Remove prefix of filenames that is the same as the folder name. This used to help when #includes were using individual files, but now they are always relative to the cycles root directory and so the prefixes are redundant. For patches and branches, git merge and rebase should be able to detect the renames and move over code to the right file.
186 lines
5.5 KiB
C++
186 lines
5.5 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "kernel/sample/jitter.h"
|
|
#include "util/hash.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Pseudo random numbers, uncomment this for debugging correlations. Only run
|
|
* this single threaded on a CPU for repeatable results. */
|
|
//#define __DEBUG_CORRELATION__
|
|
|
|
/* High Dimensional Sobol.
|
|
*
|
|
* Multidimensional sobol with generator matrices. Dimension 0 and 1 are equal
|
|
* to classic Van der Corput and Sobol sequences. */
|
|
|
|
#ifdef __SOBOL__
|
|
|
|
/* Skip initial numbers that for some dimensions have clear patterns that
|
|
* don't cover the entire sample space. Ideally we would have a better
|
|
* progressive pattern that doesn't suffer from this problem, because even
|
|
* with this offset some dimensions are quite poor.
|
|
*/
|
|
# define SOBOL_SKIP 64
|
|
|
|
ccl_device uint sobol_dimension(KernelGlobals kg, int index, int dimension)
|
|
{
|
|
uint result = 0;
|
|
uint i = index + SOBOL_SKIP;
|
|
for (int j = 0, x; (x = find_first_set(i)); i >>= x) {
|
|
j += x;
|
|
result ^= __float_as_uint(kernel_tex_fetch(__sample_pattern_lut, 32 * dimension + j - 1));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif /* __SOBOL__ */
|
|
|
|
ccl_device_forceinline float path_rng_1D(KernelGlobals kg,
|
|
uint rng_hash,
|
|
int sample,
|
|
int dimension)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
return (float)drand48();
|
|
#endif
|
|
|
|
#ifdef __SOBOL__
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_PMJ)
|
|
#endif
|
|
{
|
|
return pmj_sample_1D(kg, sample, rng_hash, dimension);
|
|
}
|
|
|
|
#ifdef __SOBOL__
|
|
/* Sobol sequence value using direction vectors. */
|
|
uint result = sobol_dimension(kg, sample, dimension);
|
|
float r = (float)result * (1.0f / (float)0xFFFFFFFF);
|
|
|
|
/* Cranly-Patterson rotation using rng seed */
|
|
float shift;
|
|
|
|
/* Hash rng with dimension to solve correlation issues.
|
|
* See T38710, T50116.
|
|
*/
|
|
uint tmp_rng = cmj_hash_simple(dimension, rng_hash);
|
|
shift = tmp_rng * (1.0f / (float)0xFFFFFFFF);
|
|
|
|
return r + shift - floorf(r + shift);
|
|
#endif
|
|
}
|
|
|
|
ccl_device_forceinline void path_rng_2D(KernelGlobals kg,
|
|
uint rng_hash,
|
|
int sample,
|
|
int dimension,
|
|
ccl_private float *fx,
|
|
ccl_private float *fy)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
*fx = (float)drand48();
|
|
*fy = (float)drand48();
|
|
return;
|
|
#endif
|
|
|
|
#ifdef __SOBOL__
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_PMJ)
|
|
#endif
|
|
{
|
|
pmj_sample_2D(kg, sample, rng_hash, dimension, fx, fy);
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef __SOBOL__
|
|
/* Sobol. */
|
|
*fx = path_rng_1D(kg, rng_hash, sample, dimension);
|
|
*fy = path_rng_1D(kg, rng_hash, sample, dimension + 1);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* 1D hash recommended from "Hash Functions for GPU Rendering" JCGT Vol. 9, No. 3, 2020
|
|
* See https://www.shadertoy.com/view/4tXyWN and https://www.shadertoy.com/view/XlGcRh
|
|
* http://www.jcgt.org/published/0009/03/02/paper.pdf
|
|
*/
|
|
ccl_device_inline uint hash_iqint1(uint n)
|
|
{
|
|
n = (n << 13U) ^ n;
|
|
n = n * (n * n * 15731U + 789221U) + 1376312589U;
|
|
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* 2D hash recommended from "Hash Functions for GPU Rendering" JCGT Vol. 9, No. 3, 2020
|
|
* See https://www.shadertoy.com/view/4tXyWN and https://www.shadertoy.com/view/XlGcRh
|
|
* http://www.jcgt.org/published/0009/03/02/paper.pdf
|
|
*/
|
|
ccl_device_inline uint hash_iqnt2d(const uint x, const uint y)
|
|
{
|
|
const uint qx = 1103515245U * ((x >> 1U) ^ (y));
|
|
const uint qy = 1103515245U * ((y >> 1U) ^ (x));
|
|
const uint n = 1103515245U * ((qx) ^ (qy >> 3U));
|
|
|
|
return n;
|
|
}
|
|
|
|
ccl_device_inline uint path_rng_hash_init(KernelGlobals kg,
|
|
const int sample,
|
|
const int x,
|
|
const int y)
|
|
{
|
|
const uint rng_hash = hash_iqnt2d(x, y) ^ kernel_data.integrator.seed;
|
|
|
|
#ifdef __DEBUG_CORRELATION__
|
|
srand48(rng_hash + sample);
|
|
#else
|
|
(void)sample;
|
|
#endif
|
|
|
|
return rng_hash;
|
|
}
|
|
|
|
ccl_device_inline bool sample_is_even(int pattern, int sample)
|
|
{
|
|
if (pattern == SAMPLING_PATTERN_PMJ) {
|
|
/* See Section 10.2.1, "Progressive Multi-Jittered Sample Sequences", Christensen et al.
|
|
* We can use this to get divide sample sequence into two classes for easier variance
|
|
* estimation. */
|
|
#if defined(__GNUC__) && !defined(__KERNEL_GPU__)
|
|
return __builtin_popcount(sample & 0xaaaaaaaa) & 1;
|
|
#elif defined(__NVCC__)
|
|
return __popc(sample & 0xaaaaaaaa) & 1;
|
|
#else
|
|
/* TODO(Stefan): pop-count intrinsic for Windows with fallback for older CPUs. */
|
|
int i = sample & 0xaaaaaaaa;
|
|
i = i - ((i >> 1) & 0x55555555);
|
|
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
|
|
i = (((i + (i >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
|
|
return i & 1;
|
|
#endif
|
|
}
|
|
else {
|
|
/* TODO(Stefan): Are there reliable ways of dividing CMJ and Sobol into two classes? */
|
|
return sample & 0x1;
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|