This patch will generate html file which contains per-scene graph ofg all device statistics over all period of time. There are still some possible tweaks to look and feel of the graphs, but it's good enough for now.
194 lines
6.4 KiB
JavaScript
194 lines
6.4 KiB
JavaScript
// Generate unique looking color for a given bar index.
|
|
function generateBarColor(index) {
|
|
var builtin_colors = [[255, 99, 132],
|
|
[255, 159, 64],
|
|
[255, 205, 86],
|
|
[75, 192, 192],
|
|
[54, 162, 235],
|
|
[153, 102, 255],
|
|
[201, 203, 207],
|
|
[48, 103, 204],
|
|
[220, 56, 18],
|
|
[254, 155, 0],
|
|
[15, 147, 25]];
|
|
var color = [0, 0, 0];
|
|
if (index >= 0 && index < builtin_colors.length) {
|
|
color = builtin_colors[index];
|
|
}
|
|
return "rgb(" + color[0].toString() + ", " +
|
|
color[1].toString() + ", " +
|
|
color[2].toString() + ")";
|
|
}
|
|
|
|
function padValue(value, size) {
|
|
var s = String(value);
|
|
while (s.length < (size || 2)) {
|
|
s = "0" + s;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
function secondsToHumanReadable(seconds) {
|
|
var h = Math.floor((seconds %= 86400) / 3600);
|
|
var m = Math.floor((seconds %= 3600) / 60);
|
|
var s = Math.floor(seconds % 60);
|
|
var msec = Math.floor((seconds % 60) % 1 * 100);
|
|
var result = "";
|
|
if (h != 0) {
|
|
result += h + ":";
|
|
}
|
|
result += padValue(m, 2) + ":";
|
|
result += padValue(s, 2) + ".";
|
|
result += padValue(msec, 2);
|
|
return result;
|
|
}
|
|
|
|
function setDatasetColor(data, is_bar) {
|
|
var index = 0;
|
|
for (dataset of data.datasets) {
|
|
var color = Chart.helpers.color(generateBarColor(index));
|
|
dataset.backgroundColor = color.alpha(0.5).rgbString();
|
|
dataset.borderColor = color.alpha(1.0).rgbString();
|
|
if (is_bar) {
|
|
dataset.borderWidth = 1;
|
|
} else {
|
|
dataset.fill = false;
|
|
}
|
|
index++;
|
|
}
|
|
}
|
|
|
|
function findDatasetMaxValue(data) {
|
|
var max_value = 0;
|
|
for (dataset of data.datasets) {
|
|
for (value of dataset.data) {
|
|
if (value === null) {
|
|
continue;
|
|
}
|
|
if (typeof value !== "number") {
|
|
value = value.y;
|
|
}
|
|
max_value = Math.max(max_value, value);
|
|
}
|
|
}
|
|
return max_value;
|
|
}
|
|
|
|
function buildChart(ctx, bare_data) {
|
|
var data = bare_data;
|
|
var max_value = findDatasetMaxValue(data);
|
|
setDatasetColor(data, true);
|
|
var my_chart = new Chart(
|
|
ctx,
|
|
{
|
|
type: 'bar',
|
|
data: data,
|
|
options: { responsive: true,
|
|
legend: {position: 'top'},
|
|
title: {display: true,
|
|
text: 'Benchmark Results'},
|
|
scales: {xAxes: [{display: true,
|
|
scaleLabel: {display: true,
|
|
labelString: 'Scene'}}],
|
|
yAxes: [{display: true,
|
|
scaleLabel: {display: true,
|
|
labelString: 'Render time (sec)'},
|
|
ticks: {min: 0,
|
|
max: Math.ceil((max_value + 99) / 100) * 100}}]},
|
|
tooltips: {// mode: 'index',
|
|
callbacks: {
|
|
footer: function(tooltipItems, data) {
|
|
var human_time = "";
|
|
tooltipItems.forEach(
|
|
function(tooltipItem) {
|
|
var render_time = data.datasets[tooltipItem.datasetIndex].data[tooltipItem.index];
|
|
human_time = secondsToHumanReadable(render_time);
|
|
}
|
|
);
|
|
if (human_time != "") {
|
|
return "Render Time: " + human_time;
|
|
}
|
|
return "";
|
|
},
|
|
},
|
|
filter: function(item, data) {
|
|
var data = data.datasets[item.datasetIndex].data[item.index];
|
|
return !isNaN(data) && data !== null;
|
|
},
|
|
footerFontStyle: 'normal'},
|
|
}
|
|
});
|
|
}
|
|
|
|
function historyChartGetSceneStats(bare_data, scene_name) {
|
|
var datasets = [];
|
|
for (dataset of bare_data.datasets) {
|
|
if (dataset.scene_name != scene_name) {
|
|
continue;
|
|
}
|
|
datasets.push({"data": dataset.data,
|
|
"label": dataset.device_name});
|
|
}
|
|
return {"datasets": datasets};
|
|
}
|
|
|
|
function buildHistoryChart(ctx, bare_data, scene_name) {
|
|
var data = historyChartGetSceneStats(bare_data, scene_name);
|
|
var max_value = findDatasetMaxValue(data);
|
|
setDatasetColor(data, false);
|
|
new Chart(
|
|
ctx,
|
|
{
|
|
type: 'line',
|
|
data: data,
|
|
options: { responsive: true,
|
|
legend: {position: 'top'},
|
|
title: {display: true,
|
|
text: scene_name + ' benchmark results'},
|
|
scales: {xAxes: [{type: "time",
|
|
time: {format: 'DD/MM/YYYY HH:mm',
|
|
tooltipFormat: 'll HH:mm'},
|
|
scaleLabel: {display: true,
|
|
labelString: 'Date'}},],
|
|
yAxes: [{display: true,
|
|
scaleLabel: {display: true,
|
|
labelString: 'Render time (sec)'},
|
|
ticks: {min: 0,
|
|
max: Math.ceil((max_value + 99) / 100) * 100}}]},
|
|
|
|
elements: { line: { tension: 0.000001 } },
|
|
}
|
|
});
|
|
}
|
|
|
|
function buildSpreadsheet(ctx, data) {
|
|
// Generate columns for header.
|
|
var columns = [{label: "", name: "", width: 300}];
|
|
for (label of data.labels) {
|
|
columns.push({label: label, name: label});
|
|
}
|
|
// Generate actual data.
|
|
var rows = [];
|
|
for (dataset of data.datasets) {
|
|
var row = [dataset.label];
|
|
for (value of dataset.data) {
|
|
if (value == null) {
|
|
row.push("");
|
|
} else {
|
|
row.push(secondsToHumanReadable(value));
|
|
}
|
|
}
|
|
rows.push(row);
|
|
}
|
|
// Create actual table.
|
|
$(ctx).jqGrid({
|
|
data: rows,
|
|
localReader: {repeatitems: true},
|
|
datatype: "local",
|
|
styleUI : 'Bootstrap',
|
|
colModel: columns,
|
|
caption: "Spreadsheet",
|
|
height: 300,
|
|
});
|
|
}
|