This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/editors/space_image/image_undo.cc
Hans Goudey 13450c2d22 Cleanup: Clang format
Mostly bad white space from a bad find & replace in my own cleanup commit.
2023-01-09 23:26:32 -05:00

1136 lines
33 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup spimage
*
* Overview
* ========
*
* - Each undo step is a #ImageUndoStep
* - Each #ImageUndoStep stores a list of #UndoImageHandle
* - Each #UndoImageHandle stores a list of #UndoImageBuf
* (this is the undo systems equivalent of an #ImBuf).
* - Each #UndoImageBuf stores an array of #UndoImageTile
* The tiles are shared between #UndoImageBuf's to avoid duplication.
*
* When the undo system manages an image, there will always be a full copy (as a #UndoImageBuf)
* each new undo step only stores modified tiles.
*/
#include "CLG_log.h"
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_map.hh"
#include "BLI_math.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "DNA_image_types.h"
#include "DNA_object_types.h"
#include "DNA_screen_types.h"
#include "DNA_space_types.h"
#include "DNA_windowmanager_types.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "BKE_context.h"
#include "BKE_image.h"
#include "BKE_paint.h"
#include "BKE_undo_system.h"
#include "DEG_depsgraph.h"
#include "ED_object.h"
#include "ED_paint.h"
#include "ED_undo.h"
#include "ED_util.h"
#include "WM_api.h"
static CLG_LogRef LOG = {"ed.image.undo"};
/* -------------------------------------------------------------------- */
/** \name Thread Locking
* \{ */
/* This is a non-global static resource,
* Maybe it should be exposed as part of the
* paint operation, but for now just give a public interface */
static SpinLock paint_tiles_lock;
void ED_image_paint_tile_lock_init(void)
{
BLI_spin_init(&paint_tiles_lock);
}
void ED_image_paint_tile_lock_end(void)
{
BLI_spin_end(&paint_tiles_lock);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Paint Tiles
*
* Created on demand while painting,
* use to access the previous state for some paint operations.
*
* These buffers are also used for undo when available.
*
* \{ */
static ImBuf *imbuf_alloc_temp_tile()
{
return IMB_allocImBuf(
ED_IMAGE_UNDO_TILE_SIZE, ED_IMAGE_UNDO_TILE_SIZE, 32, IB_rectfloat | IB_rect);
}
struct PaintTileKey {
int x_tile, y_tile;
Image *image;
ImBuf *ibuf;
/* Copied from iuser.tile in PaintTile. */
int iuser_tile;
uint64_t hash() const
{
return blender::get_default_hash_4(x_tile, y_tile, image, ibuf);
}
bool operator==(const PaintTileKey &other) const
{
return x_tile == other.x_tile && y_tile == other.y_tile && image == other.image &&
ibuf == other.ibuf && iuser_tile == other.iuser_tile;
}
};
struct PaintTile {
Image *image;
ImBuf *ibuf;
/* For 2D image painting the ImageUser uses most of the values.
* Even though views and passes are stored they are currently not supported for painting.
* For 3D projection painting this only uses a tile & frame number.
* The scene pointer must be cleared (or temporarily set it as needed, but leave cleared). */
ImageUser iuser;
union {
float *fp;
uint32_t *uint;
void *pt;
} rect;
uint16_t *mask;
bool valid;
bool use_float;
int x_tile, y_tile;
};
static void ptile_free(PaintTile *ptile)
{
if (ptile->rect.pt) {
MEM_freeN(ptile->rect.pt);
}
if (ptile->mask) {
MEM_freeN(ptile->mask);
}
MEM_freeN(ptile);
}
struct PaintTileMap {
blender::Map<PaintTileKey, PaintTile *> map;
~PaintTileMap()
{
for (PaintTile *ptile : map.values()) {
ptile_free(ptile);
}
}
};
static void ptile_invalidate_map(PaintTileMap *paint_tile_map)
{
for (PaintTile *ptile : paint_tile_map->map.values()) {
ptile->valid = false;
}
}
void *ED_image_paint_tile_find(PaintTileMap *paint_tile_map,
Image *image,
ImBuf *ibuf,
ImageUser *iuser,
int x_tile,
int y_tile,
ushort **r_mask,
bool validate)
{
PaintTileKey key;
key.ibuf = ibuf;
key.image = image;
key.iuser_tile = iuser->tile;
key.x_tile = x_tile;
key.y_tile = y_tile;
PaintTile **pptile = paint_tile_map->map.lookup_ptr(key);
if (pptile == nullptr) {
return nullptr;
}
PaintTile *ptile = *pptile;
if (r_mask) {
/* allocate mask if requested. */
if (!ptile->mask) {
ptile->mask = static_cast<uint16_t *>(
MEM_callocN(sizeof(uint16_t) * square_i(ED_IMAGE_UNDO_TILE_SIZE), "UndoImageTile.mask"));
}
*r_mask = ptile->mask;
}
if (validate) {
ptile->valid = true;
}
return ptile->rect.pt;
}
void *ED_image_paint_tile_push(PaintTileMap *paint_tile_map,
Image *image,
ImBuf *ibuf,
ImBuf **tmpibuf,
ImageUser *iuser,
int x_tile,
int y_tile,
ushort **r_mask,
bool **r_valid,
bool use_thread_lock,
bool find_prev)
{
if (use_thread_lock) {
BLI_spin_lock(&paint_tiles_lock);
}
const bool has_float = (ibuf->rect_float != nullptr);
/* check if tile is already pushed */
/* in projective painting we keep accounting of tiles, so if we need one pushed, just push! */
if (find_prev) {
void *data = ED_image_paint_tile_find(
paint_tile_map, image, ibuf, iuser, x_tile, y_tile, r_mask, true);
if (data) {
if (use_thread_lock) {
BLI_spin_unlock(&paint_tiles_lock);
}
return data;
}
}
if (*tmpibuf == nullptr) {
*tmpibuf = imbuf_alloc_temp_tile();
}
PaintTile *ptile = static_cast<PaintTile *>(MEM_callocN(sizeof(PaintTile), "PaintTile"));
ptile->image = image;
ptile->ibuf = ibuf;
ptile->iuser = *iuser;
ptile->iuser.scene = nullptr;
ptile->x_tile = x_tile;
ptile->y_tile = y_tile;
/* add mask explicitly here */
if (r_mask) {
*r_mask = ptile->mask = static_cast<uint16_t *>(
MEM_callocN(sizeof(uint16_t) * square_i(ED_IMAGE_UNDO_TILE_SIZE), "PaintTile.mask"));
}
ptile->rect.pt = MEM_callocN((ibuf->rect_float ? sizeof(float[4]) : sizeof(char[4])) *
square_i(ED_IMAGE_UNDO_TILE_SIZE),
"PaintTile.rect");
ptile->use_float = has_float;
ptile->valid = true;
if (r_valid) {
*r_valid = &ptile->valid;
}
IMB_rectcpy(*tmpibuf,
ibuf,
0,
0,
x_tile * ED_IMAGE_UNDO_TILE_SIZE,
y_tile * ED_IMAGE_UNDO_TILE_SIZE,
ED_IMAGE_UNDO_TILE_SIZE,
ED_IMAGE_UNDO_TILE_SIZE);
if (has_float) {
std::swap(ptile->rect.fp, (*tmpibuf)->rect_float);
}
else {
std::swap(ptile->rect.uint, (*tmpibuf)->rect);
}
PaintTileKey key = {};
key.ibuf = ibuf;
key.image = image;
key.iuser_tile = iuser->tile;
key.x_tile = x_tile;
key.y_tile = y_tile;
PaintTile *existing_tile = nullptr;
paint_tile_map->map.add_or_modify(
key,
[&](PaintTile **pptile) { *pptile = ptile; },
[&](PaintTile **pptile) { existing_tile = *pptile; });
if (existing_tile) {
ptile_free(ptile);
ptile = existing_tile;
}
if (use_thread_lock) {
BLI_spin_unlock(&paint_tiles_lock);
}
return ptile->rect.pt;
}
static void ptile_restore_runtime_map(PaintTileMap *paint_tile_map)
{
ImBuf *tmpibuf = imbuf_alloc_temp_tile();
for (PaintTile *ptile : paint_tile_map->map.values()) {
Image *image = ptile->image;
ImBuf *ibuf = BKE_image_acquire_ibuf(image, &ptile->iuser, nullptr);
const bool has_float = (ibuf->rect_float != nullptr);
if (has_float) {
std::swap(ptile->rect.fp, tmpibuf->rect_float);
}
else {
std::swap(ptile->rect.uint, tmpibuf->rect);
}
IMB_rectcpy(ibuf,
tmpibuf,
ptile->x_tile * ED_IMAGE_UNDO_TILE_SIZE,
ptile->y_tile * ED_IMAGE_UNDO_TILE_SIZE,
0,
0,
ED_IMAGE_UNDO_TILE_SIZE,
ED_IMAGE_UNDO_TILE_SIZE);
if (has_float) {
std::swap(ptile->rect.fp, tmpibuf->rect_float);
}
else {
std::swap(ptile->rect.uint, tmpibuf->rect);
}
/* Force OpenGL reload (maybe partial update will operate better?) */
BKE_image_free_gputextures(image);
if (ibuf->rect_float) {
ibuf->userflags |= IB_RECT_INVALID; /* force recreate of char rect */
}
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID; /* Force MIP-MAP recreation. */
}
ibuf->userflags |= IB_DISPLAY_BUFFER_INVALID;
BKE_image_release_ibuf(image, ibuf, nullptr);
}
IMB_freeImBuf(tmpibuf);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Image Undo Tile
* \{ */
static uint32_t index_from_xy(uint32_t tile_x, uint32_t tile_y, const uint32_t tiles_dims[2])
{
BLI_assert(tile_x < tiles_dims[0] && tile_y < tiles_dims[1]);
return (tile_y * tiles_dims[0]) + tile_x;
}
struct UndoImageTile {
union {
float *fp;
uint32_t *uint_ptr;
void *pt;
} rect;
int users;
};
static UndoImageTile *utile_alloc(bool has_float)
{
UndoImageTile *utile = static_cast<UndoImageTile *>(
MEM_callocN(sizeof(*utile), "ImageUndoTile"));
if (has_float) {
utile->rect.fp = static_cast<float *>(
MEM_mallocN(sizeof(float[4]) * square_i(ED_IMAGE_UNDO_TILE_SIZE), __func__));
}
else {
utile->rect.uint_ptr = static_cast<uint32_t *>(
MEM_mallocN(sizeof(uint32_t) * square_i(ED_IMAGE_UNDO_TILE_SIZE), __func__));
}
return utile;
}
static void utile_init_from_imbuf(
UndoImageTile *utile, const uint32_t x, const uint32_t y, const ImBuf *ibuf, ImBuf *tmpibuf)
{
const bool has_float = ibuf->rect_float;
if (has_float) {
std::swap(utile->rect.fp, tmpibuf->rect_float);
}
else {
std::swap(utile->rect.uint_ptr, tmpibuf->rect);
}
IMB_rectcpy(tmpibuf, ibuf, 0, 0, x, y, ED_IMAGE_UNDO_TILE_SIZE, ED_IMAGE_UNDO_TILE_SIZE);
if (has_float) {
std::swap(utile->rect.fp, tmpibuf->rect_float);
}
else {
std::swap(utile->rect.uint_ptr, tmpibuf->rect);
}
}
static void utile_restore(
const UndoImageTile *utile, const uint x, const uint y, ImBuf *ibuf, ImBuf *tmpibuf)
{
const bool has_float = ibuf->rect_float;
float *prev_rect_float = tmpibuf->rect_float;
uint32_t *prev_rect = tmpibuf->rect;
if (has_float) {
tmpibuf->rect_float = utile->rect.fp;
}
else {
tmpibuf->rect = utile->rect.uint_ptr;
}
IMB_rectcpy(ibuf, tmpibuf, x, y, 0, 0, ED_IMAGE_UNDO_TILE_SIZE, ED_IMAGE_UNDO_TILE_SIZE);
tmpibuf->rect_float = prev_rect_float;
tmpibuf->rect = prev_rect;
}
static void utile_decref(UndoImageTile *utile)
{
utile->users -= 1;
BLI_assert(utile->users >= 0);
if (utile->users == 0) {
MEM_freeN(utile->rect.pt);
MEM_delete(utile);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Image Undo Buffer
* \{ */
struct UndoImageBuf {
struct UndoImageBuf *next, *prev;
/**
* The buffer after the undo step has executed.
*/
struct UndoImageBuf *post;
char ibuf_name[IMB_FILENAME_SIZE];
UndoImageTile **tiles;
/** Can calculate these from dims, just for convenience. */
uint32_t tiles_len;
uint32_t tiles_dims[2];
uint32_t image_dims[2];
/** Store variables from the image. */
struct {
short source;
bool use_float;
} image_state;
};
static UndoImageBuf *ubuf_from_image_no_tiles(Image *image, const ImBuf *ibuf)
{
UndoImageBuf *ubuf = static_cast<UndoImageBuf *>(MEM_callocN(sizeof(*ubuf), __func__));
ubuf->image_dims[0] = ibuf->x;
ubuf->image_dims[1] = ibuf->y;
ubuf->tiles_dims[0] = ED_IMAGE_UNDO_TILE_NUMBER(ubuf->image_dims[0]);
ubuf->tiles_dims[1] = ED_IMAGE_UNDO_TILE_NUMBER(ubuf->image_dims[1]);
ubuf->tiles_len = ubuf->tiles_dims[0] * ubuf->tiles_dims[1];
ubuf->tiles = static_cast<UndoImageTile **>(
MEM_callocN(sizeof(*ubuf->tiles) * ubuf->tiles_len, __func__));
BLI_strncpy(ubuf->ibuf_name, ibuf->name, sizeof(ubuf->ibuf_name));
ubuf->image_state.source = image->source;
ubuf->image_state.use_float = ibuf->rect_float != nullptr;
return ubuf;
}
static void ubuf_from_image_all_tiles(UndoImageBuf *ubuf, const ImBuf *ibuf)
{
ImBuf *tmpibuf = imbuf_alloc_temp_tile();
const bool has_float = ibuf->rect_float;
int i = 0;
for (uint y_tile = 0; y_tile < ubuf->tiles_dims[1]; y_tile += 1) {
uint y = y_tile << ED_IMAGE_UNDO_TILE_BITS;
for (uint x_tile = 0; x_tile < ubuf->tiles_dims[0]; x_tile += 1) {
uint x = x_tile << ED_IMAGE_UNDO_TILE_BITS;
BLI_assert(ubuf->tiles[i] == nullptr);
UndoImageTile *utile = utile_alloc(has_float);
utile->users = 1;
utile_init_from_imbuf(utile, x, y, ibuf, tmpibuf);
ubuf->tiles[i] = utile;
i += 1;
}
}
BLI_assert(i == ubuf->tiles_len);
IMB_freeImBuf(tmpibuf);
}
/** Ensure we can copy the ubuf into the ibuf. */
static void ubuf_ensure_compat_ibuf(const UndoImageBuf *ubuf, ImBuf *ibuf)
{
/* We could have both float and rect buffers,
* in this case free the float buffer if it's unused. */
if ((ibuf->rect_float != nullptr) && (ubuf->image_state.use_float == false)) {
imb_freerectfloatImBuf(ibuf);
}
if (ibuf->x == ubuf->image_dims[0] && ibuf->y == ubuf->image_dims[1] &&
(ubuf->image_state.use_float ? (void *)ibuf->rect_float : (void *)ibuf->rect)) {
return;
}
imb_freerectImbuf_all(ibuf);
IMB_rect_size_set(ibuf, ubuf->image_dims);
if (ubuf->image_state.use_float) {
imb_addrectfloatImBuf(ibuf, 4);
}
else {
imb_addrectImBuf(ibuf);
}
}
static void ubuf_free(UndoImageBuf *ubuf)
{
UndoImageBuf *ubuf_post = ubuf->post;
for (uint i = 0; i < ubuf->tiles_len; i++) {
UndoImageTile *utile = ubuf->tiles[i];
utile_decref(utile);
}
MEM_freeN(ubuf->tiles);
MEM_freeN(ubuf);
if (ubuf_post) {
ubuf_free(ubuf_post);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Image Undo Handle
* \{ */
struct UndoImageHandle {
struct UndoImageHandle *next, *prev;
/** Each undo handle refers to a single image which may have multiple buffers. */
UndoRefID_Image image_ref;
/** Each tile of a tiled image has its own UndoImageHandle.
* The tile number of this IUser is used to distinguish them.
*/
ImageUser iuser;
/**
* List of #UndoImageBuf's to support multiple buffers per image.
*/
ListBase buffers;
};
static void uhandle_restore_list(ListBase *undo_handles, bool use_init)
{
ImBuf *tmpibuf = imbuf_alloc_temp_tile();
LISTBASE_FOREACH (UndoImageHandle *, uh, undo_handles) {
/* Tiles only added to second set of tiles. */
Image *image = uh->image_ref.ptr;
ImBuf *ibuf = BKE_image_acquire_ibuf(image, &uh->iuser, nullptr);
if (UNLIKELY(ibuf == nullptr)) {
CLOG_ERROR(&LOG, "Unable to get buffer for image '%s'", image->id.name + 2);
continue;
}
bool changed = false;
LISTBASE_FOREACH (UndoImageBuf *, ubuf_iter, &uh->buffers) {
UndoImageBuf *ubuf = use_init ? ubuf_iter : ubuf_iter->post;
ubuf_ensure_compat_ibuf(ubuf, ibuf);
int i = 0;
for (uint y_tile = 0; y_tile < ubuf->tiles_dims[1]; y_tile += 1) {
uint y = y_tile << ED_IMAGE_UNDO_TILE_BITS;
for (uint x_tile = 0; x_tile < ubuf->tiles_dims[0]; x_tile += 1) {
uint x = x_tile << ED_IMAGE_UNDO_TILE_BITS;
utile_restore(ubuf->tiles[i], x, y, ibuf, tmpibuf);
changed = true;
i += 1;
}
}
}
if (changed) {
BKE_image_mark_dirty(image, ibuf);
/* TODO(@jbakker): only mark areas that are actually updated to improve performance. */
BKE_image_partial_update_mark_full_update(image);
if (ibuf->rect_float) {
ibuf->userflags |= IB_RECT_INVALID; /* Force recreate of char `rect` */
}
if (ibuf->mipmap[0]) {
ibuf->userflags |= IB_MIPMAP_INVALID; /* Force MIP-MAP recreation. */
}
ibuf->userflags |= IB_DISPLAY_BUFFER_INVALID;
DEG_id_tag_update(&image->id, 0);
}
BKE_image_release_ibuf(image, ibuf, nullptr);
}
IMB_freeImBuf(tmpibuf);
}
static void uhandle_free_list(ListBase *undo_handles)
{
LISTBASE_FOREACH_MUTABLE (UndoImageHandle *, uh, undo_handles) {
LISTBASE_FOREACH_MUTABLE (UndoImageBuf *, ubuf, &uh->buffers) {
ubuf_free(ubuf);
}
MEM_freeN(uh);
}
BLI_listbase_clear(undo_handles);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Image Undo Internal Utilities
* \{ */
/** #UndoImageHandle utilities */
static UndoImageBuf *uhandle_lookup_ubuf(UndoImageHandle *uh,
const Image * /*image*/,
const char *ibuf_name)
{
LISTBASE_FOREACH (UndoImageBuf *, ubuf, &uh->buffers) {
if (STREQ(ubuf->ibuf_name, ibuf_name)) {
return ubuf;
}
}
return nullptr;
}
static UndoImageBuf *uhandle_add_ubuf(UndoImageHandle *uh, Image *image, ImBuf *ibuf)
{
BLI_assert(uhandle_lookup_ubuf(uh, image, ibuf->name) == nullptr);
UndoImageBuf *ubuf = ubuf_from_image_no_tiles(image, ibuf);
BLI_addtail(&uh->buffers, ubuf);
ubuf->post = nullptr;
return ubuf;
}
static UndoImageBuf *uhandle_ensure_ubuf(UndoImageHandle *uh, Image *image, ImBuf *ibuf)
{
UndoImageBuf *ubuf = uhandle_lookup_ubuf(uh, image, ibuf->name);
if (ubuf == nullptr) {
ubuf = uhandle_add_ubuf(uh, image, ibuf);
}
return ubuf;
}
static UndoImageHandle *uhandle_lookup_by_name(ListBase *undo_handles,
const Image *image,
int tile_number)
{
LISTBASE_FOREACH (UndoImageHandle *, uh, undo_handles) {
if (STREQ(image->id.name + 2, uh->image_ref.name + 2) && uh->iuser.tile == tile_number) {
return uh;
}
}
return nullptr;
}
static UndoImageHandle *uhandle_lookup(ListBase *undo_handles, const Image *image, int tile_number)
{
LISTBASE_FOREACH (UndoImageHandle *, uh, undo_handles) {
if (image == uh->image_ref.ptr && uh->iuser.tile == tile_number) {
return uh;
}
}
return nullptr;
}
static UndoImageHandle *uhandle_add(ListBase *undo_handles, Image *image, ImageUser *iuser)
{
BLI_assert(uhandle_lookup(undo_handles, image, iuser->tile) == nullptr);
UndoImageHandle *uh = static_cast<UndoImageHandle *>(MEM_callocN(sizeof(*uh), __func__));
uh->image_ref.ptr = image;
uh->iuser = *iuser;
uh->iuser.scene = nullptr;
BLI_addtail(undo_handles, uh);
return uh;
}
static UndoImageHandle *uhandle_ensure(ListBase *undo_handles, Image *image, ImageUser *iuser)
{
UndoImageHandle *uh = uhandle_lookup(undo_handles, image, iuser->tile);
if (uh == nullptr) {
uh = uhandle_add(undo_handles, image, iuser);
}
return uh;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Implements ED Undo System
* \{ */
struct ImageUndoStep {
UndoStep step;
/** #UndoImageHandle */
ListBase handles;
/**
* #PaintTile
* Run-time only data (active during a paint stroke).
*/
PaintTileMap *paint_tile_map;
bool is_encode_init;
ePaintMode paint_mode;
};
/**
* Find the previous undo buffer from this one.
* \note We could look into undo steps even further back.
*/
static UndoImageBuf *ubuf_lookup_from_reference(ImageUndoStep *us_prev,
const Image *image,
int tile_number,
const UndoImageBuf *ubuf)
{
/* Use name lookup because the pointer is cleared for previous steps. */
UndoImageHandle *uh_prev = uhandle_lookup_by_name(&us_prev->handles, image, tile_number);
if (uh_prev != nullptr) {
UndoImageBuf *ubuf_reference = uhandle_lookup_ubuf(uh_prev, image, ubuf->ibuf_name);
if (ubuf_reference) {
ubuf_reference = ubuf_reference->post;
if ((ubuf_reference->image_dims[0] == ubuf->image_dims[0]) &&
(ubuf_reference->image_dims[1] == ubuf->image_dims[1])) {
return ubuf_reference;
}
}
}
return nullptr;
}
static bool image_undosys_poll(bContext *C)
{
Object *obact = CTX_data_active_object(C);
ScrArea *area = CTX_wm_area(C);
if (area && (area->spacetype == SPACE_IMAGE)) {
SpaceImage *sima = (SpaceImage *)area->spacedata.first;
if ((obact && (obact->mode & OB_MODE_TEXTURE_PAINT)) || (sima->mode == SI_MODE_PAINT)) {
return true;
}
}
else {
if (obact && (obact->mode & OB_MODE_TEXTURE_PAINT)) {
return true;
}
}
return false;
}
static void image_undosys_step_encode_init(struct bContext * /*C*/, UndoStep *us_p)
{
ImageUndoStep *us = reinterpret_cast<ImageUndoStep *>(us_p);
/* dummy, memory is cleared anyway. */
us->is_encode_init = true;
BLI_listbase_clear(&us->handles);
us->paint_tile_map = MEM_new<PaintTileMap>(__func__);
}
static bool image_undosys_step_encode(struct bContext *C, struct Main * /*bmain*/, UndoStep *us_p)
{
/* Encoding is done along the way by adding tiles
* to the current 'ImageUndoStep' added by encode_init.
*
* This function ensures there are previous and current states of the image in the undo buffer.
*/
ImageUndoStep *us = reinterpret_cast<ImageUndoStep *>(us_p);
BLI_assert(us->step.data_size == 0);
if (us->is_encode_init) {
ImBuf *tmpibuf = imbuf_alloc_temp_tile();
ImageUndoStep *us_reference = reinterpret_cast<ImageUndoStep *>(
ED_undo_stack_get()->step_active);
while (us_reference && us_reference->step.type != BKE_UNDOSYS_TYPE_IMAGE) {
us_reference = reinterpret_cast<ImageUndoStep *>(us_reference->step.prev);
}
/* Initialize undo tiles from ptiles (if they exist). */
for (PaintTile *ptile : us->paint_tile_map->map.values()) {
if (ptile->valid) {
UndoImageHandle *uh = uhandle_ensure(&us->handles, ptile->image, &ptile->iuser);
UndoImageBuf *ubuf_pre = uhandle_ensure_ubuf(uh, ptile->image, ptile->ibuf);
UndoImageTile *utile = static_cast<UndoImageTile *>(
MEM_callocN(sizeof(*utile), "UndoImageTile"));
utile->users = 1;
utile->rect.pt = ptile->rect.pt;
ptile->rect.pt = nullptr;
const uint tile_index = index_from_xy(ptile->x_tile, ptile->y_tile, ubuf_pre->tiles_dims);
BLI_assert(ubuf_pre->tiles[tile_index] == nullptr);
ubuf_pre->tiles[tile_index] = utile;
}
ptile_free(ptile);
}
us->paint_tile_map->map.clear();
LISTBASE_FOREACH (UndoImageHandle *, uh, &us->handles) {
LISTBASE_FOREACH (UndoImageBuf *, ubuf_pre, &uh->buffers) {
ImBuf *ibuf = BKE_image_acquire_ibuf(uh->image_ref.ptr, &uh->iuser, nullptr);
const bool has_float = ibuf->rect_float;
BLI_assert(ubuf_pre->post == nullptr);
ubuf_pre->post = ubuf_from_image_no_tiles(uh->image_ref.ptr, ibuf);
UndoImageBuf *ubuf_post = ubuf_pre->post;
if (ubuf_pre->image_dims[0] != ubuf_post->image_dims[0] ||
ubuf_pre->image_dims[1] != ubuf_post->image_dims[1]) {
ubuf_from_image_all_tiles(ubuf_post, ibuf);
}
else {
/* Search for the previous buffer. */
UndoImageBuf *ubuf_reference =
(us_reference ? ubuf_lookup_from_reference(
us_reference, uh->image_ref.ptr, uh->iuser.tile, ubuf_post) :
nullptr);
int i = 0;
for (uint y_tile = 0; y_tile < ubuf_pre->tiles_dims[1]; y_tile += 1) {
uint y = y_tile << ED_IMAGE_UNDO_TILE_BITS;
for (uint x_tile = 0; x_tile < ubuf_pre->tiles_dims[0]; x_tile += 1) {
uint x = x_tile << ED_IMAGE_UNDO_TILE_BITS;
if ((ubuf_reference != nullptr) &&
((ubuf_pre->tiles[i] == nullptr) ||
/* In this case the paint stroke as has added a tile
* which we have a duplicate reference available. */
(ubuf_pre->tiles[i]->users == 1))) {
if (ubuf_pre->tiles[i] != nullptr) {
/* If we have a reference, re-use this single use tile for the post state. */
BLI_assert(ubuf_pre->tiles[i]->users == 1);
ubuf_post->tiles[i] = ubuf_pre->tiles[i];
ubuf_pre->tiles[i] = nullptr;
utile_init_from_imbuf(ubuf_post->tiles[i], x, y, ibuf, tmpibuf);
}
else {
BLI_assert(ubuf_post->tiles[i] == nullptr);
ubuf_post->tiles[i] = ubuf_reference->tiles[i];
ubuf_post->tiles[i]->users += 1;
}
BLI_assert(ubuf_pre->tiles[i] == nullptr);
ubuf_pre->tiles[i] = ubuf_reference->tiles[i];
ubuf_pre->tiles[i]->users += 1;
BLI_assert(ubuf_pre->tiles[i] != nullptr);
BLI_assert(ubuf_post->tiles[i] != nullptr);
}
else {
UndoImageTile *utile = utile_alloc(has_float);
utile_init_from_imbuf(utile, x, y, ibuf, tmpibuf);
if (ubuf_pre->tiles[i] != nullptr) {
ubuf_post->tiles[i] = utile;
utile->users = 1;
}
else {
ubuf_pre->tiles[i] = utile;
ubuf_post->tiles[i] = utile;
utile->users = 2;
}
}
BLI_assert(ubuf_pre->tiles[i] != nullptr);
BLI_assert(ubuf_post->tiles[i] != nullptr);
i += 1;
}
}
BLI_assert(i == ubuf_pre->tiles_len);
BLI_assert(i == ubuf_post->tiles_len);
}
BKE_image_release_ibuf(uh->image_ref.ptr, ibuf, nullptr);
}
}
IMB_freeImBuf(tmpibuf);
/* Useful to debug tiles are stored correctly. */
if (false) {
uhandle_restore_list(&us->handles, false);
}
}
else {
BLI_assert(C != nullptr);
/* Happens when switching modes. */
ePaintMode paint_mode = BKE_paintmode_get_active_from_context(C);
BLI_assert(ELEM(paint_mode, PAINT_MODE_TEXTURE_2D, PAINT_MODE_TEXTURE_3D));
us->paint_mode = paint_mode;
}
us_p->is_applied = true;
return true;
}
static void image_undosys_step_decode_undo_impl(ImageUndoStep *us, bool is_final)
{
BLI_assert(us->step.is_applied == true);
uhandle_restore_list(&us->handles, !is_final);
us->step.is_applied = false;
}
static void image_undosys_step_decode_redo_impl(ImageUndoStep *us)
{
BLI_assert(us->step.is_applied == false);
uhandle_restore_list(&us->handles, false);
us->step.is_applied = true;
}
static void image_undosys_step_decode_undo(ImageUndoStep *us, bool is_final)
{
/* Walk forward over any applied steps of same type,
* then walk back in the next loop, un-applying them. */
ImageUndoStep *us_iter = us;
while (us_iter->step.next && (us_iter->step.next->type == us_iter->step.type)) {
if (us_iter->step.next->is_applied == false) {
break;
}
us_iter = (ImageUndoStep *)us_iter->step.next;
}
while (us_iter != us || (!is_final && us_iter == us)) {
BLI_assert(us_iter->step.type == us->step.type); /* Previous loop ensures this. */
image_undosys_step_decode_undo_impl(us_iter, is_final);
if (us_iter == us) {
break;
}
us_iter = (ImageUndoStep *)us_iter->step.prev;
}
}
static void image_undosys_step_decode_redo(ImageUndoStep *us)
{
ImageUndoStep *us_iter = us;
while (us_iter->step.prev && (us_iter->step.prev->type == us_iter->step.type)) {
if (us_iter->step.prev->is_applied == true) {
break;
}
us_iter = (ImageUndoStep *)us_iter->step.prev;
}
while (us_iter && (us_iter->step.is_applied == false)) {
image_undosys_step_decode_redo_impl(us_iter);
if (us_iter == us) {
break;
}
us_iter = (ImageUndoStep *)us_iter->step.next;
}
}
static void image_undosys_step_decode(
struct bContext *C, struct Main *bmain, UndoStep *us_p, const eUndoStepDir dir, bool is_final)
{
/* NOTE: behavior for undo/redo closely matches sculpt undo. */
BLI_assert(dir != STEP_INVALID);
ImageUndoStep *us = reinterpret_cast<ImageUndoStep *>(us_p);
if (dir == STEP_UNDO) {
image_undosys_step_decode_undo(us, is_final);
}
else if (dir == STEP_REDO) {
image_undosys_step_decode_redo(us);
}
if (us->paint_mode == PAINT_MODE_TEXTURE_3D) {
ED_object_mode_set_ex(C, OB_MODE_TEXTURE_PAINT, false, nullptr);
}
/* Refresh texture slots. */
ED_editors_init_for_undo(bmain);
}
static void image_undosys_step_free(UndoStep *us_p)
{
ImageUndoStep *us = (ImageUndoStep *)us_p;
uhandle_free_list(&us->handles);
/* Typically this map will have been cleared. */
MEM_delete(us->paint_tile_map);
us->paint_tile_map = nullptr;
}
static void image_undosys_foreach_ID_ref(UndoStep *us_p,
UndoTypeForEachIDRefFn foreach_ID_ref_fn,
void *user_data)
{
ImageUndoStep *us = reinterpret_cast<ImageUndoStep *>(us_p);
LISTBASE_FOREACH (UndoImageHandle *, uh, &us->handles) {
foreach_ID_ref_fn(user_data, ((UndoRefID *)&uh->image_ref));
}
}
void ED_image_undosys_type(UndoType *ut)
{
ut->name = "Image";
ut->poll = image_undosys_poll;
ut->step_encode_init = image_undosys_step_encode_init;
ut->step_encode = image_undosys_step_encode;
ut->step_decode = image_undosys_step_decode;
ut->step_free = image_undosys_step_free;
ut->step_foreach_ID_ref = image_undosys_foreach_ID_ref;
/* NOTE: this is actually a confusing case, since it expects a valid context, but only in a
* specific case, see `image_undosys_step_encode` code. We cannot specify
* `UNDOTYPE_FLAG_NEED_CONTEXT_FOR_ENCODE` though, as it can be called with a NULL context by
* current code. */
ut->flags = UNDOTYPE_FLAG_DECODE_ACTIVE_STEP;
ut->step_size = sizeof(ImageUndoStep);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Utilities
*
* \note image undo exposes #ED_image_undo_push_begin, #ED_image_undo_push_end
* which must be called by the operator directly.
*
* Unlike most other undo stacks this is needed:
* - So we can always access the state before the image was painted onto,
* which is needed if previous undo states aren't image-type.
* - So operators can access the pixel-data before the stroke was applied, at run-time.
* \{ */
PaintTileMap *ED_image_paint_tile_map_get(void)
{
UndoStack *ustack = ED_undo_stack_get();
UndoStep *us_prev = ustack->step_init;
UndoStep *us_p = BKE_undosys_stack_init_or_active_with_type(ustack, BKE_UNDOSYS_TYPE_IMAGE);
ImageUndoStep *us = reinterpret_cast<ImageUndoStep *>(us_p);
/* We should always have an undo push started when accessing tiles,
* not doing this means we won't have paint_mode correctly set. */
BLI_assert(us_p == us_prev);
if (us_p != us_prev) {
/* Fallback value until we can be sure this never happens. */
us->paint_mode = PAINT_MODE_TEXTURE_2D;
}
return us->paint_tile_map;
}
void ED_image_undo_restore(UndoStep *us)
{
PaintTileMap *paint_tile_map = reinterpret_cast<ImageUndoStep *>(us)->paint_tile_map;
ptile_restore_runtime_map(paint_tile_map);
ptile_invalidate_map(paint_tile_map);
}
static ImageUndoStep *image_undo_push_begin(const char *name, int paint_mode)
{
UndoStack *ustack = ED_undo_stack_get();
bContext *C = nullptr; /* special case, we never read from this. */
UndoStep *us_p = BKE_undosys_step_push_init_with_type(ustack, C, name, BKE_UNDOSYS_TYPE_IMAGE);
ImageUndoStep *us = reinterpret_cast<ImageUndoStep *>(us_p);
BLI_assert(ELEM(paint_mode, PAINT_MODE_TEXTURE_2D, PAINT_MODE_TEXTURE_3D, PAINT_MODE_SCULPT));
us->paint_mode = (ePaintMode)paint_mode;
return us;
}
void ED_image_undo_push_begin(const char *name, int paint_mode)
{
image_undo_push_begin(name, paint_mode);
}
void ED_image_undo_push_begin_with_image(const char *name,
Image *image,
ImBuf *ibuf,
ImageUser *iuser)
{
ImageUndoStep *us = image_undo_push_begin(name, PAINT_MODE_TEXTURE_2D);
BLI_assert(BKE_image_get_tile(image, iuser->tile));
UndoImageHandle *uh = uhandle_ensure(&us->handles, image, iuser);
UndoImageBuf *ubuf_pre = uhandle_ensure_ubuf(uh, image, ibuf);
BLI_assert(ubuf_pre->post == nullptr);
ImageUndoStep *us_reference = reinterpret_cast<ImageUndoStep *>(
ED_undo_stack_get()->step_active);
while (us_reference && us_reference->step.type != BKE_UNDOSYS_TYPE_IMAGE) {
us_reference = reinterpret_cast<ImageUndoStep *>(us_reference->step.prev);
}
UndoImageBuf *ubuf_reference = (us_reference ? ubuf_lookup_from_reference(
us_reference, image, iuser->tile, ubuf_pre) :
nullptr);
if (ubuf_reference) {
memcpy(ubuf_pre->tiles, ubuf_reference->tiles, sizeof(*ubuf_pre->tiles) * ubuf_pre->tiles_len);
for (uint32_t i = 0; i < ubuf_pre->tiles_len; i++) {
UndoImageTile *utile = ubuf_pre->tiles[i];
utile->users += 1;
}
}
else {
ubuf_from_image_all_tiles(ubuf_pre, ibuf);
}
}
void ED_image_undo_push_end(void)
{
UndoStack *ustack = ED_undo_stack_get();
BKE_undosys_step_push(ustack, nullptr, nullptr);
BKE_undosys_stack_limit_steps_and_memory_defaults(ustack);
WM_file_tag_modified();
}
/** \} */