This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/gpu/intern/gpu_codegen.c
Brecht Van Lommel fd53b72871 Objects: Eevee and workbench rendering of new Volume, Hair, PointCloud
Only the volume drawing part is really finished and exposed to the user. Hair
plugs into the existing hair rendering code and is fairly straightforward. The
pointcloud drawing is a hack using overlays rather than Eevee and workbench.

The most tricky part for volume rendering is the case where each volume grid
has a different transform, which requires an additional matrix in the shader
and non-trivial logic in Eevee volume drawing. In the common case were all the
transforms match we don't use the additional per-grid matrix in the shader.

Ref T73201, T68981

Differential Revision: https://developer.blender.org/D6955
2020-03-18 11:23:05 +01:00

1327 lines
43 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup gpu
*
* Convert material node-trees to GLSL.
*/
#include "MEM_guardedalloc.h"
#include "DNA_customdata_types.h"
#include "DNA_image_types.h"
#include "BLI_blenlib.h"
#include "BLI_hash_mm2a.h"
#include "BLI_link_utils.h"
#include "BLI_utildefines.h"
#include "BLI_dynstr.h"
#include "BLI_ghash.h"
#include "BLI_threads.h"
#include "PIL_time.h"
#include "BKE_material.h"
#include "GPU_extensions.h"
#include "GPU_glew.h"
#include "GPU_material.h"
#include "GPU_shader.h"
#include "GPU_uniformbuffer.h"
#include "GPU_vertex_format.h"
#include "BLI_sys_types.h" /* for intptr_t support */
#include "gpu_codegen.h"
#include "gpu_material_library.h"
#include "gpu_node_graph.h"
#include <string.h>
#include <stdarg.h>
extern char datatoc_gpu_shader_common_obinfos_lib_glsl[];
extern char datatoc_common_view_lib_glsl[];
/* -------------------- GPUPass Cache ------------------ */
/**
* Internal shader cache: This prevent the shader recompilation / stall when
* using undo/redo AND also allows for GPUPass reuse if the Shader code is the
* same for 2 different Materials. Unused GPUPasses are free by Garbage collection.
*/
/* Only use one linklist that contains the GPUPasses grouped by hash. */
static GPUPass *pass_cache = NULL;
static SpinLock pass_cache_spin;
static uint32_t gpu_pass_hash(const char *frag_gen, const char *defs, ListBase *attributes)
{
BLI_HashMurmur2A hm2a;
BLI_hash_mm2a_init(&hm2a, 0);
BLI_hash_mm2a_add(&hm2a, (uchar *)frag_gen, strlen(frag_gen));
for (GPUMaterialAttribute *attr = attributes->first; attr; attr = attr->next) {
BLI_hash_mm2a_add(&hm2a, (uchar *)attr->name, strlen(attr->name));
}
if (defs) {
BLI_hash_mm2a_add(&hm2a, (uchar *)defs, strlen(defs));
}
return BLI_hash_mm2a_end(&hm2a);
}
/* Search by hash only. Return first pass with the same hash.
* There is hash collision if (pass->next && pass->next->hash == hash) */
static GPUPass *gpu_pass_cache_lookup(uint32_t hash)
{
BLI_spin_lock(&pass_cache_spin);
/* Could be optimized with a Lookup table. */
for (GPUPass *pass = pass_cache; pass; pass = pass->next) {
if (pass->hash == hash) {
BLI_spin_unlock(&pass_cache_spin);
return pass;
}
}
BLI_spin_unlock(&pass_cache_spin);
return NULL;
}
/* Check all possible passes with the same hash. */
static GPUPass *gpu_pass_cache_resolve_collision(GPUPass *pass,
const char *vert,
const char *geom,
const char *frag,
const char *defs,
uint32_t hash)
{
BLI_spin_lock(&pass_cache_spin);
/* Collision, need to strcmp the whole shader. */
for (; pass && (pass->hash == hash); pass = pass->next) {
if ((defs != NULL) && (strcmp(pass->defines, defs) != 0)) { /* Pass */
}
else if ((geom != NULL) && (strcmp(pass->geometrycode, geom) != 0)) { /* Pass */
}
else if ((strcmp(pass->fragmentcode, frag) == 0) && (strcmp(pass->vertexcode, vert) == 0)) {
BLI_spin_unlock(&pass_cache_spin);
return pass;
}
}
BLI_spin_unlock(&pass_cache_spin);
return NULL;
}
/* GLSL code generation */
static void codegen_convert_datatype(DynStr *ds, int from, int to, const char *tmp, int id)
{
char name[1024];
BLI_snprintf(name, sizeof(name), "%s%d", tmp, id);
if (from == to) {
BLI_dynstr_append(ds, name);
}
else if (to == GPU_FLOAT) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "dot(%s.rgb, vec3(0.2126, 0.7152, 0.0722))", name);
}
else if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "(%s.r + %s.g + %s.b) / 3.0", name, name, name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "%s.r", name);
}
}
else if (to == GPU_VEC2) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "vec2((%s.r + %s.g + %s.b) / 3.0, %s.a)", name, name, name, name);
}
else if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "vec2((%s.r + %s.g + %s.b) / 3.0, 1.0)", name, name, name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "vec2(%s, 1.0)", name);
}
}
else if (to == GPU_VEC3) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "%s.rgb", name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "vec3(%s.r, %s.r, %s.r)", name, name, name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "vec3(%s, %s, %s)", name, name, name);
}
}
else if (to == GPU_VEC4) {
if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "vec4(%s, 1.0)", name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "vec4(%s.r, %s.r, %s.r, %s.g)", name, name, name, name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "vec4(%s, %s, %s, 1.0)", name, name, name);
}
}
else if (to == GPU_CLOSURE) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "closure_emission(%s.rgb)", name);
}
else if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "closure_emission(%s.rgb)", name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "closure_emission(%s.rrr)", name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "closure_emission(vec3(%s, %s, %s))", name, name, name);
}
}
else {
BLI_dynstr_append(ds, name);
}
}
static void codegen_print_datatype(DynStr *ds, const eGPUType type, float *data)
{
int i;
BLI_dynstr_appendf(ds, "%s(", gpu_data_type_to_string(type));
for (i = 0; i < type; i++) {
BLI_dynstr_appendf(ds, "%.12f", data[i]);
if (i == type - 1) {
BLI_dynstr_append(ds, ")");
}
else {
BLI_dynstr_append(ds, ", ");
}
}
}
static const char *gpu_builtin_name(eGPUBuiltin builtin)
{
if (builtin == GPU_VIEW_MATRIX) {
return "unfviewmat";
}
else if (builtin == GPU_OBJECT_MATRIX) {
return "unfobmat";
}
else if (builtin == GPU_INVERSE_VIEW_MATRIX) {
return "unfinvviewmat";
}
else if (builtin == GPU_INVERSE_OBJECT_MATRIX) {
return "unfinvobmat";
}
else if (builtin == GPU_LOC_TO_VIEW_MATRIX) {
return "unflocaltoviewmat";
}
else if (builtin == GPU_INVERSE_LOC_TO_VIEW_MATRIX) {
return "unfinvlocaltoviewmat";
}
else if (builtin == GPU_VIEW_POSITION) {
return "varposition";
}
else if (builtin == GPU_WORLD_NORMAL) {
return "varwnormal";
}
else if (builtin == GPU_VIEW_NORMAL) {
return "varnormal";
}
else if (builtin == GPU_OBJECT_COLOR) {
return "unfobjectcolor";
}
else if (builtin == GPU_AUTO_BUMPSCALE) {
return "unfobautobumpscale";
}
else if (builtin == GPU_CAMERA_TEXCO_FACTORS) {
return "unfcameratexfactors";
}
else if (builtin == GPU_PARTICLE_SCALAR_PROPS) {
return "unfparticlescalarprops";
}
else if (builtin == GPU_PARTICLE_LOCATION) {
return "unfparticleco";
}
else if (builtin == GPU_PARTICLE_VELOCITY) {
return "unfparticlevel";
}
else if (builtin == GPU_PARTICLE_ANG_VELOCITY) {
return "unfparticleangvel";
}
else if (builtin == GPU_OBJECT_INFO) {
return "unfobjectinfo";
}
else if (builtin == GPU_BARYCENTRIC_TEXCO) {
return "unfbarycentrictex";
}
else if (builtin == GPU_BARYCENTRIC_DIST) {
return "unfbarycentricdist";
}
else {
return "";
}
}
static void codegen_set_unique_ids(GPUNodeGraph *graph)
{
GPUNode *node;
GPUInput *input;
GPUOutput *output;
int id = 1;
for (node = graph->nodes.first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
/* set id for unique names of uniform variables */
input->id = id++;
}
for (output = node->outputs.first; output; output = output->next) {
/* set id for unique names of tmp variables storing output */
output->id = id++;
}
}
}
/**
* It will create an UBO for GPUMaterial if there is any GPU_DYNAMIC_UBO.
*/
static int codegen_process_uniforms_functions(GPUMaterial *material,
DynStr *ds,
GPUNodeGraph *graph)
{
GPUNode *node;
GPUInput *input;
const char *name;
int builtins = 0;
ListBase ubo_inputs = {NULL, NULL};
/* Attributes */
for (GPUMaterialAttribute *attr = graph->attributes.first; attr; attr = attr->next) {
BLI_dynstr_appendf(ds, "in %s var%d;\n", gpu_data_type_to_string(attr->gputype), attr->id);
}
/* Textures */
for (GPUMaterialTexture *tex = graph->textures.first; tex; tex = tex->next) {
if (tex->colorband) {
BLI_dynstr_appendf(ds, "uniform sampler1DArray %s;\n", tex->sampler_name);
}
else if (tex->tiled_mapping_name[0]) {
BLI_dynstr_appendf(ds, "uniform sampler2DArray %s;\n", tex->sampler_name);
BLI_dynstr_appendf(ds, "uniform sampler1DArray %s;\n", tex->tiled_mapping_name);
}
else {
BLI_dynstr_appendf(ds, "uniform sampler2D %s;\n", tex->sampler_name);
}
}
/* Volume Grids */
for (GPUMaterialVolumeGrid *grid = graph->volume_grids.first; grid; grid = grid->next) {
BLI_dynstr_appendf(ds, "uniform sampler3D %s;\n", grid->sampler_name);
BLI_dynstr_appendf(ds, "uniform mat4 %s = mat4(0.0);\n", grid->transform_name);
}
/* Print other uniforms */
for (node = graph->nodes.first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_BUILTIN) {
/* only define each builtin uniform/varying once */
if (!(builtins & input->builtin)) {
builtins |= input->builtin;
name = gpu_builtin_name(input->builtin);
if (BLI_str_startswith(name, "unf")) {
BLI_dynstr_appendf(ds, "uniform %s %s;\n", gpu_data_type_to_string(input->type), name);
}
else {
BLI_dynstr_appendf(ds, "in %s %s;\n", gpu_data_type_to_string(input->type), name);
}
}
}
else if (input->source == GPU_SOURCE_STRUCT) {
/* Add other struct here if needed. */
BLI_dynstr_appendf(ds, "Closure strct%d = CLOSURE_DEFAULT;\n", input->id);
}
else if (input->source == GPU_SOURCE_UNIFORM) {
if (!input->link) {
/* We handle the UBOuniforms separately. */
BLI_addtail(&ubo_inputs, BLI_genericNodeN(input));
}
}
else if (input->source == GPU_SOURCE_CONSTANT) {
BLI_dynstr_appendf(
ds, "const %s cons%d = ", gpu_data_type_to_string(input->type), input->id);
codegen_print_datatype(ds, input->type, input->vec);
BLI_dynstr_append(ds, ";\n");
}
}
}
/* Handle the UBO block separately. */
if ((material != NULL) && !BLI_listbase_is_empty(&ubo_inputs)) {
GPU_material_uniform_buffer_create(material, &ubo_inputs);
/* Inputs are sorted */
BLI_dynstr_appendf(ds, "\nlayout (std140) uniform %s {\n", GPU_UBO_BLOCK_NAME);
for (LinkData *link = ubo_inputs.first; link; link = link->next) {
input = link->data;
BLI_dynstr_appendf(ds, "\t%s unf%d;\n", gpu_data_type_to_string(input->type), input->id);
}
BLI_dynstr_append(ds, "};\n");
BLI_freelistN(&ubo_inputs);
}
BLI_dynstr_append(ds, "\n");
return builtins;
}
static void codegen_declare_tmps(DynStr *ds, GPUNodeGraph *graph)
{
GPUNode *node;
GPUOutput *output;
for (node = graph->nodes.first; node; node = node->next) {
/* declare temporary variables for node output storage */
for (output = node->outputs.first; output; output = output->next) {
if (output->type == GPU_CLOSURE) {
BLI_dynstr_appendf(ds, "\tClosure tmp%d;\n", output->id);
}
else {
BLI_dynstr_appendf(ds, "\t%s tmp%d;\n", gpu_data_type_to_string(output->type), output->id);
}
}
}
BLI_dynstr_append(ds, "\n");
}
static void codegen_call_functions(DynStr *ds, GPUNodeGraph *graph, GPUOutput *finaloutput)
{
GPUNode *node;
GPUInput *input;
GPUOutput *output;
for (node = graph->nodes.first; node; node = node->next) {
BLI_dynstr_appendf(ds, "\t%s(", node->name);
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_TEX) {
BLI_dynstr_append(ds, input->texture->sampler_name);
}
else if (input->source == GPU_SOURCE_TEX_TILED_MAPPING) {
BLI_dynstr_append(ds, input->texture->tiled_mapping_name);
}
else if (input->source == GPU_SOURCE_VOLUME_GRID) {
BLI_dynstr_append(ds, input->volume_grid->sampler_name);
}
else if (input->source == GPU_SOURCE_VOLUME_GRID_TRANSFORM) {
BLI_dynstr_append(ds, input->volume_grid->transform_name);
}
else if (input->source == GPU_SOURCE_OUTPUT) {
codegen_convert_datatype(
ds, input->link->output->type, input->type, "tmp", input->link->output->id);
}
else if (input->source == GPU_SOURCE_BUILTIN) {
/* TODO(fclem) get rid of that. */
if (input->builtin == GPU_INVERSE_VIEW_MATRIX) {
BLI_dynstr_append(ds, "viewinv");
}
else if (input->builtin == GPU_VIEW_MATRIX) {
BLI_dynstr_append(ds, "viewmat");
}
else if (input->builtin == GPU_CAMERA_TEXCO_FACTORS) {
BLI_dynstr_append(ds, "camtexfac");
}
else if (input->builtin == GPU_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds, "localtoviewmat");
}
else if (input->builtin == GPU_INVERSE_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds, "invlocaltoviewmat");
}
else if (input->builtin == GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "barycentricDist");
}
else if (input->builtin == GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "barytexco");
}
else if (input->builtin == GPU_OBJECT_MATRIX) {
BLI_dynstr_append(ds, "objmat");
}
else if (input->builtin == GPU_OBJECT_INFO) {
BLI_dynstr_append(ds, "ObjectInfo");
}
else if (input->builtin == GPU_OBJECT_COLOR) {
BLI_dynstr_append(ds, "ObjectColor");
}
else if (input->builtin == GPU_INVERSE_OBJECT_MATRIX) {
BLI_dynstr_append(ds, "objinv");
}
else if (input->builtin == GPU_VIEW_POSITION) {
BLI_dynstr_append(ds, "viewposition");
}
else if (input->builtin == GPU_VIEW_NORMAL) {
BLI_dynstr_append(ds, "facingnormal");
}
else if (input->builtin == GPU_WORLD_NORMAL) {
BLI_dynstr_append(ds, "facingwnormal");
}
else {
BLI_dynstr_append(ds, gpu_builtin_name(input->builtin));
}
}
else if (input->source == GPU_SOURCE_STRUCT) {
BLI_dynstr_appendf(ds, "strct%d", input->id);
}
else if (input->source == GPU_SOURCE_UNIFORM) {
BLI_dynstr_appendf(ds, "unf%d", input->id);
}
else if (input->source == GPU_SOURCE_CONSTANT) {
BLI_dynstr_appendf(ds, "cons%d", input->id);
}
else if (input->source == GPU_SOURCE_ATTR) {
BLI_dynstr_appendf(ds, "var%d", input->attr->id);
}
BLI_dynstr_append(ds, ", ");
}
for (output = node->outputs.first; output; output = output->next) {
BLI_dynstr_appendf(ds, "tmp%d", output->id);
if (output->next) {
BLI_dynstr_append(ds, ", ");
}
}
BLI_dynstr_append(ds, ");\n");
}
BLI_dynstr_appendf(ds, "\n\treturn tmp%d", finaloutput->id);
BLI_dynstr_append(ds, ";\n");
}
static char *code_generate_fragment(GPUMaterial *material, GPUNodeGraph *graph)
{
DynStr *ds = BLI_dynstr_new();
char *code;
int builtins;
#if 0
BLI_dynstr_append(ds, FUNCTION_PROTOTYPES);
#endif
codegen_set_unique_ids(graph);
builtins = codegen_process_uniforms_functions(material, ds, graph);
if (builtins & (GPU_OBJECT_INFO | GPU_OBJECT_COLOR)) {
BLI_dynstr_append(ds, datatoc_gpu_shader_common_obinfos_lib_glsl);
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "in vec2 barycentricTexCo;\n");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "flat in vec3 barycentricDist;\n");
}
BLI_dynstr_append(ds, "Closure nodetree_exec(void)\n{\n");
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds,
"\tvec2 barytexco = vec2((fract(barycentricTexCo.y) != 0.0)\n"
"\t ? barycentricTexCo.x\n"
"\t : 1.0 - barycentricTexCo.x,\n"
"\t 0.0);\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, "\tvec2 barytexco = barycentricTexCo;\n");
BLI_dynstr_append(ds, "#endif\n");
}
/* TODO(fclem) get rid of that. */
if (builtins & GPU_VIEW_MATRIX) {
BLI_dynstr_append(ds, "\t#define viewmat ViewMatrix\n");
}
if (builtins & GPU_CAMERA_TEXCO_FACTORS) {
BLI_dynstr_append(ds, "\t#define camtexfac CameraTexCoFactors\n");
}
if (builtins & GPU_OBJECT_MATRIX) {
BLI_dynstr_append(ds, "\t#define objmat ModelMatrix\n");
}
if (builtins & GPU_INVERSE_OBJECT_MATRIX) {
BLI_dynstr_append(ds, "\t#define objinv ModelMatrixInverse\n");
}
if (builtins & GPU_INVERSE_VIEW_MATRIX) {
BLI_dynstr_append(ds, "\t#define viewinv ViewMatrixInverse\n");
}
if (builtins & GPU_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds, "\t#define localtoviewmat (ViewMatrix * ModelMatrix)\n");
}
if (builtins & GPU_INVERSE_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds,
"\t#define invlocaltoviewmat (ModelMatrixInverse * ViewMatrixInverse)\n");
}
if (builtins & GPU_VIEW_NORMAL) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "\tvec3 n;\n");
BLI_dynstr_append(ds, "\tworld_normals_get(n);\n");
BLI_dynstr_append(ds, "\tvec3 facingnormal = transform_direction(ViewMatrix, n);\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, "\tvec3 facingnormal = gl_FrontFacing ? viewNormal: -viewNormal;\n");
BLI_dynstr_append(ds, "#endif\n");
}
if (builtins & GPU_WORLD_NORMAL) {
BLI_dynstr_append(ds, "\tvec3 facingwnormal;\n");
if (builtins & GPU_VIEW_NORMAL) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "\tfacingwnormal = n;\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, "\tworld_normals_get(facingwnormal);\n");
BLI_dynstr_append(ds, "#endif\n");
}
else {
BLI_dynstr_append(ds, "\tworld_normals_get(facingwnormal);\n");
}
}
if (builtins & GPU_VIEW_POSITION) {
BLI_dynstr_append(ds, "\t#define viewposition viewPosition\n");
}
codegen_declare_tmps(ds, graph);
codegen_call_functions(ds, graph, graph->outlink->output);
BLI_dynstr_append(ds, "}\n");
/* XXX This cannot go into gpu_shader_material.glsl because main()
* would be parsed and generate error */
/* Old glsl mode compat. */
/* TODO(fclem) This is only used by world shader now. get rid of it? */
BLI_dynstr_append(ds, "#ifndef NODETREE_EXEC\n");
BLI_dynstr_append(ds, "out vec4 fragColor;\n");
BLI_dynstr_append(ds, "void main()\n");
BLI_dynstr_append(ds, "{\n");
BLI_dynstr_append(ds, "\tClosure cl = nodetree_exec();\n");
BLI_dynstr_append(ds,
"\tfragColor = vec4(cl.radiance, "
"saturate(1.0 - avg(cl.transmittance)));\n");
BLI_dynstr_append(ds, "}\n");
BLI_dynstr_append(ds, "#endif\n\n");
/* create shader */
code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
#if 0
if (G.debug & G_DEBUG) {
printf("%s\n", code);
}
#endif
return code;
}
static const char *attr_prefix_get(CustomDataType type)
{
switch (type) {
case CD_ORCO:
return "orco";
case CD_MTFACE:
return "u";
case CD_TANGENT:
return "t";
case CD_MCOL:
return "c";
case CD_AUTO_FROM_NAME:
return "a";
default:
BLI_assert(false && "GPUVertAttr Prefix type not found : This should not happen!");
return "";
}
}
static char *code_generate_vertex(GPUNodeGraph *graph, const char *vert_code, bool use_geom)
{
DynStr *ds = BLI_dynstr_new();
GPUNode *node;
GPUInput *input;
char *code;
int builtins = 0;
/* Hairs uv and col attributes are passed by bufferTextures. */
BLI_dynstr_append(ds,
"#ifdef HAIR_SHADER\n"
"#define DEFINE_ATTR(type, attr) uniform samplerBuffer attr\n"
"#else\n"
"#define DEFINE_ATTR(type, attr) in type attr\n"
"#endif\n");
for (GPUMaterialAttribute *attr = graph->attributes.first; attr; attr = attr->next) {
/* XXX FIXME : see notes in mesh_render_data_create() */
/* NOTE : Replicate changes to mesh_render_data_create() in draw_cache_impl_mesh.c */
if (attr->type == CD_ORCO) {
/* OPTI : orco is computed from local positions, but only if no modifier is present. */
BLI_dynstr_append(ds, datatoc_gpu_shader_common_obinfos_lib_glsl);
BLI_dynstr_append(ds, "DEFINE_ATTR(vec4, orco);\n");
}
else if (attr->name[0] == '\0') {
BLI_dynstr_appendf(ds,
"DEFINE_ATTR(%s, %s);\n",
gpu_data_type_to_string(attr->gputype),
attr_prefix_get(attr->type));
BLI_dynstr_appendf(ds, "#define att%d %s\n", attr->id, attr_prefix_get(attr->type));
}
else {
char attr_safe_name[GPU_MAX_SAFE_ATTRIB_NAME];
GPU_vertformat_safe_attrib_name(attr->name, attr_safe_name, GPU_MAX_SAFE_ATTRIB_NAME);
BLI_dynstr_appendf(ds,
"DEFINE_ATTR(%s, %s%s);\n",
gpu_data_type_to_string(attr->gputype),
attr_prefix_get(attr->type),
attr_safe_name);
BLI_dynstr_appendf(
ds, "#define att%d %s%s\n", attr->id, attr_prefix_get(attr->type), attr_safe_name);
}
BLI_dynstr_appendf(ds,
"out %s var%d%s;\n",
gpu_data_type_to_string(attr->gputype),
attr->id,
use_geom ? "g" : "");
}
for (node = graph->nodes.first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_BUILTIN) {
builtins |= input->builtin;
}
}
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_appendf(ds, "out vec2 barycentricTexCo%s;\n", use_geom ? "g" : "");
BLI_dynstr_append(ds, "#endif\n");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "out vec3 barycentricPosg;\n");
}
BLI_dynstr_append(ds, "\n#define USE_ATTR\n");
/* Prototype, defined later (this is because of matrices definition). */
BLI_dynstr_append(ds, "void pass_attr(in vec3 position);\n");
BLI_dynstr_append(ds, "\n");
if (use_geom) {
/* XXX HACK: Eevee specific. */
char *vert_new, *vert_new2;
vert_new = BLI_str_replaceN(vert_code, "worldPosition", "worldPositiong");
vert_new2 = vert_new;
vert_new = BLI_str_replaceN(vert_new2, "viewPosition", "viewPositiong");
MEM_freeN(vert_new2);
vert_new2 = vert_new;
vert_new = BLI_str_replaceN(vert_new2, "worldNormal", "worldNormalg");
MEM_freeN(vert_new2);
vert_new2 = vert_new;
vert_new = BLI_str_replaceN(vert_new2, "viewNormal", "viewNormalg");
MEM_freeN(vert_new2);
BLI_dynstr_append(ds, vert_new);
MEM_freeN(vert_new);
}
else {
BLI_dynstr_append(ds, vert_code);
}
BLI_dynstr_append(ds, "\n");
BLI_dynstr_append(ds, use_geom ? "RESOURCE_ID_VARYING_GEOM\n" : "RESOURCE_ID_VARYING\n");
/* Prototype because defined later. */
BLI_dynstr_append(ds,
"vec2 hair_get_customdata_vec2(const samplerBuffer);\n"
"vec3 hair_get_customdata_vec3(const samplerBuffer);\n"
"vec4 hair_get_customdata_vec4(const samplerBuffer);\n"
"vec3 hair_get_strand_pos(void);\n"
"int hair_get_base_id(void);\n"
"\n");
BLI_dynstr_append(ds, "void pass_attr(in vec3 position) {\n");
BLI_dynstr_append(ds, use_geom ? "\tPASS_RESOURCE_ID_GEOM\n" : "\tPASS_RESOURCE_ID\n");
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
if (builtins & GPU_BARYCENTRIC_TEXCO) {
/* To match cycles without breaking into individual segment we encode if we need to invert
* the first component into the second component. We invert if the barycentricTexCo.y
* is NOT 0.0 or 1.0. */
BLI_dynstr_append(ds, "\tint _base_id = hair_get_base_id();\n");
BLI_dynstr_appendf(
ds, "\tbarycentricTexCo%s.x = float((_base_id %% 2) == 1);\n", use_geom ? "g" : "");
BLI_dynstr_appendf(
ds, "\tbarycentricTexCo%s.y = float(((_base_id %% 4) %% 3) > 0);\n", use_geom ? "g" : "");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "\tbarycentricPosg = position;\n");
}
for (GPUMaterialAttribute *attr = graph->attributes.first; attr; attr = attr->next) {
if (attr->type == CD_TANGENT) {
/* Not supported by hairs */
BLI_dynstr_appendf(ds, "\tvar%d%s = vec4(0.0);\n", attr->id, use_geom ? "g" : "");
}
else if (attr->type == CD_ORCO) {
BLI_dynstr_appendf(ds,
"\tvar%d%s = OrcoTexCoFactors[0].xyz + (ModelMatrixInverse * "
"vec4(hair_get_strand_pos(), 1.0)).xyz * OrcoTexCoFactors[1].xyz;\n",
attr->id,
use_geom ? "g" : "");
/* TODO: fix ORCO with modifiers. */
}
else {
BLI_dynstr_appendf(ds,
"\tvar%d%s = hair_get_customdata_%s(att%d);\n",
attr->id,
use_geom ? "g" : "",
gpu_data_type_to_string(attr->gputype),
attr->id);
}
}
BLI_dynstr_append(ds, "#else /* MESH_SHADER */\n");
/* GPU_BARYCENTRIC_TEXCO cannot be computed based on gl_VertexID
* for MESH_SHADER because of indexed drawing. In this case a
* geometry shader is needed. */
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "\tbarycentricPosg = (ModelMatrix * vec4(position, 1.0)).xyz;\n");
}
for (GPUMaterialAttribute *attr = graph->attributes.first; attr; attr = attr->next) {
if (attr->type == CD_TANGENT) { /* silly exception */
BLI_dynstr_appendf(ds,
"\tvar%d%s.xyz = transpose(mat3(ModelMatrixInverse)) * att%d.xyz;\n",
attr->id,
use_geom ? "g" : "",
attr->id);
BLI_dynstr_appendf(ds, "\tvar%d%s.w = att%d.w;\n", attr->id, use_geom ? "g" : "", attr->id);
/* Normalize only if vector is not null. */
BLI_dynstr_appendf(ds,
"\tfloat lvar%d = dot(var%d%s.xyz, var%d%s.xyz);\n",
attr->id,
attr->id,
use_geom ? "g" : "",
attr->id,
use_geom ? "g" : "");
BLI_dynstr_appendf(ds,
"\tvar%d%s.xyz *= (lvar%d > 0.0) ? inversesqrt(lvar%d) : 1.0;\n",
attr->id,
use_geom ? "g" : "",
attr->id,
attr->id);
}
else if (attr->type == CD_ORCO) {
BLI_dynstr_appendf(ds,
"\tvar%d%s = OrcoTexCoFactors[0].xyz + position *"
" OrcoTexCoFactors[1].xyz;\n",
attr->id,
use_geom ? "g" : "");
/* See mesh_create_loop_orco() for explanation. */
BLI_dynstr_appendf(ds,
"\tif (orco.w == 0.0) { var%d%s = orco.xyz * 0.5 + 0.5; }\n",
attr->id,
use_geom ? "g" : "");
}
else {
BLI_dynstr_appendf(ds, "\tvar%d%s = att%d;\n", attr->id, use_geom ? "g" : "", attr->id);
}
}
BLI_dynstr_append(ds, "#endif /* HAIR_SHADER */\n");
BLI_dynstr_append(ds, "}\n");
code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
#if 0
if (G.debug & G_DEBUG) {
printf("%s\n", code);
}
#endif
return code;
}
static char *code_generate_geometry(GPUNodeGraph *graph,
const char *geom_code,
const char *defines)
{
DynStr *ds = BLI_dynstr_new();
GPUNode *node;
GPUInput *input;
char *code;
int builtins = 0;
/* XXX we should not make specific eevee cases here. */
bool is_hair_shader = (strstr(defines, "HAIR_SHADER") != NULL);
/* Create prototype because attributes cannot be declared before layout. */
BLI_dynstr_append(ds, "void pass_attr(in int vert);\n");
BLI_dynstr_append(ds, "void calc_barycentric_distances(vec3 pos0, vec3 pos1, vec3 pos2);\n");
BLI_dynstr_append(ds, "#define USE_ATTR\n");
/* Generate varying declarations. */
for (node = graph->nodes.first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_BUILTIN) {
builtins |= input->builtin;
}
}
}
for (GPUMaterialAttribute *attr = graph->attributes.first; attr; attr = attr->next) {
BLI_dynstr_appendf(ds, "in %s var%dg[];\n", gpu_data_type_to_string(attr->gputype), attr->id);
BLI_dynstr_appendf(ds, "out %s var%d;\n", gpu_data_type_to_string(attr->gputype), attr->id);
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "in vec2 barycentricTexCog[];\n");
BLI_dynstr_append(ds, "#endif\n");
BLI_dynstr_append(ds, "out vec2 barycentricTexCo;\n");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "in vec3 barycentricPosg[];\n");
BLI_dynstr_append(ds, "flat out vec3 barycentricDist;\n");
}
if (geom_code == NULL) {
/* Force geometry usage if GPU_BARYCENTRIC_DIST or GPU_BARYCENTRIC_TEXCO are used.
* Note: GPU_BARYCENTRIC_TEXCO only requires it if the shader is not drawing hairs. */
if ((builtins & (GPU_BARYCENTRIC_DIST | GPU_BARYCENTRIC_TEXCO)) == 0 || is_hair_shader) {
/* Early out */
BLI_dynstr_free(ds);
return NULL;
}
else {
/* Force geom shader usage */
/* TODO put in external file. */
BLI_dynstr_append(ds, "layout(triangles) in;\n");
BLI_dynstr_append(ds, "layout(triangle_strip, max_vertices=3) out;\n");
BLI_dynstr_append(ds, "in vec3 worldPositiong[];\n");
BLI_dynstr_append(ds, "in vec3 viewPositiong[];\n");
BLI_dynstr_append(ds, "in vec3 worldNormalg[];\n");
BLI_dynstr_append(ds, "in vec3 viewNormalg[];\n");
BLI_dynstr_append(ds, "out vec3 worldPosition;\n");
BLI_dynstr_append(ds, "out vec3 viewPosition;\n");
BLI_dynstr_append(ds, "out vec3 worldNormal;\n");
BLI_dynstr_append(ds, "out vec3 viewNormal;\n");
BLI_dynstr_append(ds, datatoc_common_view_lib_glsl);
BLI_dynstr_append(ds, "void main(){\n");
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds,
"\tcalc_barycentric_distances(barycentricPosg[0], barycentricPosg[1], "
"barycentricPosg[2]);\n");
}
for (int i = 0; i < 3; i++) {
BLI_dynstr_appendf(ds, "\tgl_Position = gl_in[%d].gl_Position;\n", i);
BLI_dynstr_appendf(ds, "\tgl_ClipDistance[0] = gl_in[%d].gl_ClipDistance[0];\n", i);
BLI_dynstr_appendf(ds, "\tpass_attr(%d);\n", i);
BLI_dynstr_append(ds, "\tEmitVertex();\n");
}
BLI_dynstr_append(ds, "}\n");
}
}
else {
BLI_dynstr_append(ds, geom_code);
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "void calc_barycentric_distances(vec3 pos0, vec3 pos1, vec3 pos2) {\n");
BLI_dynstr_append(ds, "\tvec3 edge21 = pos2 - pos1;\n");
BLI_dynstr_append(ds, "\tvec3 edge10 = pos1 - pos0;\n");
BLI_dynstr_append(ds, "\tvec3 edge02 = pos0 - pos2;\n");
BLI_dynstr_append(ds, "\tvec3 d21 = normalize(edge21);\n");
BLI_dynstr_append(ds, "\tvec3 d10 = normalize(edge10);\n");
BLI_dynstr_append(ds, "\tvec3 d02 = normalize(edge02);\n");
BLI_dynstr_append(ds, "\tfloat d = dot(d21, edge02);\n");
BLI_dynstr_append(ds, "\tbarycentricDist.x = sqrt(dot(edge02, edge02) - d * d);\n");
BLI_dynstr_append(ds, "\td = dot(d02, edge10);\n");
BLI_dynstr_append(ds, "\tbarycentricDist.y = sqrt(dot(edge10, edge10) - d * d);\n");
BLI_dynstr_append(ds, "\td = dot(d10, edge21);\n");
BLI_dynstr_append(ds, "\tbarycentricDist.z = sqrt(dot(edge21, edge21) - d * d);\n");
BLI_dynstr_append(ds, "}\n");
}
BLI_dynstr_append(ds, "RESOURCE_ID_VARYING\n");
/* Generate varying assignments. */
BLI_dynstr_append(ds, "void pass_attr(in int vert) {\n");
BLI_dynstr_append(ds, "\tPASS_RESOURCE_ID(vert)\n");
/* XXX HACK: Eevee specific. */
if (geom_code == NULL) {
BLI_dynstr_append(ds, "\tworldPosition = worldPositiong[vert];\n");
BLI_dynstr_append(ds, "\tviewPosition = viewPositiong[vert];\n");
BLI_dynstr_append(ds, "\tworldNormal = worldNormalg[vert];\n");
BLI_dynstr_append(ds, "\tviewNormal = viewNormalg[vert];\n");
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "\tbarycentricTexCo = barycentricTexCog[vert];\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, "\tbarycentricTexCo.x = float((vert % 3) == 0);\n");
BLI_dynstr_append(ds, "\tbarycentricTexCo.y = float((vert % 3) == 1);\n");
BLI_dynstr_append(ds, "#endif\n");
}
for (GPUMaterialAttribute *attr = graph->attributes.first; attr; attr = attr->next) {
/* TODO let shader choose what to do depending on what the attribute is. */
BLI_dynstr_appendf(ds, "\tvar%d = var%dg[vert];\n", attr->id, attr->id);
}
BLI_dynstr_append(ds, "}\n");
code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
return code;
}
GPUShader *GPU_pass_shader_get(GPUPass *pass)
{
return pass->shader;
}
/* Pass create/free */
static bool gpu_pass_is_valid(GPUPass *pass)
{
/* Shader is not null if compilation is successful. */
return (pass->compiled == false || pass->shader != NULL);
}
GPUPass *GPU_generate_pass(GPUMaterial *material,
GPUNodeGraph *graph,
const char *vert_code,
const char *geom_code,
const char *frag_lib,
const char *defines)
{
/* Prune the unused nodes and extract attributes before compiling so the
* generated VBOs are ready to accept the future shader. */
gpu_node_graph_prune_unused(graph);
/* generate code */
char *fragmentgen = code_generate_fragment(material, graph);
/* Cache lookup: Reuse shaders already compiled */
uint32_t hash = gpu_pass_hash(fragmentgen, defines, &graph->attributes);
GPUPass *pass_hash = gpu_pass_cache_lookup(hash);
if (pass_hash && (pass_hash->next == NULL || pass_hash->next->hash != hash)) {
/* No collision, just return the pass. */
MEM_freeN(fragmentgen);
if (!gpu_pass_is_valid(pass_hash)) {
/* Shader has already been created but failed to compile. */
return NULL;
}
pass_hash->refcount += 1;
return pass_hash;
}
/* Either the shader is not compiled or there is a hash collision...
* continue generating the shader strings. */
GSet *used_libraries = gpu_material_used_libraries(material);
char *tmp = gpu_material_library_generate_code(used_libraries, frag_lib);
char *geometrycode = code_generate_geometry(graph, geom_code, defines);
char *vertexcode = code_generate_vertex(graph, vert_code, (geometrycode != NULL));
char *fragmentcode = BLI_strdupcat(tmp, fragmentgen);
MEM_freeN(fragmentgen);
MEM_freeN(tmp);
GPUPass *pass = NULL;
if (pass_hash) {
/* Cache lookup: Reuse shaders already compiled */
pass = gpu_pass_cache_resolve_collision(
pass_hash, vertexcode, geometrycode, fragmentcode, defines, hash);
}
if (pass) {
MEM_SAFE_FREE(vertexcode);
MEM_SAFE_FREE(fragmentcode);
MEM_SAFE_FREE(geometrycode);
/* Cache hit. Reuse the same GPUPass and GPUShader. */
if (!gpu_pass_is_valid(pass)) {
/* Shader has already been created but failed to compile. */
return NULL;
}
pass->refcount += 1;
}
else {
/* We still create a pass even if shader compilation
* fails to avoid trying to compile again and again. */
pass = MEM_callocN(sizeof(GPUPass), "GPUPass");
pass->shader = NULL;
pass->refcount = 1;
pass->hash = hash;
pass->vertexcode = vertexcode;
pass->fragmentcode = fragmentcode;
pass->geometrycode = geometrycode;
pass->defines = (defines) ? BLI_strdup(defines) : NULL;
pass->compiled = false;
BLI_spin_lock(&pass_cache_spin);
if (pass_hash != NULL) {
/* Add after the first pass having the same hash. */
pass->next = pass_hash->next;
pass_hash->next = pass;
}
else {
/* No other pass have same hash, just prepend to the list. */
BLI_LINKS_PREPEND(pass_cache, pass);
}
BLI_spin_unlock(&pass_cache_spin);
}
return pass;
}
static int count_active_texture_sampler(GPUShader *shader, char *source)
{
char *code = source;
/* Remember this is per stage. */
GSet *sampler_ids = BLI_gset_int_new(__func__);
int num_samplers = 0;
while ((code = strstr(code, "uniform "))) {
/* Move past "uniform". */
code += 7;
/* Skip following spaces. */
while (*code == ' ') {
code++;
}
/* Skip "i" from potential isamplers. */
if (*code == 'i') {
code++;
}
/* Skip following spaces. */
if (BLI_str_startswith(code, "sampler")) {
/* Move past "uniform". */
code += 7;
/* Skip sampler type suffix. */
while (*code != ' ' && *code != '\0') {
code++;
}
/* Skip following spaces. */
while (*code == ' ') {
code++;
}
if (*code != '\0') {
char sampler_name[64];
code = gpu_str_skip_token(code, sampler_name, sizeof(sampler_name));
int id = GPU_shader_get_uniform_ensure(shader, sampler_name);
if (id == -1) {
continue;
}
/* Catch duplicates. */
if (BLI_gset_add(sampler_ids, POINTER_FROM_INT(id))) {
num_samplers++;
}
}
}
}
BLI_gset_free(sampler_ids, NULL);
return num_samplers;
}
static bool gpu_pass_shader_validate(GPUPass *pass, GPUShader *shader)
{
if (shader == NULL) {
return false;
}
/* NOTE: The only drawback of this method is that it will count a sampler
* used in the fragment shader and only declared (but not used) in the vertex
* shader as used by both. But this corner case is not happening for now. */
int vert_samplers_len = count_active_texture_sampler(shader, pass->vertexcode);
int frag_samplers_len = count_active_texture_sampler(shader, pass->fragmentcode);
int total_samplers_len = vert_samplers_len + frag_samplers_len;
/* Validate against opengl limit. */
if ((frag_samplers_len > GPU_max_textures_frag()) ||
(vert_samplers_len > GPU_max_textures_vert())) {
return false;
}
if (pass->geometrycode) {
int geom_samplers_len = count_active_texture_sampler(shader, pass->geometrycode);
total_samplers_len += geom_samplers_len;
if (geom_samplers_len > GPU_max_textures_geom()) {
return false;
}
}
return (total_samplers_len <= GPU_max_textures());
}
bool GPU_pass_compile(GPUPass *pass, const char *shname)
{
bool success = true;
if (!pass->compiled) {
GPUShader *shader = GPU_shader_create(
pass->vertexcode, pass->fragmentcode, pass->geometrycode, NULL, pass->defines, shname);
/* NOTE: Some drivers / gpu allows more active samplers than the opengl limit.
* We need to make sure to count active samplers to avoid undefined behavior. */
if (!gpu_pass_shader_validate(pass, shader)) {
success = false;
if (shader != NULL) {
fprintf(stderr, "GPUShader: error: too many samplers in shader.\n");
GPU_shader_free(shader);
shader = NULL;
}
}
else if (!BLI_thread_is_main() && GPU_context_local_shaders_workaround()) {
pass->binary.content = GPU_shader_get_binary(
shader, &pass->binary.format, &pass->binary.len);
GPU_shader_free(shader);
shader = NULL;
}
pass->shader = shader;
pass->compiled = true;
}
else if (pass->binary.content && BLI_thread_is_main()) {
pass->shader = GPU_shader_load_from_binary(
pass->binary.content, pass->binary.format, pass->binary.len, shname);
MEM_SAFE_FREE(pass->binary.content);
}
return success;
}
void GPU_pass_release(GPUPass *pass)
{
BLI_assert(pass->refcount > 0);
pass->refcount--;
}
static void gpu_pass_free(GPUPass *pass)
{
BLI_assert(pass->refcount == 0);
if (pass->shader) {
GPU_shader_free(pass->shader);
}
MEM_SAFE_FREE(pass->fragmentcode);
MEM_SAFE_FREE(pass->geometrycode);
MEM_SAFE_FREE(pass->vertexcode);
MEM_SAFE_FREE(pass->defines);
if (pass->binary.content) {
MEM_freeN(pass->binary.content);
}
MEM_freeN(pass);
}
void GPU_pass_cache_garbage_collect(void)
{
static int lasttime = 0;
const int shadercollectrate = 60; /* hardcoded for now. */
int ctime = (int)PIL_check_seconds_timer();
if (ctime < shadercollectrate + lasttime) {
return;
}
lasttime = ctime;
BLI_spin_lock(&pass_cache_spin);
GPUPass *next, **prev_pass = &pass_cache;
for (GPUPass *pass = pass_cache; pass; pass = next) {
next = pass->next;
if (pass->refcount == 0) {
/* Remove from list */
*prev_pass = next;
gpu_pass_free(pass);
}
else {
prev_pass = &pass->next;
}
}
BLI_spin_unlock(&pass_cache_spin);
}
void GPU_pass_cache_init(void)
{
BLI_spin_init(&pass_cache_spin);
}
void GPU_pass_cache_free(void)
{
BLI_spin_lock(&pass_cache_spin);
while (pass_cache) {
GPUPass *next = pass_cache->next;
gpu_pass_free(pass_cache);
pass_cache = next;
}
BLI_spin_unlock(&pass_cache_spin);
BLI_spin_end(&pass_cache_spin);
}
/* Module */
void gpu_codegen_init(void)
{
}
void gpu_codegen_exit(void)
{
BKE_material_defaults_free_gpu();
GPU_shader_free_builtin_shaders();
}