This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/math_vector_inline.c
Campbell Barton fde4686d77 barycentric transform utility geometry function.
From 2 triangles and 1 point, the relative position between the point and the first triangle is applied to the second triangle to find the target point.
the barycentric weights are calculated in 2D space with a signed area so values outside the triangle bounds are supported.

wrapped by python:
 pt_to = Geometry.BarycentricTransform(pt_from, t1a, t1b, t1c, t2a, t1b, t1c)

NOTE: 
- moved some barycentric weight functions out of projection painting into the math lib.
- ended up making some of the math functions use const args.
TODO:
- support exceptional cases. zero area tries and similar.
2009-12-27 01:32:58 +00:00

314 lines
5.6 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
* The Original Code is: some of this file.
*
* ***** END GPL LICENSE BLOCK *****
* */
#include "BLI_math.h"
#ifndef BLI_MATH_VECTOR_INLINE
#define BLI_MATH_VECTOR_INLINE
/********************************** Init *************************************/
MINLINE void zero_v2(float r[2])
{
r[0]= 0.0f;
r[1]= 0.0f;
}
MINLINE void zero_v3(float r[3])
{
r[0]= 0.0f;
r[1]= 0.0f;
r[2]= 0.0f;
}
MINLINE void copy_v2_v2(float r[2], const float a[2])
{
r[0]= a[0];
r[1]= a[1];
}
MINLINE void copy_v3_v3(float r[3], const float a[3])
{
r[0]= a[0];
r[1]= a[1];
r[2]= a[2];
}
MINLINE void swap_v2_v2(float a[2], float b[2])
{
SWAP(float, a[0], b[0]);
SWAP(float, a[1], b[1]);
}
MINLINE void swap_v3_v3(float a[3], float b[3])
{
SWAP(float, a[0], b[0]);
SWAP(float, a[1], b[1]);
SWAP(float, a[2], b[2]);
}
/********************************* Arithmetic ********************************/
MINLINE void add_v2_v2(float *r, float *a)
{
r[0] += a[0];
r[1] += a[1];
}
MINLINE void add_v2_v2v2(float *r, float *a, float *b)
{
r[0]= a[0] + b[0];
r[1]= a[1] + b[1];
}
MINLINE void add_v3_v3(float *r, float *a)
{
r[0] += a[0];
r[1] += a[1];
r[2] += a[2];
}
MINLINE void add_v3_v3v3(float *r, float *a, float *b)
{
r[0]= a[0] + b[0];
r[1]= a[1] + b[1];
r[2]= a[2] + b[2];
}
MINLINE void sub_v2_v2(float *r, float *a)
{
r[0] -= a[0];
r[1] -= a[1];
}
MINLINE void sub_v2_v2v2(float *r, float *a, float *b)
{
r[0]= a[0] - b[0];
r[1]= a[1] - b[1];
}
MINLINE void sub_v3_v3(float *r, float *a)
{
r[0] -= a[0];
r[1] -= a[1];
r[2] -= a[2];
}
MINLINE void sub_v3_v3v3(float r[3], const float a[3], const float b[3])
{
r[0]= a[0] - b[0];
r[1]= a[1] - b[1];
r[2]= a[2] - b[2];
}
MINLINE void mul_v2_fl(float *v1, float f)
{
v1[0]*= f;
v1[1]*= f;
}
MINLINE void mul_v3_fl(float r[3], float f)
{
r[0] *= f;
r[1] *= f;
r[2] *= f;
}
MINLINE void mul_v3_v3fl(float r[3], float a[3], float f)
{
r[0]= a[0]*f;
r[1]= a[1]*f;
r[2]= a[2]*f;
}
MINLINE void mul_v3_v3(float r[3], float a[3])
{
r[0] *= a[0];
r[1] *= a[1];
r[2] *= a[2];
}
MINLINE void madd_v3_v3fl(float r[3], float a[3], float f)
{
r[0] += a[0]*f;
r[1] += a[1]*f;
r[2] += a[2]*f;
}
MINLINE void madd_v3_v3v3(float r[3], float a[3], float b[3])
{
r[0] += a[0]*b[0];
r[1] += a[1]*b[1];
r[2] += a[2]*b[2];
}
MINLINE void madd_v3_v3v3fl(float r[3], float a[3], float b[3], float f)
{
r[0] = a[0] + b[0]*f;
r[1] = a[1] + b[1]*f;
r[2] = a[2] + b[2]*f;
}
MINLINE void madd_v3_v3v3v3(float r[3], float a[3], float b[3], float c[3])
{
r[0] = a[0] + b[0]*c[0];
r[1] = a[1] + b[1]*c[1];
r[2] = a[2] + b[2]*c[2];
}
MINLINE void mul_v3_v3v3(float *v, float *v1, float *v2)
{
v[0] = v1[0] * v2[0];
v[1] = v1[1] * v2[1];
v[2] = v1[2] * v2[2];
}
MINLINE void negate_v3(float r[3])
{
r[0]= -r[0];
r[1]= -r[1];
r[2]= -r[2];
}
MINLINE void negate_v3_v3(float r[3], float a[3])
{
r[0]= -a[0];
r[1]= -a[1];
r[2]= -a[2];
}
MINLINE float dot_v2v2(float *a, float *b)
{
return a[0]*b[0] + a[1]*b[1];
}
MINLINE float dot_v3v3(float a[3], float b[3])
{
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
}
MINLINE float cross_v2v2(float a[2], float b[2])
{
return a[0]*b[1] - a[1]*b[0];
}
MINLINE void cross_v3_v3v3(float r[3], const float a[3], const float b[3])
{
r[0]= a[1]*b[2] - a[2]*b[1];
r[1]= a[2]*b[0] - a[0]*b[2];
r[2]= a[0]*b[1] - a[1]*b[0];
}
MINLINE void star_m3_v3(float mat[][3], float *vec)
{
mat[0][0]= mat[1][1]= mat[2][2]= 0.0;
mat[0][1]= -vec[2];
mat[0][2]= vec[1];
mat[1][0]= vec[2];
mat[1][2]= -vec[0];
mat[2][0]= -vec[1];
mat[2][1]= vec[0];
}
/*********************************** Length **********************************/
MINLINE float len_v2(float *v)
{
return (float)sqrt(v[0]*v[0] + v[1]*v[1]);
}
MINLINE float len_v2v2(float *v1, float *v2)
{
float x, y;
x = v1[0]-v2[0];
y = v1[1]-v2[1];
return (float)sqrt(x*x+y*y);
}
MINLINE float len_v3(float a[3])
{
return sqrtf(dot_v3v3(a, a));
}
MINLINE float len_v3v3(float a[3], float b[3])
{
float d[3];
sub_v3_v3v3(d, b, a);
return len_v3(d);
}
MINLINE float normalize_v2(float n[2])
{
float d= dot_v2v2(n, n);
if(d > 1.0e-35f) {
d= sqrtf(d);
mul_v2_fl(n, 1.0f/d);
} else {
zero_v2(n);
d= 0.0f;
}
return d;
}
MINLINE float normalize_v3(float n[3])
{
float d= dot_v3v3(n, n);
/* a larger value causes normalize errors in a
scaled down models with camera xtreme close */
if(d > 1.0e-35f) {
d= sqrtf(d);
mul_v3_fl(n, 1.0f/d);
}
else {
zero_v3(n);
d= 0.0f;
}
return d;
}
MINLINE void normal_short_to_float_v3(float *out, short *in)
{
out[0] = in[0]*(1.0f/32767.0f);
out[1] = in[1]*(1.0f/32767.0f);
out[2] = in[2]*(1.0f/32767.0f);
}
MINLINE void normal_float_to_short_v3(short *out, float *in)
{
out[0] = (short)(in[0]*32767.0f);
out[1] = (short)(in[1]*32767.0f);
out[2] = (short)(in[2]*32767.0f);
}
#endif /* BLI_MATH_VECTOR_INLINE */