BLI_BITMAP_ENABLE(done_loops, lidx);
}
mul_v3_fl(avg_nor, 1.0f / (float)nbr_nors);
BKE_lnor_space_custom_normal_to_data(
lnors_spacearr->lspacearr[i], avg_nor, clnor_data_tmp);
while ((clnor_data = BLI_SMALLSTACK_POP(clnors_data))) {
clnor_data[0] = clnor_data_tmp[0];
clnor_data[1] = clnor_data_tmp[1];
}
}
}
}
MEM_freeN(done_loops);
}
/**
* Compute internal representation of given custom normals (as an array of float[2] or data layer).
*
* It also makes sure the mesh matches those custom normals, by marking new sharp edges to split
* the smooth fans when loop normals for the same vertex are different, or averaging the normals
* instead, depending on the do_split_fans parameter.
*/
static void bm_mesh_loops_custom_normals_set(BMesh *bm,
const float (*vcos)[3],
const float (*vnos)[3],
const float (*fnos)[3],
MLoopNorSpaceArray *r_lnors_spacearr,
short (*r_clnors_data)[2],
const int cd_loop_clnors_offset,
float (*new_lnors)[3],
const int cd_new_lnors_offset,
bool do_split_fans)
{
BMFace *f;
BMLoop *l;
BMIter liter, fiter;
float(*cur_lnors)[3] = MEM_mallocN(sizeof(*cur_lnors) * bm->totloop, __func__);
BKE_lnor_spacearr_clear(r_lnors_spacearr);
/* Tag smooth edges and set lnos from vnos when they might be completely smooth...
* When using custom loop normals, disable the angle feature! */
bm_mesh_edges_sharp_tag(bm, vnos, fnos, cur_lnors, (float)M_PI, false);
/* Finish computing lnos by accumulating face normals
* in each fan of faces defined by sharp edges. */
bm_mesh_loops_calc_normals(
bm, vcos, fnos, cur_lnors, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, false);
/* Extract new normals from the data layer if necessary. */
float(*custom_lnors)[3] = new_lnors;
if (new_lnors == NULL) {
custom_lnors = MEM_mallocN(sizeof(*new_lnors) * bm->totloop, __func__);
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
const float *normal = BM_ELEM_CD_GET_VOID_P(l, cd_new_lnors_offset);
copy_v3_v3(custom_lnors[BM_elem_index_get(l)], normal);
}
}
}
/* Validate the new normals. */
for (int i = 0; i < bm->totloop; i++) {
if (is_zero_v3(custom_lnors[i])) {
copy_v3_v3(custom_lnors[i], cur_lnors[i]);
}
else {
normalize_v3(custom_lnors[i]);
}
}
/* Now, check each current smooth fan (one lnor space per smooth fan!),
* and if all its matching custom lnors are not equal, add sharp edges as needed. */
if (do_split_fans && bm_mesh_loops_split_lnor_fans(bm, r_lnors_spacearr, custom_lnors)) {
/* If any sharp edges were added, run bm_mesh_loops_calc_normals() again to get lnor
* spacearr/smooth fans matching the given custom lnors. */
BKE_lnor_spacearr_clear(r_lnors_spacearr);
bm_mesh_loops_calc_normals(
bm, vcos, fnos, cur_lnors, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, false);
}
/* And we just have to convert plain object-space custom normals to our
* lnor space-encoded ones. */
bm_mesh_loops_assign_normal_data(
bm, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, custom_lnors);
MEM_freeN(cur_lnors);
if (custom_lnors != new_lnors) {
MEM_freeN(custom_lnors);
}
}
static void bm_mesh_loops_calc_normals_no_autosmooth(BMesh *bm,
const float (*vnos)[3],
const float (*fnos)[3],
float (*r_lnos)[3])
{
BMIter fiter;
BMFace *f_curr;
{
char htype = BM_LOOP;
if (vnos) {
htype |= BM_VERT;
}
if (fnos) {
htype |= BM_FACE;
}
BM_mesh_elem_index_ensure(bm, htype);
}
BM_ITER_MESH (f_curr, &fiter, bm, BM_FACES_OF_MESH) {
BMLoop *l_curr, *l_first;
const bool is_face_flat = !BM_elem_flag_test(f_curr, BM_ELEM_SMOOTH);
l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
do {
const float *no = is_face_flat ? (fnos ? fnos[BM_elem_index_get(f_curr)] : f_curr->no) :
(vnos ? vnos[BM_elem_index_get(l_curr->v)] : l_curr->v->no);
copy_v3_v3(r_lnos[BM_elem_index_get(l_curr)], no);
} while ((l_curr = l_curr->next) != l_first);
}
}
#if 0 /* Unused currently */
/**
* \brief BMesh Compute Loop Normals
*
* Updates the loop normals of a mesh.
* Assumes vertex and face normals are valid (else call BM_mesh_normals_update() first)!
*/
void BM_mesh_loop_normals_update(BMesh *bm,
const bool use_split_normals,
const float split_angle,
float (*r_lnos)[3],
MLoopNorSpaceArray *r_lnors_spacearr,
const short (*clnors_data)[2],
const int cd_loop_clnors_offset)
{
const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
if (use_split_normals) {
/* Tag smooth edges and set lnos from vnos when they might be completely smooth...
* When using custom loop normals, disable the angle feature! */
bm_mesh_edges_sharp_tag(bm, NULL, NULL, has_clnors ? (float)M_PI : split_angle, r_lnos);
/* Finish computing lnos by accumulating face normals
* in each fan of faces defined by sharp edges. */
bm_mesh_loops_calc_normals(
bm, NULL, NULL, r_lnos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset);
}
else {
BLI_assert(!r_lnors_spacearr);
bm_mesh_loops_calc_normals_no_autosmooth(bm, NULL, NULL, r_lnos);
}
}
#endif
/**
* \brief BMesh Compute Loop Normals from/to external data.
*
* Compute split normals, i.e. vertex normals associated with each poly (hence 'loop normals').
* Useful to materialize sharp edges (or non-smooth faces) without actually modifying the geometry
* (splitting edges).
*/
void BM_loops_calc_normal_vcos(BMesh *bm,
const float (*vcos)[3],
const float (*vnos)[3],
const float (*fnos)[3],
const bool use_split_normals,
const float split_angle,
float (*r_lnos)[3],
MLoopNorSpaceArray *r_lnors_spacearr,
short (*clnors_data)[2],
const int cd_loop_clnors_offset,
const bool do_rebuild)
{
const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
if (use_split_normals) {
/* Tag smooth edges and set lnos from vnos when they might be completely smooth...
* When using custom loop normals, disable the angle feature! */
bm_mesh_edges_sharp_tag(bm, vnos, fnos, r_lnos, has_clnors ? (float)M_PI : split_angle, false);
/* Finish computing lnos by accumulating face normals
* in each fan of faces defined by sharp edges. */
bm_mesh_loops_calc_normals(
bm, vcos, fnos, r_lnos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset, do_rebuild);
}
else {
BLI_assert(!r_lnors_spacearr);
bm_mesh_loops_calc_normals_no_autosmooth(bm, vnos, fnos, r_lnos);
}
}
/**
* Define sharp edges as needed to mimic 'autosmooth' from angle threshold.
*
* Used when defining an empty custom loop normals data layer,
* to keep same shading as with autosmooth!
*/
void BM_edges_sharp_from_angle_set(BMesh *bm, const float split_angle)
{
if (split_angle >= (float)M_PI) {
/* Nothing to do! */
return;
}
bm_mesh_edges_sharp_tag(bm, NULL, NULL, NULL, split_angle, true);
}
void BM_lnorspacearr_store(BMesh *bm, float (*r_lnors)[3])
{
BLI_assert(bm->lnor_spacearr != NULL);
if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
BM_data_layer_add(bm, &bm->ldata, CD_CUSTOMLOOPNORMAL);
}
int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
BM_loops_calc_normal_vcos(bm,
NULL,
NULL,
NULL,
true,
M_PI,
r_lnors,
bm->lnor_spacearr,
NULL,
cd_loop_clnors_offset,
false);
bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
}
#define CLEAR_SPACEARRAY_THRESHOLD(x) ((x) / 2)
void BM_lnorspace_invalidate(BMesh *bm, const bool do_invalidate_all)
{
if (bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
return;
}
if (do_invalidate_all || bm->totvertsel > CLEAR_SPACEARRAY_THRESHOLD(bm->totvert)) {
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
return;
}
if (bm->lnor_spacearr == NULL) {
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
return;
}
BMVert *v;
BMLoop *l;
BMIter viter, liter;
/* Note: we could use temp tag of BMItem for that,
* but probably better not use it in such a low-level func?
* --mont29 */
BLI_bitmap *done_verts = BLI_BITMAP_NEW(bm->totvert, __func__);
BM_mesh_elem_index_ensure(bm, BM_VERT);
/* When we affect a given vertex, we may affect following smooth fans:
* - all smooth fans of said vertex;
* - all smooth fans of all immediate loop-neighbors vertices;
* This can be simplified as 'all loops of selected vertices and their immediate neighbors'
* need to be tagged for update.
*/
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
BM_ELEM_API_FLAG_ENABLE(l, BM_LNORSPACE_UPDATE);
/* Note that we only handle unselected neighbor vertices here, main loop will take care of
* selected ones. */
if ((!BM_elem_flag_test(l->prev->v, BM_ELEM_SELECT)) &&
!BLI_BITMAP_TEST(done_verts, BM_elem_index_get(l->prev->v))) {
BMLoop *l_prev;
BMIter liter_prev;
BM_ITER_ELEM (l_prev, &liter_prev, l->prev->v, BM_LOOPS_OF_VERT) {
BM_ELEM_API_FLAG_ENABLE(l_prev, BM_LNORSPACE_UPDATE);
}
BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(l_prev->v));
}
if ((!BM_elem_flag_test(l->next->v, BM_ELEM_SELECT)) &&
!BLI_BITMAP_TEST(done_verts, BM_elem_index_get(l->next->v))) {
BMLoop *l_next;
BMIter liter_next;
BM_ITER_ELEM (l_next, &liter_next, l->next->v, BM_LOOPS_OF_VERT) {
BM_ELEM_API_FLAG_ENABLE(l_next, BM_LNORSPACE_UPDATE);
}
BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(l_next->v));
}
}
BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(v));
}
}
MEM_freeN(done_verts);
bm->spacearr_dirty |= BM_SPACEARR_DIRTY;
}
void BM_lnorspace_rebuild(BMesh *bm, bool preserve_clnor)
{
BLI_assert(bm->lnor_spacearr != NULL);
if (!(bm->spacearr_dirty & (BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL))) {
return;
}
BMFace *f;
BMLoop *l;
BMIter fiter, liter;
float(*r_lnors)[3] = MEM_callocN(sizeof(*r_lnors) * bm->totloop, __func__);
float(*oldnors)[3] = preserve_clnor ? MEM_mallocN(sizeof(*oldnors) * bm->totloop, __func__) :
NULL;
int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
BM_mesh_elem_index_ensure(bm, BM_LOOP);
if (preserve_clnor) {
BLI_assert(bm->lnor_spacearr->lspacearr != NULL);
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
if (BM_ELEM_API_FLAG_TEST(l, BM_LNORSPACE_UPDATE) ||
bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
short(*clnor)[2] = BM_ELEM_CD_GET_VOID_P(l, cd_loop_clnors_offset);
int l_index = BM_elem_index_get(l);
BKE_lnor_space_custom_data_to_normal(
bm->lnor_spacearr->lspacearr[l_index], *clnor, oldnors[l_index]);
}
}
}
}
if (bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
BKE_lnor_spacearr_clear(bm->lnor_spacearr);
}
BM_loops_calc_normal_vcos(bm,
NULL,
NULL,
NULL,
true,
M_PI,
r_lnors,
bm->lnor_spacearr,
NULL,
cd_loop_clnors_offset,
true);
MEM_freeN(r_lnors);
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
if (BM_ELEM_API_FLAG_TEST(l, BM_LNORSPACE_UPDATE) ||
bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
if (preserve_clnor) {
short(*clnor)[2] = BM_ELEM_CD_GET_VOID_P(l, cd_loop_clnors_offset);
int l_index = BM_elem_index_get(l);
BKE_lnor_space_custom_normal_to_data(
bm->lnor_spacearr->lspacearr[l_index], oldnors[l_index], *clnor);
}
BM_ELEM_API_FLAG_DISABLE(l, BM_LNORSPACE_UPDATE);
}
}
}
MEM_SAFE_FREE(oldnors);
bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
#ifndef NDEBUG
BM_lnorspace_err(bm);
#endif
}
void BM_lnorspace_update(BMesh *bm)
{
if (bm->lnor_spacearr == NULL) {
bm->lnor_spacearr = MEM_callocN(sizeof(*bm->lnor_spacearr), __func__);
}
if (bm->lnor_spacearr->lspacearr == NULL) {
float(*lnors)[3] = MEM_callocN(sizeof(*lnors) * bm->totloop, __func__);
BM_lnorspacearr_store(bm, lnors);
MEM_freeN(lnors);
}
else if (bm->spacearr_dirty & (BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL)) {
BM_lnorspace_rebuild(bm, false);
}
}
void BM_normals_loops_edges_tag(BMesh *bm, const bool do_edges)
{
BMFace *f;
BMEdge *e;
BMIter fiter, eiter;
BMLoop *l_curr, *l_first;
if (do_edges) {
int index_edge;
BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, index_edge) {
BMLoop *l_a, *l_b;
BM_elem_index_set(e, index_edge); /* set_inline */
BM_elem_flag_disable(e, BM_ELEM_TAG);
if (BM_edge_loop_pair(e, &l_a, &l_b)) {
if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) && l_a->v != l_b->v) {
BM_elem_flag_enable(e, BM_ELEM_TAG);
}
}
}
bm->elem_index_dirty &= ~BM_EDGE;
}
int index_face, index_loop = 0;
BM_ITER_MESH_INDEX (f, &fiter, bm, BM_FACES_OF_MESH, index_face) {
BM_elem_index_set(f, index_face); /* set_inline */
l_curr = l_first = BM_FACE_FIRST_LOOP(f);
do {
BM_elem_index_set(l_curr, index_loop++); /* set_inline */
BM_elem_flag_disable(l_curr, BM_ELEM_TAG);
} while ((l_curr = l_curr->next) != l_first);
}
bm->elem_index_dirty &= ~(BM_FACE | BM_LOOP);
}
/**
* Auxiliary function only used by rebuild to detect if any spaces were not marked as invalid.
* Reports error if any of the lnor spaces change after rebuilding, meaning that all the possible
* lnor spaces to be rebuilt were not correctly marked.
*/
#ifndef NDEBUG
void BM_lnorspace_err(BMesh *bm)
{
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
bool clear = true;
MLoopNorSpaceArray *temp = MEM_callocN(sizeof(*temp), __func__);
temp->lspacearr = NULL;
BKE_lnor_spacearr_init(temp, bm->totloop, MLNOR_SPACEARR_BMLOOP_PTR);
int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
float(*lnors)[3] = MEM_callocN(sizeof(*lnors) * bm->totloop, __func__);
BM_loops_calc_normal_vcos(
bm, NULL, NULL, NULL, true, M_PI, lnors, temp, NULL, cd_loop_clnors_offset, true);
for (int i = 0; i < bm->totloop; i++) {
int j = 0;
j += compare_ff(
temp->lspacearr[i]->ref_alpha, bm->lnor_spacearr->lspacearr[i]->ref_alpha, 1e-4f);
j += compare_ff(
temp->lspacearr[i]->ref_beta, bm->lnor_spacearr->lspacearr[i]->ref_beta, 1e-4f);
j += compare_v3v3(
temp->lspacearr[i]->vec_lnor, bm->lnor_spacearr->lspacearr[i]->vec_lnor, 1e-4f);
j += compare_v3v3(
temp->lspacearr[i]->vec_ortho, bm->lnor_spacearr->lspacearr[i]->vec_ortho, 1e-4f);
j += compare_v3v3(
temp->lspacearr[i]->vec_ref, bm->lnor_spacearr->lspacearr[i]->vec_ref, 1e-4f);
if (j != 5) {
clear = false;
break;
}
}
BKE_lnor_spacearr_free(temp);
MEM_freeN(temp);
MEM_freeN(lnors);
BLI_assert(clear);
bm->spacearr_dirty &= ~BM_SPACEARR_DIRTY_ALL;
}
#endif
static void bm_loop_normal_mark_indiv_do_loop(BMLoop *l,
BLI_bitmap *loops,
MLoopNorSpaceArray *lnor_spacearr,
int *totloopsel,
const bool do_all_loops_of_vert)
{
if (l != NULL) {
const int l_idx = BM_elem_index_get(l);
if (!BLI_BITMAP_TEST(loops, l_idx)) {
/* If vert and face selected share a loop, mark it for editing. */
BLI_BITMAP_ENABLE(loops, l_idx);
(*totloopsel)++;
if (do_all_loops_of_vert) {
/* If required, also mark all loops shared by that vertex.
* This is needed when loop spaces may change
* (i.e. when some faces or edges might change of smooth/sharp status). */
BMIter liter;
BMLoop *lfan;
BM_ITER_ELEM (lfan, &liter, l->v, BM_LOOPS_OF_VERT) {
const int lfan_idx = BM_elem_index_get(lfan);
if (!BLI_BITMAP_TEST(loops, lfan_idx)) {
BLI_BITMAP_ENABLE(loops, lfan_idx);
(*totloopsel)++;
}
}
}
else {
/* Mark all loops in same loop normal space (aka smooth fan). */
if ((lnor_spacearr->lspacearr[l_idx]->flags & MLNOR_SPACE_IS_SINGLE) == 0) {
for (LinkNode *node = lnor_spacearr->lspacearr[l_idx]->loops; node; node = node->next) {
const int lfan_idx = BM_elem_index_get((BMLoop *)node->link);
if (!BLI_BITMAP_TEST(loops, lfan_idx)) {
BLI_BITMAP_ENABLE(loops, lfan_idx);
(*totloopsel)++;
}
}
}
}
}
}
}
/* Mark the individual clnors to be edited, if multiple selection methods are used. */
static int bm_loop_normal_mark_indiv(BMesh *bm, BLI_bitmap *loops, const bool do_all_loops_of_vert)
{
BMEditSelection *ese, *ese_prev;
int totloopsel = 0;
const bool sel_verts = (bm->selectmode & SCE_SELECT_VERTEX) != 0;
const bool sel_edges = (bm->selectmode & SCE_SELECT_EDGE) != 0;
const bool sel_faces = (bm->selectmode & SCE_SELECT_FACE) != 0;
const bool use_sel_face_history = sel_faces && (sel_edges || sel_verts);
BM_mesh_elem_index_ensure(bm, BM_LOOP);
BLI_assert(bm->lnor_spacearr != NULL);
BLI_assert(bm->lnor_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);
if (use_sel_face_history) {
/* Using face history allows to select a single loop from a single face...
* Note that this is On² piece of code,
* but it is not designed to be used with huge selection sets,
* rather with only a few items selected at most.*/
/* Goes from last selected to the first selected element. */
for (ese = bm->selected.last; ese; ese = ese->prev) {
if (ese->htype == BM_FACE) {
/* If current face is selected,
* then any verts to be edited must have been selected before it. */
for (ese_prev = ese->prev; ese_prev; ese_prev = ese_prev->prev) {
if (ese_prev->htype == BM_VERT) {
bm_loop_normal_mark_indiv_do_loop(
BM_face_vert_share_loop((BMFace *)ese->ele, (BMVert *)ese_prev->ele),
loops,
bm->lnor_spacearr,
&totloopsel,
do_all_loops_of_vert);
}
else if (ese_prev->htype == BM_EDGE) {
BMEdge *e = (BMEdge *)ese_prev->ele;
bm_loop_normal_mark_indiv_do_loop(BM_face_vert_share_loop((BMFace *)ese->ele, e->v1),
loops,
bm->lnor_spacearr,
&totloopsel,
do_all_loops_of_vert);
bm_loop_normal_mark_indiv_do_loop(BM_face_vert_share_loop((BMFace *)ese->ele, e->v2),
loops,
bm->lnor_spacearr,
&totloopsel,
do_all_loops_of_vert);
}
}
}
}
}
else {
if (sel_faces) {
/* Only select all loops of selected faces. */
BMLoop *l;
BMFace *f;
BMIter liter, fiter;
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
if (BM_elem_flag_test(f, BM_ELEM_SELECT)) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
bm_loop_normal_mark_indiv_do_loop(
l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
}
}
}
}
if (sel_edges) {
/* Only select all loops of selected edges. */
BMLoop *l;
BMEdge *e;
BMIter liter, eiter;
BM_ITER_MESH (e, &eiter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
BM_ITER_ELEM (l, &liter, e, BM_LOOPS_OF_EDGE) {
bm_loop_normal_mark_indiv_do_loop(
l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
/* Loops actually 'have' two edges, or said otherwise, a selected edge actually selects
* *two* loops in each of its faces. We have to find the other one too. */
if (BM_vert_in_edge(e, l->next->v)) {
bm_loop_normal_mark_indiv_do_loop(
l->next, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
}
else {
BLI_assert(BM_vert_in_edge(e, l->prev->v));
bm_loop_normal_mark_indiv_do_loop(
l->prev, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
}
}
}
}
}
if (sel_verts) {
/* Select all loops of selected verts. */
BMLoop *l;
BMVert *v;
BMIter liter, viter;
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
bm_loop_normal_mark_indiv_do_loop(
l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
}
}
}
}
}
return totloopsel;
}
static void loop_normal_editdata_init(
BMesh *bm, BMLoopNorEditData *lnor_ed, BMVert *v, BMLoop *l, const int offset)
{
BLI_assert(bm->lnor_spacearr != NULL);
BLI_assert(bm->lnor_spacearr->lspacearr != NULL);
const int l_index = BM_elem_index_get(l);
short *clnors_data = BM_ELEM_CD_GET_VOID_P(l, offset);
lnor_ed->loop_index = l_index;
lnor_ed->loop = l;
float custom_normal[3];
BKE_lnor_space_custom_data_to_normal(
bm->lnor_spacearr->lspacearr[l_index], clnors_data, custom_normal);
lnor_ed->clnors_data = clnors_data;
copy_v3_v3(lnor_ed->nloc, custom_normal);
copy_v3_v3(lnor_ed->niloc, custom_normal);
lnor_ed->loc = v->co;
}
BMLoopNorEditDataArray *BM_loop_normal_editdata_array_init(BMesh *bm,
const bool do_all_loops_of_vert)
{
BMLoop *l;
BMVert *v;
BMIter liter, viter;
int totloopsel = 0;
BLI_assert(bm->spacearr_dirty == 0);
BMLoopNorEditDataArray *lnors_ed_arr = MEM_callocN(sizeof(*lnors_ed_arr), __func__);
lnors_ed_arr->lidx_to_lnor_editdata = MEM_callocN(
sizeof(*lnors_ed_arr->lidx_to_lnor_editdata) * bm->totloop, __func__);
if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
BM_data_layer_add(bm, &bm->ldata, CD_CUSTOMLOOPNORMAL);
}
const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
BM_mesh_elem_index_ensure(bm, BM_LOOP);
BLI_bitmap *loops = BLI_BITMAP_NEW(bm->totloop, __func__);
/* This function define loop normals to edit, based on selection modes and history. */
totloopsel = bm_loop_normal_mark_indiv(bm, loops, do_all_loops_of_vert);
if (totloopsel) {
BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata = MEM_mallocN(
sizeof(*lnor_ed) * totloopsel, __func__);
BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
if (BLI_BITMAP_TEST(loops, BM_elem_index_get(l))) {
loop_normal_editdata_init(bm, lnor_ed, v, l, cd_custom_normal_offset);
lnors_ed_arr->lidx_to_lnor_editdata[BM_elem_index_get(l)] = lnor_ed;
lnor_ed++;
}
}
}
lnors_ed_arr->totloop = totloopsel;
}
MEM_freeN(loops);
lnors_ed_arr->cd_custom_normal_offset = cd_custom_normal_offset;
return lnors_ed_arr;
}
void BM_loop_normal_editdata_array_free(BMLoopNorEditDataArray *lnors_ed_arr)
{
MEM_SAFE_FREE(lnors_ed_arr->lnor_editdata);
MEM_SAFE_FREE(lnors_ed_arr->lidx_to_lnor_editdata);
MEM_freeN(lnors_ed_arr);
}
bool BM_custom_loop_normals_to_vector_layer(BMesh *bm)
{
BMFace *f;
BMLoop *l;
BMIter liter, fiter;
if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
return false;
}
BM_lnorspace_update(bm);
BM_mesh_elem_index_ensure(bm, BM_LOOP);
/* Create a loop normal layer. */
if (!CustomData_has_layer(&bm->ldata, CD_NORMAL)) {
BM_data_layer_add(bm, &bm->ldata, CD_NORMAL);
CustomData_set_layer_flag(&bm->ldata, CD_NORMAL, CD_FLAG_TEMPORARY);
}
const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
const int cd_normal_offset = CustomData_get_offset(&bm->ldata, CD_NORMAL);
BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
const int l_index = BM_elem_index_get(l);
const short *clnors_data = BM_ELEM_CD_GET_VOID_P(l, cd_custom_normal_offset);
float *normal = BM_ELEM_CD_GET_VOID_P(l, cd_normal_offset);
BKE_lnor_space_custom_data_to_normal(
bm->lnor_spacearr->lspacearr[l_index], clnors_data, normal);
}
}
return true;
}
void BM_custom_loop_normals_from_vector_layer(BMesh *bm, bool add_sharp_edges)
{
if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL) ||
!CustomData_has_layer(&bm->ldata, CD_NORMAL)) {
return;
}
const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
const int cd_normal_offset = CustomData_get_offset(&bm->ldata, CD_NORMAL);
if (bm->lnor_spacearr == NULL) {
bm->lnor_spacearr = MEM_callocN(sizeof(*bm->lnor_spacearr), __func__);
}
bm_mesh_loops_custom_normals_set(bm,
NULL,
NULL,
NULL,
bm->lnor_spacearr,
NULL,
cd_custom_normal_offset,
NULL,
cd_normal_offset,
add_sharp_edges);
bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
}
/**
* \brief BMesh Begin Edit
*
* Functions for setting up a mesh for editing and cleaning up after
* the editing operations are done. These are called by the tools/operator
* API for each time a tool is executed.
*/
void bmesh_edit_begin(BMesh *UNUSED(bm), BMOpTypeFlag UNUSED(type_flag))
{
/* Most operators seem to be using BMO_OPTYPE_FLAG_UNTAN_MULTIRES to change the MDisps to
* absolute space during mesh edits. With this enabled, changes to the topology
* (loop cuts, edge subdivides, etc) are not reflected in the higher levels of
* the mesh at all, which doesn't seem right. Turning off completely for now,
* until this is shown to be better for certain types of mesh edits. */
#ifdef BMOP_UNTAN_MULTIRES_ENABLED
/* switch multires data out of tangent space */
if ((type_flag & BMO_OPTYPE_FLAG_UNTAN_MULTIRES) &&
CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
bmesh_mdisps_space_set(bm, MULTIRES_SPACE_TANGENT, MULTIRES_SPACE_ABSOLUTE);
/* ensure correct normals, if possible */
bmesh_rationalize_normals(bm, 0);
BM_mesh_normals_update(bm);
}
#endif
}
/**
* \brief BMesh End Edit
*/
void bmesh_edit_end(BMesh *bm, BMOpTypeFlag type_flag)
{
ListBase select_history;
/* BMO_OPTYPE_FLAG_UNTAN_MULTIRES disabled for now, see comment above in bmesh_edit_begin. */
#ifdef BMOP_UNTAN_MULTIRES_ENABLED
/* switch multires data into tangent space */
if ((flag & BMO_OPTYPE_FLAG_UNTAN_MULTIRES) && CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
/* set normals to their previous winding */
bmesh_rationalize_normals(bm, 1);
bmesh_mdisps_space_set(bm, MULTIRES_SPACE_ABSOLUTE, MULTIRES_SPACE_TANGENT);
}
else if (flag & BMO_OP_FLAG_RATIONALIZE_NORMALS) {
bmesh_rationalize_normals(bm, 1);
}
#endif
/* compute normals, clear temp flags and flush selections */
if (type_flag & BMO_OPTYPE_FLAG_NORMALS_CALC) {
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
BM_mesh_normals_update(bm);
}
if ((type_flag & BMO_OPTYPE_FLAG_SELECT_VALIDATE) == 0) {
select_history = bm->selected;
BLI_listbase_clear(&bm->selected);
}
if (type_flag & BMO_OPTYPE_FLAG_SELECT_FLUSH) {
BM_mesh_select_mode_flush(bm);
}
if ((type_flag & BMO_OPTYPE_FLAG_SELECT_VALIDATE) == 0) {
bm->selected = select_history;
}
if (type_flag & BMO_OPTYPE_FLAG_INVALIDATE_CLNOR_ALL) {
bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
}
}
void BM_mesh_elem_index_ensure_ex(BMesh *bm, const char htype, int elem_offset[4])
{
#ifdef DEBUG
BM_ELEM_INDEX_VALIDATE(bm, "Should Never Fail!", __func__);
#endif
if (elem_offset == NULL) {
/* Simple case. */
const char htype_needed = bm->elem_index_dirty & htype;
if (htype_needed == 0) {
goto finally;
}
}
if (htype & BM_VERT) {
if ((bm->elem_index_dirty & BM_VERT) || (elem_offset && elem_offset[0])) {
BMIter iter;
BMElem *ele;
int index = elem_offset ? elem_offset[0] : 0;
BM_ITER_MESH (ele, &iter, bm, BM_VERTS_OF_MESH) {
BM_elem_index_set(ele, index++); /* set_ok */
}
BLI_assert(elem_offset || index == bm->totvert);
}
else {
// printf("%s: skipping vert index calc!\n", __func__);
}
}
if (htype & BM_EDGE) {
if ((bm->elem_index_dirty & BM_EDGE) || (elem_offset && elem_offset[1])) {
BMIter iter;
BMElem *ele;
int index = elem_offset ? elem_offset[1] : 0;
BM_ITER_MESH (ele, &iter, bm, BM_EDGES_OF_MESH) {
BM_elem_index_set(ele, index++); /* set_ok */
}
BLI_assert(elem_offset || index == bm->totedge);
}
else {
// printf("%s: skipping edge index calc!\n", __func__);
}
}
if (htype & (BM_FACE | BM_LOOP)) {
if ((bm->elem_index_dirty & (BM_FACE | BM_LOOP)) ||
(elem_offset && (elem_offset[2] || elem_offset[3]))) {
BMIter iter;
BMElem *ele;
const bool update_face = (htype & BM_FACE) && (bm->elem_index_dirty & BM_FACE);
const bool update_loop = (htype & BM_LOOP) && (bm->elem_index_dirty & BM_LOOP);
int index_loop = elem_offset ? elem_offset[2] : 0;
int index = elem_offset ? elem_offset[3] : 0;
BM_ITER_MESH (ele, &iter, bm, BM_FACES_OF_MESH) {
if (update_face) {
BM_elem_index_set(ele, index++); /* set_ok */
}
if (update_loop) {
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP((BMFace *)ele);
do {
BM_elem_index_set(l_iter, index_loop++); /* set_ok */
} while ((l_iter = l_iter->next) != l_first);
}
}
BLI_assert(elem_offset || !update_face || index == bm->totface);
if (update_loop) {
BLI_assert(elem_offset || !update_loop || index_loop == bm->totloop);
}
}
else {
// printf("%s: skipping face/loop index calc!\n", __func__);
}
}
finally:
bm->elem_index_dirty &= ~htype;
if (elem_offset) {
if (htype & BM_VERT) {
elem_offset[0] += bm->totvert;
if (elem_offset[0] != bm->totvert) {
bm->elem_index_dirty |= BM_VERT;
}
}
if (htype & BM_EDGE) {
elem_offset[1] += bm->totedge;
if (elem_offset[1] != bm->totedge) {
bm->elem_index_dirty |= BM_EDGE;
}
}
if (htype & BM_LOOP) {
elem_offset[2] += bm->totloop;
if (elem_offset[2] != bm->totloop) {
bm->elem_index_dirty |= BM_LOOP;
}
}
if (htype & BM_FACE) {
elem_offset[3] += bm->totface;
if (elem_offset[3] != bm->totface) {
bm->elem_index_dirty |= BM_FACE;
}
}
}
}
void BM_mesh_elem_index_ensure(BMesh *bm, const char htype)
{
BM_mesh_elem_index_ensure_ex(bm, htype, NULL);
}
/**
* Array checking/setting macros
*
* Currently vert/edge/loop/face index data is being abused, in a few areas of the code.
*
* To avoid correcting them afterwards, set 'bm->elem_index_dirty' however its possible
* this flag is set incorrectly which could crash blender.
*
* Code that calls this functions may depend on dirty indices on being set.
* Keep this function read-only.
*/
void BM_mesh_elem_index_validate(
BMesh *bm, const char *location, const char *func, const char *msg_a, const char *msg_b)
{
const char iter_types[3] = {BM_VERTS_OF_MESH, BM_EDGES_OF_MESH, BM_FACES_OF_MESH};
const char flag_types[3] = {BM_VERT, BM_EDGE, BM_FACE};
const char *type_names[3] = {"vert", "edge", "face"};
BMIter iter;
BMElem *ele;
int i;
bool is_any_error = 0;
for (i = 0; i < 3; i++) {
const bool is_dirty = (flag_types[i] & bm->elem_index_dirty) != 0;
int index = 0;
bool is_error = false;
int err_val = 0;
int err_idx = 0;
BM_ITER_MESH (ele, &iter, bm, iter_types[i]) {
if (!is_dirty) {
if (BM_elem_index_get(ele) != index) {
err_val = BM_elem_index_get(ele);
err_idx = index;
is_error = true;
break;
}
}
index++;
}
if ((is_error == true) && (is_dirty == false)) {
is_any_error = true;
fprintf(stderr,
"Invalid Index: at %s, %s, %s[%d] invalid index %d, '%s', '%s'\n",
location,
func,
type_names[i],
err_idx,
err_val,
msg_a,
msg_b);
}
else if ((is_error == false) && (is_dirty == true)) {
#if 0 /* mostly annoying */
/* dirty may have been incorrectly set */
fprintf(stderr,
"Invalid Dirty: at %s, %s (%s), dirty flag was set but all index values are "
"correct, '%s', '%s'\n",
location,
func,
type_names[i],
msg_a,
msg_b);
#endif
}
}
#if 0 /* mostly annoying, even in debug mode */
# ifdef DEBUG
if (is_any_error == 0) {
fprintf(stderr, "Valid Index Success: at %s, %s, '%s', '%s'\n", location, func, msg_a, msg_b);
}
# endif
#endif
(void)is_any_error; /* shut up the compiler */
}
/* debug check only - no need to optimize */
#ifndef NDEBUG
bool BM_mesh_elem_table_check(BMesh *bm)
{
BMIter iter;
BMElem *ele;
int i;
if (bm->vtable && ((bm->elem_table_dirty & BM_VERT) == 0)) {
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_VERTS_OF_MESH, i) {
if (ele != (BMElem *)bm->vtable[i]) {
return false;
}
}
}
if (bm->etable && ((bm->elem_table_dirty & BM_EDGE) == 0)) {
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_EDGES_OF_MESH, i) {
if (ele != (BMElem *)bm->etable[i]) {
return false;
}
}
}
if (bm->ftable && ((bm->elem_table_dirty & BM_FACE) == 0)) {
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_FACES_OF_MESH, i) {
if (ele != (BMElem *)bm->ftable[i]) {
return false;
}
}
}
return true;
}
#endif
void BM_mesh_elem_table_ensure(BMesh *bm, const char htype)
{
/* assume if the array is non-null then its valid and no need to recalc */
const char htype_needed =
(((bm->vtable && ((bm->elem_table_dirty & BM_VERT) == 0)) ? 0 : BM_VERT) |
((bm->etable && ((bm->elem_table_dirty & BM_EDGE) == 0)) ? 0 : BM_EDGE) |
((bm->ftable && ((bm->elem_table_dirty & BM_FACE) == 0)) ? 0 : BM_FACE)) &
htype;
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
/* in debug mode double check we didn't need to recalculate */
BLI_assert(BM_mesh_elem_table_check(bm) == true);
if (htype_needed == 0) {
goto finally;
}
if (htype_needed & BM_VERT) {
if (bm->vtable && bm->totvert <= bm->vtable_tot && bm->totvert * 2 >= bm->vtable_tot) {
/* pass (re-use the array) */
}
else {
if (bm->vtable) {
MEM_freeN(bm->vtable);
}
bm->vtable = MEM_mallocN(sizeof(void **) * bm->totvert, "bm->vtable");
bm->vtable_tot = bm->totvert;
}
}
if (htype_needed & BM_EDGE) {
if (bm->etable && bm->totedge <= bm->etable_tot && bm->totedge * 2 >= bm->etable_tot) {
/* pass (re-use the array) */
}
else {
if (bm->etable) {
MEM_freeN(bm->etable);
}
bm->etable = MEM_mallocN(sizeof(void **) * bm->totedge, "bm->etable");
bm->etable_tot = bm->totedge;
}
}
if (htype_needed & BM_FACE) {
if (bm->ftable && bm->totface <= bm->ftable_tot && bm->totface * 2 >= bm->ftable_tot) {
/* pass (re-use the array) */
}
else {
if (bm->ftable) {
MEM_freeN(bm->ftable);
}
bm->ftable = MEM_mallocN(sizeof(void **) * bm->totface, "bm->ftable");
bm->ftable_tot = bm->totface;
}
}
if (htype_needed & BM_VERT) {
BM_iter_as_array(bm, BM_VERTS_OF_MESH, NULL, (void **)bm->vtable, bm->totvert);
}
if (htype_needed & BM_EDGE) {
BM_iter_as_array(bm, BM_EDGES_OF_MESH, NULL, (void **)bm->etable, bm->totedge);
}
if (htype_needed & BM_FACE) {
BM_iter_as_array(bm, BM_FACES_OF_MESH, NULL, (void **)bm->ftable, bm->totface);
}
finally:
/* Only clear dirty flags when all the pointers and data are actually valid.
* This prevents possible threading issues when dirty flag check failed but
* data wasn't ready still.
*/
bm->elem_table_dirty &= ~htype_needed;
}
/* use BM_mesh_elem_table_ensure where possible to avoid full rebuild */
void BM_mesh_elem_table_init(BMesh *bm, const char htype)
{
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
/* force recalc */
BM_mesh_elem_table_free(bm, BM_ALL_NOLOOP);
BM_mesh_elem_table_ensure(bm, htype);
}
void BM_mesh_elem_table_free(BMesh *bm, const char htype)
{
if (htype & BM_VERT) {
MEM_SAFE_FREE(bm->vtable);
}
if (htype & BM_EDGE) {
MEM_SAFE_FREE(bm->etable);
}
if (htype & BM_FACE) {
MEM_SAFE_FREE(bm->ftable);
}
}
BMVert *BM_vert_at_index_find(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->vpool, index);
}
BMEdge *BM_edge_at_index_find(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->epool, index);
}
BMFace *BM_face_at_index_find(BMesh *bm, const int index)
{
return BLI_mempool_findelem(bm->fpool, index);
}
/**
* Use lookup table when available, else use slower find functions.
*
* \note Try to use #BM_mesh_elem_table_ensure instead.
*/
BMVert *BM_vert_at_index_find_or_table(BMesh *bm, const int index)
{
if ((bm->elem_table_dirty & BM_VERT) == 0) {
return (index < bm->totvert) ? bm->vtable[index] : NULL;
}
else {
return BM_vert_at_index_find(bm, index);
}
}
BMEdge *BM_edge_at_index_find_or_table(BMesh *bm, const int index)
{
if ((bm->elem_table_dirty & BM_EDGE) == 0) {
return (index < bm->totedge) ? bm->etable[index] : NULL;
}
else {
return BM_edge_at_index_find(bm, index);
}
}
BMFace *BM_face_at_index_find_or_table(BMesh *bm, const int index)
{
if ((bm->elem_table_dirty & BM_FACE) == 0) {
return (index < bm->totface) ? bm->ftable[index] : NULL;
}
else {
return BM_face_at_index_find(bm, index);
}
}
/**
* Return the amount of element of type 'type' in a given bmesh.
*/
int BM_mesh_elem_count(BMesh *bm, const char htype)
{
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
switch (htype) {
case BM_VERT:
return bm->totvert;
case BM_EDGE:
return bm->totedge;
case BM_FACE:
return bm->totface;
default: {
BLI_assert(0);
return 0;
}
}
}
/**
* Remaps the vertices, edges and/or faces of the bmesh as indicated by vert/edge/face_idx arrays
* (xxx_idx[org_index] = new_index).
*
* A NULL array means no changes.
*
* \note
* - Does not mess with indices, just sets elem_index_dirty flag.
* - For verts/edges/faces only (as loops must remain "ordered" and "aligned"
* on a per-face basis...).
*
* \warning Be careful if you keep pointers to affected BM elements,
* or arrays, when using this func!
*/
void BM_mesh_remap(BMesh *bm, const uint *vert_idx, const uint *edge_idx, const uint *face_idx)
{
/* Mapping old to new pointers. */
GHash *vptr_map = NULL, *eptr_map = NULL, *fptr_map = NULL;
BMIter iter, iterl;
BMVert *ve;
BMEdge *ed;
BMFace *fa;
BMLoop *lo;
if (!(vert_idx || edge_idx || face_idx)) {
return;
}
BM_mesh_elem_table_ensure(
bm, (vert_idx ? BM_VERT : 0) | (edge_idx ? BM_EDGE : 0) | (face_idx ? BM_FACE : 0));
/* Remap Verts */
if (vert_idx) {
BMVert **verts_pool, *verts_copy, **vep;
int i, totvert = bm->totvert;
const uint *new_idx;
/* Special case: Python uses custom - data layers to hold PyObject references.
* These have to be kept in - place, else the PyObject's we point to, wont point back to us. */
const int cd_vert_pyptr = CustomData_get_offset(&bm->vdata, CD_BM_ELEM_PYPTR);
/* Init the old-to-new vert pointers mapping */
vptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap vert pointers mapping", bm->totvert);
/* Make a copy of all vertices. */
verts_pool = bm->vtable;
verts_copy = MEM_mallocN(sizeof(BMVert) * totvert, "BM_mesh_remap verts copy");
void **pyptrs = (cd_vert_pyptr != -1) ? MEM_mallocN(sizeof(void *) * totvert, __func__) : NULL;
for (i = totvert, ve = verts_copy + totvert - 1, vep = verts_pool + totvert - 1; i--;
ve--, vep--) {
*ve = **vep;
/* printf("*vep: %p, verts_pool[%d]: %p\n", *vep, i, verts_pool[i]);*/
if (cd_vert_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)ve), cd_vert_pyptr);
pyptrs[i] = *pyptr;
}
}
/* Copy back verts to their new place, and update old2new pointers mapping. */
new_idx = vert_idx + totvert - 1;
ve = verts_copy + totvert - 1;
vep = verts_pool + totvert - 1; /* old, org pointer */
for (i = totvert; i--; new_idx--, ve--, vep--) {
BMVert *new_vep = verts_pool[*new_idx];
*new_vep = *ve;
#if 0
printf(
"mapping vert from %d to %d (%p/%p to %p)\n", i, *new_idx, *vep, verts_pool[i], new_vep);
#endif
BLI_ghash_insert(vptr_map, *vep, new_vep);
if (cd_vert_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)new_vep), cd_vert_pyptr);
*pyptr = pyptrs[*new_idx];
}
}
bm->elem_index_dirty |= BM_VERT;
bm->elem_table_dirty |= BM_VERT;
MEM_freeN(verts_copy);
if (pyptrs) {
MEM_freeN(pyptrs);
}
}
/* Remap Edges */
if (edge_idx) {
BMEdge **edges_pool, *edges_copy, **edp;
int i, totedge = bm->totedge;
const uint *new_idx;
/* Special case: Python uses custom - data layers to hold PyObject references.
* These have to be kept in - place, else the PyObject's we point to, wont point back to us. */
const int cd_edge_pyptr = CustomData_get_offset(&bm->edata, CD_BM_ELEM_PYPTR);
/* Init the old-to-new vert pointers mapping */
eptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap edge pointers mapping", bm->totedge);
/* Make a copy of all vertices. */
edges_pool = bm->etable;
edges_copy = MEM_mallocN(sizeof(BMEdge) * totedge, "BM_mesh_remap edges copy");
void **pyptrs = (cd_edge_pyptr != -1) ? MEM_mallocN(sizeof(void *) * totedge, __func__) : NULL;
for (i = totedge, ed = edges_copy + totedge - 1, edp = edges_pool + totedge - 1; i--;
ed--, edp--) {
*ed = **edp;
if (cd_edge_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)ed), cd_edge_pyptr);
pyptrs[i] = *pyptr;
}
}
/* Copy back verts to their new place, and update old2new pointers mapping. */
new_idx = edge_idx + totedge - 1;
ed = edges_copy + totedge - 1;
edp = edges_pool + totedge - 1; /* old, org pointer */
for (i = totedge; i--; new_idx--, ed--, edp--) {
BMEdge *new_edp = edges_pool[*new_idx];
*new_edp = *ed;
BLI_ghash_insert(eptr_map, *edp, new_edp);
#if 0
printf(
"mapping edge from %d to %d (%p/%p to %p)\n", i, *new_idx, *edp, edges_pool[i], new_edp);
#endif
if (cd_edge_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)new_edp), cd_edge_pyptr);
*pyptr = pyptrs[*new_idx];
}
}
bm->elem_index_dirty |= BM_EDGE;
bm->elem_table_dirty |= BM_EDGE;
MEM_freeN(edges_copy);
if (pyptrs) {
MEM_freeN(pyptrs);
}
}
/* Remap Faces */
if (face_idx) {
BMFace **faces_pool, *faces_copy, **fap;
int i, totface = bm->totface;
const uint *new_idx;
/* Special case: Python uses custom - data layers to hold PyObject references.
* These have to be kept in - place, else the PyObject's we point to, wont point back to us. */
const int cd_poly_pyptr = CustomData_get_offset(&bm->pdata, CD_BM_ELEM_PYPTR);
/* Init the old-to-new vert pointers mapping */
fptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap face pointers mapping", bm->totface);
/* Make a copy of all vertices. */
faces_pool = bm->ftable;
faces_copy = MEM_mallocN(sizeof(BMFace) * totface, "BM_mesh_remap faces copy");
void **pyptrs = (cd_poly_pyptr != -1) ? MEM_mallocN(sizeof(void *) * totface, __func__) : NULL;
for (i = totface, fa = faces_copy + totface - 1, fap = faces_pool + totface - 1; i--;
fa--, fap--) {
*fa = **fap;
if (cd_poly_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)fa), cd_poly_pyptr);
pyptrs[i] = *pyptr;
}
}
/* Copy back verts to their new place, and update old2new pointers mapping. */
new_idx = face_idx + totface - 1;
fa = faces_copy + totface - 1;
fap = faces_pool + totface - 1; /* old, org pointer */
for (i = totface; i--; new_idx--, fa--, fap--) {
BMFace *new_fap = faces_pool[*new_idx];
*new_fap = *fa;
BLI_ghash_insert(fptr_map, *fap, new_fap);
if (cd_poly_pyptr != -1) {
void **pyptr = BM_ELEM_CD_GET_VOID_P(((BMElem *)new_fap), cd_poly_pyptr);
*pyptr = pyptrs[*new_idx];
}
}
bm->elem_index_dirty |= BM_FACE | BM_LOOP;
bm->elem_table_dirty |= BM_FACE;
MEM_freeN(faces_copy);
if (pyptrs) {
MEM_freeN(pyptrs);
}
}
/* And now, fix all vertices/edges/faces/loops pointers! */
/* Verts' pointers, only edge pointers... */
if (eptr_map) {
BM_ITER_MESH (ve, &iter, bm, BM_VERTS_OF_MESH) {
/* printf("Vert e: %p -> %p\n", ve->e, BLI_ghash_lookup(eptr_map, ve->e));*/
if (ve->e) {
ve->e = BLI_ghash_lookup(eptr_map, ve->e);
BLI_assert(ve->e);
}
}
}
/* Edges' pointers, only vert pointers (as we don't mess with loops!),
* and - ack! - edge pointers,
* as we have to handle disklinks... */
if (vptr_map || eptr_map) {
BM_ITER_MESH (ed, &iter, bm, BM_EDGES_OF_MESH) {
if (vptr_map) {
/* printf("Edge v1: %p -> %p\n", ed->v1, BLI_ghash_lookup(vptr_map, ed->v1));*/
/* printf("Edge v2: %p -> %p\n", ed->v2, BLI_ghash_lookup(vptr_map, ed->v2));*/
ed->v1 = BLI_ghash_lookup(vptr_map, ed->v1);
ed->v2 = BLI_ghash_lookup(vptr_map, ed->v2);
BLI_assert(ed->v1);
BLI_assert(ed->v2);
}
if (eptr_map) {
/* printf("Edge v1_disk_link prev: %p -> %p\n", ed->v1_disk_link.prev,*/
/* BLI_ghash_lookup(eptr_map, ed->v1_disk_link.prev));*/
/* printf("Edge v1_disk_link next: %p -> %p\n", ed->v1_disk_link.next,*/
/* BLI_ghash_lookup(eptr_map, ed->v1_disk_link.next));*/
/* printf("Edge v2_disk_link prev: %p -> %p\n", ed->v2_disk_link.prev,*/
/* BLI_ghash_lookup(eptr_map, ed->v2_disk_link.prev));*/
/* printf("Edge v2_disk_link next: %p -> %p\n", ed->v2_disk_link.next,*/
/* BLI_ghash_lookup(eptr_map, ed->v2_disk_link.next));*/
ed->v1_disk_link.prev = BLI_ghash_lookup(eptr_map, ed->v1_disk_link.prev);
ed->v1_disk_link.next = BLI_ghash_lookup(eptr_map, ed->v1_disk_link.next);
ed->v2_disk_link.prev = BLI_ghash_lookup(eptr_map, ed->v2_disk_link.prev);
ed->v2_disk_link.next = BLI_ghash_lookup(eptr_map, ed->v2_disk_link.next);
BLI_assert(ed->v1_disk_link.prev);
BLI_assert(ed->v1_disk_link.next);
BLI_assert(ed->v2_disk_link.prev);
BLI_assert(ed->v2_disk_link.next);
}
}
}
/* Faces' pointers (loops, in fact), always needed... */
BM_ITER_MESH (fa, &iter, bm, BM_FACES_OF_MESH) {
BM_ITER_ELEM (lo, &iterl, fa, BM_LOOPS_OF_FACE) {
if (vptr_map) {
/* printf("Loop v: %p -> %p\n", lo->v, BLI_ghash_lookup(vptr_map, lo->v));*/
lo->v = BLI_ghash_lookup(vptr_map, lo->v);
BLI_assert(lo->v);
}
if (eptr_map) {
/* printf("Loop e: %p -> %p\n", lo->e, BLI_ghash_lookup(eptr_map, lo->e));*/
lo->e = BLI_ghash_lookup(eptr_map, lo->e);
BLI_assert(lo->e);
}
if (fptr_map) {
/* printf("Loop f: %p -> %p\n", lo->f, BLI_ghash_lookup(fptr_map, lo->f));*/
lo->f = BLI_ghash_lookup(fptr_map, lo->f);
BLI_assert(lo->f);
}
}
}
/* Selection history */
{
BMEditSelection *ese;
for (ese = bm->selected.first; ese; ese = ese->next) {
switch (ese->htype) {
case BM_VERT:
if (vptr_map) {
ese->ele = BLI_ghash_lookup(vptr_map, ese->ele);
BLI_assert(ese->ele);
}
break;
case BM_EDGE:
if (eptr_map) {
ese->ele = BLI_ghash_lookup(eptr_map, ese->ele);
BLI_assert(ese->ele);
}
break;
case BM_FACE:
if (fptr_map) {
ese->ele = BLI_ghash_lookup(fptr_map, ese->ele);
BLI_assert(ese->ele);
}
break;
}
}
}
if (fptr_map) {
if (bm->act_face) {
bm->act_face = BLI_ghash_lookup(fptr_map, bm->act_face);
BLI_assert(bm->act_face);
}
}
if (vptr_map) {
BLI_ghash_free(vptr_map, NULL, NULL);
}
if (eptr_map) {
BLI_ghash_free(eptr_map, NULL, NULL);
}
if (fptr_map) {
BLI_ghash_free(fptr_map, NULL, NULL);
}
}
/**
* Use new memory pools for this mesh.
*
* \note needed for re-sizing elements (adding/removing tool flags)
* but could also be used for packing fragmented bmeshes.
*/
void BM_mesh_rebuild(BMesh *bm,
const struct BMeshCreateParams *params,
BLI_mempool *vpool_dst,
BLI_mempool *epool_dst,
BLI_mempool *lpool_dst,
BLI_mempool *fpool_dst)
{
const char remap = (vpool_dst ? BM_VERT : 0) | (epool_dst ? BM_EDGE : 0) |
(lpool_dst ? BM_LOOP : 0) | (fpool_dst ? BM_FACE : 0);
BMVert **vtable_dst = (remap & BM_VERT) ? MEM_mallocN(bm->totvert * sizeof(BMVert *), __func__) :
NULL;
BMEdge **etable_dst = (remap & BM_EDGE) ? MEM_mallocN(bm->totedge * sizeof(BMEdge *), __func__) :
NULL;
BMLoop **ltable_dst = (remap & BM_LOOP) ? MEM_mallocN(bm->totloop * sizeof(BMLoop *), __func__) :
NULL;
BMFace **ftable_dst = (remap & BM_FACE) ? MEM_mallocN(bm->totface * sizeof(BMFace *), __func__) :
NULL;
const bool use_toolflags = params->use_toolflags;
if (remap & BM_VERT) {
BMIter iter;
int index;
BMVert *v_src;
BM_ITER_MESH_INDEX (v_src, &iter, bm, BM_VERTS_OF_MESH, index) {
BMVert *v_dst = BLI_mempool_alloc(vpool_dst);
memcpy(v_dst, v_src, sizeof(BMVert));
if (use_toolflags) {
((BMVert_OFlag *)v_dst)->oflags = bm->vtoolflagpool ?
BLI_mempool_calloc(bm->vtoolflagpool) :
NULL;
}
vtable_dst[index] = v_dst;
BM_elem_index_set(v_src, index); /* set_ok */
}
}
if (remap & BM_EDGE) {
BMIter iter;
int index;
BMEdge *e_src;
BM_ITER_MESH_INDEX (e_src, &iter, bm, BM_EDGES_OF_MESH, index) {
BMEdge *e_dst = BLI_mempool_alloc(epool_dst);
memcpy(e_dst, e_src, sizeof(BMEdge));
if (use_toolflags) {
((BMEdge_OFlag *)e_dst)->oflags = bm->etoolflagpool ?
BLI_mempool_calloc(bm->etoolflagpool) :
NULL;
}
etable_dst[index] = e_dst;
BM_elem_index_set(e_src, index); /* set_ok */
}
}
if (remap & (BM_LOOP | BM_FACE)) {
BMIter iter;
int index, index_loop = 0;
BMFace *f_src;
BM_ITER_MESH_INDEX (f_src, &iter, bm, BM_FACES_OF_MESH, index) {
if (remap & BM_FACE) {
BMFace *f_dst = BLI_mempool_alloc(fpool_dst);
memcpy(f_dst, f_src, sizeof(BMFace));
if (use_toolflags) {
((BMFace_OFlag *)f_dst)->oflags = bm->ftoolflagpool ?
BLI_mempool_calloc(bm->ftoolflagpool) :
NULL;
}
ftable_dst[index] = f_dst;
BM_elem_index_set(f_src, index); /* set_ok */
}
/* handle loops */
if (remap & BM_LOOP) {
BMLoop *l_iter_src, *l_first_src;
l_iter_src = l_first_src = BM_FACE_FIRST_LOOP((BMFace *)f_src);
do {
BMLoop *l_dst = BLI_mempool_alloc(lpool_dst);
memcpy(l_dst, l_iter_src, sizeof(BMLoop));
ltable_dst[index_loop] = l_dst;
BM_elem_index_set(l_iter_src, index_loop++); /* set_ok */
} while ((l_iter_src = l_iter_src->next) != l_first_src);
}
}
}
#define MAP_VERT(ele) vtable_dst[BM_elem_index_get(ele)]
#define MAP_EDGE(ele) etable_dst[BM_elem_index_get(ele)]
#define MAP_LOOP(ele) ltable_dst[BM_elem_index_get(ele)]
#define MAP_FACE(ele) ftable_dst[BM_elem_index_get(ele)]
#define REMAP_VERT(ele) \
{ \
if (remap & BM_VERT) { \
ele = MAP_VERT(ele); \
} \
} \
((void)0)
#define REMAP_EDGE(ele) \
{ \
if (remap & BM_EDGE) { \
ele = MAP_EDGE(ele); \
} \
} \
((void)0)
#define REMAP_LOOP(ele) \
{ \
if (remap & BM_LOOP) { \
ele = MAP_LOOP(ele); \
} \
} \
((void)0)
#define REMAP_FACE(ele) \
{ \
if (remap & BM_FACE) { \
ele = MAP_FACE(ele); \
} \
} \
((void)0)
/* verts */
{
for (int i = 0; i < bm->totvert; i++) {
BMVert *v = vtable_dst[i];
if (v->e) {
REMAP_EDGE(v->e);
}
}
}
/* edges */
{
for (int i = 0; i < bm->totedge; i++) {
BMEdge *e = etable_dst[i];
REMAP_VERT(e->v1);
REMAP_VERT(e->v2);
REMAP_EDGE(e->v1_disk_link.next);
REMAP_EDGE(e->v1_disk_link.prev);
REMAP_EDGE(e->v2_disk_link.next);
REMAP_EDGE(e->v2_disk_link.prev);
if (e->l) {
REMAP_LOOP(e->l);
}
}
}
/* faces */
{
for (int i = 0; i < bm->totface; i++) {
BMFace *f = ftable_dst[i];
REMAP_LOOP(f->l_first);
{
BMLoop *l_iter, *l_first;
l_iter = l_first = BM_FACE_FIRST_LOOP((BMFace *)f);
do {
REMAP_VERT(l_iter->v);
REMAP_EDGE(l_iter->e);
REMAP_FACE(l_iter->f);
REMAP_LOOP(l_iter->radial_next);
REMAP_LOOP(l_iter->radial_prev);
REMAP_LOOP(l_iter->next);
REMAP_LOOP(l_iter->prev);
} while ((l_iter = l_iter->next) != l_first);
}
}
}
LISTBASE_FOREACH (BMEditSelection *, ese, &bm->selected) {
switch (ese->htype) {
case BM_VERT:
if (remap & BM_VERT) {
ese->ele = (BMElem *)MAP_VERT(ese->ele);
}
break;
case BM_EDGE:
if (remap & BM_EDGE) {
ese->ele = (BMElem *)MAP_EDGE(ese->ele);
}
break;
case BM_FACE:
if (remap & BM_FACE) {
ese->ele = (BMElem *)MAP_FACE(ese->ele);
}
break;
}
}
if (bm->act_face) {
REMAP_FACE(bm->act_face);
}
#undef MAP_VERT
#undef MAP_EDGE
#undef MAP_LOOP
#undef MAP_EDGE
#undef REMAP_VERT
#undef REMAP_EDGE
#undef REMAP_LOOP
#undef REMAP_EDGE
/* Cleanup, re-use local tables if the current mesh had tables allocated.
* could use irrespective but it may use more memory then the caller wants
* (and not be needed). */
if (remap & BM_VERT) {
if (bm->vtable) {
SWAP(BMVert **, vtable_dst, bm->vtable);
bm->vtable_tot = bm->totvert;
bm->elem_table_dirty &= ~BM_VERT;
}
MEM_freeN(vtable_dst);
BLI_mempool_destroy(bm->vpool);
bm->vpool = vpool_dst;
}
if (remap & BM_EDGE) {
if (bm->etable) {
SWAP(BMEdge **, etable_dst, bm->etable);
bm->etable_tot = bm->totedge;
bm->elem_table_dirty &= ~BM_EDGE;
}
MEM_freeN(etable_dst);
BLI_mempool_destroy(bm->epool);
bm->epool = epool_dst;
}
if (remap & BM_LOOP) {
/* no loop table */
MEM_freeN(ltable_dst);
BLI_mempool_destroy(bm->lpool);
bm->lpool = lpool_dst;
}
if (remap & BM_FACE) {
if (bm->ftable) {
SWAP(BMFace **, ftable_dst, bm->ftable);
bm->ftable_tot = bm->totface;
bm->elem_table_dirty &= ~BM_FACE;
}
MEM_freeN(ftable_dst);
BLI_mempool_destroy(bm->fpool);
bm->fpool = fpool_dst;
}
}
/**
* Re-allocates mesh data with/without toolflags.
*/
void BM_mesh_toolflags_set(BMesh *bm, bool use_toolflags)
{
if (bm->use_toolflags == use_toolflags) {
return;
}
const BMAllocTemplate allocsize = BMALLOC_TEMPLATE_FROM_BM(bm);
BLI_mempool *vpool_dst = NULL;
BLI_mempool *epool_dst = NULL;
BLI_mempool *fpool_dst = NULL;
bm_mempool_init_ex(&allocsize, use_toolflags, &vpool_dst, &epool_dst, NULL, &fpool_dst);
if (use_toolflags == false) {
BLI_mempool_destroy(bm->vtoolflagpool);
BLI_mempool_destroy(bm->etoolflagpool);
BLI_mempool_destroy(bm->ftoolflagpool);
bm->vtoolflagpool = NULL;
bm->etoolflagpool = NULL;
bm->ftoolflagpool = NULL;
}
BM_mesh_rebuild(bm,
&((struct BMeshCreateParams){
.use_toolflags = use_toolflags,
}),
vpool_dst,
epool_dst,
NULL,
fpool_dst);
bm->use_toolflags = use_toolflags;
}
/* -------------------------------------------------------------------- */
/** \name BMesh Coordinate Access
* \{ */
void BM_mesh_vert_coords_get(BMesh *bm, float (*vert_coords)[3])
{
BMIter iter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
copy_v3_v3(vert_coords[i], v->co);
}
}
float (*BM_mesh_vert_coords_alloc(BMesh *bm, int *r_vert_len))[3]
{
float(*vert_coords)[3] = MEM_mallocN(bm->totvert * sizeof(*vert_coords), __func__);
BM_mesh_vert_coords_get(bm, vert_coords);
*r_vert_len = bm->totvert;
return vert_coords;
}
void BM_mesh_vert_coords_apply(BMesh *bm, const float (*vert_coords)[3])
{
BMIter iter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
copy_v3_v3(v->co, vert_coords[i]);
}
}
void BM_mesh_vert_coords_apply_with_mat4(BMesh *bm,
const float (*vert_coords)[3],
const float mat[4][4])
{
BMIter iter;
BMVert *v;
int i;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
mul_v3_m4v3(v->co, mat, vert_coords[i]);
}
}
/** \} */