This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/source/pixelshading.c
Campbell Barton c149b6b7d7 Fix T47753: World equirectangular regression
D1729 fixed 'View' projection but broke 'Equirectangular'.

This commit also changes equirectangular projection to match Cycles and the viewport.
2016-03-11 20:36:59 +11:00

651 lines
15 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): 2004-2006, Blender Foundation, full recode
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/render/intern/source/pixelshading.c
* \ingroup render
*/
#include <float.h>
#include <math.h>
#include <string.h>
#include "BLI_math.h"
#include "BLI_utildefines.h"
/* External modules: */
#include "DNA_group_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_image_types.h"
#include "DNA_texture_types.h"
#include "DNA_lamp_types.h"
#include "BKE_material.h"
/* own module */
#include "render_types.h"
#include "renderdatabase.h"
#include "texture.h"
#include "rendercore.h"
#include "shadbuf.h"
#include "pixelshading.h"
#include "sunsky.h"
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* defined in pipeline.c, is hardcopy of active dynamic allocated Render */
/* only to be used here in this file, it's for speed */
extern struct Render R;
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
extern const float hashvectf[];
static void render_lighting_halo(HaloRen *har, float col_r[3])
{
GroupObject *go;
LampRen *lar;
float i, inp, inpr, rco[3], dco[3], lv[3], lampdist, ld, t, *vn;
float ir, ig, ib, shadfac, soft, lacol[3];
ir= ig= ib= 0.0;
copy_v3_v3(rco, har->co);
dco[0]=dco[1]=dco[2]= 1.0f/har->rad;
vn= har->no;
for (go=R.lights.first; go; go= go->next) {
lar= go->lampren;
/* test for lamplayer */
if (lar->mode & LA_LAYER) if ((lar->lay & har->lay)==0) continue;
/* lampdist cacluation */
if (lar->type==LA_SUN || lar->type==LA_HEMI) {
copy_v3_v3(lv, lar->vec);
lampdist= 1.0;
}
else {
lv[0]= rco[0]-lar->co[0];
lv[1]= rco[1]-lar->co[1];
lv[2]= rco[2]-lar->co[2];
ld = len_v3(lv);
lv[0]/= ld;
lv[1]/= ld;
lv[2]/= ld;
/* ld is re-used further on (texco's) */
if (lar->mode & LA_QUAD) {
t= 1.0;
if (lar->ld1>0.0f)
t= lar->dist/(lar->dist+lar->ld1*ld);
if (lar->ld2>0.0f)
t*= lar->distkw/(lar->distkw+lar->ld2*ld*ld);
lampdist= t;
}
else {
lampdist= (lar->dist/(lar->dist+ld));
}
if (lar->mode & LA_SPHERE) {
t= lar->dist - ld;
if (t<0.0f) continue;
t/= lar->dist;
lampdist*= (t);
}
}
lacol[0]= lar->r;
lacol[1]= lar->g;
lacol[2]= lar->b;
if (lar->mode & LA_TEXTURE) {
ShadeInput shi;
/* Warning, This is not that nice, and possibly a bit slow,
* however some variables were not initialized properly in, unless using shade_input_initialize(...),
* we need to do a memset */
memset(&shi, 0, sizeof(ShadeInput));
/* end warning! - Campbell */
copy_v3_v3(shi.co, rco);
shi.osatex= 0;
do_lamp_tex(lar, lv, &shi, lacol, LA_TEXTURE);
}
if (lar->type==LA_SPOT) {
if (lar->mode & LA_SQUARE) {
if (lv[0]*lar->vec[0]+lv[1]*lar->vec[1]+lv[2]*lar->vec[2]>0.0f) {
float x, lvrot[3];
/* rotate view to lampspace */
copy_v3_v3(lvrot, lv);
mul_m3_v3(lar->imat, lvrot);
x = max_ff(fabsf(lvrot[0]/lvrot[2]), fabsf(lvrot[1]/lvrot[2]));
/* 1.0/(sqrt(1+x*x)) is equivalent to cos(atan(x)) */
inpr = 1.0f / (sqrtf(1.0f + x * x));
}
else inpr= 0.0;
}
else {
inpr= lv[0]*lar->vec[0]+lv[1]*lar->vec[1]+lv[2]*lar->vec[2];
}
t= lar->spotsi;
if (inpr<t) continue;
else {
t= inpr-t;
soft= 1.0;
if (t<lar->spotbl && lar->spotbl!=0.0f) {
/* soft area */
i= t/lar->spotbl;
t= i*i;
soft= (3.0f*t-2.0f*t*i);
inpr*= soft;
}
if (lar->mode & LA_ONLYSHADOW) {
/* if (ma->mode & MA_SHADOW) { */
/* dot product positive: front side face! */
inp= vn[0]*lv[0] + vn[1]*lv[1] + vn[2]*lv[2];
if (inp>0.0f) {
/* testshadowbuf==0.0 : 100% shadow */
shadfac = testshadowbuf(&R, lar->shb, rco, dco, dco, inp, 0.0f);
if ( shadfac>0.0f ) {
shadfac*= inp*soft*lar->energy;
ir -= shadfac;
ig -= shadfac;
ib -= shadfac;
continue;
}
}
/* } */
}
lampdist*=inpr;
}
if (lar->mode & LA_ONLYSHADOW) continue;
}
/* dot product and reflectivity*/
inp = 1.0f - fabsf(dot_v3v3(vn, lv));
/* inp= cos(0.5*M_PI-acos(inp)); */
i= inp;
if (lar->type==LA_HEMI) {
i= 0.5f*i+0.5f;
}
if (i>0.0f) {
i*= lampdist;
}
/* shadow */
if (i> -0.41f) { /* heuristic valua! */
if (lar->shb) {
shadfac = testshadowbuf(&R, lar->shb, rco, dco, dco, inp, 0.0f);
if (shadfac==0.0f) continue;
i*= shadfac;
}
}
if (i>0.0f) {
ir+= i*lacol[0];
ig+= i*lacol[1];
ib+= i*lacol[2];
}
}
if (ir<0.0f) ir= 0.0f;
if (ig<0.0f) ig= 0.0f;
if (ib<0.0f) ib= 0.0f;
col_r[0]*= ir;
col_r[1]*= ig;
col_r[2]*= ib;
}
/**
* Converts a halo z-buffer value to distance from the camera's near plane
* \param z The z-buffer value to convert
* \return a distance from the camera's near plane in blender units
*/
static float haloZtoDist(int z)
{
float zco = 0;
if (z >= 0x7FFFFF)
return 10e10;
else {
zco = (float)z/(float)0x7FFFFF;
if (R.r.mode & R_ORTHO)
return (R.winmat[3][2] - zco*R.winmat[3][3])/(R.winmat[2][2]);
else
return (R.winmat[3][2])/(R.winmat[2][2] - R.winmat[2][3]*zco);
}
}
/**
* \param col (float[4]) Store the rgb color here (with alpha)
* The alpha is used to blend the color to the background
* color_new = (1-alpha)*color_background + color
* \param zz The current zbuffer value at the place of this pixel
* \param dist Distance of the pixel from the center of the halo squared. Given in pixels
* \param xn The x coordinate of the pixel relaticve to the center of the halo. given in pixels
* \param yn The y coordinate of the pixel relaticve to the center of the halo. given in pixels
*/
int shadeHaloFloat(HaloRen *har, float col[4], int zz,
float dist, float xn, float yn, short flarec)
{
/* fill in col */
float t, zn, radist, ringf=0.0f, linef=0.0f, alpha, si, co;
int a;
if (R.wrld.mode & WO_MIST) {
if (har->type & HA_ONLYSKY) {
alpha= har->alfa;
}
else {
/* a bit patchy... */
alpha= mistfactor(-har->co[2], har->co)*har->alfa;
}
}
else alpha= har->alfa;
if (alpha==0.0f)
return 0;
/* soften the halo if it intersects geometry */
if (har->mat && har->mat->mode & MA_HALO_SOFT) {
float segment_length, halo_depth, distance_from_z /* , visible_depth */ /* UNUSED */, soften;
/* calculate halo depth */
segment_length= har->hasize*sasqrt(1.0f - dist/(har->rad*har->rad));
halo_depth= 2.0f*segment_length;
if (halo_depth < FLT_EPSILON)
return 0;
/* calculate how much of this depth is visible */
distance_from_z = haloZtoDist(zz) - haloZtoDist(har->zs);
/* visible_depth = halo_depth; */ /* UNUSED */
if (distance_from_z < segment_length) {
soften= (segment_length + distance_from_z)/halo_depth;
/* apply softening to alpha */
if (soften < 1.0f)
alpha *= soften;
if (alpha <= 0.0f)
return 0;
}
}
else {
/* not a soft halo. use the old softening code */
/* halo being intersected? */
if (har->zs> zz-har->zd) {
t= ((float)(zz-har->zs))/(float)har->zd;
alpha*= sqrtf(sqrtf(t));
}
}
radist = sqrtf(dist);
/* watch it: not used nicely: flarec is set at zero in pixstruct */
if (flarec) har->pixels+= (int)(har->rad-radist);
if (har->ringc) {
const float *rc;
float fac;
int ofs;
/* per ring an antialised circle */
ofs= har->seed;
for (a= har->ringc; a>0; a--, ofs+=2) {
rc= hashvectf + (ofs % 768);
fac = fabsf(rc[1] * (har->rad * fabsf(rc[0]) - radist));
if (fac< 1.0f) {
ringf+= (1.0f-fac);
}
}
}
if (har->type & HA_VECT) {
dist= fabsf(har->cos * (yn) - har->sin * (xn)) / har->rad;
if (dist>1.0f) dist= 1.0f;
if (har->tex) {
zn= har->sin*xn - har->cos*yn;
yn= har->cos*xn + har->sin*yn;
xn= zn;
}
}
else dist= dist/har->radsq;
if (har->type & HA_FLARECIRC) {
dist = 0.5f + fabsf(dist - 0.5f);
}
if (har->hard>=30) {
dist = sqrtf(dist);
if (har->hard>=40) {
dist = sinf(dist*(float)M_PI_2);
if (har->hard>=50) {
dist = sqrtf(dist);
}
}
}
else if (har->hard<20) dist*=dist;
if (dist < 1.0f)
dist= (1.0f-dist);
else
dist= 0.0f;
if (har->linec) {
const float *rc;
float fac;
int ofs;
/* per starpoint an antialiased line */
ofs= har->seed;
for (a= har->linec; a>0; a--, ofs+=3) {
rc= hashvectf + (ofs % 768);
fac = fabsf((xn) * rc[0] + (yn) * rc[1]);
if (fac< 1.0f )
linef+= (1.0f-fac);
}
linef*= dist;
}
if (har->starpoints) {
float ster, angle;
/* rotation */
angle = atan2f(yn, xn);
angle *= (1.0f+0.25f*har->starpoints);
co= cosf(angle);
si= sinf(angle);
angle= (co*xn+si*yn)*(co*yn-si*xn);
ster = fabsf(angle);
if (ster>1.0f) {
ster= (har->rad)/(ster);
if (ster<1.0f) dist*= sqrtf(ster);
}
}
/* disputable optimize... (ton) */
if (dist<=0.00001f)
return 0;
dist*= alpha;
ringf*= dist;
linef*= alpha;
/* The color is either the rgb spec-ed by the user, or extracted from */
/* the texture */
if (har->tex) {
col[0]= har->r;
col[1]= har->g;
col[2]= har->b;
col[3]= dist;
do_halo_tex(har, xn, yn, col);
col[0]*= col[3];
col[1]*= col[3];
col[2]*= col[3];
}
else {
col[0]= dist*har->r;
col[1]= dist*har->g;
col[2]= dist*har->b;
if (har->type & HA_XALPHA) col[3]= dist*dist;
else col[3]= dist;
}
if (har->mat) {
if (har->mat->mode & MA_HALO_SHADE) {
/* we test for lights because of preview... */
if (R.lights.first) render_lighting_halo(har, col);
}
/* Next, we do the line and ring factor modifications. */
if (linef!=0.0f) {
Material *ma= har->mat;
col[0]+= linef * ma->specr;
col[1]+= linef * ma->specg;
col[2]+= linef * ma->specb;
if (har->type & HA_XALPHA) col[3]+= linef*linef;
else col[3]+= linef;
}
if (ringf!=0.0f) {
Material *ma= har->mat;
col[0]+= ringf * ma->mirr;
col[1]+= ringf * ma->mirg;
col[2]+= ringf * ma->mirb;
if (har->type & HA_XALPHA) col[3]+= ringf*ringf;
else col[3]+= ringf;
}
}
/* alpha requires clip, gives black dots */
if (col[3] > 1.0f)
col[3]= 1.0f;
return 1;
}
/* ------------------------------------------------------------------------- */
/* Only view vector is important here. Result goes to col_r[3] */
void shadeSkyView(float col_r[3], const float rco[3], const float view[3], const float dxyview[2], short thread)
{
float zen[3], hor[3], blend, blendm;
int skyflag;
/* flag indicating if we render the top hemisphere */
skyflag = WO_ZENUP;
/* Some view vector stuff. */
if (R.wrld.skytype & WO_SKYREAL) {
blend = dot_v3v3(view, R.grvec);
if (blend<0.0f) skyflag= 0;
blend = fabsf(blend);
}
else if (R.wrld.skytype & WO_SKYPAPER) {
blend= 0.5f + 0.5f * view[1];
}
else {
/* the fraction of how far we are above the bottom of the screen */
blend = fabsf(0.5f + view[1]);
}
copy_v3_v3(hor, &R.wrld.horr);
copy_v3_v3(zen, &R.wrld.zenr);
/* Careful: SKYTEX and SKYBLEND are NOT mutually exclusive! If */
/* SKYBLEND is active, the texture and color blend are added. */
if (R.wrld.skytype & WO_SKYTEX) {
float lo[3];
copy_v3_v3(lo, view);
if (R.wrld.skytype & WO_SKYREAL) {
mul_m3_v3(R.imat, lo);
SWAP(float, lo[1], lo[2]);
}
do_sky_tex(rco, view, lo, dxyview, hor, zen, &blend, skyflag, thread);
}
if (blend>1.0f) blend= 1.0f;
blendm= 1.0f-blend;
/* No clipping, no conversion! */
if (R.wrld.skytype & WO_SKYBLEND) {
col_r[0] = (blendm*hor[0] + blend*zen[0]);
col_r[1] = (blendm*hor[1] + blend*zen[1]);
col_r[2] = (blendm*hor[2] + blend*zen[2]);
}
else {
/* Done when a texture was grabbed. */
col_r[0]= hor[0];
col_r[1]= hor[1];
col_r[2]= hor[2];
}
}
/* shade sky according to sun lamps, all parameters are like shadeSkyView except sunsky*/
void shadeSunView(float col_r[3], const float view[3])
{
GroupObject *go;
LampRen *lar;
float sview[3];
bool do_init = true;
for (go=R.lights.first; go; go= go->next) {
lar= go->lampren;
if (lar->type==LA_SUN && lar->sunsky && (lar->sunsky->effect_type & LA_SUN_EFFECT_SKY)) {
float sun_collector[3];
float colorxyz[3];
if (do_init) {
normalize_v3_v3(sview, view);
mul_m3_v3(R.imat, sview);
if (sview[2] < 0.0f)
sview[2] = 0.0f;
normalize_v3(sview);
do_init = false;
}
GetSkyXYZRadiancef(lar->sunsky, sview, colorxyz);
xyz_to_rgb(colorxyz[0], colorxyz[1], colorxyz[2], &sun_collector[0], &sun_collector[1], &sun_collector[2],
lar->sunsky->sky_colorspace);
ramp_blend(lar->sunsky->skyblendtype, col_r, lar->sunsky->skyblendfac, sun_collector);
}
}
}
/*
* Stuff the sky color into the collector.
*/
void shadeSkyPixel(float collector[4], float fx, float fy, short thread)
{
float view[3], dxyview[2];
/*
* The rules for sky:
* 1. Draw an image, if a background image was provided. Stop
* 2. get texture and color blend, and combine these.
*/
float fac;
if ((R.wrld.skytype & (WO_SKYBLEND+WO_SKYTEX))==0) {
/* 1. solid color */
copy_v3_v3(collector, &R.wrld.horr);
collector[3] = 0.0f;
}
else {
/* 2. */
/* This one true because of the context of this routine */
if (R.wrld.skytype & WO_SKYPAPER) {
view[0]= -1.0f + 2.0f*(fx/(float)R.winx);
view[1]= -1.0f + 2.0f*(fy/(float)R.winy);
view[2]= 0.0;
dxyview[0]= 1.0f/(float)R.winx;
dxyview[1]= 1.0f/(float)R.winy;
}
else {
calc_view_vector(view, fx, fy);
fac= normalize_v3(view);
if (R.wrld.skytype & WO_SKYTEX) {
dxyview[0]= -R.viewdx/fac;
dxyview[1]= -R.viewdy/fac;
}
}
/* get sky color in the collector */
shadeSkyView(collector, NULL, view, dxyview, thread);
collector[3] = 0.0f;
}
calc_view_vector(view, fx, fy);
shadeSunView(collector, view);
}
/* aerial perspective */
void shadeAtmPixel(struct SunSky *sunsky, float collector[3], float fx, float fy, float distance)
{
float view[3];
calc_view_vector(view, fx, fy);
normalize_v3(view);
/*mul_m3_v3(R.imat, view);*/
AtmospherePixleShader(sunsky, view, distance, collector);
}
/* eof */